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Abstract  

Image-based profiling is rapidly transforming drug discovery, offering unprecedented insights into 

cellular responses. However, experimental variability hinders accurate identification of 

mechanisms of action (MoA) and compound targets. Existing methods commonly fail to generalize 

to novel compounds, limiting their utility in exploring uncharted chemical space. To address this, 

we present a confounder-aware foundation model integrating a causal mechanism within a latent 

diffusion model, enabling the generation of balanced synthetic datasets for robust biological effect 

estimation. Trained on over 13 million Cell Painting images and 107 thousand compounds, our 

model learns robust cellular phenotype representations, mitigating confounder impact. We 

achieve state-of-the-art MoA and target prediction for both seen (0.66 and 0.65 ROC-AUC) and 

unseen compounds (0.65 and 0.73 ROC-AUC), significantly surpassing real and batch-corrected 

data. This innovative framework advances drug discovery by delivering robust biological effect 

estimations for novel compounds, potentially accelerating hit expansion. Our model establishes a 

scalable and adaptable foundation for cell imaging, holding the potential to become a cornerstone 

in data-driven drug discovery.   
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Introduction 

Image-based profiling is revolutionizing early-stage drug discovery, offering unprecedented 

capabilities to unravel the intricate cellular responses elicited by experimental (compound or 

genetic) perturbations [1]. This process involves treating cells with experimental perturbations and 

capturing the resulting morphological variations through cell microscopy [2]. Cell Painting (CP), 

the most widely established image-based profiling technique, utilizes six different dyes to image 

key cellular organelles and components, including RNA, DNA, mitochondria, plasma membrane, 

endoplasmic reticulum, actin cytoskeleton, and the Golgi apparatus [3, 4]. However, the 

specialized equipment and expertise required for CP are not readily available in many wet labs, 

highlighting the need for a more accessible foundation model for image-based profiling. Such a 

model could substantially accelerate drug discovery [1, 5, 6], by providing a valuable tool to 

explore the effects of novel chemical compounds on cell morphology, even in laboratories without 

specialized CP capabilities.  

A central goal of CP is to quantitatively characterize compound mechanisms of action (MoA), 

providing fundamental insights into its biological activity and guiding the development of innovative 

therapeutics [5]. MoA identification remains challenging, often requiring a multi-faceted approach 

integrating data from various experimental technologies, such as transcriptomics, bioactivity 

assessments and CP [5]. Moreover, CP has shown promise in characterizing MoA [5], and 

developing computational methods to improve this process can enhance the efficiency and cost-

effectiveness of early drug discovery [5, 6]. 

To characterize MoAs from CP images, automated image analysis focuses on quantifying the 

cellular morphology variations in response to experimental perturbations [1, 7]. Conventional 

image analysis methods rely on hand-engineered features capturing different aspects of cellular 

size, shape, intensity and texture across the CP stains [1, 5, 7]. Deep learning methods have 

outperformed non-batch-corrected conventional methods in MoA prediction [5], within focused [8-

12] and broader MoA sets [13]. Other deep learning studies have recently demonstrated that 

integrating CP data with gene expression and chemical structure information enhances compound 

activity prediction [14], while weakly supervised learning can improve treatment identification [15]. 

In a recent study, a conditional generative adversarial network (GAN) was developed to reproduce 

cell phenotype changes induced by a small set of compound treatments [16]. The authors 

hypothesized that image synthesis would reduce cell-to-cell natural variability, which in turn would 

enhance the detection of subtle, treatment-induced morphological changes. Other efforts have 

focused on evaluating the capacity of generative models to synthesize CP-stained images from 

brightfield microscopy images (lacking CP dyes) [17-20]. Nevertheless, CP data and existing 

methods for estimating biological effects, such as MoA or target identification, are susceptible to 

substantial bias from confounders. These confounders encompass extraneous factors—including 

variations in laboratory conditions, experimental procedures, and imaging techniques—that can 

influence both the observed cellular morphologies and the measured biological effects, leading to 

spurious associations and obscuring true compound-induced phenotypic responses [5, 6]. These 

biases, arising from sources such as lab equipment variations, batch inconsistencies, well position 

effects, and other uncontrollable experimental factors, can significantly confound downstream 

analyses of CP data [5, 6]. Existing batch effect correction methods, such as Harmony, effectively 

account for batch effects and show promise for improving biological effect estimation from CP 

data [21]. However, these approaches typically assume that sources of variation can be captured 

through linear transformations. Despite the demonstrated capacity of generative models to 

synthesize CP data [16-20], no prior work has explicitly corrected for confounding biases in the 

CP image domain, potentially hindering the development of generative models for broader 

biological effect applications, such as predicting MoA and compound targets.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630105doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630105
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

In our work, we developed a novel latent diffusion model (LDM)-based foundation model, pre-

trained on a vast and diverse dataset comprising a total of 13,361,250 CP images corresponding 

to 107,289 compounds, from the Joint Undertaking for Morphological Profiling-Cell Painting 

Consortium (JUMP-CP) [6]. This model aims to learn generalizable representations of cellular 

phenotypic responses to compound perturbations, enabling it to potentially perform a wide range 

of downstream tasks in drug discovery, with minimal or no task-specific fine-tuning. To achieve 

this, we incorporated known confounding variables, i.e., source (laboratory), batch and well 

position, into the LDM architecture, effectively embedding a structural causal model (SCM) within 

the image generation process [22-25]. By explicitly encoding causal relationships, SCM-informed 

generative modeling can control for confounders and account for the complex interplay of causal 

factors in the image generation process [22, 26, 27]. Moreover, to inform the model about 

compound-specific effects, we incorporated chemical compound structure embeddings, derived 

by encoding Simplified Molecular-Input Line-Entry System (SMILES) representations using a 

pretrained MolT5 framework [28], as conditioning factors in the LDM. Therefore, our approach 

exposed the model to a vast and diverse spectrum of compound-induced morphological changes 

while simultaneously accounting for their underlying causal factors (confounders).  

We investigate our confounder-aware (SCM-conditioned) foundation model’s ability for MoA 

identification and compare its performance against real, real batch-corrected JUMP-CP data and 

a similar foundation model lacking the incorporated SCM. We conduct the same evaluation for 

compound target prediction, a task not previously investigated by generative modeling or 

classification techniques in the CP domain. This is particularly important for broadly evaluating the 

biological effects of chemical compounds, as identifying potential targets provides crucial insights 

into the specific mechanisms by which these compounds exert their effects, complementing MoA 

prediction. We demonstrate the capacity of our confounder-aware foundation model for 

compound-to-image synthesis and its ability to improve both MoA and compound target 

identification. This evaluation encompasses two distinct scenarios: assessing the model's 

performance in MoA and target identification using synthetic images generated from a) 

compounds included in the training dataset and b) novel compounds unseen during training. This 

latter scenario provides compelling evidence for the model's ability to extrapolate beyond the 

training data, demonstrating its generalization capabilities and unlocking the potential for robust 

predictions within uncharted chemical spaces. Therefore, we present a novel confounder-aware 

foundation model that improves the accuracy of MoA and target prediction from CP images, 

demonstrating strong generalization to novel compounds and paving the way for enhanced hit 

expansion and a deeper understanding of compound-induced cellular responses. 
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Results  

This study involved developing a confounder-aware LDM foundation model and evaluating its 

ability to predict MoA and targets for both seen and unseen compounds. Furthermore, we 

qualitatively and quantitatively assessed the model's impact on separating compounds, batch 

effects, and MoAs, while reducing within-image variability. We extensively compared the 

confounder-aware model against real images, batch-corrected images, and a non-confounder-

aware model. 

To explore the impact of scaling confounding factor combinations (N=10 versus 100) on MoA and 

target prediction for seen and unseen compounds, we synthesized two sets of CP images using 

a g-estimation-inspired methodology [29]. The synthesized images consisted of a smaller set with 

5,000 images (N=10) and a larger set with 50,000 images (N=100). These images were then used 

to generate cell profiles, which were subsequently evaluated for their ability to predict MoA and 

compound targets. For the non-confounder-aware model, we generated the same number of 

images to ensure fair comparisons during evaluation. 

Synthetic image generation with a confounder-aware LDM  

Our confounder-aware LD foundation model, incorporating MolT5-derived chemical embeddings 

and trained to disentangle and control for confounding factors, generated synthetic CP images 

that accurately captured compound-induced morphological changes. The process of generating 

synthetic CP images using our confounder-aware LDM, incorporating MolT5 embeddings and 

controlling for confounding factors, is depicted in Figure 1. 

Exploratory analysis and causal modeling of confounders 

To explore the complex relationships and potential confounding factors within the JUMP-CP 

dataset, we conducted exploratory analyses of the distributions of compounds across sources, 

batches, plates, and wells. The Sankey diagram in Figure 2a visualizes these relationships of 5 

randomly selected compounds, highlighting the interconnectedness of these factors.  

To address potential confounding biases, we developed a causal graph (Figure 2b) and employed 

a g-estimation-based method to control for confounders in the synthetic image generation process 

(Figure 2c), ensuring that the generated images accurately reflect the causal relationships 

between compounds, phenotypes, and confounding factors. 

Qualitative and quantitative evaluation of confounder-aware image generation 

Initially, to assess the impact of our confounder-aware foundation model, we performed a 

qualitative evaluation of its ability to isolate the effect of confounders. As shown in Figure 3, we 

generated synthetic samples of the same compound (DMSO and AMG-900) under different batch 

and well position conditions, using a single random seed to minimize variability in cell position and 

density across confounder sets [16]. These synthetic samples were then compared against real 

data with matching conditions. Our model effectively minimized within-image variability while 

capturing across-batch and -well position variability, demonstrating its ability to synthesize images 

conditioned on the observable batch and well position effects. 

Subsequently, to gain an initial quantitative understanding of how confounders influence cell 

profiles and compound-induced morphological changes, we performed a UMAP analysis, 

visualizing the clustering patterns of CP image-derived cell profiles in Figure 4. Each blue circle 

in panels a-f, represents cell profiles from a 5-channel CP image set with a unique combination of 

confounders (source, batch, well position), while panels g-i show cell profiles aggregated across 

all confounder combinations for each compound. Clear distinctions are observed between the 

clusters derived from real data, confounder-aware foundation model data, and non-confounder-
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aware foundation model data, highlighting the differing influence of confounders across the 

datasets. 

To assess compound separation, we visualized 3 randomly selected compounds (Bilastine, 

Ciproxifan, Erlotinib) across all datasets (Figure 4a-c). The confounder-aware foundation model 

(Figure 4b) achieved clear separation of these compounds, while the real data and non-

confounder-aware model (Figure 4a and c) showed substantial overlap within the observed 

clusters. Similarly, visualization of batch effects (Figure 4d-f) revealed that the confounder-aware 

model (Figure 4e) effectively separated batches, whereas the real data and non-confounder-

aware model (Figure 4d and f) again exhibited overlap. Furthermore, evaluation of MoAs on 

aggregated cell profiles (Figure 4g-i) showed that the confounder-aware foundation model (Figure 

4h) demonstrates a clearer separation of MoAs compared to the real data and the non-

confounder-aware model (Figure 4g and i). This suggests that the model effectively accounts for 

and mitigates the influence of confounders, allowing for a more accurate representation of MoA-

related differences. 

Confounder-aware foundation model improves MoA prediction accuracy 

Firstly, to evaluate the impact of our confounder-aware foundation model on MoA identification for 

compounds seen during training, but with unseen images (i.e., images corresponding to batches 

not encountered during training), we compared its performance to three other settings: (1) the 

original real CP image data, (2) real batch-corrected CP image data (using Harmony), and (3) 

synthetic data generated by a non-confounder-aware model. In each setting, we used a nearest 

neighbor classifier to assess the accuracy of the estimated Biosimilarities in identifying known 

MoAs from the Drug Repurposing Hub.  

Figure 5a shows improved mAP [30] and ROC-AUC [31] performance for the confounder-aware 

model in identifying MoAs. With 50,000 images (N=100 confounder combinations) and 5,000 

images (N=10) for the confounder-aware model, the mAP was 0.08 and 0.07, respectively. The 

non-confounder-aware model had a mAP of 0.07 for both 50,000 and 5,000 images. Real and 

real batch-corrected data had mAPs of 0.06 and 0.07, respectively.  

With 50,000 images (N=100) and 5,000 images (N=10) for the confounder-aware model, the 

ROC-AUC was 0.66 and 0.63, respectively. The non-confounder-aware model had a ROC-AUC 

of 0.64 for both 50,000 and 5,000 images. Real and real batch-corrected data had ROC-AUCs of 

0.59 and 0.61, respectively. 

ANOVA analysis with Tukey's honestly significant difference (HSD) post-hoc test [32] comparing 

mAP results across all real and synthetic data types, revealed that both the confounder-aware 

and non-confounder-aware foundation models significantly outperformed real data in MoA 

prediction (Figure 5a, Table 1, Supplementary Data 1), with no other significant differences 

observed. Repeating the ANOVA with Tukey's HSD test to compare ROC-AUC results across all 

data types, both foundation models significantly outperformed real and real-batch corrected data 

(Figure 5a, Table 1, Supplementary Data 1). No significant differences were observed between 

the two foundation models (comparing the same number of images: 50,000 versus 50,000 and 

5,000 versus 5,000; Table 1).   

Confounder-aware foundation model improves target prediction accuracy 

We conducted the same analysis for target prediction, using compounds present during training, 

but with unseen images. Figure 5b shows that the confounder-aware model consistently 

outperformed all other data types in predicting targets, as evidenced by the mAP and ROC-AUC 

results. With 50,000 images (N=100) and 5,000 images (N=10) for the confounder-aware model, 

the mAP was 0.10 and 0.08, respectively. The non-confounder-aware model had a mAP of 0.04 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630105doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630105
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

for both 50,000 and 5,000 images. Real and real batch-corrected data had mAPs of 0.02 and 

0.03, respectively.  

The confounder-aware model had a ROC-AUC of 0.65 and 0.62 with 50,000 (N=100) and 5,000 

(N=10) images, respectively. The non-confounder-aware model had a ROC-AUC of 0.66 and 0.65 

for those respective image sets. Real and real batch-corrected data had ROC-AUCs of 0.57 and 

0.58, respectively. 

ANOVA with Tukey's HSD post-hoc test revealed that the confounder-aware model significantly 

outperformed all other image types in both mAP and ROC-AUC (Figure 5b, Table 2, 

Supplementary Data 1). The non-confounder-aware model has also significantly outperformed the 

real and real batch-corrected data, but underperformed against the confounder-aware model. 

Generalizing MoA prediction to unseen compounds 

To assess model generalizability, we conducted the same MoA prediction analysis using novel 

compounds unseen during training, observing similar trends as with seen compounds (Figure 5a). 

The confounder-aware model had a mAP of 0.09 with 50,000 images (N=100) and 0.08 with 5,000 

images (N=10). The non-confounder-aware model had a mAP of 0.09 for both image sets. Real 

and real batch-corrected data had mAPs of 0.07 and 0.08, respectively. 

The confounder-aware model had an ROC-AUC of 0.65 and 0.62 with 50,000 (N=100) and 5,000 

(N=10) images, respectively. The non-confounder-aware model had a ROC-AUC of 0.66 and 0.65 

for those respective image sets. Real and real batch-corrected data had ROC-AUCs of 0.57 and 

0.58, respectively. 

ANOVA with Tukey's HSD post-hoc test revealed that both foundation models significantly 

outperformed real data in MoA prediction based on both mAP and ROC-AUC (Figure 5a, Table 1, 

Supplementary Data 1). For ROC-AUC, both models also significantly outperformed real batch-

corrected data. No significant differences were observed between the two foundation models 

(comparing the same number of images: 50,000 versus 50,000 and 5,000 versus 5,000; Table 1).  

Generalizing target prediction to unseen compounds 

When predicting targets for unseen compounds, the confounder-aware model achieved a mAP of 

0.22 with 50,000 images (N=100) and 0.17 with 5,000 images (N=10) (Figure 5b). The non-

confounder-aware model had a mAP of 0.08 and 0.07, for those respective image sets. Real and 

real batch-corrected data had a mAP of 0.05. 

The confounder-aware model had ROC-AUCs of 0.73 and 0.64 with 50,000 (N=100) and 5,000 

(N=10) images, respectively. The non-confounder-aware model had ROC-AUCs of 0.59 and 0.54 

with those respective image sets. Real and real batch-corrected data had ROC-AUCs of 0.45 and 

0.41, respectively. 

ANOVA with Tukey's HSD post-hoc test revealed that the confounder-aware model significantly 

outperformed all other image types in both mAP and ROC-AUC (Figure 5b, Table 2, 

Supplementary Data 1). Supplementary Figures 1 and 2 show examples of MoAs and targets 

where the confounder-aware model outperformed the other approaches.  
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Discussion 

In this study, we introduced a confounder-aware latent diffusion-based foundation model to 

address the challenge of confounding factors in image-based profiling for drug discovery, as well 

as the unmet need of generalizing to unseen compounds. Our model, trained on a vast CP 

dataset, generated synthetic images that accurately captured compound-induced morphological 

changes while mitigating the impact of confounders. This resulted in significantly improved and 

debiased MoA and target prediction for both seen and unseen compounds, as demonstrated by 

increased mAP and ROC-AUC and confirmed by ANOVA with Tukey's HSD post-hoc tests.  

This study presents, to our knowledge, the first large-scale generative model for cell imaging 

rigorously evaluated for its ability to predict MoAs and compound targets. Τhis evaluation includes 

the prediction of compound targets, a task not previously addressed by generative modeling [16-

20] or classification techniques [8-13], applied to CP data. This is particularly valuable for broadly 

evaluating the biological effects of chemical compounds, as target identification provides crucial 

mechanistic insights-ultimately revealing what the compound aims to affect-complementing MoA 

prediction [1-7]. A rigorous evaluation of downstream tasks such as MoA and target prediction, 

and generalization to novel compounds, is essential to thoroughly assess the capacity of our 

foundation model to learn the underlying data generation process. Accurately predicting MoA and 

targets is inherently challenging due to the complex interplay between compound actions (e.g., 

inhibition, antagonist, agonist, or kinase action) and their effects on targets (e.g., proteins, 

enzymes, molecules) [1, 5]. It is also known that MoA annotation is inherently limited by factors 

such as dose-dependency, variability in dose-response curves, and the potential for 

polypharmacology [5]. A previous work has explored the use of contrastive learning to enable 

cross-modal queries between chemical structures and CP images [34]. Their method, termed 

CLOOME, utilized a dataset of approximately 760,000 CP images and 30,404 compounds, and 

demonstrated improved performance against non-batch-corrected data using ranking metrics. 

However, this approach did not explicitly address the learning of the underlying data generation 

process or incorporate mechanisms to account for confounding factors. As a retrieval-based 

technique, CLOOME's performance may be influenced by the specific patterns in its training data 

and the extent of chemical and phenotypic diversity it encompasses. Using a relatively small CP 

dataset, another work used a conditional GAN to visualize and enhance understanding of how 

compounds influence cellular responses [16]. Our previous work developed and evaluated 

generative models for producing CP images from brightfield microscopy data [20, 35]. Our 

confounder-aware model demonstrates strong performance across seen and unseen compounds, 

and varying levels of confounding factors (N=10 to N=100) (Figures 5a and b, Tables 1 and 2). 

Moreover, our confounder-aware model showed statistically significant improvements in mAP 

compared to real data for both MoA and target prediction in seen and unseen compounds. This is 

the first study to benchmark these metrics at such a large scale, providing valuable insights into 

the performance of generative models for cell imaging. Therefore, unlike previous correlational 

techniques, our confounder-aware foundation model presents a unique and advanced approach, 

potentially enabling superior generalization and debiasing of downstream tasks.  

Our confounder-aware model, by mapping over 107,000 compound-induced morphological 

changes in a causal manner, is capable of exploring both structure-based and biology-based hit 

expansion [33]. Structure-based hit expansion assumes smaller changes to the compound within 

a defined chemical space, while biology-based hit expansion is agnostic to chemical structure, 

focusing instead on biological effects and phenotypic profiles [33]. Accurate prediction of MoAs 

and targets for unseen compounds, achieved through our integrated Biosimilarity analysis, 

unlocks the potential to identify further novel MoAs and targets.  Our model can be readily 

expanded with additional CP data, further refining its representation of the data generation 

process. 
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While our exploratory analysis (Figures 3-4) demonstrated improved separation of confounding 

effects, compounds, and MoAs, and our confounder-aware model showed significantly enhanced 

performance in target identification compared to all other data types, we observed comparable 

performance between the confounder-aware and non-confounder-aware models in MoA 

identification. This suggests that compound conditioning alone may be sufficient to guide image 

generation and support downstream analysis for MoA identification. Furthermore, the specific 

experimental confounders we considered may exert a greater influence on target identification, a 

novel downstream task in this context. It is important to acknowledge that our causal mechanism 

can be further refined by incorporating additional confounding factors known to influence MoA 

estimation, such as compound concentration and bioactivity, which were not available in the 

JUMP-CP dataset. Future work could explore the integration of external data and fine-tuning our 

model with these additional confounders to potentially further enhance performance. 

The following limitations should be considered when interpreting our findings. First, we should 

acknowledge the influence of other potential confounders such as dose-dependency, variability in 

dose-response curves, and the potential for polypharmacology [1, 5]. Since our selected data 

lacked dose variation (10 μM across all sources), dose-response curves were unavailable, and all 

525 compounds (used for MoA evaluation) had only 1 known MoA, we focused on accounting for 

the remaining experimental biases. Our confounder-aware model can be readily extended to 

include additional conditions in the SCM as they become available, enabling further refinements 

by our group and the broader research community. While deep learning techniques for MoA 

classification have shown promise [8-13], we used cell profiles to leverage Harmony for batch 

effect correction, which has demonstrated effectiveness in mitigating batch effects while 

preserving biological variability and interpretability [21]. We utilized 525 and 465 compounds for 

MoA and target prediction evaluation, respectively (Supplementary Table 2). This represents all 

annotated data from our JUMP-CP dataset found in the Drug Repurposing Hub, but it is a small 

subset of the overall JUMP-CP dataset. Future work could explore incorporating additional 

annotations or developing alternative evaluation strategies. Various batch correction techniques 

could be further explored to remove biases. Finally, alternative classification methods could be 

evaluated for biological effect estimation.  

Our novel confounder-aware foundation model, with its demonstrated ability to accurately predict 

MoAs and targets even for novel compounds, establishes a new state-of-the-art and benchmark 

for cell imaging, with the potential to revolutionize hit expansion and deepen our understanding of 

compound-induced cellular responses.  
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Methods 

Ethical statement 

This study utilized exclusively computational methods with publicly available data, adhering to all 

relevant ethical principles for machine learning and data science research. No human or animal 

subjects, nor any wet-lab experimentation were performed. To broaden access, facilitate 

transparency and catalyze the use and deployment of our foundation model, we provide open 

access to our codebase. 

Data extraction and curation 

Data extraction and curation details are summarized in the Supplementary Table 1. CP, the leading 

image-based profiling technique, utilizes six fluorescent dyes to label major cellular components: 

nucleus (DNA), endoplasmic reticulum, nucleoli, cytoplasmic RNA, actin, Golgi apparatus, plasma 

membrane, and mitochondria [1, 3, 5, 6, 14, 15, 21]. The JUMP-CP consortium, a collaborative 

effort led by the Broad Institute and involved various academic as well as industry partners and 

12 pharmaceutical companies, has generated a large, optimized and diverse dataset to empower 

the development of advanced image analysis algorithms [6, 36]. JUMP-CP is a vast dataset 

comprising millions of CP images, profiling the morphological effects of >116,000 compounds 

across 4 distinct datasets: cpg0000, cpg0001, cpg0002 and cpg0016 [5, 6].  

Following protocol optimization and standardization across three pilot datasets (cpg0000, 

cpg0001, cpg0002), the JUMP-CP consortium generated the largest principal dataset (cpg0016), 

comprising millions of 5-channel CP images corresponding to over 116,000 compounds from 12 

sources (laboratories). Two foundation models were trained on the principal dataset: one 

incorporating confounder-awareness via SCM-conditioning (see "Defining the structural causal 

model"), and a second without this conditioning (SCM-free). Our dataset comprised all available 

data from 5 sources, consisting of 2,672,250 5-channel images (1 channel per fluorescent dye). 

The 5 sources (JUMP-CP laboratories 1-3, 9 and 11) were selected for their contribution of partially 

overlapping compound sets, ensuring that each compound was assayed using different 

instruments and microscopes across multiple laboratories (Figure 2a) [6]. To reduce cell variability, 

we focused on analyzing the U2OS cell line [6]. This yielded a total of 13,361,250 CP images, 

corresponding to 107,289 compounds which were organized into 48 batches and 832 plates. Each 

plate contains from 384 to 1536 wells, each imaged from 4 to 16 different fields of view with a 

microscope. Each well contained either a single chemical compound or a negative control (DMSO) 

in predefined positions [5, 6].  

To evaluate our SCM-conditioned and SCM-free foundation models versus real data in the setting 

of MoA and target characterization, we retrieved all available MoA and target annotations for our 

selected compounds from the Broad Institute Drug Repurposing Hub 

http://www.broadinstitute.org/repurposing [37]. The Drug Repurposing Hub comprises a unique 

assemblage of compounds designed to facilitate drug repurposing efforts. This curated library 

encompasses a diverse range of >7,000 compounds with established clinical histories, including 

marketed drugs, those previously evaluated in human clinical trials, and preclinical tools [37]. All 

compounds were sourced from over 50 chemical vendors and subjected to rigorous purity 

validation, before inclusion in the library [37]. MoA characterization is a central goal in image-

based cell profiling, offering a powerful framework for understanding compound effects [38]. 

However, it is known that source, batch, and well position confounders can bias or attenuate the 

compound effect, potentially affecting MoA and other biological effect characterizations [1, 5, 6]. 

Adjusting for the aforementioned confounders can potentially improve the accuracy of MoA 

characterization, which is important particularly for new or uncharacterized compounds [5]. To 

evaluate the accuracy of subprofile analysis in MoA and compound target identification from both 
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the confounder-aware (SCM-conditioned) and non-confounder-aware (SCM-free) foundation 

model, against the real JUMP-CP, we used mean average precision and area under the receiver 

operating characteristic curve (see the subsection "Evaluation metrics"). This evaluation was 

conducted for both synthetic images generated from compounds included in the training dataset 

and those derived from compounds entirely novel to the model, enabling an assessment of the 

models’ generalization capabilities. From 107,289 compounds involved in our study (Figure 1), we 

identified 525 compounds with MoA and target annotations (used as ground truths) in the Drug 

Repurposing Hub library. These compounds were divided into 2 groups. The first group was used 

to establish "reference profiles" based on their MoA and target information (see subsection "MoA 

and target identification via subprofiling"). The second group, containing compounds both seen 

and unseen during model training, was then compared to these reference profiles, to derive 

Biosimilarity scores. This allowed us to evaluate the performance of our confounder-aware-model 

and non-confounder-aware-model-derived cell profiles in characterizing the effects of both familiar 

(seen during training) and novel (unseen) compounds. Further details are described in the "MoA 

and target identification via subprofiling" and "Evaluation metrics" subsections. 

Each source (laboratory) of the JUMP-CP consortium conducts multiple batches of experiments, 

with each batch comprising multiple plates containing different compounds and negative controls 

in predefined well positions. A unique compound is applied to each well, but the selection of 

compounds varies across sources, batches and well positions. These variations (source, batch 

and well position) introduce potential biases, as illustrated in Figure 2a. The figure shows the 

uneven distribution of compounds across source, batch and well position combinations, 

highlighting the potential for systematic bias. Such technical variations can introduce systematic 

noise, potentially masking the true biological phenotypes [1, 3, 5, 6, 15, 21]. 

Defining the structural causal model 

We hypothesize that accurate estimation of compound effects from observational cell imaging 

data requires careful consideration of the causal relationships between known confounders, 

image generation, and the downstream task of interest i.e., MoA and target identification [23, 26, 

27]. Figure 2b shows in detail the causal paths between the known confounders (source, batch, 

plate, and well position), the compound treatment, and the resulting cell images, all within the 

SCM structure. A SCM employs a directed acyclic graph (DAG) to represent causal relationships 

between the confounding variables. In the DAG structure, the nodes represent variables and 

edges indicate direct causal effects [24, 25]. SCM-informed generative modeling offer a powerful 

mechanism for capturing confounding factors within the image generation process [22, 26, 27]. 

The left panel of Figure 2c depicts the SCM that captures the causal relationships between 

confounders, compound treatment, cell images, and the true phenotype. The SCM is integrated 

into the training process to achieve confounder-awareness in our foundation model. By 

incorporating known confounders into the learning process, the SCM enables the generation of 

synthetic CP images that account for these biases. Debiasing of subprofile analysis is then 

achieved through a method adapted from g-estimation (right panel of Figure 2c) [29].  

Specifically, in Figures 2b and 2c, we define images O, treatments T (i.e., compounds), and 

confounders C, as experimental observations. The underlying phenotype P is an unobserved 

variable which can be estimated from the acquired images O. The images O are acquired via cell 

microscopy across multiple sources, introducing unavoidable experimental biases, collectively 

denoted as confounders C. These confounders encompass a range of technical variations 

inherent to the experimental process, including source, batch, plate and well-position effects. 

While treatments T should be the primary drivers of phenotypic changes P (indicated with the 

arrow from T to P), the observed images O provide only a partial and noisy representation of the 

true phenotypic outcome (indicated with the arrow from P to O) [5, 15]. This necessitates the 
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acquisition of images from hundreds of cells with multiple replicates to enhance the fidelity of 

phenotypic measurements and mitigate the impact of noise [15]. We hypothesize that our 

confounder-aware (SCM-conditioned) foundation model, by learning generalizable 

representations across experimental replicates, can further mitigate this noise and improve the 

accuracy of phenotypic characterization. 

Moreover, experimental and technical variations due to source, batch, plate and well-position (e.g, 

microscope settings, imaging artifacts, assay preparation) represented by C, exert a multifaceted 

influence on this causal pathway and directly impact the acquired images (indicated with the arrow 

from C to O). Concurrently, inherent cell-to-cell variability and variations in cell density or other 

source-specific experimental conditions influence cellular phenotypes, impacting both cell growth 

and response (indicated with the arrow from C to P). The potential for systematic bias in treatment 

allocation is compounded by considerable variations across sources, which may involve different 

compounds, and by limitations in plate map design (represented by the arrow from C to T). As 

plate maps are often not fully randomized and may group treatments in specific well positions, 

these factors, which may vary considerably from source to source, can collectively introduce 

unintended biases in the experimental process [5, 6, 15]. Hence, our foundation model is further 

strengthened by the inclusion of a SCM. This SCM is specifically designed to adjust for the known 

confounders, allowing to debias the downstream analysis at the inference phase, using a method 

adapted from g-estimation (see the next subsection) [29]. 

Given the indirect nature of phenotypic observations and the presence of confounding factors, 

robust cell image analysis is crucial to accurately recover and quantify the effects of T on P. A 

previous work has implicitly utilized a similar causal interpretation, albeit without explicit 

formalization [15]. The authors utilized an approach involving implicit causal graph description and 

batch correction to address confounding factors in treatment classification [15]. Our aim is to 

disentangle the true biological signal from the unwanted technical variation embedded in the 

acquired images, thereby enabling accurate inference of compound effects. We introduce a 

foundation model designed to learn generalizable representations across experimental replicates, 

able to capture and mitigate various sources of inherent noise and variability. This enhances the 

accuracy of phenotypic characterization and contributes to the model’s robustness and 

generalizability. We further augment this foundation model with a SCM to explicitly account for 

known confounders: i.e., source, batch, plate, and well-position effects. By incorporating the SCM, 

we aim to generate synthetic CP images that account for known confounders (source, batch and 

well-position). This leads to more reliable and accurate identification of biological mechanisms 

and insights. 

Debiasing via a g-estimation-based method and latent diffusion modeling 

After modeling the effects of confounders in image generation through confounder-aware (SCM-

conditioned) foundation model training (Figure 1a), we are interested in isolating the average 

effect of a compound T = t on a cell phenotype P during foundation model inference (Figure 1b). 

The t denotes individual compound treatments, each embedded in the model as a SMILES (1D 

chemical structure) string. This is equivalent to measuring the expectation of the interventional 

distribution, E[p(P | do(T = t))]. In practice, we estimate the effect of t on images O via p(O | do(T 

= t)). We then estimate P from synthetic O, using CellProfiler for cell feature extraction (numerous 

features relevant to cellular size, shape, intensity and texture across the CP stains) [7] and 

Subprofile analysis (see relevant subsections later in Methods) [39]. 

Notably, we estimate the interventional distribution p(O | do(T = t)) via confounder adjustment, 

also known as the g-estimation [24, 29]. Considering the SCM (DAG) graph associated with the 

real distribution p(O,T,P,C) learned during confounder-aware (SCM-conditioned) foundation 

model training, we achieve confounder adjustment at inference by controlling for C, using the 
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backdoor criterion [29]. Specifically, we adjust for confounders C to estimate p(O| do(T=t)), by 

blocking any backdoor paths from T to O via adjusting for C. Due to the high dimensionality of the 

images O, traditional confounder adjustment methods that integrate over all C combinations are 

computationally prohibitive. Therefore, to address this, we utilize Monte Carlo sampling combined 

with generative (latent diffusion) modeling to approximate the g-estimation and debias our 

downstream analyses (MoA and target identification). The confounder adjustment at inference 

can be expressed using the g-estimation formula, based on the backdoor criterion [24, 29]: 

𝑝(𝑂|do(T = t)) =  ∫ 𝑝(𝑂|T = t, C) 𝑝(𝐶) 𝑑𝐶      (1) 

Since we have explicit information about C, we can approximate the integral in Equation (1) by 

averaging over a range of confounding factors C, using Monte Carlo sampling: 

𝑝(𝑂|do(T = t)) ≈
1

𝑁
 ∑ 𝑝(𝑂|T = t, C = ci) 𝑁

𝑖=1      (2) 

To model the complex distribution p(O | T, C), we employ a conditional generative model in the 

form of a LDM [40], conditioned on T and C. Diffusion models are a class of deep generative 

models that synthesize data by reversing a gradual noising process. Trained by systematically 

corrupting data with Gaussian noise and then learning to denoise, these models can generate 

high-quality samples from complex distributions, exhibiting remarkable capabilities in image 

generation [40-42]. 

By combining LDM with Monte Carlo sampling, we can effectively estimate the interventional 

distribution p(O | do(T = t)), in the presence of high-dimensional, unstructured data (CP images). 

This approach allows us to isolate the causal effect of the treatment T on the image O, while 

accounting for confounding variables C, and adhering to the causal assumptions outlined in our 

causal diagram. This methodology aligns with the concept of constructing a "fair" synthetic 

interventional distribution by employing a surrogate do-operation on the conditional distribution 

[43]. 

In practice, we synthesize 5-channel CP images across a range of confounding factors ci for a 

given compound t, i.e., sets of different combinations of source, batch and well-position 

confounders. ci are sampled from a uniform distribution over the confounder values, enforcing 

independence between C and T. However, the averaging from Equation 2 does not happen at the 

image O level, but after feature extraction. We compute the features P (as detailed in "Cell profile 

extraction" subsection) for each 5-channel CP image. Then, we average the resulting collections 

of phenotypic cell features, P, where each collection corresponds to a set of 5-channel CP images, 

generated under a specific set of confounding factors. The algorithmic process is outlined in the 

Algorithm pseudocode below: 
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Algorithm: Generation of Synthetic Images 

1: Input: N (number of repetitions), Gaussian noise distribution, p′(well), p′(batch), 525 compounds 

2: Output: Normalized feature set, MoA prediction 

3: for i = 1 to N do 

4: Sample noise from Gaussian distribution 

5: Sample well position from p′(well) 

6: Sample batches from p′(batch) (this step also involves batches across different sources) 

7: Generate 5-channel CP images for each of the 525 compounds 

8: Run profiler on the generated 5-channel CP images 

9: Compute the median over single-cell features 

10: end for 

11: Compute mean over N repetitions 

12: Normalize the features 

13: Select relevant features 

14: Perform mechanism of action and target identification 

Note: In our work, we explored N = 10 and 100 confounder combinations, corresponding to 5,000 

and 50,000 images, respectively (see Results). The p′(well) / p′(batch) are the well position / batch 

(across sources) distributions and are uniform over all well positions and batches, in the training 

set. Due to the high volume of well positions and batches across different data sources, generating 

cell profiles for every possible combination of images would be computationally prohibitive: 

generating cell profiles from over 5,000,000 synthetic images would be needed, corresponding to 

∼ 70 batches, ∼ 150 wells and 525 compounds.   

Conditional latent diffusion modeling 

End-to-end confounder-aware LDM framework: The entire method is presented in Figure 1. We 

developed and trained a confounder-aware foundation model using a LDM conditioned on a SCM, 

to learn the distribution of cell images [40-42]. LDMs offer a powerful framework for generative 

modeling, particularly for high-dimensional data such as images. These models operate by first 

learning a compressed representation of the data in a lower-dimensional latent space [40]. This 

compression is achieved through a variational autoencoder, which consists of an encoder that 

maps the input data to the latent space and a decoder that reconstructs the original data from the 

latent representation [40]. Subsequently, a diffusion model is trained to generate data within this 

compressed latent space, enabling efficient sampling and manipulation. Our approach generates 

synthetic CP images based on compound SMILES inputs, while controlling for known confounders 

via the SCM conditions: source (laboratory), batch and well-position. During training, the 

confounder-aware model learns to disentangle the effects of known confounders on CP images, 

effectively mapping confounder combinations (of sources, batches and well-positions) to distinct 

image semantics. Here, "image semantics" encompasses both cell morphology and broader 

imaging properties, including intensity, texture, spatial arrangement, and fluorescence, which can 

all be influenced by confounders. To mitigate the influence of confounding factors during inference, 

we employed a g-estimation-based approach based on Monte Carlo sampling (as described 

above), to generate CP images across a diverse range of source, batch, and well-position 

combinations [29]. By then averaging the extracted cell profiles from these images, we effectively 
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controlled for the impact of these confounders, thereby debiasing the downstream tasks of MoA 

and target identification.  

Our confounder-aware (SCM-conditioned) foundation model was designed to generalize beyond 

the JUMP-CP training data and accurately estimate the effects of novel compounds. To achieve 

this, we employed a pretrained MolT5 encoder [28], as described in the next subsection. This 

encoder, trained on a vast dataset of over 200 million molecules in SMILES format (Figure 1), 

generated robust chemical representations, independently of the associated images. The 

integration of MolT5-derived embeddings as conditioning factors, allowed our LDM to effectively 

learn the mapping between molecular information and CP image semantics, enabling accurate 

image generation for both seen and unseen compounds.  

Architecture and training of the LDM: In our work, we utilized the pretrained variational 

autoencoder from the Stable Diffusion XL method [44], to obtain latent representations of our cell 

images. This autoencoder was originally trained on natural images with 3 (RGB) channels, 

exhibiting a compression rate of 8x for each spatial dimension. To accommodate the 5-channel 

nature of our cell images, which exceeds the 3-channel input capacity of the Stable Diffusion XL 

autoencoder [44], we employ a channel-wise encoding strategy. Specifically, we divide the image 

channels into two groups (each with 3-channel inputs, one of the channels repeating between 

groups), encode each group independently using the pretrained autoencoder, and subsequently 

concatenate the resulting latent representations. This yields a final latent representation with 8 

channels, which can effectively capture the information content of our cell images. 

To facilitate the manipulation of our latent representations, we constructed a diffusion model with 

a U-Net architecture [45] based on the original LDM implementation [41]. However, in contrast to 

utilizing a pretrained model, we opted to train our diffusion model from scratch. The U-Net 

architecture comprises 3 levels, each with 2 residual blocks [46] for efficient feature learning. The 

number of channels in the convolutional layers within the U-Net increases progressively across 

the 3 levels, with 256, 512, and 768 channels, respectively. Furthermore, to capture long-range 

dependencies within the latent representations, attention blocks were integrated into the 2 

deepest levels of the U-Net [41]. 

We used the MONAI generative models package for developing, training and testing our SCM-

conditioned (confounder-aware) and SCM-free foundation LDMs [47]. Our CP images underwent 

preprocessing where, for each channel (stain), pixel values were normalized to a range of [-1, 1]. 

Subsequently, we trained our models on centrally cropped regions of these images, each with a 

dimension of 384 × 384 pixels. We trained our diffusion model for 30 epochs with a batch size of 

192 images, utilizing the AdamW optimizer [48]. For the diffusion noise schedule, we employed a 

scaled linear profile with 1000 diffusion steps. The noise levels, defined by beta values, ranged 

from 0.0015 to 0.0205. The model was trained with angular parameterization (also known as v-

prediction) which focuses on predicting a mixed representation of the image and the noise at each 

time-step, within the LDM framework [49]. Employing the angular representation for training 

diffusion models has been shown to yield a more stable objective function [49], compared to the 

original approaches [40]. The training of the LDM was performed using 4 V100 GPUs with 40Gb 

of memory each. 

Encoding compounds via a Transformer encoder 

A critical aspect of our methodology involves establishing distinct embedding profiles for each 

chemical compound. These profiles must robustly and consistently capture the similarities and 

differences in chemical structures across the 107,289 compounds used to train the LDM. This is 

crucial because each compound’s embedding serves as a separate conditioning factor, enabling 

the disentanglement of subtle and evident variations among compounds during image generation. 
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Of note, a key objective of our SCM-conditioned foundation model is to accurately estimate the 

effects of novel compounds, i.e., those entirely unseen during training. This generalization 

capability necessitates that the diffusion model effectively learns and encodes the similarities and 

differences within the molecular representations of the training compounds. To achieve this, we 

leverage the widely adopted SMILES representation for encoding molecular structures. We then 

encode these SMILES representations using a pretrained self-supervised learning framework, 

MolT5 (Molecular T5), which has demonstrated strong performance in capturing molecular 

features [28]. MolT5 has demonstrated a remarkable ability to generate captions (chemical 

structure descriptions) from molecular information (SMILES) and to create a molecule (SMILES) 

that matches a given natural language description. This proficiency stems from MolT5’s 

pretraining on the vast amount of unlabeled natural language text and molecule strings from the 

ZINC-15 dataset, which contains approximately 200 million molecules with SMILES information 

[50]. 

We employed this pretrained MolT5 model to derive embeddings for each compound, which were 

then used as conditioning factors during both the LDM training and inference stages. 

Cell profile extraction 

Cell profiles, organized by batch and source, were obtained from the JUMP-CP data gallery [2], 

for all real CP data used to train the LDM. These profiles were derived using CellProfiler, an open-

source image analysis software for extracting quantitative features from microscopy images. We 

employed the same software (version 4) to calculate cell profiles for the confounder-aware (SCM-

conditioned) and non-confounder-aware (SCM-free) model-derived synthetic CP images, 

ensuring consistency in feature extraction across all datasets [7]. This software facilitates the 

construction of automated pipelines for high-throughput image analysis, enabling the 

measurement of various cellular properties such as size, shape, intensity, and texture [15, 39]. 

The CellProfiler image processing workflow comprises 3 sub-tasks: (1) illumination correction, (2) 

quality control, and (3) feature extraction. 

Non-homogeneous illumination across the image field, a common artifact in high-throughput 

microscopy, introduces systematic bias and can lead to measurement errors. To mitigate these 

effects, illumination correction is first performed successively on each channel (DNA, ER, AGP, 

and Mito). This module employs a median filter to approximate the illumination distribution across 

the image [51]. 

The second step encompasses quality control and the application of illumination correction. 

Initially, image quality is assessed across all channels using metrics such as blur measurements, 

saturation, and intensity [52]. Images failing the predefined quality criteria are flagged and 

excluded from further analysis. Finally, each image channel is illumination corrected [51]. 

The primary feature extraction pipeline involves segmenting the images to identify objects of 

interest: nuclei, cells, and cytoplasm. Initially, nuclei are identified based on the DNA image using 

advanced settings optimized for precise boundary detection and separation of closely spaced 

nuclei. This identification employs a global Otsu-based thresholding method for initial 

segmentation. Subsequently, cell segmentation is performed by expanding regions around the 

identified nuclei, using the Watershed algorithm [53]. 

Following cell segmentation, the CellProfiler extracts single-cell features, which are designed to 

be human readable and grouped by cell region (nucleus, cytoplasm or cell) [7, 51]. Overall, 5,797 

features are extracted from the 3 cell regions that aim to characterize the effect of the screened 

compound on the cell line at different levels. Individual single-cell-derived features are then 

combined across all cells at the image level, using the median value [51]. Next, features from 
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individual images (fields of view) are averaged to create a well-level profile. Finally, treatment-

level profiles are obtained by averaging all available replicates of wells (across plates). 

Batch correction of real JUMP-CP data 

To mitigate batch effects in the real JUMP-CP data and perform a fair comparison against our 

SCM-conditioned foundation model, we employed the Harmony algorithm for batch correction 

[54]. Harmony is a batch effect correction technique developed primarily for correcting batch 

effects in scRNAseq data and has recently been adopted for image-based cell profiles [21, 54].  

The method employs an iterative approach to learn a cell-profile-specific linear transformation. It 

alternates between two steps: (1) maximizing the diversity of fuzzy clusters with respect to batch 

variations, and (2) correcting batch effects by applying a mixture model. A limitation of the 

Harmony algorithm is its requirement to recompute the linear transformations across the entire 

dataset each time a new profile is introduced. However, a recent comprehensive evaluation of 

batch correction methods for CP data, demonstrated that Harmony exhibits leading batch effect 

correction performance on profiles derived from real images, such as those from the JUMP-CP 

dataset [21]. Harmony is a widely used and effective method for batch effect correction, commonly 

employed to minimize the effects of known biases in real CP data [21]. 

MoA and target identification via subprofiling 

Calculating "reference subprofiles" and Biosimilarity: Generating CP profiles for reference 

compounds, which are characterized for their MoA through bioactivity assays and other 

complementary approaches, is an important prerequisite for analyzing the bioactivity of novel or 

uncharacterized chemical compounds [5]. Ideally, reference compounds sharing a common MoA 

or target should exhibit similar CP profiles, enabling MoA/ target prediction for novel compounds 

based on profile Biosimilarity. However, this approach can be confounded by incomplete 

annotation or polypharmacology exhibited by reference compounds, necessitating a more 

nuanced analysis [39]. Subprofiling, a recently developed technique for fast and precise prediction 

of MoA characterization, was applied in our study [39].  

We used subprofile analysis for both MoA, and for the first-time, for target identification. This 

approach involves the definition of "reference subprofiles", which are subsets of features common 

to reference compounds within a single MoA- or target-specific cluster. It is anticipated that 

comparing the similarity of a new compound’s cell profile to a reference MoA-or target-specific 

cluster subprofile, will substantially improve and accelerate the MoA/ target identification of novel 

or uncharacterized compounds [39]. Beginning with the full profiles of a set of MoA-or target-

specific reference compounds, dominant features are first extracted. A representative consensus 

subprofile is then defined, to encapsulate the properties of the set. The consensus subprofile is 

the median of the cluster, which we name here as "reference subprofile" [39]. 

Specifically, for a group of reference compounds sharing a common MoA/ target, each measured 

feature within the full profile is evaluated. A feature is retained in the final subprofile only if it 

exhibits a consistent directional response (either positive or negative) across a significant majority 

(greater than 85%) of the profiles within the cluster. This process culminates in the selection of 

subprofile features, with their final values determined as the median values across all compound 

profiles within the group, i.e., the "reference subprofile". The "reference subprofile" can then be 

employed to calculate the Biosimilarity of novel or uncharacterized compounds. In subprofiling, 

the Biosimilarity between two profiles, i.e., a novel or uncharacterized compound and a "reference 

subprofile", (u, v) is defined as: 

𝐵𝑖𝑜𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
(𝑢−�̅�)∙(𝑣−�̅�)

‖(𝑢−�̅�)‖2 ‖(𝑣−�̅�)‖2
      (3) 
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where the �̅�, �̅�, (𝑢 − �̅�) ∙ (𝑣 − �̅�) and ∥( 𝑢 − �̅�)∥2, ∥(𝑣 − �̅�)∥2 define the mean of the considered 

profiles (vectors) u and v, the dot product and the Euclidean norms of the considered profiles, 

respectively.   

Implementation: In our work, Biosimilarity analysis was employed to quantitatively assess the 

confounder-aware- and non-confounder-aware foundation model performance, against real and 

real-batch-corrected JUMP-CP data, in the downstream application of MoA and target 

identification. To perform this evaluation, from the 107,289 compounds used to train our model, 

we selected those with annotations for both MoAs and targets in the Broad Institute Drug 

Repurposing Hub. Supplementary Table 2 presents the number of compounds used for biological 

effect estimation (MoA and target prediction) across each fold.  

To ensure balanced representation in our Biosimilarity analysis, we further filtered this selection 

to include only MoAs and targets associated with at least 10 compounds (Supplementary Figure 

3). To minimize polypharmacology effects in our MoA reference subprofiles, we further refined our 

selection to include only compounds with a single associated MoA. This resulted in a final dataset 

of 525 and 465 compounds for MoA and target identification, respectively. This dataset 

encompassed 26 distinct MoAs and 446 distinct targets (there could be multiple targets per 

compound).  

For each MoA and target, we randomly sampled 5 compounds to generate "reference subprofiles". 

These subprofiles serve as baseline activity patterns for comparison. This process yielded 130 

compounds with MoA annotations, covering 26 distinct MoAs, which were used to establish MoA-

based reference subprofiles. For target-based reference subprofiles, we varied the number of 

compounds from 88-98, depending on the classification fold (see "Evaluation metrics"). The 

remaining 395 compounds and 367-377 compounds, out of the 525 and 465 respectively, were 

used to perform Biosimilarity analysis for the confounder-aware- and non-confounder-aware 

foundation model-derived synthetic images. To evaluate the ability of Biosimilarity scores to 

identify the correct MoA, we used 273-281 compounds seen during training and 111-122 unseen 

compounds (out of a total of 395). Similarly, for target identification, we used 228-238 compounds 

seen during training and 139 unseen compounds (out of 367-377 total compounds). Subprofile 

extraction was performed using a Python implementation adapted from the authors’ publicly 

available repository (https://github.com/mpimp-comas/2022_pahl_ziegler_subprofiles) [39]. This 

implementation served as a reference for extracting subprofiles from the SCM-conditioned and 

SCM-free foundation model-derived synthetic images, as well as the real and real batch-corrected 

images from the JUMP-CP dataset. 

Evaluation metrics 

To evaluate the accuracy of the estimated Biosimilarities in identifying known MoA and target 

annotations, we devised a nearest neighbor classifier. This evaluation leveraged ground truth MoA 

and target annotations for compounds from the Drug Repurposing Hub. To assess the 

performance of our nearest neighbor classifier in identifying MoA and target ground truths, we 

employed mean Average Precision (mAP) [30] and area under the receiver operating 

characteristic curve (ROC-AUC) [31], as evaluation metrics. These metrics are well-suited for 

evaluating biological effect prediction, particularly when prediction thresholds for true positive rate 

(TPR) and false positive rate (FPR) may typically differ between synthetic and real data. The 

formulation of each metric is detailed below. 

mAP evaluates the model’s ability to correctly rank relevant labels (here: known MoA or target 

annotations). It summarizes the precision-recall curve by calculating the weighted mean of 

precisions at each recall level, with the weight being the increase in recall from the previous 

threshold. For each sample, the average precision (AP) is defined as: 
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𝐴𝑃(𝑦𝑖 , �̂�𝑖) = ∑ (𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛𝑛      (4) 

where 𝑦𝑖 , �̂�𝑖, 𝑃𝑛 and 𝑅𝑛 are the true value, predicted value, precision and recall at the n-th 

threshold, respectively. The mAP aggregates the AP values across all samples as:  

 

𝑚𝐴𝑃(𝑦𝑖 , �̂�𝑖) =
1

𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 𝐴𝑃

𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑖=1 (𝑦𝑖 , �̂�𝑖)     (5) 

A higher mAP score indicates better performance, with a perfect score of 1 achieved when all 

relevant labels are ranked before any irrelevant ones across all samples. This metric is particularly 

suitable for evaluating multi-label classification tasks (here: Biosimilarity scores against multiple 

MoA and target "reference subprofiles"), as it accounts for the order of relevant labels and 

balances precision at varying recall levels. 

The area under the receiver operating characteristic curve ROC-AUC evaluates the model’s 

classification accuracy by measuring the trade-off between the true positive rate (TPR) and the 

false positive rate (FPR), across all possible classification thresholds. It provides a single scalar 

value that summarizes the model’s performance over the entire range of operating conditions, 

effectively capturing its discriminative capability. 

For each label in a multi-label classification task, the ROC-AUC is calculated by plotting the TPR 

against the FPR at various threshold settings. The TPR and FPR are defined as: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
      (6) 

where TP, FP , TN, and FN represent the counts of true positives, false positives, true negatives, 

and false negatives, respectively. 

The ROC-AUC for each label is calculated as the area under its corresponding ROC curve, 

typically using the trapezoidal rule for numerical integration. In a multi-label setting, the overall 

ROC-AUC is obtained by averaging the ROC-AUC values across all labels: 

 

𝑅𝑂𝐶 − 𝐴𝑈𝐶 =
1

𝑛 𝑙𝑎𝑏𝑒𝑙𝑠
∑ 𝑅𝑂𝐶 − 𝐴𝑈𝐶𝑗

𝑛 𝑙𝑎𝑏𝑒𝑙𝑠
𝑗=1      (7) 

where 𝑅𝑂𝐶 − 𝐴𝑈𝐶𝑗 denotes the ROC-AUC for the j-th label. A ROC-AUC value of 1 indicates 

perfect classification, with the model correctly distinguishing between all positive and negative 

instances. An ROC-AUC of 0.5 suggests no discriminative ability, equivalent to random guessing. 

Therefore, higher ROC-AUC scores reflect better model performance. This metric is particularly 

suitable for evaluating models on imbalanced datasets, as it is insensitive to the label distribution 

and focuses on the ranking quality of the predictions rather than their absolute values. By 

considering all classification thresholds, ROC-AUC provides a comprehensive assessment of the 

model’s ability to prioritize relevant labels over irrelevant ones.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630105doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630105
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 

 

Figure 1) (a) Our novel confounder-aware foundation model framework. (a) A SCM-conditioned 

latent diffusion model was trained using a total of 13,361,250 CP images (2,672,250 5-channel 

CP images). Each 5-channel set had multiple field of views, and were typically acquired across ≥ 

1 sources, and multiple batches, plates and well positions. The SCM-conditioned latent diffusion 

model learns the effects of the biases on the CP images, for each of the 107,289 chemical 

compounds used as inputs. The SMILE notation of each chemical compound was ran through a 

MolT5 Transformer that it was pretrained on 200 million compounds [28]. (b) Novel molecules, 

represented in SMILE notation, are encoded and input to the trained foundation model. This 

model, conditioned on confounders (source, batch, well position) and sampled Gaussian noise, 

aims to generate synthetic CP images that account for these confounders, ultimately allowing to 

debias downstream tasks (subprofile analysis for MoA and target identification) through a g-

estimation-based method (see Methods) [29]. SCM: structural causal model, CP: cell painting, 

SMILE: Simplified Molecular Input Line Entry System, MoA: mechanism of action. 

  

a) 

b) 
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Figure 2) (a) Exploratory analysis: Sankey diagram showing the distributions of 5 randomly 

selected compounds across sources, batch, plates, and wells in the JUMP-CP dataset. Blue ovals 

indicate compounds with infrequent distribution, while black rectangles represent those with 

frequent occurrence across sources, batches, plates, and well positions. (b) Detailed causal graph 

showing the causal paths between each of the known confounders C, compound treatment T and 

images O. To improve clarity, unobserved phenotypes P are not shown here. (c) Left: causal graph 

showing the causal paths between the confounders C, compound treatment T, true phenotype P 

(unobserved in the data), and image observations O, in the real distribution. Right: Same causal 

graph in the synthetic distribution, after adjusting for confounders using a g-estimation-based 

method (shown with blue, see details in Methods). 

a) 

b) 

c) 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 23, 2024. ; https://doi.org/10.1101/2024.12.23.630105doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.23.630105
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

 

 

 

 

 

 

Figure 3) Comparison of real (a) and synthetic (b) CP images across varying experimental 

conditions. The top row displays real images, while the bottom row shows synthetic images 

generated by the confounder-aware foundation model. Images are presented for both DMSO 

(negative control) and the AMG-900 compound (MoA: aurora kinase inhibitor), across different 

batches and well positions. Notably, it is observed that the confounder-aware foundation model 

can minimize within-image variability, while increasing (capturing) across-batch variability since it 

synthesizes images conditioned on the observable batch effect. Synthetic images were generated 

using a single random seed to reduce undesired variability in cell position and density. CP: cell 

painting, MoA: mechanism of action. 
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Figure 4) UMAP analysis reveals the impact of confounder-aware foundation model (FM) image 

generation on cluster separation. Clusters across panels reflect the influence of confounders on 

cell profiles. Each blue circle in panels a-f represents cell profiles from a 5-channel CP image set 

with a unique combination of confounders (source, batch, well position). Panels g-i show cell 

profiles aggregated across all confounder combinations for each compound. Confounder-aware 

FM (panels b, e, h; generated using a g-estimation-based approach [29], see Methods) improves 

separation of compounds (a-c), batch effects (d-f), and MoAs (g-i) compared to Real and non-

confounder-aware FM, highlighting its ability to mitigate confounder influence. UMAP: uniform 

manifold approximation and projection, MoA: mechanism of action. In panels d-f, each color 

corresponds to a different batch. Non-confounder-aware FM is confounder-agnostic; thus, no 

batch effects are shown in panel f. 

  

a) b) c) 

d) e) f) 
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Figure 5) Performance comparisons for MoA (a) and compound target (b) identification across 

real, real batch-corrected, confounder-aware (SCM-conditioned) foundation model-derived 

synthetic, and non-confounder-aware (SCM-free) foundation model-derived synthetic data. Error 

bars represent the standard deviation across 10-fold cross-validation, obtained by varying the 

selection of the compounds used to derive the "reference subprofile" across folds. 
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Table 1) Assessing differences in MoA prediction performance across image types. Results of 

ANOVA with Tukey's HSD post-hoc test comparing mean average precision (mAP) and area under 

the receiver operating characteristic curve (ROC-AUC) for MoA prediction across different image 

types: real, real batch-corrected, confounder-aware (C-aware) synthetic, and non-confounder-

aware (non-C-aware) synthetic images. Comparisons were performed for both seen and unseen 

compounds during training. Adjusted p-values are presented. Statistical significance is indicated 

with *. MoA: mechanism of action; HSD: honestly significant difference; C-aware: confounder-

aware. 

 

Group 1 Group 2 p-adjusted  
mAP 

p-adjusted  
ROC-AUC 

MoA - seen compounds 

Real Real - Batch Correction 0.0792 0.6415 

Real Synthetic - C-aware - 50k 0.0011* 0.0097* 

Real Synthetic - C-aware - 5k 0.0218* 0.0011* 

Real Synthetic - non C-aware - 50k 0.0099* 0.0098* 

Real Synthetic - non C-aware - 5k 0.0098* 0.0096* 

Real - Batch Correction Synthetic - C-aware - 50k 0.0432 0.0095* 

Real - Batch Correction Synthetic - C-aware - 5k 0.9234 0.0032* 

Real - Batch Correction Synthetic - non C-aware - 50k 0.1222 0.0012* 

Real - Batch Correction Synthetic - non C-aware - 5k 0.4019 0.0096* 

Synthetic - C-aware - 50k Synthetic - C-aware - 5k 0.1402 0.1015 

Synthetic - C-aware - 50k Synthetic - non C-aware - 50k 0.9156 0.6933 

Synthetic - C-aware - 50k Synthetic - non C-aware - 5k 0.8755 0.9349 

Synthetic - C-aware - 5k Synthetic - non C-aware - 50k 0.3204 0.0024* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 5k 0.6932 0.0923 

Synthetic - non C-aware - 50k Synthetic - non C-aware - 5k 0.8967 0.7166  

MoA - unseen compounds 

Real Real - Batch Correction 0.6781 0.6415 

Real Synthetic - C-aware - 50k 0.0262* 0.0097* 

Real Synthetic - C-aware - 5k 0.3437 0.0096* 

Real Synthetic - non C-aware - 50k 0.0033* 0.0098* 

Real Synthetic - non C-aware - 5k 0.0098* 0.0099* 

Real - Batch Correction Synthetic - C-aware - 50k 0.4974 0.0097* 

Real - Batch Correction Synthetic - C-aware - 5k 0.8762 0.0032* 

Real - Batch Correction Synthetic - non C-aware - 50k 0.1494 0.0098* 

Real - Batch Correction Synthetic - non C-aware - 5k 0.0647 0.0011* 

Synthetic - C-aware - 50k Synthetic - C-aware - 5k 0.8243 0.1015 

Synthetic - C-aware - 50k Synthetic - non C-aware - 50k 0.9387 0.6933 

Synthetic - C-aware - 50k Synthetic - non C-aware - 5k 0.8778 0.8642 

Synthetic - C-aware - 5k Synthetic - non C-aware - 50k 0.4177 0.0023* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 5k 0.2246 0.0923 

Synthetic - non C-aware - 50k Synthetic - non C-aware - 5k 0.8798 0.7166 
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Table 2) Assessing differences in compound target prediction performance across image types. 
Results of ANOVA with Tukey's HSD post-hoc test comparing mean average precision (mAP) and 

area under the receiver operating characteristic curve (ROC-AUC) for target prediction across 

different image types: real, real batch-corrected, confounder-aware (C-aware) synthetic, and non-

confounder-aware (non-C-aware) synthetic images. Comparisons were performed for both seen 

and unseen compounds during training. Adjusted p-values are presented. Statistical significance 

is indicated with *. HSD: honestly significant difference; C-aware: confounder-aware. 

 

Group 1 Group 2 p-adjusted  
mAP 

p-adjusted  
ROC-AUC 

Target - seen compounds 

Real Real - Batch Correction 0.8968 0.8806 

Real Synthetic - C-aware - 50k 0.0011* 0.0098* 

Real Synthetic - C-aware - 5k 0.0098* 0.0099* 

Real Synthetic - non C-aware - 50k 0.0161* 0.0096* 

Real Synthetic - non C-aware - 5k 0.0823 0.0096* 

Real - Batch Correction Synthetic - C-aware - 50k 0.0097* 0.0097* 

Real - Batch Correction Synthetic - C-aware - 5k 0.0096* 0.0098* 

Real - Batch Correction Synthetic - non C-aware - 50k 0.0424* 0.0099* 

Real - Batch Correction Synthetic - non C-aware - 5k 0.1789 0.0096* 

Synthetic - C-aware - 50k Synthetic - C-aware - 5k 0.1705 0.0098* 

Synthetic - C-aware - 50k Synthetic - non C-aware - 50k 0.0099* 0.0097* 

Synthetic - C-aware - 50k Synthetic - non C-aware - 5k 0.0011* 0.0099* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 50k 0.0010* 0.0098* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 5k 0.0098* 0.0099* 

Synthetic - non C-aware - 50k Synthetic - non C-aware - 5k 0.9312 0.0096* 

Target - unseen compounds 

Real Real - Batch Correction 0.9431 0.0098* 

Real Synthetic - C-aware - 50k 0.0011* 0.0099* 

Real Synthetic - C-aware - 5k 0.0010* 0.0011* 

Real Synthetic - non C-aware - 50k 0.0831 0.0012* 

Real Synthetic - non C-aware - 5k 0.2753 0.0010* 

Real - Batch Correction Synthetic - C-aware - 50k 0.0099* 0.0010* 

Real - Batch Correction Synthetic - C-aware - 5k 0.0098* 0.0098* 

Real - Batch Correction Synthetic - non C-aware - 50k 0.0914 0.0097* 

Real - Batch Correction Synthetic - non C-aware - 5k 0.2962 0.0098* 

Synthetic - C-aware - 50k Synthetic - C-aware - 5k 0.0012* 0.0099* 

Synthetic - C-aware - 50k Synthetic - non C-aware - 50k 0.0011* 0.0097* 

Synthetic - C-aware - 50k Synthetic - non C-aware - 5k 0.0010* 0.0098* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 50k 0.0098* 0.0099* 

Synthetic - C-aware - 5k Synthetic - non C-aware - 5k 0.0097* 0.0098* 

Synthetic - non C-aware - 50k Synthetic - non C-aware - 5k 0.8976 0.0096* 
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Data Availability 

The synthetic image and profile datasets, along with qualitative results and numeric values for 

metrics is available at http://dmjump-sinkove-pfizer-results.s3-website-us-east-

1.amazonaws.com. Ground truth for the experiments of MoA and target prediction were collected 

from the drug repurposing hub at https://repo-hub.broadinstitute.org/repurposing-app.  
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