
TaskBench: Benchmarking Large Language
Models for Task Automation

Yongliang Shen1, Kaitao Song2†, Xu Tan2, Wenqi Zhang1,
Kan Ren2, Siyu Yuan3, Weiming Lu1†, Dongsheng Li2, Yueting Zhuang1†

Zhejiang University1, Microsoft Research Asia2, Fudan University3
{syl,luwm,zhangwenqi}@zju.edu.cn, syyuan21@m.fudan.edu.cn

{kaitaosong, xuta, dongsli}@microsoft.com

https://github.com/microsoft/JARVIS

Abstract

In recent years, the remarkable progress of large language models (LLMs) has
sparked interest in task automation, which involves decomposing complex tasks
described by user instructions into sub-tasks and invoking external tools to execute
them, playing a central role in autonomous agents. However, there is a lack of
systematic and standardized benchmarks to promote the development of LLMs in
task automation. To address this, we introduce TASKBENCH, a comprehensive
framework to evaluate the capability of LLMs in task automation. Specifically,
task automation can be divided into three critical stages: task decomposition,
tool selection, and parameter prediction. To tackle the complexities inherent in
these stages, we introduce the concept of Tool Graph to represent decomposed
tasks and adopt a back-instruct method to generate high-quality user instructions.
We propose TASKEVAL, a multi-faceted evaluation methodology that assesses
LLM performance across these three stages. Our approach combines automated
construction with rigorous human verification, ensuring high consistency with
human evaluation. Experimental results demonstrate that TASKBENCH effectively
reflects the capabilities of various LLMs in task automation. It provides insights
into model performance across different task complexities and domains, pushing
the boundaries of what current models can achieve. TASKBENCH offers a scalable,
adaptable, and reliable benchmark for advancing LLM-based autonomous agents 1.

1 Introduction

Due to the recent advances of large language models (LLMs) [1, 2, 3, 4, 5, 6], LLM-empowered
autonomous agents [7, 8, 9, 10] have unveiled remarkable potential towards artificial general intel-
ligence and become a new rising trend in the realm of AI research. Generally, within the realm of
LLM-empowered autonomous agents, task automation is considered as the most important com-
ponent, which aims to leverage LLMs to autonomously analyze user instructions and accomplish
their objectives. Consequently, many researchers attempt to delve deeper into LLM to enable more
intelligent task automation [11, 12, 13, 14]. However, it is worth noting that a critical challenge in
advancing this area is the lack of a systematic and standardized benchmark to thoroughly evaluate the
capability of LLMs in automating tasks. Therefore, creating such a benchmark to facilitate research
in this area has become an urgent need.

† Corresponding author.
1 https://github.com/microsoft/JARVIS/tree/main/taskbench

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/microsoft/JARVIS
https://github.com/microsoft/JARVIS/tree/main/taskbench

Task Decomposition

Tool Selection

Parameter Prediction

Instruction

Task Automation Graph

"param":

{"<node-5>": ["<node-3>", "<node-4>"]}
{"<node-3>": ["<node-2>"]}
 ······
{"<node-4>": ["script.txt"]}

"nodes":

{"Tool": "Video-to-Text"}
 ······

{"Tool": "Video Editor"}
{"Tool": "Share-on-Tiktok"}]

"links":

{"source": <node-1>, "target": <node-2>}
 ······

{"source": <node-5>, "target": <node-6>}

I want to convert a landscape
video (video.mp4) into an anime
style, then dub the video based
on a story (script.txt). Finally, I
want to post the newly created
video on my TikTok.

Video Editing

Text GenerationText Generation Video Generation

Video CaptioningVideo Captioning

video.mp4

script.txt

Audio Generation

 Video Share

Video Editing

Text Generation Video Generation

Video Captioning

video.mp4

script.txt

Audio Generation

 Video Share

Step 1: Obtain a descriptive caption from the video video.mp4.
Step 2: Rewrite the original caption into an anime-style one..
Step 3: Generate a new video according to the rewritten text.
Step 4: Generate an audio based on the provided "script.txt".
Step 5: Merge the newly created video with the voice.
Step 6: Share the final video on TikTok.

Figure 1: LLM-Based Task Automation: This process involves task decomposition, tool selection,
and parameter prediction by LLM-based agents to autonomously complete tasks. Upon receiving a
user request, the large language model performs task decomposition, generating a sequence of task
steps. Simultaneously, it predicts the tool invocation graph, which encompasses both the selection of
appropriate tools and the prediction of their parameters.

Constructing a benchmark for task automation presents unique challenges beyond traditional NLP
tasks. As shown in Figure 1, task automation involves multiple stages: task decomposition, tool
selection, and parameter prediction. This complexity requires sophisticated evaluation metrics
to assess LLM performance comprehensively. Real-world scenarios often feature intricate user
instructions with multiple subtasks and tool dependencies, necessitating benchmarks that can simulate
this complexity accurately. A key challenge lies in modeling tool dependencies, which is crucial for
effective task automation but difficult to capture in both datasets and evaluation metrics. Additionally,
generating a high-quality, diverse dataset that reflects real-world scenarios is challenging, as it
requires creating instructions that are both natural and aligned with realistic tool usage patterns.
These challenges underscore the need for a carefully designed benchmark that can accurately evaluate
LLMs’ capabilities in task automation across various dimensions and scenarios.

In light of these challenges, we found that existing benchmarks fall short of adequately showcasing
the full potential of LLMs in autonomous task completion. Traditional LLM benchmarks, such as
MMLU [15], GSM8K [16], and AGIEval [17] assess general knowledge and reasoning skills. Recent
tool-augmented LLM benchmarks have made significant strides but still fall short in various aspects.
APIBench [18], ToolBench [19], and MetaTool [20] have advanced the evaluation of LLMs’ tool
usage capabilities, but they often lack comprehensive assessment across all stages of task automation.
For instance, MetaTool primarily focuses on tool selection, while ToolQA [21] emphasizes question-
answering accuracy. Similarly, benchmarks like ToolAlpaca [22] and API-Bank [23] offer valuable
insights but are limited in their evaluation scope and tool complexity modeling.

To address these limitations, we introduce TASKBENCH, a comprehensive framework for evaluating
LLMs’ capabilities in task automation. Our approach integrates innovative data generation techniques
with rigorous evaluation methods. We begin by introducing the concept of a Tool Graph (TG),
which represents relationships and dependencies between various tools, overcoming the limitations
of simple API documentation or template-based approaches used in existing benchmarks. Based
on this Tool Graph, we employ a back-instruct strategy to generate high-quality user instructions
from sampled subgraphs, ensuring diverse and realistic task scenarios. To guarantee the naturalness
and utility of the dataset, we implement a multi-step quality control process, including structured
sampling, self-critic mechanisms (both LLM-based and rule-based), and extensive human verification.
These methods significantly enhance data quality, surpassing the verification approaches used in most
existing benchmarks. Finally, we propose TASKEVAL, a multi-faceted evaluation methodology that

2

Benchmark TaskBench APIBench ToolBench MetaTool API-Bank

Data Generation Tool Graph +
Back-Instruct API Doc Manual +

LLM

Template
Generation
(Diverse,
Keyword,

Emotional)

API Doc

Tool Dependency ✓ ✗ ✗ ✗ ✗

Quality Control

LLM
Self-critique +

Rule-based
Self-critique +

Human
Verification

Human
Verification

Human
Verification

Human
Verification

Auto-
generation +

Human
Verification

Evaluation

Task
Decomposition

+ Tool Selection
+ Parameter
Prediction

Tool
Selection

Tool
Selection +
Parameter
Prediction

Tool Usage
Awareness +

Tool
Selection

API call
correctness,

response
quality

Tool Complexity
Single tool to
complex tool

graph structures

Mainly
single tool

Single to
multi-tool

Single to
multi-tool

Single to
multi-tool

Dataset Scale 17,331 samples 2,365
samples

12,657
samples

21,127
samples

6,135
interactions

Table 1: Comparison of TaskBench with Selected Tool-Augmented LLM Benchmarks

comprehensively assesses LLM performance across task decomposition, tool selection, and parameter
prediction stages, offering a more thorough evaluation than existing tool-augmented benchmarks.

Our contributions can be summarized as follows:

• We introduce TASKBENCH, a novel benchmark for evaluating LLMs in task automation, featuring
an innovative data generation process that addresses the data deficiency and limitations in existing
tool-augmented LLM benchmarks.

• We present TASKEVAL, a comprehensive evaluation framework that quantitatively assesses LLMs’
capabilities in task decomposition, tool selection, and parameter prediction, providing more nuanced
insights than the metrics used in current benchmarks.

• The experimental results on different LLMs and additional dataset analysis demonstrate that our
proposed TASKBENCH can effectively reflect the capability of LLMs in multiple dimensions with
the support of TASKEVAL and show high correlations with human evaluation.

2 Related Works

Large language models (ChatGPT [2], GPT-4 [4], LLAMA [5, 24], Bard [6]) have drawn the
development of autonomous agents (e.g., AutoGPT [7], HuggingGPT [8], BabyAGI [9]). These
applications can be considered as a form of task automation, which uses LLMs as the controller to
analyze user instructions and search for the most suitable solution (e.g., external models) to obtain
answers. With the increasing demand for advanced task automation, numerous benchmarks have
emerged to assess the capability of large language models LLMs to effectively interact with external
tools. However, these benchmarks vary significantly in terms of data generation, tool dependency
modeling, quality control mechanisms, and evaluation, as shown in Table 1.

Several benchmarks assess the interaction between LLMs and tools, primarily focusing on tool
usage and API calls. APIBench [18] and ToolBench [19] use API documentation to generate tasks,
but their reliance on template-based sampling can limit the logical consistency of generated tasks.
MetaTool [20] introduces template-based tool generation for decision-making, focusing on whether a
tool is needed, though it lacks support for modeling complex tool dependencies. ToolAlpaca [22]

3

explores self-instruct to generate tasks but does not adequately address dependencies between tools.
Similarly, AgentBench [25] evaluates models across simulated environments but focuses more on
agent-like behavior than tool interactions. Other benchmarks, like ToolAlpaca [22], ToolQA [21]
and GPT4Tools [26], concentrate on task completion or QA correctness in specific domains. While
these works explore how well models complete tasks by consulting external tools, they rely heavily
on human verification or simple template-based generation, potentially limiting their scalability and
diversity.

Unlike prior benchmarks that rely solely on API documentation or template-based task generation,
TaskBench introduces a Tool Graph to model real-world dependencies between tools, simulating
complex tool interactions more accurately. Furthermore, the Back-Instruct strategy aligns tool
subgraphs with instructions, significantly reducing the risk of hallucination and improving data
authenticity. Its unique tool graph approach, focus on dependency modeling, and multi-domain
coverage make it a more reliable, practical, and scalable benchmark for evaluating LLM capabilities
in complex task automation scenarios.

3 TaskBench

In this section, we introduce the construction of TASKBENCH, the benchmark meticulously designed
to facilitate the development of LLMs in task automation. Specifically, unlike previous methods
which use collection or instruction methods, TASKBENCH can consider the complex relationships
among multiple tasks to simulate more practical and complex user instruction. Figure 2 illustrates the
entire process of our method to build the datasets. More details will be introduced in the following
subsections.

3.1 Preliminary: Tool Graph

Task automation in real-world scenarios often involves complex user instructions encompassing
multiple sub-tasks, each potentially requiring the invocation of specific tools [27]. These sub-tasks
may have temporal or resource dependencies. To capture this complexity, we introduce the concept
of the Tool Graph (TG). A TG is formally defined as G = T,D, where T = t1, t2, . . . , tn represents
a collection of tools, and D is a set of dependencies (ta, tb) indicating that tool ta depends on tool
tb. This structure offers a more effective way to organize tools and their relationships compared to
traditional taxonomy trees used in [19]. In the next subsection, we will introduce how to build a tool
graph and utilize it to formulate our benchmark.

3.2 Dataset Construction

To accomplish user intent, LLMs usually adopt a stepwise process (e.g., task decomposition→tool
selection→parameter prediction) to analyze the user request and convert it into multiple executable
tasks. Therefore, it is essential to construct the dataset and allow LLMs to evaluate their automation
capability in the above process.

To guarantee that the generated user instructions could cover the expected tasks and dependencies,
we adopt a back-instruct strategy to simulate data. More specifically, it can summarized as three
steps: 1) we first collect a tool repository and build a tool graph G with a collection of tools and their
dependencies; 2) then we sample a sub-graph from G, to obtain a specified structure; 3) based on the
sampled tool sub-graph, we use LLMs to generate user instruction via back-instruct. More details are
introduced as below:

3.2.1 Tool Graph Construction

Building a tool graph requires us to collect many standalone tools from different sources. When
combining different tools together, the dependencies among tools could be diverse, encompassing
resource dependencies, temporal dependencies, environment dependencies, and so on. In our research,
we mainly investigate two of them: resource and temporal dependencies. For the former one, it means
the two tools can have a connection if the input type of tool ta can match the output type of tool tb.
For the latter one, we devise tool graphs that highlight temporal dependencies, allowing any two tools

4

Step 2. Graph Sampling

Step 1. Tool Graph Construction Data for Task Automation

Sampled GraphsSampled Graphs

Instruction

Task Steps:

Tool Invoking Graph:

Step 3. Back-Instruct

Aligned or not?

I am a data producer that
Tool Graph

synthesizes user instructions
and associated task graphs.

Tool Collection I want to convert a landscape video (video.mp4) into an
anime style, then dub the video based on a story
(script.txt). Finally, I want to post the newly created

video on my TikTok.

Text Generation
Description:
Arguments:

Text Generation
Description:
Arguments:

Video Voiceover
Description:
Arguments:

Video Voiceover
Description:
Arguments:

Video Captioning

Description:
Arguments:

Video Captioning

Description:
Arguments:

Node Chain DAG

Step 1: Obtain a descriptive caption from the video video.mp4.
Step 2: Rewrite the original caption into an anime-style one..
Step 3: Generate a new video according to the rewritten text.
Step 4: Generate an audio based on the provided "script.txt".
Step 5: Merge the newly created video with the voice.
Step 6: Share the final video on TikTok.

Video CaptioningVideo Captioning

video.mp4

script.txt

 Video Share

Text GenerationText Generation Video Generation

Video EditingAudio Generation

Figure 2: Construction of the TASKBENCH: Initially, the toolbox is transformed into a tool graph by
establishing connections based on tool dependencies. We then sample diverse subgraphs from this
tool graph, which can be individual nodes, linear chains, or directed acyclic graphs (DAGs). Using
these sampled tool subgraphs, we “back-instruct" the LLM to inversely craft user instructions, task
steps, and tool invocation graphs. Additionally, we employ critics to assess the consistency between
the generated tool invocation graphs and the corresponding sampled tool subgraphs.

to be linked to illustrate their order. In this work, we choose three scenarios to build the datasets for
our benchmark2:

Hugging Face Hugging Face [28] provides a wide variety of AI models to cover massive tasks
across language, vision, audio, video, and so on. Each task defined by Hugging Face can be viewed
as a tool to address a specific task. Specifically, each tool in Hugging Face has determined the type of
its input and output. Hence, if tool ta and tb have a connection, the input type of ta should match the
output type of tb. Guided by this principle, we constructed Hugging Face’s tool graph, comprising 23
tools and 225 edges.

Multimedia In contrast to the Hugging Face tools, which are tailored for AI tasks, the multimedia
tools is broader in scope. It provides more user-centric tools like file downloader, video editor, and
so on. The policy for tool connections is the same as the Hugging Face domain. Finally, we could
construct a tool graph over multimedia tools with 40 nodes and 449 edges.

Daily Life APIs Sometimes, we also need some daily life services, including web search, shopping,
and etc. Hence, these daily life APIs can also be considered as tools for specific tasks. However, it is
worth noting that the type of dependencies among these APIs is predominantly temporal. Therefore,
two daily life APIs have a successive order if they are connected. In this scenario, we can build a tool
graph with 40 nodes and 1,560 edges.

3.2.2 Sampling on Tool Graph

Based on the above steps, we can sample a sub-graph from the constructed TG and keep the
connections of sampled tools from the TG to capture the dependencies between tools. Following the
setting of HuggingGPT, we categorize the sub-structure of a TG into three types: node, chain, and
directed acyclic graph (DAG). Each type embodies a specific pattern for tool invocation:

• Node represents standalone tool invocations, suitable for addressing simple tasks necessitating only
a single tool.

• Chain corresponds to sequential tool invocations, where tools need to be stepwise executed to
complete a task.

• DAG depicts more intricate tool invocations. A tool might rely on multiple preceding tools or
influence several subsequent tools.

2We present more details about these tool graphs on different domains in Appendix A.8

5

By sampling sub-graphs from these three substructures, we can emulate a variety of valid tool
invocation patterns for user instruction. We represent the tool subgraph in G as Gs = {Ts, Ds}, where
Ts = {ts1, ts2, . . . , tsk} with k < n and Ds = {(tsa, tsb)}, such that tsa and tsb belong to Ts. The
sampling of the tool graph can be described as:

Sample(G,mode, size) → Gs, (1)
where the mode specifies the sampling mode (e.g., Nodes, Chains, DAGs), and the size indicates
the number of tools (Here we set its range as {1, 2, ..., 10}). These factors determine the topological
nature and magnitude of the tool sub-graph in user instructions, respectively.

3.2.3 Back-Instruct

Next, based on the sampled sub-graph Gs, we use LLMs to synthesize user instructions. We term
this process BACK-INSTRUCT, which can considered as a data engine to convert the sampled tools
into user instruction. Specifically, given a sampled subgraph Gs, we formulate the following BACK-
INSTRUCT procedure, empowering LLMs to produce the corresponding instructions I:

BackInstruct1(Gs = (Ts, Ds)) → I. (2)
Here, the sampled sub-graph Gs can instruct LLMs to generate user requests covering these related
sub-tasks, and further with their dependencies. Such a strategy ensures the complexity and quality of
the generated data.

Specifically, we note that sampled sub-graphs can only provide information on tool invocation
skeletons, lacking the critical parameters for tool execution. Therefore, based on the generated
instruction I in Eqn. 2, we let the LLM to populate the parameters for the tool subgraphs and generate
the final tool invocation graph Ḡ along with the corresponding task decomposition steps P :

BackInstruct2(Gs = (Ts, Ds), I) → {P, Ḡ}. (3)

3.2.4 Quality Control Mechanisms

To ensure high-quality data, we implement a multi-step quality control process:

Self-Critic Mechanisms: A we introduce a self-critic mechanism to check and filter out the
generated instruction to guarantee quality. Here, we offer two variants: LLM-based and rule-based.
The former aims to use LLM to check the alignments between the generated data and the sampled
tool sub-graph. While the latter uses straightforward rules to determine the alignment between the
tool graphs in created data and the sampled tool graphs. Here, we use the nodes and edges of the
sampled graph to determine the consistency. Figure 2 illustrates each step of our data engine to
simulate user instructions.

Human Verification: We implemented a rigorous human verification process to further ensure
the quality and coherence of the dataset. Human experts reviewed the generated instructions across
different task complexities and confirmed their logical consistency and alignment with the intended
tasks. Before beginning the verification process, we provided detailed instructions and conducted a
calibration session for all experts. This session was essential to standardize the evaluation criteria
across different reviewers and ensure consistency in their assessments. During this calibration, we
provided sample cases and discussed the scoring criteria (naturalness, complexity, alignment) to
align the understanding among the experts. This verification process covered instructions generated
from sub-graphs of varying sizes, ensuring that the instructions are meaningful and practical. This
comprehensive review provides additional assurance that the dataset meets high standards of quality.

Based on the above steps, we build TASKBENCH across three domains, which use GPT-4 as the data
engine. The ratio of different modes (i.e., Node, Chain, DAG) is set as 3 : 7 : 8 for sampling and
the ratio for the number of different tools is set as {0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0.025, 0.025, 0.025}.
More detailed designs about our data engine and the statistics of the constructed datasets are provided
in the Appendix A.5.

3.3 Evaluation of the Dataset Quality

To illustrate the quality of the TASKBENCH datasets, we conducted comprehensive human evaluations
based on generated samples. Additionally, we performed a case study and an error analysis of the
datasets. For further details, please refer to Appendix A.1 and Appendix A.2.

6

Evaluation Metrics To evaluate the quality of datasets constructed by Back-Instruct, we designed
three metrics: two metrics (i.e., Naturalness and Complexity) to assess the quality of the instructions,
and one metric (i.e., Alignment) to evaluate the tool invocation graph. More details are in below:

• Naturalness: This metric evaluates how reasonable the instructions are, considering factors such
as the typicality of dependencies between tools and their relevance to real-world applications.

• Complexity: This metric assesses the complexity of the instructions by examining aspects such as
the depth of the task, the number of tools involved, and the interrelations among these tools.

• Alignment: This measures how well the tool invocation graphs align with the instructions, specifi-
cally evaluating whether the graphs effectively fulfill the user’s commands.

Each metric is scored on a scale from 1 to 5. These metrics are designed to assess the effectiveness
and faithfulness of our TASKBENCH in task automation.

Comparison with Baselines To make a fair comparison, we choose two additional baselines to
compare our Back-Instruct:

• Back-Instruct (Ours): e sample tool subgraphs and then backtranslate to instructions and further
refine the tool invocation graph.

• Back-Instruct w/o edges: Unlike our complete Back-Instruct, this version omits edges from the
sampled tool subgraphs, retaining only the tool node information in the prompts.

• Self-Instruct: As described by [29], this method uses manually labeled demonstrations and
descriptions of all tools. We utilize GPT-4 to autonomously select tools and generate instructions
along with tool invocation graphs.

Table 2: Human evaluation (rating from 1 to 5) on samples constructed by different methods. Average
score rating from three human experts.

Methods Naturalness↑ Complexity↑ Alignment↑ Overall↑

Back-Instruct 3.89 4.01 3.66 3.85
Back-Instruct w/o edges 3.44 3.27 3.62 3.44
Self-Instruct 2.18 2.01 3.64 2.61

Evaluation Results During the human evaluation, we randomly selected 50 samples from our
TASKBENCH and invited three domain experts to assess their quality. To ensure a fair and unbiased
evaluation, all samples were anonymized. We provided canonical samples to help these experts
calibrate their assessment criteria during the annotation process. The final results are the average
scores from all experts’ ratings, and are detailed in Table 2.

We observed that all methods (Self-Instruct and Back-Instruct) effectively ensured alignment. How-
ever, our method, Back-Instruct, achieved the highest scores in Naturalness and Complexity. We
attribute these superior results to the realistic resource and temporal dependencies in our sampled
tool subgraphs, which enable us to generate more natural and complex instructions, especially in
scenarios involving multiple tools. This graph structure guides the generation process, resulting in
more natural and complex instructions that reflect realistic task scenarios. The performance difference
between back-instruct with and without edges further underscores the importance of capturing tool
dependencies. Including edge information in the Tool Graph allows for a more comprehensive
understanding of tool relationships, resulting in more natural and complex instructions.

4 TaskEval

To comprehensively evaluate LLMs’ capabilities in task automation, we introduce TASKEVAL,
a systematic evaluation framework that assesses three critical aspects: task decomposition, tool
selection, and parameter prediction. Unlike existing benchmarks that focus on isolated aspects of tool
usage or API interactions, TASKEVAL provides a holistic assessment of the entire task automation
process. To ensure standardized evaluation, we employ a consistent prompting strategy that guides
each model through a structured sequence: first decomposing user requests into sub-tasks, then

7

Table 3: Evaluation for tool selection. Node F1 (n-F1) and Edge F1 (e-F1) for node and edge
prediction. For nodes, a prediction is deemed positive if the predicted node’s ID aligns with any of
the ground-truth node labels. For edges, both the source and target nodes of a predicted edge must
correspond exactly. Normalized Edit Distance (NED) measures the normalized number of operations
required to correct the prediction for chain structure.

TOOL SELECTION - Predicts tools and their dependencies.

LLM
Node Chain DAG Overall

n-F1 ↑ n-F1↑ e-F1 ↑ NED ↓ n-F1↑ e-F1 ↑ n-F1↑ e-F1 ↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 84.34 80.79 55.73 39.70 82.86 56.39 81.54 54.70
gemini-pro 77.46 76.12 45.51 43.10 79.05 49.36 76.62 43.50
claude-2 69.83 80.67 48.11 40.03 84.52 53.40 79.00 43.51
gpt-3.5-turbo 56.91 72.63 39.92 46.52 73.79 38.55 69.49 33.36
text-davinci-003 40.71 66.05 36.04 48.57 64.64 34.19 59.38 29.37

mistral-7b-v0.3 60.74 67.00 25.70 52.74 68.55 26.37 65.96 21.91
codellama-13b 43.68 55.65 17.80 62.23 52.87 13.19 53.16 14.64
nous-hermes-13b 58.66 52.39 9.01 62.48 51.99 6.33 53.62 8.29
vicuna-13b-v1.5 51.74 50.37 8.40 66.83 52.46 9.06 50.82 7.28
llama-2-13b-chat 43.59 49.87 8.22 64.99 49.60 9.11 48.47 7.30

M
ul

tim
ed

ia
To

ol
s

gpt-4 97.13 89.70 69.29 28.93 92.32 71.64 90.90 69.27
gemini-pro 73.61 82.65 55.50 35.62 85.29 57.80 81.54 52.07
claude-2 66.16 83.95 59.22 33.41 82.98 54.28 80.94 53.01
text-davinci-003 59.15 76.87 50.79 38.54 79.00 50.69 73.97 45.81
gpt-3.5-turbo 53.55 76.81 50.30 39.05 78.65 49.52 72.83 44.02

mistral-7b-v0.3 64.00 78.32 41.12 40.75 79.96 41.36 76.11 35.34
codellama-13b 43.70 66.89 28.77 46.35 68.68 28.79 62.78 24.61
vicuna-13b-v1.5 66.64 59.18 16.49 54.17 61.40 13.95 60.61 14.78
nous-hermes-13b 60.58 58.53 9.47 56.02 59.39 9.57 58.97 8.90
llama-2-13b-chat 38.02 45.14 1.62 65.29 45.95 2.11 43.87 1.63

D
ai

ly
L

ife
A

PI
s

gpt-4 95.97 97.06 83.47 38.69 96.41 42.01 96.91 80.53
claude-2 79.57 95.36 80.68 39.93 93.85 41.04 93.52 75.31
gemini-pro 76.15 92.79 64.58 41.64 89.68 28.42 90.75 59.45
gpt-3.5-turbo 52.18 90.80 70.66 43.50 86.94 30.85 85.37 60.67
text-davinci-003 68.49 82.15 60.12 47.14 76.81 24.54 80.42 54.90

codellama-13b 89.75 87.80 65.92 44.42 83.61 27.47 87.73 63.16
mistral-7b-v0.3 81.55 80.52 50.95 51.80 79.17 25.04 80.54 45.87
vicuna-13b-v1.5 80.59 73.74 13.24 51.43 67.92 5.62 75.67 12.48
nous-hermes-13b 82.50 71.17 3.55 53.47 70.65 2.86 73.45 3.50
llama-2-13b-chat 34.11 57.61 20.13 67.06 56.18 8.42 55.77 17.02

selecting appropriate tools with parameters, and finally constructing a complete tool invocation graph.
For our evaluations, we primarily focus on the GPT series [1, 2, 4], Gemini [3], Claude [30] and
open-source LLMs [5, 31, 32, 33, 34, 35]. For comprehensive evaluations of other open-source LLMs
[36, 37, 38], please refer to Appendix A.7.

4.1 Task Decomposition

To evaluate LLMs’ ability to understand and break down complex tasks, we assess the quality of
task decomposition through three complementary ROUGE metrics: Rouge-1 (R1), Rouge-2 (R2),
and Rouge-L (RL). Our analysis, presented in Table 12, reveals several key findings: (1) GPT-4
consistently demonstrates superior task decomposition abilities, achieving approximately 10% higher
scores in both R1 and R2 compared to other models. This performance gap indicates its enhanced
capability to understand and structure complex tasks. (2) Codellama-13b shows particular strength
in the "Daily Life APIs" domain, achieving scores of 89.86 in R1 and 83.27 in R2, suggesting
that code-centric pre-training enhances the ability to understand structured task sequences. (3) The
performance gap between models widens as task complexity increases, indicating that advanced
reasoning capabilities become more crucial for complex task decomposition.

8

Table 4: Evaluation for parameter prediction of tools. t-F1 evaluate the pair of (task, parameter name),
v-F1 evaluate the triple of (task, parameter name, parameter value).

TOOL PARAMETER PREDICTION - Predicts parameters for the tool execution.

LLM
Node Chain DAG Overall

t-F1↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 80.05 74.10 76.66 58.15 78.24 60.03 77.31 60.86
gemini-pro 67.63 56.54 66.60 46.35 70.41 50.56 67.12 48.54
claude-2 48.07 32.14 66.35 45.57 68.59 48.19 63.00 43.08
text-davinci-003 38.51 27.43 56.90 38.76 57.03 38.90 52.53 36.04
gpt-3.5-turbo 37.70 19.81 60.96 41.15 61.33 42.89 55.88 36.32

mistral-7b-v0.3 29.18 13.19 46.18 26.09 45.49 28.73 42.41 23.40
codellama-13b 20.09 12.58 36.40 21.31 33.43 20.48 32.06 18.87
nous-hermes-13b 46.38 31.06 35.55 13.81 33.06 13.69 37.51 17.66
vicuna-13b-v1.5 29.80 20.54 32.14 13.57 32.16 15.23 31.61 15.38
llama-2-13b-chat 25.71 13.11 28.99 11.14 30.04 13.60 28.34 11.85

M
ul

tim
ed

ia
To

ol
s

gpt-4 95.64 87.12 85.60 69.83 87.57 72.79 87.06 72.31
gemini-pro 62.21 50.48 72.99 55.21 76.13 58.79 71.67 54.82
claude-2 53.81 24.02 75.60 58.12 72.41 52.43 71.63 51.58
gpt-3.5-turbo 44.94 11.96 70.53 47.76 71.82 47.95 65.91 40.80
text-davinci-003 60.30 20.78 69.91 44.76 71.91 45.76 68.48 40.70

mistral-7b-v0.3 30.70 14.65 61.42 41.79 62.32 42.93 55.52 36.40
codellama-13b 32.01 16.10 52.30 32.51 53.08 33.79 48.19 29.13
vicuna-13b-v1.5 52.72 35.55 39.31 21.00 40.05 21.40 41.62 23.62
nous-hermes-13b 50.11 37.80 41.98 17.89 43.99 20.04 43.60 21.69
llama-2-13b-chat 28.49 17.01 30.26 9.66 31.00 11.35 29.99 11.32

D
ai

ly
L

ife
A

PI
s

gpt-4 95.83 76.21 97.23 70.67 95.95 69.65 97.02 71.14
claude-2 78.12 59.43 94.72 65.30 91.83 66.39 92.71 64.72
gemini-pro 69.88 45.41 91.66 57.93 88.50 53.91 88.95 56.22
gpt-3.5-turbo 43.81 28.77 89.21 61.11 83.88 56.13 81.97 55.66
text-davinci-003 61.68 45.53 80.68 54.54 76.51 51.91 78.37 53.40

codellama-13b 86.34 71.20 84.31 61.51 80.42 60.18 84.26 62.38
mistral-7b-v0.3 65.86 50.67 72.03 49.71 70.52 48.35 71.21 49.73
vicuna-13b-v1.5 83.63 67.71 61.80 44.54 57.14 41.72 64.27 47.31
nous-hermes-13b 79.69 63.29 62.64 45.32 63.26 45.74 64.47 47.22
llama-2-13b-chat 10.39 7.32 38.89 25.37 36.43 23.40 35.11 22.94

4.2 Tool Selection

To assess LLMs’ ability to select and connect appropriate tools, we evaluate their construction
of tool invocation graphs, where nodes represent individual tools and edges capture dependencies
between them. We introduce three complementary metrics designed to capture different aspects of
tool selection accuracy: (1) Node F1 (n-F1): Evaluates the accuracy of tool selection by comparing
the predicted tools with the reference set, measuring the model’s ability to identify appropriate tools
for each sub-task. (2) Edge F1 (e-F1): Assesses the model’s understanding of tool dependencies by
comparing the predicted connections between tools with the reference graph, capturing the ability to
understand tool interaction patterns. (3) Normalized Edit Distance (NED): Specifically measures
the sequential accuracy in chain structures, evaluating how well models understand and maintain the
correct order of tool operations.

Results in Table 3 reveal several important patterns: (1) Edge prediction consistently proves more
challenging than node prediction, with F1 score differences of approximately 20% across all models,
indicating that understanding tool relationships is more complex than identifying individual tools.
(2) Performance varies significantly with task structure complexity - while open-source models like
Mistral-7b and CodeLlama-13b compete well with GPT-3.5-Turbo on simpler node structures, they
show notable limitations when handling more complex dependencies. (3) GPT-4 maintains more
consistent performance across different structure types, suggesting better generalization to complex
tool interactions.

9

4.3 Parameter Prediction

To evaluate LLMs’ ability to correctly configure tools for execution, we assess parameter prediction
through two comprehensive metrics: (1) Parameter Name F1 (t-F1): Measures the accuracy
in identifying required parameters for each tool, evaluating the model’s understanding of tool
specifications; (2) Parameter Name & Value F1 (v-F1): Evaluates both parameter identification
and value assignment accuracy, assessing the model’s ability to provide correct and contextually
appropriate parameter values.

The results are detailed in Table 4. GPT-4 demonstrates remarkable robustness in capturing the
nuances of both parameter names and values, essential for precise task execution. LLMs such
as Claude-2 and Gemini-Pro show competitive results in some domains but still fall short of the
benchmarks set by GPT-4. In contrast, open-source LLMs, while performing adequately in some
categories, generally exhibit lower v-F1 scores. This discrepancy highlights a critical area for
improvement in task automation capabilities, particularly in the precision of parameter prediction.
This insight points to the need for advancements in model training to enhance the effectiveness of
LLMs in real-world applications.

4.4 Analysis

Our comprehensive evaluation reveals several key factors that influence task automation performance:

Fundamental Capabilities 1) Reasoning: The success of LLMs in task automation largely depends
on their ability to solve complex problems and reason effectively. For instance, the GPT series exhibits
superior reasoning skills in mathematical and coding tasks, indicative of its robust capabilities in task
planning and tool usage. 2) Instruction Following: Models specifically fine-tuned for instruction
following, such as Vicuna-13b and WizardLLM-13b, tend to outperform others like Llama-2-13b.
Notably, WizardLLM-13b exhibits a marked improvement over Vicuna-13b, highlighting the impact
of sophisticated instruction fine-tuning on performance.

Contributing Factors 1) Code Pre-training: Models with extensive code pre-training, such as
Code-Llama, surpass other LLMs in task automation. Our data shows an average improvement of
4.45% in tool prediction and 12.76% in parameter prediction across various domains, underscoring
the necessity of structured text for connecting automation stages. 2) Alignment: Models employing
human alignment techniques (e.g., the GPT series with RLHF) show enhanced task automation
capabilities compared to their open-source counterparts, indicating that RLHF promotes more
generalized reasoning skills and mitigates instruction-specific overfitting.

4.5 Consistency with Human Evaluation

To validate TASKEVAL’s effectiveness as a benchmark, we analyze its correlation with human
evaluations using two statistical measures: Kendall’s τ and Spearman’s ρ. Our results in Table 9
demonstrate strong correlations (average τ = 0.89, ρ = 0.78), confirming that our automated metrics
align well with human judgment of task automation quality.

5 Conclusion

In this paper, we introduce TASKBENCH, a benchmark designed to evaluate the performance of LLMs
in task automation. We begin by outlining the three critical stages of task automation for LLMs:
task decomposition, tool selection, and tool parameter prediction. The performance in these stages
reflects the overall capability of LLMs in task automation, motivating the construction of specialized
evaluation datasets. To this end, we present the concept of Tool Graph, which aggregates various tools
along with their interconnections. Using our curated datasets, we further introduce TASKEVAL, which
comprises systematic evaluation metrics for task automation. The experimental results reveal the
performance of current mainstream LLMs in task automation and analyze the factors influencing their
autonomous task execution. The results also validate the effectiveness of TASKBENCH in assessing
LLMs’ performance in task automation. Looking forward, we plan to expand our benchmark to
include more domains and develop more advanced metrics to further explore the potential of LLMs
in task automation and the development of powerful autonomous agents.

10

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 62436007), the
National Natural Science Foundation of China (No. 62376245), the "Pioneer" and "Leading Goose"
R&D Programs of Zhejiang (No. 2024C01034), the Fundamental Research Funds for the Central
Universities (226-2024-00170), the project of the Donghai Laboratory (Grant no. DH-2022ZY0013),
MOE Engineering Research Center of Digital Library and ZJU Kunpeng&Ascend Center of Excel-
lence.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, pages 1–25, 2020.

[2] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In NeurIPS, volume 35, pages 27730–27744, 2022.

[3] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[4] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

[5] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[6] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark,
Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing
Zhang, Gustavo Hernández Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan A. Botha,
James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave,
Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vladimir
Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann,
Lucas Gonzalez, and et al. Palm 2 technical report. CoRR, abs/2305.10403, 2023.

[7] Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment. https://github.com/
Significant-Gravitas/Auto-GPT, 2023.

[8] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving AI tasks with chatgpt and its friends in huggingface. CoRR, abs/2303.17580,
2023.

[9] Yohei Nakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.

[10] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei
Ji, Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, and Nan Duan. Taskmatrix.ai: Com-
pleting tasks by connecting foundation models with millions of apis. CoRR, abs/2303.16434,
2023.

11

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/yoheinakajima/babyagi

[11] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin Wu.
MetaGPT: Meta Programming for Multi-Agent Collaborative Framework, August 2023.

[12] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language
Model Society, March 2023.

[13] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative Agents: Interactive Simulacra of Human Behavior, April
2023.

[14] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language
Models, May 2023.

[15] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

[16] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

[17] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. CoRR, abs/2304.06364, 2023.

[18] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

[19] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs, July 2023.

[20] Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark: Deciding whether to
use tools and which to use. arXiv preprint arXiv: 2310.03128, 2023.

[21] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. ToolQA: A Dataset for
LLM Question Answering with External Tools, June 2023.

[22] Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolal-
paca: Generalized tool learning for language models with 3000 simulated cases. CoRR,
abs/2306.05301, 2023.

[23] Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li.
API-Bank: A Benchmark for Tool-Augmented LLMs, April 2023.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

12

[25] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents. CoRR, abs/2308.03688, 2023.

[26] Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. GPT4Tools:
Teaching Large Language Model to Use Tools via Self-instruction, May 2023.

[27] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. CoRR, abs/2302.04761, 2023.

[28] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019.

[29] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated in-
structions. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13484–13508, Toronto, Canada, July 2023. Associ-
ation for Computational Linguistics.

[30] Introducing the next generation of Claude. https://www.anthropic.com/news/claude-3-family.

[31] Introducing Meta Llama 3: The most capable openly available LLM to date.
https://ai.meta.com/blog/meta-llama-3/.

[32] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

[33] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[34] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

[35] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Chao Yin, Chenxu Lv, Da Pan, Dian
Wang, Dong Yan, Fan Yang, et al. Baichuan 2: Open large-scale language models. arXiv
preprint arXiv:2309.10305, 2023.

[36] InternLM Team. Internlm: A multilingual language model with progressively enhanced
capabilities. https://github.com/InternLM/InternLM, 2023.

[37] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion
Stoica, Xuezhe Ma, , and Hao Zhang. How long can open-source llms truly promise on context
length?, June 2023.

[38] MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, ly usable llms,
2023. Accessed: 2023-03-28.

13

https://github.com/InternLM/InternLM

A Appendix

A.1 Case Study of Back-Instruct

We draw some cases to intuitively show the differences between Back-Instruct, Back-Instruct w/o
edges and Self-Instruct [29], as shown in Table 5. From these examples, we observe that our Back-
Instruct can generate examples with more comprehensive and interconnected tool usage, reflecting
higher naturalness and complexity in instruction generation.

A.2 Error Analysis

A.2.1 Error Analysis on TaskBench Dataset

Incomplete instructions

11.8%
Impractical instructions

17.6%

Mismatched parameter types

23.5%

Incorrect parameter value

17.6%

Incorrect Tool Dependency

29.4%

Error Types Distribution (Total: 17/148)

Figure 3: Error Analysis on TASKBENCH

Despite the advanced instruction generation and
labeling capabilities of gpt-4, we admit that it
is challenging to guarantee the correctness of
all generated samples. To better understand
our dataset and assess its accuracy, we conduct
human evaluations to provide a thorough error
analysis. Here, we first randomly sampled 148
samples, and our labeling team identified 18
error samples (nearly 12%) from the sampled
data. We attribute these incorrect samples to five
distinct error categories. Typical examples and
the proportions for each category are shown in
Table 6 and Figure 3:

• Incorrect Instructions:
– Incomplete instructions: This error occurs when the instructions lack the necessary details or

resources for successful completion.
– Impractical instructions: The instructions could be irrational or impossible to execute with the

capabilities of current tools.
• Parameter Errors:

– Mismatched parameter types: This error occurs when the parameters provided do not match
the expected types for the used tool.

– Incorrect parameter value: This error is evident when the values provided for the parameters
are incorrect or not suitable for the task.

• Incorrect Tool Dependency: This error type refers to the incorrect linking or sequencing of tools
required for a task.

Based on these observed errors, we conclude that it is necessary to build a more elaborate prompt
(e.g., more detailed tool-use specification and demonstrations) to describe tool parameters and tool
dependencies when generating the tool invocation graph. Besides, we will also introduce more
high-quality criteria to continuously improve our dataset in addition to our rule-based and LLM-based
critics.

A.2.2 Error Analysis of Different LLMs in Predicting Tool Invocation Graph

We analyze the failures in predicting the tool invocation graph that occur during task automation
inference. These failures can be categorized into three main groups: incorrect tool names, incorrect
tool dependencies, and mismatched tool parameters. For our analysis, we randomly selected 50
predictions, and the distribution of each error type across different LLMs is detailed in Table 7. We
observed that:

• gpt-4 demonstrates the fewest errors in all categories, indicating a higher accuracy in predicting the
tool invocation graph.

• gpt-3.5-turbo and code-llama-13b show a progressively higher number of errors. Notably, the
‘Incorrect Tool Dependency’ is the most common across all models, highlighting the challenge
LLMs face in predicting accurate parameters for tools.

14

Table 5: Comparative analysis of Back-Instruct, Back-Instruct w/o edges, and Self-Instruct.
Method Tools Instruction Tool Invocation Graph

Back-Instruct

" sampled_nodes " : [{ " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" }] ,
" s a m p l e d _ l i n k s " : [{ "
s o u r c e " : " Image S t y l e
T r a n s f e r " , " t a r g e t " : "
Image S t i t c h e r " } , {"
s o u r c e " : " Audio − to −
Image " , " t a r g e t " : "
Image C o l o r i z e r " } , {"
s o u r c e " : " Image
C o l o r i z e r " , " t a r g e t " : "
Image S t y l e T r a n s f e r " }]

I am working on a
project where I’ve

created some music and
I’ve saved that music in
an ’example.wav’ file. I

also have an image
’example.jpg’ that I
want to impart some
visual appeal. Could
you help me create a

visual representation of
my audio file that

merges well with my
image, applies a

colorful vibe to it with
’example_style.jpg’ as
reference, and finally, if
there is any text in my
final stylized image,

please extract it?

{" t a s k _ n o d e s " : [{ " t a s k " : " Audio
− to −Image " , " a rgumen t s " : ["
example . wav "] } , {" t a s k " : " Image

S t i t c h e r " , " a rgumen t s " : ["
example . j p g " , "< node −0 >"]} , {"
t a s k " : " Image C o l o r i z e r " , "
a rgumen t s " : [" < node −1 >" , "
e x a m p l e _ s t y l e . j p g "] } , {" t a s k " :
" Image − to − Text " , " a rgumen t s " :
[" < node −2 >"]}] , " l i n k s " : [{ "
s o u r c e " : " Audio − to −Image " , "
t a r g e t " : " Image S t i t c h e r " } , {"
s o u r c e " : " Image S t i t c h e r " , "
t a r g e t " : " Image C o l o r i z e r " } , {"
s o u r c e " : " Image C o l o r i z e r " , "
t a r g e t " : " Image − to − Text " }] }

Back-Instruct
w/o edges

" sampled_nodes " : [{ " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" }]

I would like to create a
stylized collage from
’example.jpg’ and the

sound of the
’example.wav’ file. The

visual style should be
inspired by the similar

image search result.
The collage should be
colorized, and I would
like any text in the final
image to be extracted.

{" t a s k _ n o d e s " : [{ " t a s k " : " Audio
− to −Image " , " a rgumen t s " : ["
example . wav "] } , {" t a s k " : " Image

C o l o r i z e r " , " a rgumen t s " : ["
Image S t y l e T r a n s f e r "] } , {" t a s k
" : " Image S e a r ch (by Image) " , "
a rgumen t s " : [" example . j p g "] } ,
{" t a s k " : " Image S t i t c h e r " , "
a rgumen t s " : [" Audio − to −Image " ,
" example . j p g "] } , {" t a s k " : "
Image S t y l e T r a n s f e r " , "
a rgumen t s " : [" Image S t i t c h e r " ,
" Image Se a r c h (by Image) "] } , {"
t a s k " : " Image − to − Text " , "
a rgumen t s " : [" Image C o l o r i z e r
"] }] , " l i n k s " : [{ " s o u r c e " : "
Audio − to −Image " , " t a r g e t " : "
Image S t i t c h e r " } , {" s o u r c e " : "
Image C o l o r i z e r " , " t a r g e t " : "
Image − to − Text " } , {" s o u r c e " : "
Image S ea rc h (by Image) " , "
t a r g e t " : " Image S t y l e T r a n s f e r
" } , {" s o u r c e " : " Image S t i t c h e r
" , " t a r g e t " : " Image S t y l e
T r a n s f e r " } , {" s o u r c e " : " Image
S t y l e T r a n s f e r " , " t a r g e t " : "
Image C o l o r i z e r " }] }

Self-Instruct

" sampled_nodes " : [{ " i d
" : " Audio − to −Image " } ,
{" i d " : " Image C o l o r i z e r
" } , {" i d " : " Image
S t i t c h e r " } , {" i d " : "
Image S t y l e T r a n s f e r " } ,

{" i d " : " Image − to − Text
" }]

I have a black and
white image of an old

newspaper
(example.jpg) and I

want to colorize it first,
then apply the style of a

modern newspaper
(example.png) to it, and
finally extract the text

from the stylized image.

{" t a s k _ n o d e s " : [{ " t a s k " : " Image
C o l o r i z e r " , " a rgumen t s " : ["

example . j p g "] } , {" t a s k " : " Image
S t y l e T r a n s f e r " , " a rgumen t s " :

[" Image C o l o r i z e r " , " example .
png "] } , {" t a s k " : " Image − to − Text
" , " a rgumen t s " : [" Image S t y l e
T r a n s f e r "] }] , " l i n k s " : [{ "
s o u r c e " : " Image C o l o r i z e r " , "
t a r g e t " : " Image S t y l e T r a n s f e r
" } , {" s o u r c e " : " Image S t y l e
T r a n s f e r " , " t a r g e t " : " Image − to −
Text " }] }

Further, we present specific cases in Table 8 to elucidate the nature of prediction errors in these LLMs.
Given the following example, gpt-4 correctly interpreted the task in the given example, underscoring
its advanced task automation capabilities. Conversely, gpt-3.5-turbo and code-llama-13b omitted
a critical tool (‘Audio Downloader’), resulting in a ‘Missing Required Tool’ error. Additionally,

15

Table 6: Error Analysis on TASKBENCH.
Error Type Example

Incomplete instructions I have a long text and I would like to get a summarized version of it, then
generate an image that represents the main idea of the summarized text.

Impractical instructions I have a text: ’This training vid is amazing! Speed it up by 1.5x please!’.
Analyze the sentiment, expand it, find the video URL and adjust the video speed.

Mismatched parameter
types

I want to find articles related to climate change and analyze their sentiment.
Please translate non-English articles to English.

{" task_nodes ": [{" task": "Text Search", "arguments
": [" climate change "]}, {"task": "Text Sentiment
Analysis", "arguments ": ["<node -0>"]}, {"task": "
Text Translator", "arguments ": ["<node -1>"]}], "
task_links ": [{" source ": "Text Search", "target ":
"Text Sentiment Analysis"}, {" source ": "Text
Sentiment Analysis", "target ": "Text Translator
"}]}

Incorrect parameter
value

I have two audio files from online lectures at the following URLs: ’exam-
ple1.wav’ and ’example2.wav’. I want them combined into a single audio file,
transcribe the speech into text, and check the text for grammatical errors.

{" task_nodes ": [{" task": "Audio Downloader", "
arguments ": [" example1.wav", "example2.wav"]}, {"
task": "Audio Splicer", "arguments ": ["<node
-0>"]}, {"task": "Audio -to -Text", "arguments ": ["<
node -1>"]}, {"task": "Text Grammar Checker", "
arguments ": ["<node -2>"]}], "task_links ": [{"
source ": "Audio Downloader", "target ": "Audio
Splicer"}, {" source ": "Audio Splicer", "target ": "
Audio -to-Text"}, {" source ": "Audio -to-Text", "
target ": "Text Grammar Checker "}]}

Incorrect Tool
Dependency

I want to create a more engaging version of this short text: ’Join us for a fun-filled
evening!’ and find some videos related to its sentiment.

{" task_nodes ": [{" task": "Article Spinner", "
arguments ": ["<node -2>"]}, {"task": "Text Expander
", "arguments ": ["Join us for a fun -filled evening
!"]}, {"task": "Text Sentiment Analysis", "
arguments ": ["<node -1>"]}, {"task": "Video Search
", "arguments ": ["<node -2>"]}], "task_links ": [{"
source ": "Text Expander", "target ": "Text
Sentiment Analysis"}, {" source ": "Text Sentiment
Analysis", "target ": "Article Spinner"}, {" source
": "Text Sentiment Analysis", "target ": "Video
Search "}]}

Table 7: Error Distribution in Different LLMs.
Required Tool Missing Tool Dependency Error Tool Parameter Error

gpt-4 0 2 3
gpt-3.5-turbo 2 8 11
code-llama-13b 4 9 13

16

code-llama-13b encountered compounded errors, including ‘Tool Parameter Error’ and ‘Incorrect
Tool Dependency’.

Instruction:
I need an audio file downloaded from ’https ://www.example.com/
example.wav ’, then please reduce the background noise and apply
a reverb effect according to my instruction ’reverb 50\% ’.

Finally , combine it with the audio file ’example.wav ’.
Gold tool invocation graph:
"task_nodes ": [
{"task": "Audio Downloader", "arguments ": ["https ://www.example
.com/example.wav"]},
{"task": "Audio Noise Reduction", "arguments ": ["<node -0>"]},
{"task": "Audio Effects", "arguments ": ["<node -1>", "reverb
50%"]} ,
{"task": "Audio Splicer", "arguments ": ["<node -2>", "example.
wav "]}]

Table 8: Case Study of Prediction Errors in LLMs.
LLM Predicted Tool Invocation Graph Error Type

gpt-4

{" task_nodes ": [{" task": "Audio
Downloader", "arguments ": [" https
:// www.example.com/example.wav"]},
{"task": "Audio Noise Reduction", "
arguments ": ["<node -0>"]}, {"task":
"Audio Effects", "arguments ": ["<

node -1>", "reverb 50%"]} , {"task":
"Audio Splicer", "arguments ": ["<
node -2>", "example.wav "]}]}

None

gpt-3.5-turbo

{" task_nodes ": [{" task": "Audio
Noise Reduction", "arguments ": [""
https :// www.example.com/example.wav
""]}, {"task": "Audio Effects", "
arguments ": ["<node -0>", "reverb
50%"]} , {"task": "Audio Splicer", "
arguments ": ["<node -1>", "example.
wav "]}]}

Missing Required Tool

code-llama-13b

{" task_nodes ": [{" task": "Audio
Noise Reduction", "arguments ": ["
example.wav"]}, {"task": "Audio
Effects", "arguments ": ["<node -0>",
"reverb 50%"]} , {"task": "Audio

Splicer", "arguments ": ["<node -1>",
"<node -0 >"]}]}

Missing Required Tool
Tool Parameter Error
Incorrect Tool Dependency

A.3 Metrics for Ranking Consistency

To compute the consistency of two rankings where the number of observations is n, we introduce
two correlation coefficients: Spearman’s ρ and Kendall’s τ . In our work, they refer to the human and
TASKBENCH rankings of large language models in terms of task automation capabilities.

17

Spearman’s ρ measures the strength and direction of the rank association between two variables.
To calculate Spearman’s ρ, start by assigning ranks to each observation in both sets of data. For any
tied values, assign the average rank. Next, compute the difference in ranks between the two datasets
for each observation, and then square these differences. The coefficient is calculated as follow:

ρ = 1− 6× sum of squared rank differences
n (n2 − 1)

(4)

Kendall’s τ is calculated based on the consistency and inconsistency of pairs between two rankings.
For both rankings, we will consider all possible pairs of items in them. For each pair of items, if
the relative position is correct in both rankings, then we call this a “consistent pair”. If the relative
position is wrong, then we call this an “inconsistent pair”.

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2
(5)

Ranking Consistency Between TASKBENCH and Human Evaluation We report the above
metrics of TASKBENCH to investigate the consistency with human evaluations. The results are
shown in Table 9. We find that the average values for Kendall’s τ and Spearman’s ρ are 0.89
and 0.78, respectively. This indicates a very positive correlation between human evaluation and
our TASKBENCH, which further validates the effectiveness of our proposed framework for dataset
construction.

Table 9: Alignment of TASKBENCH with human evaluation. Kendall’s τ alculates the proportion of
aligned pairs, while Spearman’s ρ measures the correlation between the ranks of elements.

Correlation Metric Hugging Face Tools Multimedia Tools Daily Life APIs Average

Kendall’s τ 0.89 0.83 0.94 0.89
Spearman’s ρ 0.78 0.62 0.93 0.78

A.4 Analysis

A.4.1 Different Number of Tools

0-shot 1-shot 2-shot

50%

60%

70%

80%

90%

100%

LLM
gpt-4
text-davinci-003
codellama-13b

Metric
n-F1
Rouge-L
v-F1

Figure 4: Performance in the few-shot setting for
the Daily Life APIs domain. R-L for task decom-
position; n-F1 for tool selection; and v-F1 for pa-
rameter prediction.

The greater the number of tool nodes the tool
graphs contain, the more challenging it is for
LLM to perform task automation. To make a
clear understanding of the correlation between
the number of nodes in the tool graph and the
performance of LLMs in task automation, we
conduct a detailed statistical analysis in Table 10.
This analysis includes various metrics such as
node-wise F1, node set accuracy, edge-wise F1,
edge set accuracy, and graph accuracy, which
measure the exact-match accuracy of the node
set, edge set, and the entire graph, respectively.

From Table 10, we observed that as the number
of tools in the tool graphs increases, there is a
clear downward trend in various performance
metrics such as node set accuracy, edge set accu-
racy, and graph accuracy. This trend confirms that tool graphs with a higher number of tools present
more complex challenges for LLMs in task automation. Specifically, the result shows a significant
drop in performance metrics when moving from simpler graphs (1-2 tools) to more complex ones (3
or more tools). For instance, while single-node graphs achieve a high graph accuracy of 96.16%, this
metric falls to 39.31% for graphs with 6 tools and further decreases to 25.00% for 8-node graphs.

This correlation between the number of tools and the difficulty of the test cases can be attributed to
the increased complexity in understanding and processing more extensive and intricate links between
tools. As the number of tools grows, LLMs must handle a larger set of possible dependencies, which

18

Table 10: Task automation performance with different number of tools on GPT-4
tool nodes supports node set accuracy edge set accuracy graph accuracy

1 (single) 2,059 96.16 - 96.16
2 278 86.33 84.53 84.53
3 1,313 67.93 60.70 60.39
4 1,280 64.29 75.62 54.37
5 731 54.03 70.53 41.58
6 290 50.34 39.31 39.31
7 151 49.66 36.42 36.42
8 60 35.00 25.00 25.00
9 55 38.18 21.81 21.81
10 64 39.06 31.25 31.25

overall 6,281 73.52 67.55 67.25

significantly challenges their predictive and analytical capabilities. The results from this analysis
underline the importance of continuous advancements in LLM capabilities to keep pace with the
increasing complexity of tasks in various domains.

Table 11: Performance in the few-shot setting. Rouge-L (R-L) reflects the performance on task
decomposition; Node F1 (n-F1) and Edge F1 (e-F1) indicate the performance on tool selection; and
Parameter Name F1 (t-F1) and Parameter Name & Value F1 (v-F1) indicate the performance on
parameter prediction.

Shot LLM R-L ↑ n-F1 ↑ e-F1 ↑ t-F1 ↑ v-F1 ↑

0-shot

gpt-4 79.27 97.23 34.52 97.11 72.05
gpt-3.5-turbo 48.72 86.45 51.77 83.85 56.34
text-davinci-003 55.28 82.13 50.75 80.63 54.83

codellama-13b 59.05 71.55 36.57 63.04 44.21
wizardlm-13b 40.58 65.39 20.87 55.96 38.56
vicuna-13b-v1.5 48.34 68.32 26.73 51.47 35.71
nous-hermes-13b 36.58 50.44 13.96 36.32 25.07

1-shot

gpt-4 83.60 97.78 50.56 97.82 71.28
gpt-3.5-turbo 76.16 90.87 51.14 90.18 62.31
text-davinci-003 81.52 95.08 72.00 94.73 65.52

codellama-13b 84.91 87.21 54.89 83.71 61.76
vicuna-13b-v1.5 75.52 73.96 11.17 62.39 45.81
nous-hermes-13b 73.04 72.69 2.76 63.77 46.48
wizardlm-13b 75.96 67.93 12.26 53.59 39.08

2-shot

gpt-4 91.69 98.02 52.49 97.94 75.15
gpt-3.5-turbo 89.07 96.03 39.72 95.28 69.04
text-davinci-003 90.18 96.59 72.37 96.19 69.29

codellama-13b 87.76 92.33 64.17 88.60 66.03
nous-hermes-13b 78.88 82.42 43.55 74.68 54.39
wizardlm-13b 80.20 79.25 33.51 70.69 52.20
vicuna-13b-v1.5 79.67 79.84 37.50 71.45 51.82

A.4.2 Few-shot Setting

In-context learning is a crucial capability for LLMs, that can improve the performance of LLMs by
providing a few examples. In TASKBENCH, we also provide a fixed number of demonstrations in the
designed prompt to advance the capability of LLMs in automation. Therefore, we also investigate the
effect of the number of demonstrations in our setting. The results are reported in Table 11 and Figure 4.
We can find that as the number of demonstrations increases, it can receive significant improvements
of LLMs at different dimensions (e.g., task decomposition, tool selection, and parameter prediction).
For example, codellama-13b with a 2-shot setting can obtain 20.78% and 21.82% improvements to

19

the zero-shot setting in n-F1 and v-F1. These results underscore the effect of the demonstrations in
improving LLMs for task automation.

A.5 Details about Back-Instruct and TaskBench

Table 15 reports the statistical information of the tool graph and our constructed TASKBENCH datasets
across three domains. Notably, it is evident that the two critics we introduced play a crucial role in
improving data quality. The rule-based and LLM-based critics respectively filter out an average of
15.13% and 22.73% of the samples. In addition, we invited human experts to revise and filter the
data. And finally, we obtained 61.76%, 62.71%, and 60.42% of the aligned samples for the three
datasets, respectively.

We utilize the following prompt template for the “Back-Instruct" Data Engine. Each sample is
generated through a single prompting. We assign “instruction", “tool invocation graph", and “self-
critics" to specific fields in the prompt, and then populate the relevant fields to complete the data
generation in a single prompt.

Given a tool graph where tools serve as nodes and invoking chains
between tools act as edges , the following tools (nodes) are available
with their respective descriptions and input/output types:
{NODES}

These tools can be connected as follows , where the directed edges
represent invoking chains between tools:
{EDGES}

Based on the above tool graph , please skillfully generate the
corresponding task steps , user request , and tool invoking graph.

Requirements:
1. The generated user request should be clear , self -contained (with
user -specified text , image , video , audio , and content included within
the request) and practical (designed to help users solve a tangible
problem). The task steps must strictly adhere to the tool graph (nodes
and edges) and be reasonable. The tool invoking graph must align with
both the task steps and the provided tool graph.

2. The user request should be decomposable into task steps that the
tool invoking graph can solve.
3. Each task step must correspond to a tool node in both the tool
graph and the tool invoking graph. The number of task steps must equal
the number of nodes. Each tool node can only be used once.

4. If the user request requires image/audio/video resources , use files
named ’example .[jpg/mp4/wav/png]’.

5. The dependencies among task steps must be consistent with the edges
of both the tool graph and the tool invoking graph.

Now , please generate your result (with random seed {seed}) in a strict
JSON format:

{
"task_steps ": [step description for one or more steps],
"user_request ": "your high -quality and self -contained synthesized
request",
"invoking_graph ": {

"nodes": [
{

"task": "tool name",
"arguments ": [either user -specified text or resource file
’example .[jpg/mp4/wav/png]’ from the user request , or the
name of the dependent tool whose output this node requires
]

}
],
"links": [{" source ": "tool name i", "target ": "tool name j"}]

20

},
"check_by_teacher ": "This field is filled by your strict and well -
trained teacher , minor mistakes are complete intolerable to him. He
evaluated whether your synthesized user request , tool invoking graph
are valid and whether they are aligned with the given tool graph (
strictly checked step by step according to the above requirements).
Some comments from him place here (start with ’Let me check your
result step by step , and evaluate the ’Executable ’ and ’Correct ’ of
the tool invoking graph (Executable means that the tool invoking graph
executed successfully , regardless of alignment with the given tool

graph. While Correct implies that the tool invoking graph are not only
’Executable ’ but also strictly consistent (with strictly same nodes

and same edges) with the given tool graph). After carefully evaluating
, found some mistakes:’ and end with a conclusion: ’Conclusion:
Executable: no/yes , Correct: no/yes ’.)
}:

A.6 Prompt for Inference

For a fair and standardized evaluation, we provide prompt templates for inference.

Tools List
FOR tool in {tool_list }:

{tool["id"]: {tool[" description "]}}
Parameters: {tool[" parameter "]}

END FOR

GOAL #:
Based on the above tools , I want you to generate task steps and a task
graph (tool invocation graph , including nodes and edges) to address

the # USER REQUEST #. The format must be in strict JSON format , like:
{

"task_steps ": [step description for one or more steps],
"task_nodes ": [{

"task": "tool name must be from # TOOL LIST #", "
arguments ": [a concise list of arguments for the tool. This
can be original text , a user -mentioned filename , or the tag ’<
node -j>’ (starting from 0) to refer to the output of the j-th
node.]
}]

"task_links ": [{" source ": "task name i", "target ": "task name j
"}],

}.

REQUIREMENTS #:
1. The generated task steps and task nodes must resolve the given user
request # USER REQUEST # perfectly. Task names must be selected from

TASK LIST #.
2. The task steps should align strictly with the task nodes , and the
number of task steps should be the same as the task nodes.
3. The dependencies among task steps should be consistent with the
argument dependencies of the task nodes.
4. The tool arguments should align with the parameter field of # TASK
LIST #.

EXAMPLE #:
FOR demo IN {demos}:
USER REQUEST #:
{demo[" user_request "]}
RESULT #:
{(demo[" result "])}
END FOR

USER REQUEST #:

21

{{ user_request }}
Now , please generate your result in strict JSON format:
RESULT #:

A.7 Detail Comparison of LLMs

We present the performance of more open-source large language models [36, 37, 38] on TASKBENCH.
The performance metrics for task decomposition, tool selection, and parameter prediction are shown
in Table 12, Table 13, and Table 14, respectively.

Table 12: Evaluation for task decomposition. The scores for Rouge-1 (R1), Rouge-2 (R2), and
Rouge-L (RL) for the generated step descriptions in comparison to the ground truth steps.

TASK DECOMPOSITION TASK - Step-by-step task decomposition

LLM
Hugging Face Tools Multimedia Tools Daily Life APIs

R1 ↑ R2 ↑ RL ↑ R1 ↑ R2 ↑ RL ↑ R1 ↑ R2 ↑ RL ↑
gpt-4 52.42 30.38 47.21 60.84 40.08 56.22 85.07 72.36 82.16
gemini-pro 45.96 24.23 40.06 53.02 31.51 46.76 54.36 27.92 47.28
claude-2 44.21 21.12 37.87 48.85 23.59 43.23 82.26 69.88 78.99
text-davinci-003 36.68 17.61 31.86 49.23 27.97 43.44 68.27 50.30 62.01
gpt-3.5-turbo 42.99 21.58 36.96 49.66 28.51 43.60 58.53 39.90 53.30

mistral-7b-v0.3 41.04 19.94 34.20 50.73 28.97 43.85 73.03 57.73 68.98
codellama-13b 38.75 18.37 33.39 44.46 23.30 39.21 89.86 83.27 86.12
wizardlm-13b 34.47 15.38 28.76 35.87 17.55 30.51 82.02 72.43 77.57
vicuna-13b-v1.5 37.12 17.03 30.77 44.75 23.75 38.92 81.76 71.76 76.86
nous-hermes-13b 37.36 16.91 30.50 35.73 16.11 29.17 78.49 68.04 73.42
codellama-7b 38.97 18.62 33.25 43.76 22.93 38.97 56.98 38.83 50.68
baichuan-13b-chat 19.93 5.97 17.94 20.41 3.77 17.50 49.43 27.25 42.74
llama-3-8b-inst 6.32 1.13 5.58 13.51 4.36 11.58 42.53 29.79 38.69
llama-2-13b-chat 39.37 18.64 32.60 26.16 7.88 22.57 45.39 22.42 38.29
internlm-chat-7b 20.53 7.16 17.73 16.64 3.56 14.65 42.94 21.02 36.91
vicuna-7b-v1.5 27.17 10.02 22.69 39.46 19.83 32.73 40.26 21.19 33.13
llama-2-7b-chat 24.12 8.68 19.31 34.51 15.91 29.57 37.06 16.49 29.02

A.8 Tools in the Tool Graph

We show some of the tools used in the construction of the tool graph, including the tool name,
tool description and parameters of the tool. In the Daily Life APIs domain, we resorted to manual
construction because of the scarcity of publicly available APIs. We crafted 40 APIs tailored to
common daily life activities such as shopping, education, and travel. Our focus is solely on producing
the API documentation without implementing the actual functionality. Some of the tools on the
Hugging Face tools, Multimedia tools and Daily Life APIs domains are shown in Table 16, Table 17,
and Table 18, respectively.

In order to visualize the complete tool graph we constructed, we take the Multimedia domain as an
example to render the tool graph with resource dependencies. As shown in Figure 5 and 6, nodes in
the graph denote tools, and directed edges indicate that the output type of the source tool matches the
input type of the target tool.

22

Table 13: Evaluation for tool selection. n-F1 and e-F1 for node and edge prediction. NED measures
the normalized number of operations required to correct the prediction for chain structure.

TOOL SELECTION TASK - Predicts tools and their dependencies.

LLM
Node Chain DAG Overall

n-F1 ↑ n-F1↑ e-F1 ↑ NED ↓ n-F1↑ e-F1 ↑ n-F1↑ e-F1 ↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 84.34 80.79 55.73 39.70 82.86 56.39 81.54 54.70
gemini-pro 77.46 76.12 45.51 43.10 79.05 49.36 76.62 43.50
claude-2 69.83 80.67 48.11 40.03 84.52 53.40 79.00 43.51
gpt-3.5-turbo 56.91 72.63 39.92 46.52 73.79 38.55 69.49 33.36
text-davinci-003 40.71 66.05 36.04 48.57 64.64 34.19 59.38 29.37

mistral-7b-v0.3 60.74 67.00 25.70 52.74 68.55 26.37 65.96 21.91
codellama-13b 43.68 55.65 17.80 62.23 52.87 13.19 53.16 14.64
baichuan-13b-chat 58.29 52.82 8.07 61.52 53.29 7.82 53.85 7.65
nous-hermes-13b 58.66 52.39 9.01 62.48 51.99 6.33 53.62 8.29
llama-2-13b-chat 43.59 49.87 8.22 64.99 49.60 9.11 48.47 7.30
vicuna-13b-v1.5 51.74 50.37 8.40 66.83 52.46 9.06 50.82 7.28
codellama-7b 18.81 47.70 8.52 63.55 45.20 7.17 37.59 5.35
llama-3-8b-inst 13.01 8.81 2.86 96.00 6.62 1.88 9.27 2.64
vicuna-7b-v1.5 36.20 44.79 3.24 69.40 43.94 2.00 42.87 2.76
wizardlm-13b 54.69 54.50 2.22 60.55 52.93 0.92 54.40 2.05
llama-2-7b-chat 14.89 32.61 0.71 81.01 31.47 1.38 27.30 0.74
internlm-chat-7b 33.98 22.86 0.81 85.69 22.01 1.22 24.39 0.83
longchat-7b-v1.5 44.97 49.11 0.52 65.74 48.41 1.04 48.18 0.56

M
ul

tim
ed

ia
To

ol
s

gpt-4 97.13 89.70 69.29 28.93 92.32 71.64 90.90 69.27
gemini-pro 73.61 82.65 55.50 35.62 85.29 57.80 81.54 52.07
claude-2 66.16 83.95 59.22 33.41 82.98 54.28 80.94 53.01
text-davinci-003 59.15 76.87 50.79 38.54 79.00 50.69 73.97 45.81
gpt-3.5-turbo 53.55 76.81 50.30 39.05 78.65 49.52 72.83 44.02

mistral-7b-v0.3 64.00 78.32 41.12 40.75 79.96 41.36 76.11 35.34
codellama-13b 43.70 66.89 28.77 46.35 68.68 28.79 62.78 24.61
codellama-7b 40.43 56.15 16.90 54.36 57.55 16.71 53.29 14.76
vicuna-13b-v1.5 66.64 59.18 16.49 54.17 61.40 13.95 60.61 14.78
nous-hermes-13b 60.58 58.53 9.47 56.02 59.39 9.57 58.97 8.90
wizardlm-13b 55.13 50.57 4.92 58.46 49.38 5.52 51.24 4.82
llama-3-8b-inst 22.47 14.90 5.67 92.91 15.64 6.18 16.01 5.34
baichuan-13b-chat 45.59 41.96 4.95 64.28 42.05 8.46 42.51 5.19
longchat-7b-v1.5 43.54 42.72 4.25 67.09 44.83 5.30 43.08 3.95
vicuna-7b-v1.5 36.22 48.29 4.79 63.49 48.26 4.09 46.06 4.26
llama-2-13b-chat 38.02 45.14 1.62 65.29 45.95 2.11 43.87 1.63
llama-2-7b-chat 16.49 30.00 0.94 76.13 28.81 1.23 26.47 0.91
internlm-chat-7b 36.39 22.21 1.17 84.65 22.53 1.03 23.60 1.14

D
ai

ly
L

ife
A

PI
s

gpt-4 95.97 97.06 83.47 38.69 96.41 42.01 96.91 80.53
claude-2 79.57 95.36 80.68 39.93 93.85 41.04 93.52 75.31
gemini-pro 76.15 92.79 64.58 41.64 89.68 28.42 90.75 59.45
gpt-3.5-turbo 52.18 90.80 70.66 43.50 86.94 30.85 85.37 60.67
text-davinci-003 68.49 82.15 60.12 47.14 76.81 24.54 80.42 54.90

codellama-13b 89.75 87.80 65.92 44.42 83.61 27.47 87.73 63.16
mistral-7b-v0.3 81.55 80.52 50.95 51.80 79.17 25.04 80.54 45.87
codellama-7b 40.19 62.00 31.11 59.14 58.19 13.35 59.33 27.23
llama-3-8b-inst 25.22 57.06 27.70 72.49 45.60 7.27 52.93 23.47
llama-2-13b-chat 34.11 57.61 20.13 67.06 56.18 8.42 55.77 17.02
vicuna-7b-v1.5 46.51 54.01 17.43 65.38 51.68 10.68 52.73 14.23
longchat-7b-v1.5 34.20 49.91 18.17 69.96 53.53 11.93 47.26 14.44
wizardlm-13b 92.27 65.74 14.51 55.80 63.80 9.20 69.34 14.18
vicuna-13b-v1.5 90.59 73.74 13.24 51.43 67.92 5.62 75.67 12.48
baichuan-13b-chat 52.50 52.60 11.59 69.27 52.08 6.53 52.55 10.61
internlm-chat-7b 33.08 29.28 7.06 86.26 22.22 3.62 29.14 6.63
llama-2-7b-chat 20.11 31.68 5.40 83.87 30.88 2.80 30.17 4.27
nous-hermes-13b 92.50 71.17 3.55 53.47 70.65 2.86 73.45 3.50

23

Table 14: Evaluation for tool parameter prediction. Parameter Name F1 (t-F1) evaluates (task,
parameter name) pairs, while v-F1 assesses (task, parameter name, parameter value) triples.

TOOL PARAMETER PREDICTION TASK - Predicts parameters for the tool execution.

LLM
Node Chain DAG Overall

t-F1↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑ t-F1 ↑ v-F1↑

H
ug

gi
ng

Fa
ce

To
ol

s

gpt-4 80.05 74.10 76.66 58.15 78.24 60.03 77.31 60.86
gemini-pro 67.63 56.54 66.60 46.35 70.41 50.56 67.12 48.54
claude-2 48.07 32.14 66.35 45.57 68.59 48.19 63.00 43.08
text-davinci-003 38.51 27.43 56.90 38.76 57.03 38.90 52.53 36.04
gpt-3.5-turbo 37.70 19.81 60.96 41.15 61.33 42.89 55.88 36.32

mistral-7b-v0.3 29.18 13.19 46.18 26.09 45.49 28.73 42.41 23.40
codellama-13b 20.09 12.58 36.40 21.31 33.43 20.48 32.06 18.87
nous-hermes-13b 46.38 31.06 35.55 13.81 33.06 13.69 37.51 17.66
wizardlm-13b 43.97 25.90 37.34 12.48 38.43 13.79 38.76 15.35
vicuna-13b-v1.5 29.80 20.54 32.14 13.57 32.16 15.23 31.61 15.38
baichuan-13b-chat 46.18 29.46 30.29 9.55 30.10 10.37 33.17 13.53
longchat-7b-v1.5 34.94 19.37 33.07 11.39 34.06 13.75 33.57 13.94
llama-2-13b-chat 25.71 13.11 28.99 11.14 30.04 13.60 28.34 11.85
vicuna-7b-v1.5 20.82 12.56 25.85 10.10 26.09 10.94 24.65 10.81
codellama-7b 13.31 4.48 27.47 11.97 24.94 12.36 22.50 9.20
internlm-chat-7b 20.52 14.08 14.29 4.76 14.44 5.62 15.41 6.64
llama-3-8b-inst 8.14 3.49 6.54 4.64 5.77 4.02 6.02 4.19
llama-2-7b-chat 7.61 2.46 15.53 2.81 15.42 4.15 13.05 2.79

M
ul

tim
ed

ia
To

ol
s

gpt-4 95.64 87.12 85.60 69.83 87.57 72.79 87.06 72.31
gemini-pro 62.21 50.48 72.99 55.21 76.13 58.79 71.67 54.82
claude-2 53.81 24.02 75.60 58.12 72.41 52.43 71.63 51.58
gpt-3.5-turbo 44.94 11.96 70.53 47.76 71.82 47.95 65.91 40.80
text-davinci-003 60.30 20.78 69.91 44.76 71.91 45.76 68.48 40.70

mistral-7b-v0.3 30.70 14.65 61.42 41.79 62.32 42.93 55.52 36.40
codellama-13b 32.01 16.10 52.30 32.51 53.08 33.79 48.19 29.13
codellama-7b 31.79 23.10 39.42 24.50 40.52 26.98 38.04 24.45
vicuna-13b-v1.5 52.72 35.55 39.31 21.00 40.05 21.40 41.62 23.62
nous-hermes-13b 50.11 37.80 41.98 17.89 43.99 20.04 43.60 21.69
wizardlm-13b 49.79 33.59 36.88 14.87 36.61 18.68 39.10 18.74
vicuna-7b-v1.5 28.79 17.79 29.73 12.48 31.38 14.12 29.72 13.74
longchat-7b-v1.5 31.06 21.12 26.97 11.07 28.43 14.16 27.89 13.41
baichuan-13b-chat 40.41 27.87 25.80 8.50 25.87 10.13 28.04 11.77
llama-2-13b-chat 28.49 17.01 30.26 9.66 31.00 11.35 29.99 11.32
llama-3-8b-inst 16.71 9.18 21.09 6.88 25.13 8.84 21.26 8.68
internlm-chat-7b 24.01 16.04 12.45 4.81 13.21 5.54 13.75 6.09
llama-2-7b-chat 14.00 7.03 19.73 5.38 19.20 5.78 18.27 5.84

D
ai

ly
L

ife
A

PI
s

gpt-4 95.83 76.21 97.23 70.67 95.95 69.65 97.02 71.14
claude-2 78.12 59.43 94.72 65.30 91.83 66.39 92.71 64.72
gemini-pro 69.88 45.41 91.66 57.93 88.50 53.91 88.95 56.22
gpt-3.5-turbo 43.81 28.77 89.21 61.11 83.88 56.13 81.97 55.66
text-davinci-003 61.68 45.53 80.68 54.54 76.51 51.91 78.37 53.40

codellama-13b 86.34 71.20 84.31 61.51 80.42 60.18 84.26 62.38
mistral-7b-v0.3 65.86 50.67 72.03 49.71 70.52 48.35 71.21 49.73
nous-hermes-13b 79.69 63.29 62.64 45.32 63.26 45.74 64.47 47.22
vicuna-13b-v1.5 83.63 67.71 61.80 44.54 57.14 41.72 64.27 47.31
wizardlm-13b 89.27 72.96 50.68 36.48 49.03 35.75 55.00 40.53
codellama-7b 31.62 21.16 56.33 37.20 52.56 33.46 52.99 34.81
vicuna-7b-v1.5 27.71 19.81 38.25 25.82 37.16 24.65 36.30 24.67
baichuan-13b-chat 32.47 21.72 38.31 24.24 36.84 21.84 37.48 23.77
llama-2-13b-chat 10.39 7.32 38.89 25.37 36.43 23.40 35.11 22.94
llama-3-8b-inst 6.40 5.35 36.62 25.91 24.69 17.28 29.16 20.81
longchat-7b-v1.5 14.99 12.11 28.37 19.60 31.25 22.22 25.73 18.18
internlm-chat-7b 18.67 15.22 19.56 13.50 14.48 10.80 19.21 13.48
llama-2-7b-chat 6.60 4.21 16.85 10.53 16.95 10.46 14.94 9.34

24

Table 15: Statistics for the TASKBENCH. We report the number of nodes and links of the tool graphs.
“# Avg. Nodes” and “# Avg. Links” stands for the average number of nodes and links involved in one
sample. We also report the sample number and average request length for the datasets.

Statistic Hugging Face Tools Multimedia Tools Daily Life APIs

Nodes of Tool Graph 23 40 40
Links of Tool Graph 225 449 1,560

Avg. Nodes 3.47 3.68 3.82
Avg. Links 2.46 2.68 2.8
Samples 12,217 8,904 7,150
- Node / Chain / DAG 3,270 / 4,302 / 4,645 2,117 / 3,145 / 3,642 1,277 / 2,716 / 3,157
Avg. Request Length 41.21 39.15 38.64
- Node / Chain / DAG 28.42 / 45.72 / 46.04 24.71 / 43.55 / 43.73 12.36 / 44.49 / 44.23

se
lf

-
cr

iti
c Both critics 8,456 (69.22%) 6,281 (70.54%) 5,432 (75.97%)

LLM-based critic 9,042 (74.01%) 6,959 (78.16%) 5,694 (79.63%)
Rule-based critic 10,289 (84.22%) 7,363 (82.69%) 6,271 (87.70%)

Human Verification 7,546 (61.76%) 5,584 (62.71%) 4,320 (60.42%)

Image Downloader

Video Downloader

Audio Downloader

Text Downloader

Text Search

Image Search

Image Search (by Image)

URL Extractor

Video Search

Text-to-Image

Text-to-Video

Text-to-Audio

Image-to-Text

Audio-to-Text

Video-to-Text

Audio Noise Reduction

Audio Effects

Audio Splicer

Voice Changer

Text SummarizerText Translator

Text Sentiment Analysis

Text Grammar CheckerText Simplifier

Text Expander

Keyword Extractor

Text Paraphraser

Article Spinner

Topic Generator

Audio-to-Image
Image-to-Video

Video-to-Audio
Video-to-Image

Image Stitcher

Image Colorizer
Image Style Transfer

Video Stabilizer

Video Speed Changer

Video Synchronization

Video Voiceover

Figure 5: Constructed tool graph with resource dependencies on the Multimedia Tools domain.

25

Token Classification

Translation

Summarization

Question Answering

Conversational
Text Generation

Sentence Similarity

Tabular Classification

Object Detection

Image Classification

Image-to-Image

Image-to-Text

Text-to-Image

Text-to-Video

Visual Question Answering

Document Question Answering

Image Segmentation

Depth Estimation Text-to-Speech

Automatic Speech Recognition

Audio-to-Audio

Audio Classification

Image Editing

Figure 6: Constructed tool graph with resource dependencies on the Hugging Face Tools domain.

26

Table 16: Hugging Face tools and their descriptions
Name Description Parameters

Translation Translation is the task of converting text from one language to
another. [’text’]

Summarization

Summarization is the task of producing a shorter version of a
document while preserving its important information. Some

models can extract text from the original input, while other models
can generate entirely new text.

[’text’]

Question
Answering

Question Answering models can retrieve the answer to a question
from a given text, which is useful for searching for an answer in a

document.
[’text’, ’text’]

Text Generation Generating text is the task of producing new text. These models
can, for example, fill in incomplete text or paraphrase. [’text’]

Object
Detection

Object Detection models allow users to identify objects of certain
defined classes. Object detection models receive an image as input
and output the images with bounding boxes and labels on detected

objects.

[’image’]

Image
Classification

Image classification is the task of assigning a label or class to an
entire image. Images are expected to have only one class for each

image. Image classification models take an image as input and
return a prediction about which class the image belongs to.

[’image’]

Image-to-
Image

Image-to-image is the task of transforming a source image to
match the characteristics of a target image or a target image

domain. Any image manipulation and enhancement is possible
with image to image models.

[’image’]

Image-to-Text
Image to text models output a text from a given image. Image

captioning or optical character recognition can be considered as
the most common applications of image to text.

[’image’]

Text-to-Image Generates images from input text. These models can be used to
generate images based on text prompts. [’text’]

Text-to-Video Generates videos from input text. These models can be used to
generate videos based on text prompts. [’text’]

Visual Question
Answering

Visual Question Answering is the task of answering questions
based on an image. [’image’, ’text’]

Image
Segmentation

Image Segmentation divides an image into segments where each
pixel in the image is mapped to an object. This task has multiple
variants such as instance segmentation, panoptic segmentation and

semantic segmentation.

[’image’]

Depth
Estimation

Depth estimation is the task of predicting depth of the objects
present in an image. [’image’]

Text-to-Speech

Text-to-Speech (TTS) is the task of generating natural sounding
speech given text input. TTS models can be extended to have a
single model that generates speech for multiple speakers and

multiple languages.

[’text’]

Automatic
Speech

Recognition

Automatic Speech Recognition (ASR), also known as Speech to
Text (STT), is the task of transcribing a given audio to text. It has

many applications, such as voice user interfaces.
[’audio’]

Audio-to-
Audio

Audio-to-Audio is a family of tasks in which the input is an audio
and the output is one or multiple generated audios. Some example

tasks are speech enhancement and source separation.
[’audio’]

Audio
Classification

Audio classification is the task of assigning a label or class to a
given audio. It can be used for recognizing which command a user

is giving or the emotion of a statement, as well as identifying a
speaker.

[’audio’]

Image Editing
Image editing is the task of modifying an image to match a given

text description. It can be used to modify the attributes of an
image, such as the color of an object or the background.

[’text’, ’image’]

27

Table 17: Multimedia tools and their descriptions
Name Description Parameters
Image

Downloader Downloads an image from a given URL. [’url’]

Video
Downloader Downloads a video from a given URL. [’url’]

Audio
Downloader Downloads an audio file from a given URL. [’url’]

Text
Downloader Downloads the text content from a given URL. [’url’]

Text Search Searches for a specific text or keyword on the internet. [’text’]
Image Search Searches for images on the internet based on a given query. [’text’]

URL Extractor Extracts URL from text [’text’]
Video Search Searches for videos on the internet based on a given query. [’text’]
Text-to-Video Generates a video based on a given text description. [’text’]
Text-to-Audio Generates an audio file based on a given text description. [’text’]

Image-to-Text Extracts text from an input image using Optical Character
Recognition (OCR). [’image’]

Audio-to-Text Transcribes speech from an audio file into text. [’audio’]
Video-to-Text Transcribes speech from a video file into text. [’video’]
Audio Noise
Reduction

Reduces background noise or unwanted sounds from a given audio
file. [’audio’]

Audio Effects Applies various audio effects to a given audio file according to
human instruction, such as reverb, chorus, or equalization. [’audio’, ’text’]

Audio Splicer Combines two audio files into a single output file. [’audio’, ’audio’]

Voice Changer Modifies the characteristics of a recorded voice according to
human instruction, such as tone, pitch, or gender. [’audio’, ’text’]

Text
Summarizer

Summarizes a given text into a shorter version while retaining the
main points. [’text’]

Text Translator Translates a given text from one language to english. [’text’]
Text Sentiment

Analysis
Analyzes the sentiment of a given text, identifying if it is positive,

negative, or neutral. [’text’]

Text Grammar
Checker

Checks a given text for grammatical errors and suggests
corrections. [’text’]

Text Simplifier Rewrites a given text in a simpler and more understandable
manner. [’text’]

Keyword
Extractor

Extracts the most important keywords and phrases from a given
text. [’text’]

Text
Paraphraser

Rewrites a given text using different words while maintaining its
original meaning. [’text’]

Topic
Generator Generates a list of relevant topics or ideas based on a given input. [’text’]

Audio-to-
Image

Generates an image that visually represents a given audio, such as
a waveform or spectrogram. [’audio’]

Video-to-
Audio Extracts the audio track from a given video file. [’video’]

Video-to-
Image Extracts a still image from a given video. [’video’]

Image Stitcher Stitches together two input images to create a panorama or collage. [’image’,
’image’]

Image
Colorizer

Adds color to a black and white input image using deep learning
techniques. [’image’]

Video Stabilizer Stabilizes a shaky input video to produce a smoother output video. [’video’]
Video Speed

Changer
Adjusts the playback speed of a given video according to human

instruction, either speeding it up or slowing it down. [’video’, ’text’]

Video Synchro-
nization

Synchronizes the timing of an existing voiceover or audio file with
the visuals of a given video. [’video’, ’audio’]

28

Table 18: Daily Life APIs and their descriptions
API Name API Description Parameter Names

get_news_for_topic Get the news for a specific topic [’topic’]
stock_operation Do a specific operation on a specific stock [’stock’, ’operation’]

book_flight Book a flight for a specific date, from a
specific location to a specific destination [’date’, ’from’, ’to’]

book_hotel Book a specific hotel for a specific date [’date’, ’name’]

book_car Book a car for a specific date, in a specific
location [’date’, ’location’]

online_shopping Buy a product from a specific website [’website’, ’product’]

send_email Send an email to a specific email address [’email_address’,
’content’]

send_sms Send an sms to a specific phone number [’phone_number’,
’content’]

share_by_social_network Share a specific content by a specific social
network

[’content’,
’social_network’]

book_restaurant Book a specific restaurant for a specific
date [’date’, ’name’]

search_by_engine Search a specific query by a specific search
engine [’query’, ’engine’]

apply_for_job Apply for a specific job [’job’]
see_doctor_online See a specific doctor for a specific disease [’disease’, ’doctor’]

consult_lawyer_online Consult a specific lawyer for a specific
legal issue [’issue’, ’lawyer’]

enroll_in_course Enroll in a specific course at a specific
university [’course’, ’university’]

buy_insurance Buy a specific insurance from a specific
insurance company

[’insurance’,
’company’]

online_banking Do a specific banking operation online at a
specific bank [’instruction’, ’bank’]

daily_bill_payment Pay a specific bill [’bill’]
sell_item_online Sell a specific item at a specific online store [’item’, ’store’]

do_tax_return Do the tax return for a specific year [’year’]
apply_for_passport Apply for a passport [’country’]
pay_for_credit_card Pay for a specific credit card [’credit_card’]

auto_housework_by_robot Let a robot do a housework by following a
specific instruction [’instruction’]

auto_driving_to_destination Let a car drive to a specific destination [’destination’]

deliver_package Deliver a specific package to a specific
destination

[’package’,
’destination’]

order_food_delivery Order a specific food to be delivered to a
specific location at a specific platform

[’food’, ’location’,
’platform’]

order_taxi Order a taxi to a specific location at a
specific platform [’location’, ’platform’]

play_music_by_title Play a specific music by a specific title [’title’]

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 4 and Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

30

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5, Appendix B and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]
Justification: Section 5, Appendix B and Appendix D
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5, Appendix B and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

33

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

34

paperswithcode.com/datasets

Answer: [Yes]
Justification: Section 4 and Section 5
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Section 4.3 and Appendix A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Related Works
	TaskBench
	Preliminary: Tool Graph
	Dataset Construction
	Tool Graph Construction
	Sampling on Tool Graph
	Back-Instruct
	Quality Control Mechanisms

	Evaluation of the Dataset Quality

	TaskEval
	Task Decomposition
	Tool Selection
	Parameter Prediction
	Analysis
	Consistency with Human Evaluation

	Conclusion
	Appendix
	Case Study of Back-Instruct
	Error Analysis
	Error Analysis on TaskBench Dataset
	Error Analysis of Different LLMs in Predicting Tool Invocation Graph

	Metrics for Ranking Consistency
	Analysis
	Different Number of Tools
	Few-shot Setting

	Details about Back-Instruct and TaskBench
	Prompt for Inference
	Detail Comparison of LLMs
	Tools in the Tool Graph

