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Abstract

Normalizing flows map an independent set of la-
tent variables to their samples using a bijective
transformation. Despite the exact correspondence
between samples and latent variables, their high
level relationship is not well understood. In this
paper we characterize the geometric structure of
flows using principal manifolds and understand
the relationship between latent variables and sam-
ples using contours. We introduce a novel class
of normalizing flows, called principal component
flows (PCF), whose contours are its principal man-
ifolds, and a variant for injective flows (iPCF)
that is more efficient to train than regular injective
flows. PCFs can be constructed using any flow
architecture, are trained with a regularized maxi-
mum likelihood objective and can perform density
estimation on all of their principal manifolds. In
our experiments we show that PCFs and iPCFs
are able to learn the principal manifolds over a
variety of datasets. Additionally, we show that
PCFs can perform density estimation on data that
lie on a manifold with variable dimensionality,
which is not possible with existing normalizing
flows.

1. Introduction
A normalizing flow is a generative model that generates a
probability distribution by transforming a simple base dis-
tribution into a target distribution using a bijective function
(Rezende & Mohamed, 2015; Papamakarios et al., 2019).
Despite the fact that flows can compute the log likelihood
of their samples exactly and associate a point in the data
space with a unique point in the latent space, they are still
poorly understood as generative models. This poor under-
standing stems from the unidentifiablity of their latent space
- the latent space of a flow can be transformed into another
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valid latent space using any one of an infinite number of
volume preserving transformations (Hyvärinen & Pajunen,
1999). Furthermore, methods that are rooted in mutual in-
formation (Alemi et al., 2018a; Higgins et al., 2017; Chen
et al., 2016) that are used to understand other kinds of gen-
erative models break down when applied to flows because
there is a deterministic mapping between the latent and data
space (Ardizzone et al., 2020). To understand the generative
process of flows, we need two items. The first is a set of
informative structural properties of a probability distribu-
tion and the second is knowledge of how changes to the
latent variables affect corresponding samples. We discuss
the former using the concept of principal manifolds and the
latter using contours.

The principal manifolds of a probability distribution can be
understood as manifolds that span directions of maximum
change (Gorban et al., 2008b). We locally define them using
principal components which are the orthogonal directions
of maximum variance around a data point, the same way
that the principal components used in PCA (Jolliffe, 2011)
are the orthogonal directions of maximum variance of a
Gaussian approximation of a dataset. Principal manifolds
capture the geometric structure of a probability distribution
and are also an excellent fit for normalizing flows because it
is possible to compute the principal components of a flow
due to the bijective mapping between the latent and data
spaces (see Definition 1).

The relationship between changes to latent variables and the
effect on the corresponding sample in the data space can be
understood through the contours of a flow. The contours
of a flow are manifolds that trace the path that a sample
can take when only some latent variables are changed. An
important relationship we investigate is how the probability
density on a contour relates to the probability density under
the full model. This insight gives us a novel way to reason
about how a flow assigns density to its samples.

We introduce a class of normalizing flows called principal
component flows (PCFs) whose contours are its principal
manifolds. We develop deep insights into the generative
behavior of normalizing flows that help explain how flows
assign density to data points. This directly leads to a novel
test time algorithm for density estimation on manifolds that
requires no assumptions about the underlying data dimen-
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Figure 1. A principal component flow (PCF) has contours that are
its principal manifolds while standard normalizing flows do not.
The blue dots represent samples from the prior and from each
model, on the left and right plots respectively. The red and black
lines represent the contours that emerge when a latent variable is
held constant and the others vary. Movement in the latent space
of a PCF corresponds to movement along the principal manifolds
(Theorem 1).

sionality. Furthermore, we develop two new algorithms that
tackle separate important problems. The first is a learning
algorithm to train PCFs using any flow architecture, even
those that can be difficult to invert, at a comparable cost to
standard maximum likelihood. The second is an algorithm
to train injective PCFs that optimize a regularized maximum
likelihood objective without needing to optimize a compu-
tationally expensive term found in the injective change of
variables formula (Gemici et al., 2016). In our experiments
we demonstrate the capabilities of PCFs by learning the
principal manifolds of low dimensional data and high di-
mensional data that are embedded on a low dimensional
manifold, and show that PCFs can learn the density of data
that lies on a variable dimensional manifold - a task not
possible using existing flow based methods. To summarize,
our contributions are as follows:

1. We introduce a novel class of flows called PCFs whose
contours are principal manifolds and propose an effi-
cient learning algorithm.

2. To overcome the computational cost of computing the
expensive Jacobian determinant for PCFs, we introduce
iPCFs as an approach for extending PCFs to higher
dimensional problems.

3. We introduce the first flow based solution to learning
densities on manifolds with varying dimensionality.

2. Preliminaries
2.1. Normalizing flows

Let f : Z = RN → X = RN be a parametric bijective
function from a latent variable, z, to a data point x = f(z)
with inverse g(x) = f−1(x). The prior distribution over
z will be denoted with pz(z) and the Jacobian matrix of f
and g will be denoted by J = df(z)

dz and G = dg(x)
dx . The

dependence of J and G on z or x is implied. A normalizing
flow is a model that generates data by sampling z ∼ pz(z)
and then computing x = f(z) (Rezende & Mohamed, 2015;
Papamakarios et al., 2019). The probability density of data
points is computed using the change of variables formula:

log px(x) = log pz(g(x)) + log |G| (1)

Flows are typically comprised of a sequence of invertible
functions f = f1 · · · fi · · · fK where each fi has a Jacobian
determinant that is easy to compute so that the overall Jaco-
bian determinant, log |G| =

∑K
i=1 log |Gi| is also easy to

compute. As a result, flows can be trained for maximum
likelihood using an unbiased objective.

Eq. (1) can be generalized to the case where f is an injective
function that maps from a low dimensional z to a higher
dimensional x (Gemici et al., 2016; Caterini et al., 2021).
The change of variables formula in this case is written as:

log px(x) = log pz(z)− 1

2
log |JTJ |, x = f(z) (2)

This general change of variables formula is valid over the
manifold defined by f(Z). However, it is difficult to work
with because the term log |JTJ | cannot be easily decom-
posed into a sequence of simple Jacobian determinants as in
the case where dim(z) = dim(x). In the remainder of this
paper, log px(x) will refer to the definition given in Eq. (2)
unless stated otherwise.

The requirement that f is bijective is a curse and a blessing.
The constraint prohibits flows from learning probability dis-
tributions with topological properties that do not match that
of the prior (Cornish et al., 2019). This constraint limits
a flow’s ability to learn the exact distribution of many real
world datasets, including those that are thought to satisfy
the manifold hypothesis (Fefferman et al., 2013). Neverthe-
less, invertibility makes it possible to compute the exact log
likelihood under the model, associate any data point with
a unique latent space vector, and affords access to geomet-
ric properties of the flow’s distribution (Dombrowski et al.,
2021). In the remainder of this paper we focus on the latter -
the geometric properties of a flow’s distribution through the
use of principal manifolds and contours.

2.2. Principal components of a flow

The structure of a probability distribution that is generated
by a normalizing flow can be locally defined by examining
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Figure 2. Illustration of principal components and a principal manifold of a flow. The blue dots are samples from a normalizing flow, red
dots are samples from the Gaussian approximation defined in Definition 1, black arrows are the principal components and the green line is
a principal manifold in Definition 2. Our main result in Theorem 1 states that the contours of principal component flows are its principal
manifolds.

how samples from the model are distributed around a data
point.

Lemma 1. Let x be a data point, f be the invertible function
of a flow and σ > 0 be a scalar. Consider samples that
are generated by x′ = f(z + σε) where z = f−1(x) and

ε ∼ N(0, I). Then 1
σ (x′ − x)

D→ N(0, JJT ) as σ → 0.

The lemma is true as a direct consequence of the Delta
method (Oehlert, 1992) which describes the distribution of
a function of an asymptotically normal estimator. Lemma 1
says that points generated by a flow in a small region around
a fixed point x will be approximately distributed as a Gaus-
sian with mean x and covariance proportional to JJT . The
principal components of data generated by a Gaussian dis-
tribution are the eigenvectors of the covariance matrix, so
we can use the eigenvectors of JJT to define the principal
components of a flow.

Definition 1 (Principal components of a flow at x). The
principal components of a flow at x = f(z) are the eigen-
vectors of JJT , ŵ, where J = df(z)

dz . The principal compo-
nents are ordered according to the eigenvalues of JJT .

The concept of principal components is shown in Fig. 2.
Blue dots represent samples from a flow, red dots are sam-
ples from the local approximations drawn according to
Lemma 1 and black arrows represent the principal com-
ponents computed using Definition 1. We see that the red
dots are approximately distributed as a Gaussian and the
black arrows span their principal directions. Furthermore,
the principal components are oriented along the main struc-
ture of the data. The global structure of a flow, which we call
the "principal manifolds", are found by integrating along
the principal components.

Definition 2 (Principal manifold of a flow). The principal
manifold of a flow is the path formed by integrating along
principal components starting at x0. Let K be a subset
of [1, . . . ,dim(z)] and t ∈ R|K|. A principal manifold of

dimension |K| is the solution to

dx(t)

dt
= wK(x(t)), x(0) = x0 (3)

where wK(x(t)) = ŵK

√
ΛK are the principal components

with indices in K at x(t) scaled by the square root of their
corresponding eigenvalues.

The green curve in Fig. 2 is one of an infinite number of
principal manifolds of the distribution. It spans the main
structure of the samples and has principal component tan-
gents. Principal manifolds can be used to reason about the
geometric structure of a flow, but can only be found via
integration over the principal components. Furthermore,
there is no clear way compute the probability density over
the principal manifolds. This is crucial when a principal
manifold is used as a low dimensional representation of data
and we still want to perform density estimation. We will
revisit principal manifolds in Section 3.

2.3. Contours of a normalizing flow

The tool we use to analyze the generative properties of flows
are the contours that emerge when some latent variables are
held constant while others vary.

Definition 3 (Contours of a flow). Let K be a subset of
[1, . . . ,dim(z)] and zK be the latent variables with indices
in K. Then, the contour obtained by varying zK and fixing
all other variables is denoted as fK(zK).

We assume that there is a partition over the indices of the
latent space, P , so that every set of indices that we use
to form contours is an element of the partition: K ∈ P .
Additionally, we assume that the prior over z can be factored
into independent components in order to isolate a prior for
each contour: pz(z) =

∏
K∈P pK(zK). This is not a limiting

assumption as most flow architectures typically use a fully
factorized prior such as a unit Gaussian prior (Papamakarios
et al., 2019). The curved red and black lines in the right
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side plots of Fig. 1 are examples of contours. A red line on
the left side plot is created by varying z1 and fixing z2 and
becomes the contour f1(z1) after it is passed through the
flow. Similarly, a black line on the left side plot is formed
by varying z2 and fixing z1 and becomes the contour f2(z2)
when it is transformed by the flow. The Jacobian matrix of
fK(zK) is denoted by JK and is equal the matrix containing
the columns of J with indices in K. The log likelihood of a
contour is denoted by LK and is computed using the change
of variables formula on manifolds in Eq. (2):

LK
∆
= log p(fK(zK)) = log pK(zK)− 1

2
log |JTK JK| (4)

A single flow can assign many different log likelihoods to
a given data point that are not given by Eq. (1). Each of
the |P| contours that intersect at a data point can assign a
density given by Eq. (4). Furthermore, the contours formed
by grouping multiple zK will assign other densities. In the
next section we will relate all of these different densities.

2.4. Pointwise mutual information between contours

Consider two disjoint subsets of a latent variable, zS and
zT, and their union zS+T. The densities of each contour can
be related to the densities of their union using pointwise
mutual information.

Definition 4 (Pointwise mutual information between dis-
joint contours). Let zS and zT be disjoint subsets of z. The
pointwise mutual information between the contours for zS

and zT is defined as

IS,T
∆
= log

p(fS+T(zS+T))

p(fS(zS))p(fT(zT))
= LS+T − LS − LT (5)

IS,T plays an important role in describing the behavior of
normalizing flows. We list a few important facts about IS,T
below to help build intuition (more facts and proofs can be
found in Appendix B):

Facts about IS,T

1. IS,T ≥ 0

2. IS,T = 0 iff fS(zS) and fT(zT) intersect orthogonally.

3. IS,T = − 1
2 log |JTS+TJS+T|+ 1

2 log |JTS JS|+ 1
2 log |JTT JT|

IS,T is a non-negative value that achieves its minimum of
0 when the contours intersect orthogonally. An equivalent
condition is that the columns of JS and JT are mutually
orthogonal. The third fact shows that IS,T has a closed form
value that only depends on f and not on the priors over zS

(a) Example partitions of the
latent space.

(b) Decomposition of log like-
lihood.

Figure 3. The general change of variables decomposition depends
on the binary tree partition used to generate the latent space par-
tition. Partitions are generated by recursively dividing existing
partitions into two parts. The last row in Fig. 3a shows a partition
of the latent space with 3 sets. Fig. 3b shows the corresponding
log likelihood decomposition. Each parent node in the binary tree
contributes an I term and each leaf contributes a L term. See
Eq. (7) for the full formula.

or zT. Another way to think about IS,T is as the difference
between the contour log likelihoods and that of their union:

LS+T = LS + LT + IS,T (6)

If S + T = [1, . . . ,dim(z)], then we can decompose the
change of variables formula into the sum of contour log
likelihoods and IS,T. Next, we show that this decomposition
can be extended to any partition of the latent space.

2.5. Change of variables formula decomposition

Eq. (6) can be recursively applied to itself to yield a decom-
position over any partition of the latent space. Consider a
partition of the indices, P , like in Fig. 3a. P can be con-
structed as the leaves of a binary tree, T , where each node
is a subset of indices and each parent node is the union of
its children. The corresponding decomposition in Fig. 3b
is found by recursively applying Eq. (6) and tracking the
leftover I terms. This construction lets us decompose the
change of variables formula into the sum of contours log
likelihoods and pointwise mutual information terms:

log px(f(z)) =
∑
K∈P
LK +

∑
P∈parents(T )

IL(P),R(P)︸ ︷︷ ︸
IP

(7)

where L(p) and R(p) are the left and right children of P,
respectively. See Fig. 3 for a visual description. Notice that
the sum of the various IL(P),R(P) is independent of the choice
of T because any T with the same leaves will have the same
value of log px(f(z)) and

∑
K∈P LK. This non-negative

quantity is useful to know as it is the difference between
the full log likelihood and sum of log likelihoods of the
contours.

Definition 5 (Pointwise mutual information of a partition).
Let P be a partition of [1, . . . ,dim(z)]. The pointwise mu-
tual information of the flow whose latent space is partitioned



Principal Component Flows

by P is

IP
∆
= log px(f(z))−

∑
K∈P
LK (8)

Eq. (7) gives insight into how normalizing flows assign
density to data. The log likelihood of a data point under a
normalizing flow is the sum of the log likelihoods under its
contours, and a non-negative term that roughly measures
the orthogonality of the contours. If during training Eq. (7)
is maximized, as is the case in maximum likelihood learn-
ing, then IP will surely not achieve its minimum value of
0. Therefore changes to different latent variables of a nor-
malizing flow trained with maximum likelihood will likely
produce similar changes in the data space.

2.6. Orthogonality condition using g

We have seen that IP is a non-negative term that achieves it
minimum of 0 when the contours of the flow are orthogonal.
However obtaining its value requires computing columns of
the Jacobian matrix of f(z). Many expressive normalizing
flows layers (Huang et al., 2021; Chen et al., 2019; van den
Berg et al., 2018) are constructed so that only g(x) is easy
to evaluate while the inverse f(z) requires an expensive
algorithm that can be difficult to differentiate. We introduce
a novel alternate formulation of LK, IS,T and IP that can be
computed with g(x) to mitigate this issue:

L̂K
∆
= log pK(zK) +

1

2
log |GKG

T
K | (9)

ÎS,T
∆
= L̂S+T − L̂S − L̂T (10)

ÎP
∆
= log px(x)−

∑
K∈P
L̂K (11)

In contrast to IS,T and IP , ÎS,T and ÎP are both negative
ÎS,T, ÎP ≤ 0. See Appendix B for more properties. The
most important of these properties is the following Lemma:

Lemma 2. ÎP = 0 if and only if IP = 0.

We will see that flows that satisfy IP = 0 are of interest,
so this lemma provides an equivalent condition that can be
computed by any normalizing flow architecture.

3. Principal Component Flows
We now present our main contributions. We will first define
PCFs and discuss their theoretical properties then discuss
learning algorithms to train PCFs and injective PCFs (iPCF).

3.1. PCF theory

Next, we formally define PCFs and provide a theorem stat-
ing their primary feature (see Theorem 2 for the proof).

Definition 6 (principal component flow). A principal com-
ponent flow (PCF) is a normalizing flow that satisfies
IP = 0 at all of its samples.

Theorem 1 (Contours of PCFs). The contours of a principal
component flow are principal manifolds.

A compelling byproduct of Theorem 1 is that PCFs can
easily evaluate the probability density of their principal
manifolds. As a result, PCFs can perform density estimation
on manifolds at test time without making any assumptions
about the dimensionality of the data manifold. This is in
stark contrast to existing flow based algorithms for density
estimation on manifolds where the manifold dimensionality
is fixed when the flow is created (Brehmer & Cranmer,
2020). In order to exploit this ability, we need a method
to identify which contours correspond to which principal
manifolds. Recall that the principal components are ordered
according to the eigenvalues of JJT . Consider a PCF where
the partition size is 1. Then the diagonal elements of JTJ
will be equal to the top dim(z) eigenvalues of JJT because
J will be the product of a semi-orthogonal matrix and a
diagonal matrix (see Item 7), so JTJ will be diagonal and
its diagonal elements of JTJ can be used to identify which
contour corresponds to which principal manifold. In the
general case, JTJ is a block diagonal matrix so we can look
at the square root of the determinant of each block matrix,
|JTK JK|

1
2 . |JTK JK|

1
2 is how much the density around x is

"stretched" along the contour fK(zK) to form the structure
present in the data, so contours with small values of |JTK JK|

1
2

correspond to a direction that contributes little to the overall
structure.

This check can be used filter out components of log like-
lihood that are due to small variations such as noise in-
curred in the data collection process. For example, con-
sider a PCF trained on 2D data and at x we observe that
log |JT1 J1| � log |JT2 J2|. Then the structure of the prob-
ability distribution at x should be primarily aligned with
the contour f1(z1), so it might make sense to report the
log likelihood of x on only this contour. We define this
procedure below:

Definition 7 (Manifold corrected probability density). Let x
be a sample from a PCF. The manifold corrected probability
density of x is computed as

log pM(x) =
∑
K∈S
LK, S = {K : |JTK JK|

1
2 > ε} (12)

In experiment Section 5.2 we demonstrate an example where
PCFs correctly learns the density of data generated on a
variable dimension manifold.
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3.2. Learning algorithms

PCF objective
The PCF optimization problem is to minimize the negative
log likelihood of data subject to the constraint that IP = 0:

argminθ −
∑
x∈D

log px(x; θ), s.t. IP(x; θ) = 0 (13)

We solve this problem with a regularized maximum likeli-
hood objective:

L(θ) =
∑
x∈D
− log px(x; θ) + αIP(x; θ)

=
∑

z=g(x),x∈D

− log pz(z)− α− 1

2
log |J(z; θ)TJ(z; θ)|

+
α

2

∑
K∈P

log |JK(z; θ)TJK(z; θ)| (14)

where α is a hyperparameter. Note that in the special
case where the partition K is 1 dimensional and dim(x) =
dim(z), this is the objective function used in (Gresele et al.,
2021). Although L(θ) is a valid objective, it requires that we
compute g(x) and a matrix vector product with the inverse
Jacobian, making it impractical for flows where the inverse
is difficult to evaluate. We remedy this issue by replacing
the constraint IP = 0 with ÎP = 0 as per Lemma 2. The
result is a novel loss function for training flows to have
orthogonal contours:

LPCF(θ) =
∑
x∈D
− log px(x; θ)− αÎP(x; θ)

=
∑
x∈D
− log pz(g(x; θ))− α+ 1

2
log |G(x; θ)G(x; θ)T |

+
α

2

∑
K∈P

log |GK(x; θ)GK(x; θ)T | (15)

LPCF(θ) is the objective of choice when dim(x) = dim(z).
It provides a lightweight change to maximum likelihood
training that can be applied to any flow architecture.

iPCF objective
Next consider the case where dim(x) > dim(z). This
appears in problems where we want to learn a low dimen-
sional representation of data (Gemici et al., 2016; Brehmer
& Cranmer, 2020; Caterini et al., 2021; Kumar et al., 2020).
Although we can optimize L(θ) to learn a PCF, naively op-
timizing Eq. (14) will require optimizing log |JTJ |, which
requires dim(z) Jacobian-vector products or an iterative al-
gorithm (Caterini et al., 2021). We avoid this problem by
setting α = 1 in Eq. (14). This yields the iPCF objective:

LiPCF(θ) =
∑
x∈D
− log px(x; θ) + IP(x; θ)

=
∑

z=g(x),x∈D

− log pz(z) +
1

2

∑
K∈P

log |JTK JK|

(16)

The iPCF objective is a novel lower bound on the log like-
lihood of a dataset that lies on a manifold. Clearly the
bound is tight when IP(x; θ) = 0, so the learned model
must trade off how close its contours are to principal mani-
folds with how well it represents data. The computational
bottleneck of LiPCF(θ) is the log |JTK JK| terms, which each
require |K| Jacobian-vector products to compute. However,
if |K| � dim(z), then LiPCF(θ) is much more efficient to
estimate than L(θ) (see the next paragraph on unbiased es-
timates). Eq. (16) on its own cannot be used for training
because there are no guarantees that training data will satisfy
the condition x = f(z). Instead, we plug LiPCF(θ) into the
algorithm described in section 4 of (Caterini et al., 2021).
This algorithm projects training data onto the generative
manifold and maximizes the likelihood of the projected
data, while also minimizing the reconstruction error. See
appendix Appendix D.3 for a full description.

Unbiased estimates of the objectives
In practice, we implement Eq. (15) and Eq. (16) by randomly
selecting K ∈ P , constructing |K| one-hot vectors where
each vector has a single 1 at an index in K, and multiplying
each vector with the transposed Jacobian (vjp) at g(x) or
Jacobian (jvp) at f(z). If each zK is 1 dimensional, then
the PCF objective only requires a single vjp or jvp. This
means that the cost of training a PCF is only slightly more
expensive than training a regular normalizing flow and the
cost of training an iPCF is much more efficient than training
an injective normalizing flow. We provide Python code in
appendix Appendix A.

4. Related Work
Our work plugs a methodological gap in the normalizing
flows (Papamakarios et al., 2019; Rezende & Mohamed,
2015) related to finding structure within flows. Although
this is not crucial for applications such as density estimation
or Neural-transport MCMC (Hoffman et al., 2019), the suc-
cess of approaches in other deep generative models for find-
ing low dimensional structure such as the β-VAE (Higgins
et al., 2017; Alemi et al., 2018b) and Style GAN (Karras
et al., 2019) are motivation to find structure in normaliz-
ing flows. A subarea of flows research focuses on learning
densities on manifolds. Gemici et al. (2016) introduced
a proof of concept for learning a density over a specified
manifold and since then other methods have extended the
idea to other kinds of manifolds such as toris, spheres and
hyperbolic spaces (Rezende et al., 2020; Bose et al., 2020).
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Figure 4. Contours for various synthetic datasets from a normalizing flow (NF) and principal component flow (PCF). Both flows learned
to produce the correct samples (see Appendix D.1) but only the PCF learns the data’s structure.

Points Circles Caret Swirl Grid Moons Pinwheel Swiss Roll

log p(x)(↑) NF -1.60 -3.10 -1.89 -0.19 -6.02 -0.64 -3.28 -4.67
PCF -1.62 -3.12 -1.89 -0.20 -6.02 -0.66 -3.29 -4.68

IP(↓) NF 1.60 1.18 0.61 0.71 0.39 0.64 0.77 1.38
PCF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1. Numerical results for learning synthetic datasets. The PCF obtains a similar test set log likelihood to that of the normalizing flow
(NF), but only the PCF has small pointwise mutual information (IP ). Small values of IP result in the orthogonal contours shown in
Fig. 4.

A related class of flows are dedicated to both learning mani-
folds and densities over them (Kumar et al., 2020; Brehmer
& Cranmer, 2020; Kalatzis et al., 2021; Caterini et al., 2021;
Kothari et al., 2021). Our work is different because we focus
on flows with density in the full data space and we do not
focus on learning any single manifold. Additionally, there
has been work in flows aimed at constructing architectures
so that structure can emerge during training (Zhang et al.,
2021; Cunningham et al., 2020; Cunningham & Fiterau,
2021), however these methods have no guarantees that they
will recover the intended structure whereas PCFs do.

There are other works that impose orthogonality conditions
on Jacobian matrices. Conformal embedding flows (Ross
& Cresswell, 2021) constructs an injective flow that has an
orthogonal times a scalar Jacobian matrix to learn densities
over manifolds. Our Jacobian structure is more flexible
because it only requires JTJ to be block diagonal. We
also note that our method can be used to learn conformal
mappings if the regularizer is used on the Jacobian and its
transpose. Dombrowski et al. (2021) presents a way to apply
flows that have learned the structure of a dataset to generat-
ing counterfactuals by using optimization in the latent space,
which is shown to adhere to the flow’s generative manifold
in the data space. Wei et al. (2021) and Gropp et al. (2020)
propose regularizers to ensure that the Jacobian matrix of

their models are orthogonal. As mentioned earlier, our Jaco-
bian structure is much more flexible. The most similar work
to ours is independent mechanism analysis (IMA) (Gresele
et al., 2021). IMA is motivated by independent component
analysis and causal inference while ours is motivated by un-
covering the structure of data. We introduce novel insights
on the geometry of flows and the densities on their contours,
orthogonality conditions for both injective flows and flows
that are not easily invertible, and a test time algorithm for
computing densities on manifolds. PCA (Jolliffe, 2011)
and its nonlinear extensions (Jolliffe, 2011; Gorban et al.,
2008a) have the same goal as PCFs of finding the principal
structure of data. Cramer et al. (2021) treat PCA as a linear
PCF, but do not consider the nonlinear case. Work related
to principal manifolds, such as locally linear embeddings
(Ghojogh et al., 2021), differ from ours primarily in that we
use parametric functions to learn the geometry of data.

5. Experiments
Our experiments showcase the capabilities of PCFs to learn
the principal manifolds of data, perform density estimation
on data that is generated on a variable dimensional dataset,
and learn high dimensional data embedded on a low dimen-
sional manifold. All of our experiments were written using
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Figure 5. PCFs are the only class of flows that can learn densities on manifolds with variable dimensionality. The dataset is generated on a
manifold that is 1D near the origin and 2D elsewhere. At test time, the density for each data point is computed using Definition 7.

the JAX (Bradbury et al., 2018) Python library. We provide
extended results and details of our models in Appendix D.

5.1. 2D Synthetic Datasets

We trained standard normalizing flow and PCF on various
synthetic 2D datasets. Both flows have an architecture with
10 coupling layers, each with a logistic mixture cdf with
8 components, logit and shift-scale transformer (Ho et al.,
2019; Papamakarios et al., 2019) and 5 layer residual net-
work with 64 hidden units conditioner. We applied a matrix
vector product and act norm layer in between each cou-
pling layer (Kingma & Dhariwal, 2018). Note that logistic
mixture cdfs require an iterative algorithm to invert.

The log likelihood and pointwise mutual information (IP)
of the test sets are shown in Table 1. We see from the
likelihoods that the PCF is able to learn the datasets as well
as the standard flow while achieving a small value of IP .
The low IP is reflected by the contours in Fig. 4. In line
with our theory, the contours of the PCF are orthogonal to
each other and are oriented in the directions of maximum
variance.

5.2. Learning manifold densities of varying rank

PCFs have the unique ability to learn densities on mani-
folds with unknown rank. All existing density estimation
algorithms on manifolds using flows require specifying the
dimensionality of the manifold beforehand, but PCFs do not
because they will automatically learn the underlying struc-
ture of the dataset. The leftmost plot of Fig. 5 shows the
target probability distribution whose samples lie on either a
1D or 2D manifold. The data is generated by first sampling
two univariate random variables z1 and z2 from a Gaus-
sian mixture model and standard Gaussian respectively and
then transforming z = (z1, z2) to the data space with the
equation x = (z1, z2max(0, 1− | 1

z1
|), sin(z1)). Notice that

x is one dimensional when |z1| < 1 and two dimensional

otherwise. During training we perturb the dataset with a
small amount of Gaussian noise so that the training data has
full rank. See Appendix D.2 for a full description of the
data and model and extended results. We use the method
described in Definition 7 to compute the rank and density of
each data point in the test set. We see from the center plot
of Fig. 5 that the PCF correctly recovers the densities of the
test data samples. The final forward KL divergence from
the learned density and true density is 0.0146.

5.3. iPCF

Here we show that the iPCF learning algorithm does in
fact learn an injective flow with contours that are close
to principal manifolds, and that the intuition about how
contours relate to the principal manifolds does help explain
the generative behavior of flows. We trained an iPCF and
standard injective normalizing flow (iNF) on the MNIST
dataset (Lecun et al., 1998). The iPCF and iNF both had
the same architecture consisting of 20 layers of GLOW
(Kingma & Dhariwal, 2018), a slice layer that removes all
but 10 of the latent dimensions (so that the latent space is
10 dimensional), and then another 10 layers of neural spline
flows (Durkan et al., 2019). See appendix Appendix D.3 for
details on the model and the training. Note that the iPCF
required roughly 10 times less resources to train because we
computed a single jvp to estimate Eq. (16) while the iNF
required 10 jvps to compute Eq. (2).

Fig. 6a shows a similarity plot between sorted contours
of each model and the true principal components. The
columns represent the principal components sorted by eigen-
value while the rows represent the tangents of the contours
(columns of J) in increasing order of the diagonal of JTJ .
The intensity of each cell is the average absolute value of
the cosine similarity between J and a principal component.
The plot of iPCF is highlighted along the diagonal, which
indicates that the contours are mostly aligned with the prin-
cipal components whereas the plot for the iNF is highlighted
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Figure 6. Similarity plot (Fig. 6a) between sorted contours of each
model and the true principal components and traversal of the largest
(Fig. 6b) and 5th largest (Fig. 6c) contours of the iPCF and iNF.
See Section 5.3 for more details.

along the last column, which indicates that the contours are
mostly aligned with only the largest principal component.

Fig. 6b and Fig. 6c show a traversal of the largest and 5th
largest contours of the iPCF and iNF respectively. We
moved along the contours by computing the Jacobian matrix
of the flow at the current z, ordering the contours according
to the diagonal of JTJ , and then taking a step of 0.02 on
the dimension of z corresponding to the contour we want
to traverse. We took 500 of these steps and displayed ev-
ery 50th image in the figures. The images generated on the
top contours for both models are varied as expected. The
images on the 5th largest contours of the iPCF are only
varied slightly, which matches the results from Fig. 6a that
the 5th largest contours will be oriented similarly to the
5th largest principal manifold and should therefore result in
only a minimal amount of change. The iNF, on the other
hand, generates images on the 5th largest contour that are
similar to those generated on the largest contour. This also
matches the intuition from Fig. 6a that the contours of the
iNF are mostly aligned with the largest principal manifold.

6. Conclusion
We introduced principal component flows, a type of nor-
malizing flow whose latent variables generate its principal
manifolds. We investigated the generative behavior of flows

using principal manifolds and contours to understand how a
flow assign probability density to its samples. This analy-
sis helped us define PCFs and develop an efficient general
purpose learning algorithm. Furthermore, we found an ob-
jective function to train injective PCFs that avoided the need
to compute a difficult Jacobian determinant during train-
ing. We showed how to interpret the contours of PCFs and
proposed a simple test to match a contour with a principal
manifold. This test was then shown to help perform den-
sity estimation on the true data manifold at test time. Our
experiments demonstrated the PCFs are effective tools for
learning the principal manifolds of low dimensional data,
or high dimensional data that is embedded on a low dimen-
sional manifold, and that PCFs are capable of performing
density estimation on data that is generated on a variable
dimensional manifold.
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A. Python implementation
Below are Python implementations of the PCF objective function. The code uses the JAX (Bradbury et al., 2018) Python
library.

import jax
import jax.numpy as jnp
import jax.scipy.stats.multivariate_normal as gaussian
import einops
from jax.random import randint

def PCF_objective_brute_force(flow, x, P, alpha=5.0):
""" Brute force implementation of the PCF objective.

Implemented for unbatched 1d inputs for simplicity

Inputs:
flow - Function that accepts an unbatched 1d input

and returns a 1d output and the log determinant
x - Unbatched 1d input
P - List of numpy arrays that form a partition

over range(x.size)
alpha - Regularization hyperparameter

Outputs:
objective - PCFs objective

"""
# Evaluate log p(x) with a Gaussian prior
z, log_det = flow(x)
log_pz = gaussian.logpdf(z, 0.0, 1.0).sum()
log_px = log_pz + log_det

# Create the Jacobian matrix for every item in the batch
G = jax.jacobian(lambda x: flow(x)[0])(x)

# Compute Ihat_P
Ihat_P = -log_det
for k in P:

Gk = G[k,:]
Ihat_P += 0.5*jnp.linalg.slogdet(Gk@Gk.T)[1]

objective = -log_px + alpha*Ihat_P
return objective.mean()

def PCF_objective_unbiased(flow, x, rng_key, alpha=5.0):
""" Unbiased estimate of the PCF objective when the partition size is 1

Inputs:
flow - Function that accepts an unbatched 1d input

and returns a 1d output and the log determinant
x - Unbatched 1d input
rng_key - JAX random key
alpha - Regularization hyperparameter

Outputs:
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objective - PCFs objective
"""
# Evaluate log p(x) with a Gaussian prior and construct the vjp function
z, vjp, log_det = jax.vjp(flow, x, has_aux=True)
log_pz = gaussian.logpdf(z, 0.0, 1.0).sum()
log_px = log_pz + log_det

# Sample an index in the partition
z_dim = z.shape[-1]
k = random.randint(rng_key, minval=0, maxval=z_dim, shape=(1,))
k_onehot = (jnp.arange(z_dim) == k).astype(z.dtype)

# Evaluate the k'th row of G and compute an unbiased estimate of Ihat_P
Gk, = vjp(k_onehot)
GkGkT = (Gk**2).sum()
Ihat_P = -log_det + z_dim*0.5*jnp.log(GkGkT)

objective = -log_px + alpha*Ihat_P
return objective.mean()

def iPCF_objective_unbiased(flow, x, rng_key, gamma=10.0):
""" Unbiased estimate of the iPCF objective when the partition size is 1

Inputs:
flow - Function that accepts an unbatched 1d input

and returns a 1d output and the log determinant
x - Unbatched 1d input
rng_key - JAX random key
gamma - Regularization hyperparameter

Outputs:
objective - iPCFs objective

"""
# Pass x through to the latent space and compute the prior
z, _ = flow(x)
log_pz = gaussian.logpdf(z, 0.0, 1.0).sum()

# Sample an index in the partition
z_dim = z.shape[-1]
k = random.randint(rng_key, minval=0, maxval=z_dim, shape=(1,))
k_onehot = (jnp.arange(z_dim) == k).astype(z.dtype)

# Compute the reconstruction and k'th row of J
x_reconstr, Jk = jax.jvp(lambda x: flow(x, inverse=True)[0], (z,), (k_onehot,))
JkTJk = (Jk**2).sum()
reconstruction_error = jnp.sum((x - x_reconstr)**2)

# Compute the objective function
objective = -log_pz + 0.5*jnp.log(JkTJk) + gamma*reconstruction_error
return objective.mean()

def construct_partition_mask(index, z_shape):
""" In general we can find the i'th row of a matrix A

by computing A.T@mask where mask is zeros everywhere
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except at the i'th index where it is 1.

This function finds all of the masks needed to find
the rows in G that are in the index'th partition.

Inputs:
index - Batched array of integers
z_shape - Shape of the latent variable

Outputs:
masks - Array of 0s and 1s that will be used to

find the rows of G within the index'th partition.
"""
batch_size, H, W, C = z_shape
n_partitions = C

# The only non zero element of i'th row of
# partition_mask is at the index[i]'th position
# This is used to select a partition.
# shape is (batch_size, C)
partition_mask = jnp.arange(n_partitions) == index[:,None]

# Create masks that will let us find the k'th rows of G using masked vjps.
partition_size = H*W
G_selection_mask = jnp.eye(partition_size)
G_selection_mask = G_selection_mask.reshape((partition_size, H, W))

# Put the masks together
masks = jnp.einsum("bc,phw->pbhwc", partition_mask, G_selection_mask)
return masks

def unbiased_objective_image(flow, x, rng_key, alpha=5.0, vectorized=True):
""" PCFs objective function for images. Number of partitions is given

by number of channels of output.

Inputs:
flow - Function that accepts an batched 3d input

and returns a batched 3d output and the log determinant
x - Batched 3d input with channel on last axis
rng_key - JAX random key
alpha - Regularization hyperparameter
vectorize - Should all of the vjps be evaluated in parallel?

Outputs:
objective - PCFs objective for images

"""
# Assume that we partition over the last axis of z
# and that x is a batched image with channel on the last axis
batch_size, H, W, C = x.shape

# Evaluate log p(x) and retrieve the function that
# lets us evaluate vector-Jacobian products
z, _vjp, log_det = jax.vjp(flow, x, has_aux=True)
vjp = lambda v: _vjp(v)[0] # JAX convention to return a tuple
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log_pz = gaussian.logpdf(z, 0.0, 1.0).sum(axis=range(1, z.ndim))
log_px = log_pz + log_det

# Randomly sample the index of the partition we will evaluate
n_partitions = z.shape[-1]
index = randint(rng_key, minval=0, maxval=n_partitions, shape=(batch_size,))

# Construct the masks that we'll use to find the index'th partition of G.
# masks.shape == (partition_size, batch_size, H, W, C)
masks = construct_partition_mask(index, z.shape)

# Evaluate the vjp each of the n_partition masks
if vectorized:

# This is memory intensive but fast
Gk = jax.vmap(vjp)(masks)

else:
# This is slow but memory efficient
Gk = jax.lax.map(vjp, masks)

# Each element of GG^T is the dot product between rows of G
# Construct GkGk^T and then take its log determinant
Gk = einops.rearrange(Gk, "p b H W C -> b p (H W C)")
GkGkT = jnp.einsum("bij,bkj->bik", Gk, Gk)
Ihat_P = 0.5*jnp.linalg.slogdet(GkGkT)[1]*n_partitions - log_det

objective = -log_px + alpha*Ihat_P
return objective.mean()
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B. Contour Cookbook
Below we list properties of contour densities and pointwise mutual information and their inverse variants. Recall from
our assumptions stated in the main text that a normalizing flow generates samples under the model z ∼ pz(z) =∏

K∈P pK(zK), x = f(z) where dim(x) ≥ dim(z). f(z) has the inverse z = f−1(x) = g(x) and Jacobian matrix
J = df(z)

dz while the Jacobian matrix of the inverse function is G = dg(x)
dx . JK is the matrix whose columns are the columns

of J with indices in K and GK is the matrix whose rows are the rows of G with indices in K.

Below we assume that S and T are disjoint subsets of the integers in [1, . . . ,dim(z)] and that the indices of S and T are
ordered so that results with block matrices can be presented clearly. This is a valid assumption because the latent dimension
can always be renumbered.

B.1. Definitions

1. LK
∆
= log pK(zK)− 1

2 log |JTK JK|

2. L̂K
∆
= log pK(zK) + 1

2 log |GKG
T
K |

3. L ∆
= log px(x) = log pz(z)− 1

2 |J
TJ |

4. L̂ ∆
= log pz(z) + 1

2 |GG
T |

5. IS,T
∆
= LS+T − LS − LT

6. ÎS,T
∆
= L̂S+T − L̂S − L̂T

7. IP
∆
= L −

∑
K∈P LK

8. ÎP
∆
= L̂ −

∑
K∈P L̂K

B.2. Claims

1. IS,T = − 1
2 log |JTS+TJS+T|+ 1

2 log |JTS JS|+ 1
2 log |JTT JT|

2. IP = − 1
2 log |JTJ |+ 1

2

∑
K∈P log |JTK JK|

3. IS,T = − 1
2 log |I − J‖S J‖T | where A‖ = A(ATA)−1AT denotes the projection matrix of A.

4. IS,T ≥ 0

5. IP ≥ 0

6. IS,T = 0 if and only if JS+T = U
‖
S+TΣS+T

ï
V TS 0
0 V TT

ò
where U‖S+T is semi-orthogonal, VS and VT are orthogonal and

ΣS+T is diagonal.

7. IP = 0 if and only if J = U‖Σ


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TP|P|

 where U‖ is a semi orthogonal matrix, Σ is a diagonal

matrix and each V TPk
is an orthogonal matrix with same number of rows and columns as the k′th element of P .

8. IS,T = 0 if and only if fS(zS) and fT(zT) intersect orthogonally.

9. ÎS,T = 1
2 log |GS+TG

T
S+T| − 1

2 log |GSG
T
S | − 1

2 log |GTG
T
T |

10. ÎP = 1
2 log |GGT | − 1

2

∑
K∈P log |GKG

T
K |
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11. ÎS,T = 1
2 log |I −G‖SG‖T |

12. ÎS,T ≤ 0

13. ÎP ≤ 0

14. ÎS,T = 0 if and only if GS+T =

ï
VS 0
0 VT

ò
ΣS+TU

‖
S+T

T
where U‖S+T

T
is semi-orthogonal, VS and VT are orthogonal and

ΣS+T is diagonal.

15. ÎP = 0 if and only if J =


VP1

0 0 0
0 VP2

0 0

0 0
. . .

...
0 0 . . . VP|P|

ΣU‖
T

where U‖
T

is a semi orthogonal matrix, Σ is a diagonal

matrix and each VPk
is an orthogonal matrix with same number of rows and columns as the k′th element of P .

16. If dim(x) = dim(z), then IP = 0 if and only if ÎP = 0

B.3. Proofs

Proof of claim 1 IS,T = − 1
2 log |JTS+TJS+T|+ 1

2 log |JTS JS|+ 1
2 log |JTT JT|

Proof.
IS,T = LS+T − LS − LT (17)

= log
pS+T(zS+T)

pS(zS)pT(zT)︸ ︷︷ ︸
=0 by assumption of how prior factors

−1

2
log |JTS+TJS+T|+

1

2
log |JTS JS|+

1

2
log |JTT JT| (18)

= −1

2
log |JTS+TJS+T|+

1

2
log |JTS JS|+

1

2
log |JTT JT| (19)

Proof of claim 2 IP = − 1
2 log |JTJ |+ 1

2

∑
K∈P log |JTK JK|

Proof.
IP = L −

∑
K∈P
LK (20)

= log
pz(z)∏

K∈P pK(zK)︸ ︷︷ ︸
=0 by assumption of how prior factors

−1

2
log |JTJ |+ 1

2

∑
K∈P

log |JTK JK| (21)

= −1

2
log |JTJ |+ 1

2

∑
K∈P

log |JTK JK| (22)

Proof of claim 3 IS,T = − 1
2 log |I − J‖S J‖T | where A‖ = A(ATA)−1AT denotes the projection matrix of A.
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Proof.

|JTS+TJS+T| = |
ï
JTS
JTT

ò [
JS JT

]
| (23)

= |
ï
JTS JS JTS JT

JTT JS JTT JT

ò
| (24)

= |JTS JS||JTT JT − JTT JS(J
T
S JS)

−1JTS︸ ︷︷ ︸
J
‖
S

JT| (25)

= |JTS JS||JTT JT||I − J‖S JT(J
T
T JT)

−1JTT︸ ︷︷ ︸
J
‖
T

| (26)

= |JTS JS||JTT JT||I − J‖S J‖T | (27)

Therefore 1
2 log |JTS JS|+ 1

2 log |JTT JT| − 1
2 log |JTS+TJS+T| = − 1

2 log |I − J‖S J‖T |. An application of claim 1 completes the
proof that IS,T = − 1

2 log |I − J‖S J‖T |.

Proof of claim 4 IS,T ≥ 0

Proof. First we will show that I − J‖S J‖T is a positive semi-definite matrix. Let x be some vector.

xT (I − J‖S J‖T )x = xTx− xTJ‖S J‖T x (28)

= |x|22(1− x

|x|2︸︷︷︸
x̂

J
‖
S J
‖
T
x

|x|2
) (29)

J
‖
S and J‖T are orthogonal projection matrices, so their operator norm is less than or equal to 1. By definition of the operator

norm, we have that ||J‖S x̂||op ≤ 1 and ||J‖T x̂||op ≤ 1. It follows that x̂J‖S J
‖
T x̂ ≤ ||J‖S x̂||op||J‖T x̂||op ≤ 1. So

|x|22(1− x̂J‖S J‖T x̂) ≥ |x|2 ≥ 0 (30)

It is known that if A is positive semi-definite, then log |A| ≤ Tr(A− I). We can now apply this bound to I − J‖S J‖T :

−1

2
log |I − J‖S J‖T | ≥ −

1

2
Tr
Ä
I − J‖S J‖T − I

ä
(31)

=
1

2
Tr
Ä
J
‖
S J
‖
T

ä
(32)

≥ 0 because the trace of a positive semi-definite matrix is non negative. (33)

This proves that IS,T ≥ 0.

Proof of claim 5 IP ≥ 0

Proof. As per Eq. (7), IP can be written as the sum of various IS,T terms, each of which are non-negative by claim 4.
Therefore IP ≥ 0.

Proof of claim 6 IS,T = 0 if and only if JS+T = U
‖
S+TΣS+T

ï
V TS 0
0 V TT

ò
where U‖S+T is semi-orthogonal, VS and VT are

orthogonal and ΣS+T is diagonal.
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Proof. Let A be a tall matrix with full rank. Its singular value decomposition can be written as:

A = U

ï
Σ
0

ò
V T (34)

=
[
U‖ U⊥

] ïΣ
0

ò
V T (35)

= U‖ΣV T (36)

U‖ is an orthonormal basis for the image of A and U⊥ is an orthonormal basis for the orthogonal complement of the image.
We can write the SVD of JS and JT as well:

JS = U
‖
S ΣSV

T
S (37)

JT = U
‖
T ΣTV

T
T (38)

Assume that IS,T = 0. We must have that JTS JT = 0 because if IS,T = − 1
2 log |I − J‖S J‖T | = 0, then it must be the case that

J
‖
S J
‖
T = 0, so the images of JS and JT must be orthogonal. This means that U‖S and U‖T are mutually orthogonal because

these matrices form orthonormal bases for the images of JS and JT, so their columns form an orthonormal basis for JS+T.
Next we can write out JS+T:

JS+T =
[
JS JT

]
(39)

=
î
U
‖
S ΣSV

T
S U

‖
T ΣTV

T
T

ó
(40)

=
î
U
‖
S U

‖
T

ó
︸ ︷︷ ︸

U
‖
S+T

ï
ΣS 0
0 ΣT

ò
︸ ︷︷ ︸

ΣS+T

ï
V TS 0
0 V TT

ò
(41)

= U
‖
S+TΣS+T

ï
V TS 0
0 V TT

ò
(42)

U
‖
S+T is a semi-orthogonal matrix because all of its columns form an orthonormal basis.

Next assume that JS+T = UΣS+T

ï
V TS 0
0 V TS

ò
where U is semi-orthogonal, ΣS+T is diagonal and VS and VT are orthogonal.

JS+T = UΣS+T

ï
V TS 0
0 V TS

ò
(43)

=
[
U‖ U⊥

] ïΣS 0
0 ΣT

ò ï
V TS 0
0 V TS

ò
(44)

=
[
U‖ΣSV

T
S U⊥ΣTV

T
T

]
(45)

=
[
JS JT

]
(46)

U‖ΣSV
T
S and U⊥ΣTV

T
T are the SVD of JS and JT respectively, so J‖S = U‖U‖

T
and J‖T = U⊥U⊥

T . Plugging this into
claim 3 yields the result IS,T = 0 because U‖

T
U⊥ = 0.

Proof of claim 7 IP = 0 if and only if J = U‖Σ


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TP|P|

 where U‖ is a semi orthogonal matrix, Σ is

a diagonal matrix and each V TPk
is an orthogonal matrix with same number of rows and columns as the k′th element of P .

Proof. Let P ′ be a partition over [1, . . . ,dim(z)] with k < |P| elements where the first k − 1 elements of P and P ′ are
identical and the k’th element of P ′ is the union of the final |P| − k elements of P . We will use Pk to denote the k’th
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element of P , P:k to denote the union of the first k elements of P and Pk: to denote the union of the k’th to last elements of
P . We will use a proof by induction to prove one direction of the claim where we assume that IP = 0.

The base case is when P ′ contains only P1 and P2:. From Section 2.5 we know that we can construct the partition using a
tree that has a parent node equal to P ′ with children that are P1 and P2:. This means IP will be the sum of I1,2: and other
I terms and because we assumed that IP = 0, it must be that I1,2: = 0, so we can apply claim 6 to satisfy the inductive
hypothesis.

Next assume P ′ contains the first k− 1 elements of P and an element containing the union of the remainder of P . Assuming
that the inductive hypothesis is true, we can write the Jacobian matrix as

J = U‖Σ

ï
V TP:k−1

0

0 V TPk:

ò
where (47)

V TP:k−1
=


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TPk−1

 (48)

We can rewrite J to isolate the columns in the Pk partition:

J = U‖Σ

ï
V TP:k−1

0

0 V TPk:

ò
(49)

=
î
U
‖
P:k−1

U
‖
Pk:

ó ïΣP:k−1
0

0 ΣPk:

ò ï
V TP:k−1

0

0 V TPk:

ò
(50)

=
î
U
‖
P:k−1

ΣP:k−1
V TP:k−1

U
‖
Pk:

ΣPk:
V TPk:

ó
(51)

Next, let JPk:
= U

‖
Pk:

ΣPk:
V TPk:

. JPk:
contains the columns of J with indices in the final |P − k| elements of P . Choose

a partition from these final elements, Pk. Let JPk
contain the columns of JPk:

that are in Pk and let JPk+1:
contain the

remaining columns. Because Pk ∈ P , it must be true that IPk,Pk+1:
= 0. Therefore we can apply claim 6 to decompose

JPk

JPk:
= U

‖
Pk:

ΣPk:
V TPk:

(52)

= U
‖
Pk:

ΣPk:

ï
V TPk

0
0 V TPk+1:

ò
(53)

Plugging this back into Eq.49 and yields

J = U‖Σ

ï
V TP:k−1

0

0 V TPk:

ò
(54)

= U‖Σ

V TP:k−1
0 0

0 V TPk
0

0 0 V TPk+1:

 (55)

= U‖Σ

ï
V TP:k

0
0 V TPk+1:

ò
(56)

So by induction, J = U‖Σ


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TP|P|

.

For the other direction, assume that J = U‖Σ


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TP|P|

. Clearly JTJ will be a block diagonal matrix, so
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log |JTJ | =
∑

K∈P log |JTK JK|. It trivially follows from claim 2 that IP = 0.

Proof of claim 8 IS,T = 0 if and only if fS(zS) and fT(zT) intersect orthogonally.

Proof. We saw in the proof of claim 6 that the image of JS and JT are orthogonal when IS,T = 0. At the point that fS(zS) and
fT(zT) intersect, they are aligned with the images of JS and JT respectively, so they will intersect orthogonally. Similarly,if
fS(zS) and fT(zT) intersect orthogonally, their definition tells us that the image of JS and JT are orthogonal, so we must have
IS,T = 0.

Proof of claim 9 ÎS,T = 1
2 log |GS+TG

T
S+T| − 1

2 log |GSG
T
S | − 1

2 log |GTG
T
T |

Proof.
ÎS,T = L̂S+T − L̂S − L̂T (57)

= log
pS+T(zS+T)

pS(zS)pT(zT)︸ ︷︷ ︸
=0 by assumption of how prior factors

+
1

2
log |GS+TG

T
S+T| −

1

2
log |GSG

T
S | −

1

2
log |GTG

T
T | (58)

=
1

2
log |GS+TG

T
S+T| −

1

2
log |GSG

T
S | −

1

2
log |GTG

T
T | (59)

Proof of claim 10 ÎP = − 1
2 log |GGT |+ 1

2

∑
K∈P log |GKG

T
K |

Proof.
ÎP = L̂ −

∑
K∈P
L̂K (60)

= log
pz(z)∏

K∈P pK(zK)︸ ︷︷ ︸
=0 by assumption of how prior factors

+
1

2
log |GGT | − 1

2

∑
K∈P

log |GKG
T
K | (61)

=
1

2
log |GGT | − 1

2

∑
K∈P

log |GKG
T
K | (62)

Proof of claim 11 ÎS,T = 1
2 log |I −G‖SG‖T |.

Proof.

|GS+TG
T
S+T| = |

ï
GS

GT

ò [
GTS GTT

]
| (63)

= |
ï
GSG

T
S GSG

T
T

GTG
T
S GTG

T
T

ò
| (64)

= |GSG
T
S ||GTG

T
T −GTG

T
S (GSG

T
S )−1GS︸ ︷︷ ︸

G
‖
S

GTT | (65)

= |GSG
T
S ||GTG

T
T ||I −G

‖
S G

T
T (GTG

T
T )−1GT︸ ︷︷ ︸

G
‖
T

| (66)

= |GSG
T
S ||GTG

T
T ||I −G

‖
SG
‖
T | (67)

Therefore 1
2 log |GS+TG

T
S+T| − 1

2 log |GSG
T
S | − 1

2 log |GTG
T
T | = 1

2 log |I −G‖SG‖T |. An application of claim 9 completes the
proof that ÎS,T = 1

2 log |I −G‖SG‖T |.



Principal Component Flows

Proof of claim 12 ÎS,T ≤ 0

Proof. Notice that we can prove that − 1
2 log |I −G‖SG‖T | ≥ 0 using an identical proof as the one used to prove 4. Therefore

it must be that ÎS,T = 1
2 log |I −G‖SG‖T | ≤ 0.

Proof of claim 13 ÎP ≤ 0

Proof. The same steps used in Eq. (7) to write IP as the sum of various IS,T terms can be used to write ÎP as the sum of
various ÎS,T terms. Since each ÎS,T ≤ 0, it must be that ÎP ≤ 0.

Proof of claim 14 ÎS,T = 0 if and only if GS+T =

ï
VS 0
0 VT

ò
ΣS+TU

‖
S+T

T
where U‖S+T

T
is semi-orthogonal, VS and VT are

orthogonal and ΣS+T is diagonal.

Proof. The proof is identical to that of 6 except that the matrices are transposed.

Proof of claim 15 ÎP = 0 if and only if J =


VP1

0 0 0
0 VP2 0 0

0 0
. . .

...
0 0 . . . VP|P|

ΣU‖
T

where U‖
T

is a semi orthogonal matrix,

Σ is a diagonal matrix and each VPk
is an orthogonal matrix with same number of rows and columns as the k′th element of

P .

Proof. The proof is identical to that of 7 except that the matrices are transposed.

Proof of claim 16 If dim(x) = dim(z), then IP = 0 if and only if ÎP = 0

Proof. First assume that IP = 0. Then by 6, J = UΣV T where U is orthogonal, Σ is diagonal and V T is a block diagonal
matrix with orthogonal blocks. Because dim(x) = dim(z), G = J−1 = V ΣUT . Then by 14, ÎP = 0. The reverse clause
is proven in the same manner. Assuming ÎP = 0, we can use 14 to decompose G, take its inverse and use 6 to prove
IP = 0.

C. PCF Proofs
Lemma 3. Each contour of a PCF at x is spanned by a unique set of principal components.

Proof. The principal components of a flow at x are the eigenvectors of JJT . From claim 7 we know that J =

U‖Σ


V TP1

0 0 0
0 V TP2

0 0

0 0
. . .

...
0 0 . . . V TP|P|

 where Pk is the k′th element of the partition of the latent space. The U‖ and Σ ma-

trices form an eigendecomposition of JJT because JJT = U‖Σ2U‖
T

, so the columns of U‖ are the principal components
of the PCF. Next, we can rewrite J so that the dependence of each contour on the principal components is explicit:

J =
î
U
‖
P1

ΣP1
V TP1

U
‖
P2

ΣP2
V TP2

. . . U
‖
P|P|ΣP|P|V

T
P|P|

ó
(68)

U
‖
Pk

ΣPk
V TPk

is the k’th contour of the PCF. We can clearly see that its image is spanned by the principal components with
indices in Pk. Because Pi

⋂
Pj = ∅,∀i, j we conclude that each contour of a PCF at x is spanned by a unique set of

principal components.

Theorem 2. The contours of a principal component flow are principal manifolds.
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Proof. The principal manifold of a flow is found by integrating along the direction of a principal component.

dx(t)

dt
= wK(x(t)) (69)

Lemma 3 tells us that the contours of a PCF are locally spanned by the principal components and that the eigenvectors and
eigenvalues of JJT are equal to U‖ and Σ2 respectively. So we can simplify by letting x(t) = f(z(t)).

dx(t)

dt
= wK(x(t)) (70)

J
dz(t)

dt
= U

‖
Pk

ΣPk
(71)

dz(t)

dt
= J+U

‖
Pk

ΣPk
(72)

=
[
0 . . . VPk

ΣPk
V TPk

. . . 0
]T

(73)

This derivation tells us that the principal manifold, when traced out in the latent space, is equal to a manifold that only
varies along dimensions in K. This is exactly how contours are generated, therefore the principal manifolds of a PCF are its
contours.
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Figure 7. Extended results for synthetic datasets. Top row has true samples, the next two rows are contours, the next two are samples and
the last two are probability densities computed by the models.

D. Additional details on experiments
D.1. 2D experiments

See Fig.7 for extended results. Each dataset was generated with 1,000,000 data points and split into 700,000 for training and
300,000 for testing. As mentioned in the main text, the architecture used on all of the datasets consisted of 10 coupling
layers with logistic mixture cdf layers that used 8 mixture components and an affine coupling layer that shared the same
conditioner network. Each conditioner consisted of 5 residual layers with a hidden layer size of 64. The models were trained
using the AdaBelief (Zhuang et al., 2020) optimization algorithm with a learning rate of 1× 10−3 and a batch size of 256,
and α = 10.0. Each model was trained for approximately 4 hours on either a NVIDIA 1080ti or 2080ti.

D.2. Variable dimension manifold

We used a flow with 20 coupling based neural spline (Durkan et al., 2019) layers, each with 8 knot points, followed directly
by an affine coupling layer that is parametrized by the same conditioner network as done in (Ho et al., 2019). The conditioner
networks all consisted of a 5 layer residual network with a hidden dimension of 32. We used a unit Gaussian prior. The
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Figure 8. A larger version of Fig. 5

model was trained for around 4 hours on a NVIDIA 3090 gpu with a learning rate of 1× 10−4 with the AdaBelief (Zhuang
et al., 2020) optimization algorithm and a batch size of 2048 and α = 5.0. We trained on 2,100,000 data points and evaluated
on 900,000. As stated in the main text, the data was augmented with Gaussian noise with a standard deviation of 0.01 to
ensure that the model did not collapse during training. The true generative model for the data is:

z1 ∼
1

3
(N(−2, 0.3) +N(0, 0.3) +N(2, 0.3)) (74)

z2 ∼ N(0, 1) (75)

x = f(z1, z2) =

 z1

z2max(0, 1− | 1
z1
|)

sin(z1)

 (76)

The true density was computed in a piecewise manner. If x1 = 0, then

p(x) = p(z1)|df(z)

dz1

T
df(z)

dz1
|
−1
2 (77)

Otherwise,

p(x) = p(z1)p(z2)|df(z)

dz

T
df(z)

dz
|
−1
2 (78)

The Jacobian determinants were computed with automatic differentiation.

In Fig. 8 we show a larger version of Fig. 5, in Fig. 9 we showcase samples pulled from the PCF and the contours learned by
the model. In Fig. 10 we see that the PCF does extremely well in predicting the log likelihood of the test set. The final KL
divergence between the true data distribution and learned was 0.0146. To choose the rank at test time, we compared the
three contour likelihoods provided by the model and filtered out the likelihoods that were negligible compared to the others.

D.3. iPCF

Preprocessing For training, we preprocessed incoming batches of data using uniform dequantization and a scaling layer +
logit transformation as described in (Dinh et al., 2017). Then each (28× 28× 1) image was flattened into a 784 dimensional
vector.

Model architectures The iPCF and iNF architectures were composed of two parts. The first is a flow in the full 784
dimensional ambient space that consisted of 20 layers of GLOW (Kingma & Dhariwal, 2018) with each conditioner network
consisting of 3 residual networks with a hidden dimension of 32 and dropout rate of 0.2. After the GLOW layers, the output
was sliced so that the resulting dimensionality was 10 and this low dimensional vector was passed to a unit Gaussian prior.
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Figure 9. Samples and contours from the model trained for Section 5.2
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Figure 10. Histogram of the difference between the true log likelihood and the predicted for the experiment in Section 5.2
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Figure 11. Random samples from the iPCF and injective normalizing flow trained in Section 5.3

The second part of the architecture, used during fine-tuning, consisted of 10 coupling based neural spline layers with 8 knots
and affine coupling layers. Each conditioner contained 4 residual network layers with a hidden dimension of 4. The input to
this flow is the 10 dimensional output of the first component and the output is fed into a unit Gaussian prior.

Training The overall model was trained in two stages. The first stage optimized the objective in section 4 of (Caterini
et al., 2021) using only the GLOW layers. The objectives we optimized were:

Objective1iPCF =
∑
x∈D
− log pz(g(x)) +

dim(z)

2
log

(∑
i

Jki(g(x))2

)
+ γ||f(g(x))− x||2, k ∼ Uniform(1, . . . , 10)

(79)

Objective1iNF =
∑
x∈D
− log pz(g(x)) +

1

2
log |J(g(x))TJ(g(x))|+ γ||f(g(x))− x||2 (80)

For both models we set γ = 10, used a batch size of 64, learning rate of 1× 10−4 and the AdaBelief (Zhuang et al., 2020)
optimization algorithm. We found that it was crucial to use a small learning rate, otherwise training would fail. These
models were trained for approximately 36 hours on either a NVIDIA 3090ti or RTX8000 gpu.

After this stage of training, we combined the GLOW layers with the neural spline layers into one normalizing flow. We then
froze the parameters for the GLOW layers and trained the parameters of the spline layers using a learning rate of 1× 10−3

for another 24 hours on the same objective as before, but without the reconstruction error term:

Objective2iPCF =
∑
x∈D
− log pz(g(x)) +

dim(z)

2
log

(∑
i

Jki(g(x))2

)
, k ∼ Uniform(1, . . . , 10) (81)

Objective2iNF =
∑
x∈D
− log pz(g(x)) +

1

2
log |J(g(x))TJ(g(x))| (82)

E. Practical considerations
PCFs have many nice theoretical properties, but can be difficult to train and interpret in practice. We find that the constraint
IP = 0 can only be satisfied with normalizing flows that are very expressive. We conjecture that the reason is because the
constraint IP = 0 requires that each O(2|P|) possible contour that can be constructed are orthogonal to the other contours.
As a result, we find it necessary to keep |P| small by using iPCFs to model high dimensional data, increasing the size of
each partition or using a feature extractor flow that can transform data into a simpler form for the PCF. Furthermore, the
latent space of PCFs is not trivial to interpret. While it is true that the latent variables of PCFs correspond to different
principal manifolds, the index of the dimension corresponding to different principal manifolds can change (see Fig. 4 for
clear examples of this). This means that a smooth path through over a principal manifold may require a discontinuous path
through the latent space.


