MATHion: Solving Math Word Problems with Logically Consistent
Problems

Anonymous ACL submission

Abstract

Solving the math word problems (MWPs) is
a challenging task. Some existing MWP
solvers retrieve textually similar problems and
draw on their solution to solve the given
problem. However textually similar ques-
tions are not guaranteed to have similar solu-
tions. And questions could share the same so-
lution but with different descriptions. There-
fore in this work, we investigate the logi-
cal consistency among different problems and
propose a novel framework named MATH-
ion which solves math word problems with
the logically consistent problems. Experimen-
tal results show that our method outperforms
many strong baselines, including some pre-
trained language model based methods. Fur-
ther analysis shows that our retrieval method
can learn the logical similarity between ques-
tions and plays a key role in our model’s per-
formance.

1 Introduction

Solving a Math Word Problem (MWP) is to take
a mathematical descriptive problem as input and
then generate an expression that can be evaluated
to obtain the final answer (Zhang et al., 2020a). It
needs the machine to extract relevant information
from natural language text and perform mathemati-
cal reasoning to solve it (Patel et al., 2021).
Modern deep learning based MWP solvers usu-
ally adopt an encoder-decoder framework (Huang
et al., 2018; Shen and Jin, 2020; Liu et al., 2019).
Some methods propose sophisticated models for
encoding quantities mentioned in the problem to
produce a good expression (Shen and Jin, 2020;
Tsai et al., 2021; Zhang et al., 2020c; Li et al.,
2020; Qin et al., 2021). Some other methods re-
trieve similar problems from a problem bank and
leverage their solutions to help solving the given
problem. For instance, Robaidek et al. (2018) and
Wang et al. (2019) have employed Jaccard and Co-
sine similarity metrics, Wang et al. (2017) have uti-

IProblem 1: Mary is 5 years old and Mike is 2|
lyears older than her, so how old is Mike? '
|Expression: x =5 + 2 |
|Solving template: x =N+ N |

Textually

Similar ——————— — — — ——— — —— ——— —
imear IProblem 2: Mary is 5 years old and Mike is 21

lyears younger than her, so how old is Mike? : Logically
|Expression: x=5 - 2 | Consistent
I Solving template: x =N - N |

P e
|Problem 3: Stephen had 10 cows. His brother:

|gave him 2 cows and 15 chickens, how many |
cows does he have now?
| Expression: x =10 + 2

Figure 1: Example of the textually similar problems
and logically consistent problems.

lized word frequency based TF-IDF model, Huang
et al. (2021) encode problems with word2vec em-
beddings and then use Maximum Inner Product
(MIP) to retrieve similar problems.

The previous retrievers usually tended to rely
on textual similarity to find the most similar prob-
lem. However, textually similar problems are not
guaranteed to have the similar solutions. Hence the
similarity between problems should focus more on
the logical perspective. For the rest of this paper,
we say that two math word problems are logical
consistent if they have the same solving template.
Taking Fig. 1 for an example, although the problem
1 and the problem 2 only have one different word
(“older” has been changed to “younger”), their so-
lution is completely different. Hence they are tex-
tually similar but not logically consistent.

Since textual similarity based retrievers could
be easily confused by this kind of problems, they
tend to introduce noisy information. Therefore, the
need of a retriever that can see through the narrative
description and perceive the intrinsic logic of the
problem arises urgently for solving MWPs.

In this paper, we propose a contrastive learn-
ing based “retrieve-then-generate” approach named
MATHion, which solves math word problems with

the logically consistent problems. Compared with
the previous methods, we employ contrastive learn-
ing to train the retriever to mainly focus on the log-
ical consistency instead of textual similarity when
extracting similar problems. Besides, we propose a
gated initialization and an aligned guidance mecha-
nism thus the model could regard the solving tem-
plate of the problem retrieved as hints to generate
the final calculation formula.

The main contributions of this work are as fol-
lows: 1) We introduce a new method to retrieve
logically consistent problems. To the best of our
knowledge, this is the first attempt to consider the
logical consistency among MWPs. 2) We pro-
pose two novel components, a gated initialization
method and an aligned guidance mechanism, to
integrate the retrieved solving template with our
backbone generative model. 3) Experimental re-
sults show that our method outperform all baselines,
including some pre-trained language model based
methods.!.

2 Related Works

The methods for solving Math Word Problems
(MWPs) can be dated back to the 1960s (Char-
niak, 1969), and range from the rule-based meth-
ods (Mukherjee and Garain, 2008), semantic pars-
ing based methods (Kwiatkowski et al., 2013; Shi
et al., 2015; Huang et al., 2017) to deep learning
based methods (Wang et al., 2018, 2019; Qin et al.,
2020; Zhang et al., 2020b; Hong et al., 2021). Cur-
rent deep learning based approaches usually regard
solving MWPs as a sequence to sequence task and
adopt an encoder-decoder framework to generate
the solution. Extensive efforts are devoted to ob-
taining more accurate and substantial embedding
of the input text (Wu et al., 2020; Tsai et al., 2021;
Zhang et al., 2020c; Shen and Jin, 2020; Li et al.,
2020; Qin et al., 2021). But the retrieval-based
methods are relatively rare (Wang et al., 2019,
2017; Huang et al., 2021), it is probably because
the current textual similarity based retrievers do not
performs very well, which motivates us to develop
a novel retriever to capture the logical consistency
among problems.

Contrastive Learning (CL) has recently shown
its high efficiency for learning representations in a
self-supervised manner for both computer vision
(Chen et al., 2020; He et al., 2020) and natural
language processing domains (Jaiswal et al., 2020;

!The code and data are available at “anonymous”

Tian et al., 2020). Many previous works also used
CL for training a neural network model to retrieve
relevant examples, such as passages (Zhang et al.,
2018; Karpukhin et al., 2020), images (EI-Nouby
et al., 2021; Deepak and Ameer, 2020) and even
videos (Liu et al., 2021).

3 Preliminary

In this section, we give the problem definition
and briefly review our backbone generative model
GTS (Xie and Sun, 2019).

3.1 Problem Definition

Formally, the MWP is formulated as follows: given
a sequence of words X = (z1,xa,...,%y,) as the
input problem, our goal is to generate expression
Y = (y1,92,- - -, Yn), which is the pre-order traver-
sal sequence of a binary math expression tree (Liu
et al.,, 2019). All numbers in the original prob-
lems X are replaced with the special token num
and all non-constants numbers in Y are replaced
with the special token num; where i is the order of
the number’s appearance. Thus for each problem
X, the set of numbers appearing in X is defined
as V' = (numy, nums, ...,numyg). When gener-
ating expression Y, the entire output vocabulary
contains V, the constants and the operators.

3.2 GTS Model

GTS (Xie and Sun, 2019) is a auto-regressive
sequence-to-tree model to generate math expres-
sion tree in following steps.

Encoding An embedding layer and a bidirec-
tional GRU (Cho et al., 2014) are employed to
encode all tokens (x1, x9, ..., Zy) in problem X
as (h1, ha, ..., hy,). The final hidden states in for-
ward and backward directions are concatenated to
obtain A~ for representing problem X.

Initialization To start the tree decoding process,
the root embedding and the target vocabulary
should be initialized. The root node embedding
qo is initialized as hX. The target vocabulary Vj,,
contains three parts, i.e., the operators V,, the con-
stants V., and the numbers appearing in problem
V. The embedding in V},, are initialized by the
following equation:

Eop(y) ifyel,
e(y‘X) = Econ(y) ?fy € Veon (D
hloc(y,X) ifyeV

where E,, and E,,, are two embedding matrices,
loc(y, X) is the index position of y in X.

Tree decoding The whole tree decoding process
involves following modules: (1) Context module:
given a goal vector ¢ and the encoder outputs, it
derives a context vector c. (2) Predict module:
given goal vector g and context vector c, it calcu-
lates the decoding score s(y|X) of all the tokens in
Viar- The predicted token ¢ is assigned to the token
that gets the highest score. (3) Merge module: a
recursive neural network to encode the left sub-tree
as an embedding t;. (4) Left and right module:
Given current goal vector ¢ and predicted token g.
If g is an operator, left module is used to generate
the left sub-goal ¢y = LM (g, e(y|X)). Otherwise,
the right module takes into account the embedding
t; of left sibling and generate the right sub-goal
gr = RM(q,t;,e(y|X)), where LM and RM are
trainable networks defined in the original paper.
As such the entire tree decoding procedure can
be summarized as follows: the numbers are leaf
nodes, and the operators are non-leaf nodes and
must have two children. After initialization, the
left child node is repeatedly generated according
to the matching score s(y|X) until it is a leaf node.
Afterward, merge module encodes the left subtree
in a bottom-up manner and right module generates
the right child nodes until the whole tree is filled up
(See Algorithm 1 in Appendix A for more details).

4 Methodology

In order to imitate logically consistent problems,
MATHion extends the encoder-decoder framework
with a logical retriever. It contains two stages:

1) Retrieval Stage: As illustrated in Fig. 2, the
problems with same solving template are regarded
as positive problem pairs, then the contrastive loss
is employed to train our retriever. Afterward, the
trained retriever serves to extract problems from the
problem bank to help the subsequent generation.

2) Generation Stage: GTS (Xie and Sun, 2019)
is deployed as our backbone generative model in
this stage. Given a retrieved problem (could be
wrong), we propose a gated initialization to partly
filter out the wrong information and use its solving
template as guidance in each generation step.

4.1 Retrieval Stage

Encoder An embedding layer and a two-layer
bidirectional GRU (Cho et al., 2014) are employed

as the encoder to map each MWP to a dense vector.

Contrastive loss

Anchor Problem: Mary is 5
years old and Mike is 2 years
older than her, so how old is

Mike?

Expression: x =5 + 2
Solving template: x =N + N

Negatives

Positives

©)

(*)

Problem: Mary is 5 years old and
Mike is 2 years younger than her,
so how old is Mike?

Expression: x=5 - 2

Solving template: x=N - N

Problem: Stephen had 10 cows. His
brother gave him 2 cows and 15
chickens, how many cows does he
have now?

Expression: x = 10 + 2

Solving template: x=N + N

Problem: ==++-:
Solving template: x=N* N

{ Problem: ===

| Solving template: x = N + N
|

} Dynamically sampled from problem bank l

I - 5 |
: In batch negative strategy }

Figure 2: Our contrastive learning based retriever. The
problems with the same solving template are positives.
During training, each batch is dynamically composed
to allow our model to see more diverse examples.

Afterwards the average of all word tokens’ hidden
states is calculated to represent the entire problem
and denoted as H.

Positive and Negative Problem Pairs Construc-
tion To employ contrastive learning, we first need
to tell the model which problems are logically con-
sistent and which are not. Hence, given two differ-
ent problems (X;, X;) and their corresponding ex-
pressions (Y;, Y;), we replace all numbers (except
constants) in expression with token IV to obtaining
their solving templates Yi/ and Yj/. For example
10 4 2 changes to N + N when transferred into
solving template. If Yi/ = Yj/, we regard (X;, X;)
as a positive pair. Since there is possibly more than
one problem that can form positive pair with X,
we call this set P;. If Y;»/ #* Yj/, they are regarded as
a negative problem pair and the negative set for X;
are defined as IV;. It is worth noting that although
Y;-’ = Yj/ is not the necessary and sufficient con-
dition to the logical consistency of problem pair
(X, X;) since one expression Y may have many
equal variants, we will prove the feasibility of our
method through experiments.

Dynamic Batch Composition Assume that we
have randomly grabbed B problems (i.e., { X;|i €
[1, B]}) from training data, in order to ensure each
problem X; has at least n positive examples in
this mini-batch and allow our model to see more
diverse examples, we propose a dynamic batch
composition technique. Specifically, for problem
X, we concatenate another n positive problems

that are randomly sampled from the problem bank.
As such we dynamically formed a batch with batch
size (n+1) B, and each problem could see multiple
positive and negative problems in different epoch
during training.

Contrastive Loss Since CL aims at reducing the
distance between positive samples and pushing
away the negative ones, it is coherent with our
needs of clustering logically consistent problems
and separating the inconsistent ones. Thereby we
utilize InfoNCE loss function (van den Oord et al.,
2018) and In-batch negatives strategy (Karpukhin
et al., 2020) for contrastive learning. Given a batch
of problems (X1, - - -, X(;,41)B), they are encoded
as (Hy,--- s H(y4-1)B)- For problem X, its posi-
tive set P; and negative set [N; are also given, then
the InfoNCE loss L; for X; in this batch is defined
as:

p
L =- IOgdp dna (2)
HHZ/T
P __ R
=2 eXp<|H|| ||HZ-||>’ ¥
XjGP
HIH;/T
=3 ep|—t——n], @
P <|H|\ |H|r>
J

where 7 is a hyper-parameter called temperature,
thus the final loss for this mini-batch is:

L = Eqx,jien,(m+1))y [Li] ®)

Memory queue During training, we maintain
and update a queue to store the representations
of all problems in the problem bank. During in-
ference, we retrieve the problem with the highest
cosine similarity score in the problem bank.

4.2 Generation Stage
4.2.1 Solving Template Encoder

Given a problem retrieved and its corresponding
solving template Y, we first use an embedding
layer to map tokens in Y’ into dense vectors. After-
ward, a one-layer bidirectional GRU is exploited to
encode sequential information. Finally, we calc_u)—

late the sum of the final hidden states in forward h?,

and backward h§ for representing the entire solving
template:

=
W= W0 R, by =W AR (©)

17"

where hY and hy- represent the hidden states of
tokens and of Y, respectively.

4.2.2 Gated Initialization and Aligned
Guidance Mechanism

Gated Initialization Since the first token de-
coded is very crucial in the auto-regressive model,
we incorporate solving template embedding A,/
right from the initialization. The original GTS
model only initialize the root node with the prob-
lem embedding hX, here we propose a gated mech-
anism to fuse these two embeddings /1y and hX:

qo = tanh(W7i - o) o sigmoid(Wa2 - Go), (7)

where gy = [, hy], W1 and W5 are trainable pa-
rameters, [, | and o represent the concatenation and
the element-wise multiplication of vectors respec-
tively. Since the retrieval model cannot achieve per-
fect accuracy, the retrieval problems are inevitably
mixed with some wrong results. This gate mecha-
nism is to adjust the portion of h,’s contribution.

Aligned Guidance In an auto-regressive model,
the token generated previously has a significant
impact on the next, thereby we utilize the solving
template of problem retrieved to guide the tree de-
coder in each generation step. As mentioned in 3.2,
the original GTS model decodes each token accord-
ing to the goal vector, which is generated using its
left or right module, here as shown in Fig. 3, we
add the embedding h 1 to provide extra guiding
information when generate the goal vector ¢;1:

o LM(Qi76@z“X)) + h?_u
qi+1 RM(%
()

e(§iX), 1) + by
where ¢ denotes the i-th generation step, LM and
RM represent the left and right module proposed
in GTS. As such, the solving template could guide
the entire tree decoding process step by step.

v € Vo
else

4.2.3 Training

Cross Entropy Loss For a problem expression
pair (X, Y) in training data, our objective is to min-
imize cross entropy loss [, which is defined as the
sum of negative log-likelihood of the probabilities
for predicting each token y;:

= —log(p(yi| X)))

where p(y;|X) is the probability calculated with
the decoding score s(y|X):

exp(s(yi| X))
2 y;€Viar €TP(8(5] X))

I(X,Y)

p(yil X) =

10)

Training
Data

Problem Bank T

Given: A set of sportswear

—— Trained Retriever

Retrieved: The canteen bought 135 kg of
potatoes. After one week, there is (1/3)

Mask Duplicate left. How many potatoes were eaten?

sells for $240. The top Sells (5/

8) of the selling price. Ifyou — T B HLeetEs

for Generation

Problems x=135*(1-(1/3))
Solving
* N - 1 N Template
]]] Encoder
l Aligned Guidance l
Gated N + + 4/ Tree
initialization Decoder

buy only pants. How much
should you pay?

Y Y Y Y Y
* 240 - 1 5/8

Figure 3: The inference process of our generative model. Given a problem, a trained retriever extracts a logically
consistent problem. Then its solving template is leveraged into decoding procedure to generate the expression.

Artificial Noise Our retriever inevitably retrieves
some wrong problems. To simulate this scenario
and to improve the robustness of our generative
model, we introduce a hyper-parameter teacher
rate ¢ to add extra artificial noises. During train-
ing, given a problem X;, a random number n and
teacher rate ¢, we provide a problem from P; when
n is smaller than ¢, otherwise we randomly sample
one from IV;.

S Experiment

5.1 Experimental Settings

Datasets Three datasets are used in this research.
Ape210K (Zhao et al., 2020) consists of 210, 488
Chinese MWPs. Since different previous works
(Wu et al., 2021; Liang et al., 2021; Zhao et al.,
2020; Mikolov et al., 2013) applied different data
filtering strategies and obtained their own ver-
sion of the dataset, which makes comparison in-
equitable. Due to this reason, we utilize Ape210k
just for problem bank construction. Math23K
dataset (Wang et al., 2017) is labeled with 22, 161
elementary Chinese MWPs for training and 1, 000
MWPs for testing. Following most previous works,
we experiment on the original split of data and con-
duct 5-fold cross-validation as well. We also want
to evaluate MATHion on a widely-used English
dataset MAWPS (Koncel-Kedziorski et al., 2016).
But we have not found the appropriate English
dataset for constructing problem bank. There exists
large-scale English datasets but they follow very
different annotation format with MAWPS (Amini
et al., 2019; Cobbe et al., 2021), thus we propose
MAWPS’s Chinese version CMWP. To this end,

we first use online translation tool® and then proof-
read it manually. Except for the language, all other
settings remain the same. Likewise, we conduct
5-fold cross-validation on CMWP.

Configuration All words appearing less than 5
times are replaced by unknown token. All param-
eters are trained from scratch and initialized ran-
domly. We utilize the training set and Ape210K to
construct the entire problem bank. The duplicate
problems are masked during retrieving to prevent
leaking answer expression. The constant n for
constructing a batch dynamically is set as 3 for
Math23K and 2 for CMWP. The constant B is 64.
The teacher rate ¢ is set as 0.825 for both datasets.
Following previous works, we use answer accuracy
to evaluate our MWP solver, the expression is con-
sidered correct if it induced the same number as
the ground truth. To evaluate our retrieval model,
we employ top-k accuracy which is defined as the
number of times where top k& problems retrieved
contain at least one positive problem belonging to
positive set P.

Baselines We conduct a comprehensive compari-
son with the following baselines: DNS (Wang et al.,
2017): a sequence-to-sequence model that directly
maps problems to expressions. DNS-Re (Wang
et al., 2017): a variant of DNS that combines a
word frequency based retriever. T-RNN (Wang
et al., 2019): a recursive neural network that pre-
dicts the missing operators of the predicted expres-
sion template. T-RNN-Re (Wang et al., 2019): T-
RNN combined with a word frequency based re-
triever. GTS (Xie and Sun, 2019): our backbone
model. G2T (Zhang et al., 2020c): a GTS based

Zwww.deepl.com

Model Math23K Math23K* CMWP*
DNS - 58.1% -
DNS-Ret - 64.7% -
T-RNN - 66.9% -
T-RNN-Ret - 68.7% -
GTS 75.6% 74.3% 68.9%
G2T 77.4% 75.5% 70.7%
KA-S2T 79.3% 76.3% 72.2%
TS-G2T 79.1% 77.2% 71.0%
NUMS2T 79.6% 78.1% 74.2%
REAL-0 - 79.9% -
REALf} 82.3% 80.8% -
MATHion-RR} 76.2% 75.1% 67.71%
MATHiont 84.0% 81.9% 77.2%

Table 1: The answer accuracy results of MATHion and
other baselines on Math23K and CMWP dataset. * de-
notes the 5-fold cross validation. { denotes the methods
that combine a retriever. The italic numbers are not re-
ported in original paper and obtained by running the
public released codes. The other results are collected
from the original paper.

solver that designs a graph network to enrich quan-
tity representations. KA-S2T (Wu et al., 2020):
a knowledge-aware GTS in which the entities in
the problem and their categories are modeled as an
entity graph. TS-G2T (Liang and Zhang, 2021):
a G2T based model with an extra teacher mod-
ule that makes the MWP encoding vector match
the correct solution and disaccord from the wrong
ones. NUMS2T (Wu et al., 2021): a KAS2T based
model that explicitly incorporate numerical value
information via the proposed number encoder and
the auxiliary tasks. REAL (Huang et al., 2021):
the first model that learns to solve MWP using
human-like analogical learning way and it contains
a memory module (REAL retriever), BERT ini-
tialized representation module, BERT initialized
analogy module and a reasoning module. REAL-
0 (Huang et al., 2021): REAL without memory
module. MATHion-RR: our generation model
trained with teacher rate set as 0.55 and tested using
problems retrieved by REAL retriever.

5.2 Overall results

The evaluation results of our model and the base-
lines are summarized in Table 1. There are the
following observations: 1) MATHion has achieved
a substantial gain over all baselines on all datasets.
This should owe to the good performance of our
proposed retrieval model since the answer accu-
racy drops severely if we employ the problems
retrieved by the REAL retriever. 2) By comparing
the performance of DNS-Re over DNS, T-RNN

over T-RNN-Re, REAL over REAL-0, MATHion
over GTS, we find that the retrieved problems do
effectively help and our method brings the great-
est improvement. DNS-Re surpasses DNS by 6.6%
since the DNS can only solve a part of the problems
that can be directly solved by the TF-IDF retrieval
model. REAL surpass REAL-0 by only 0.9% since
the BERT-initialized REAL-0 model already solves
most problems. MATHion outperforms its back-
bone model GTS by 7.6%, illustrating that the logi-
cally consistent problems are tremendously helpful.
3) Compared with other GT'S based baselines (G2T,
KAS2T, NUMS2T) that integrate different kinds
of knowledge, leveraging the information from the
logically consistent problems is more effective. 4)
The accuracy on CMWP is positively correlated
with the accuracy on MATH?23k, and the gaps be-
tween methods are similar too, which manifests
that the results on CMWP are reasonable and the
proposed CMWP is of high quality.

5.3 Ablation Study

top-k Math23K Math23K* CMWP*
DNS-Re Retriever
1 34.2% 31.20% 49.15%
3 43.9% 42.09% 60.99%
5 49.9% 48.00% 65.38%
10 57.9% 55.78% 70.49%
REAL Retriever
1 52.3% 50.81% 55.49%
3 63.0% 61.52% 66.70%
5 67.2% 66.41% 70.54%
10 72.6% 72.39% 74.80%
MATHion Retriever

1 83.0% 81.59% 80.76%
3 88.0% 88.03% 82.79%
5 88.1% 89.50% 83.55%
10 91.4% 91.05% 84.65%

Table 2: The top-1, top-3, top-5 and top-10 accuracy
of DNS-Re retriever, REAL retriever and MATHion re-
triever. * denotes the results of five fold cross valida-
tion. The results of DNS-Re retriever and REAL re-
triever are obtained by reproduction.

Retriever Performance Since our generation
model is based on our retriever, we report the per-
formance of our retriever as well. To our best ac-
knowledgment, few studies improve their model
by retrieving associated questions. Moreover, there
was not an acknowledged evaluation indicator since
the ground truth of whether two problems are re-
lated is not given. Following our positive problem

Given Problem

Retrieved Problem

The farm harvested 24.2 tons of apples this autumn, which is 0.2 In the long history of the planet, 90979 species of birds
tons more than the 80% of pears harvested. How many tons of have died out, 769 more than 10 times the number of birds

pears were harvested?
x= (24.2-0.2)/80%

today. How many species of birds exist?
x=(90979-769)/10

The red balls are 4 times the black balls. Touch one random ball at The sum of a number expanded to 10 times and this original
a time. After several touches, what is the ratio of the red ball number is 84.15. What is the original number?

touched?
x=4/ (4+1)

x=84.15/ (10+1)

The building has 4 floors, each with 5 classrooms. 120 lamps are The farm has 5 barns, each barn is with 20 cows. Feed all

installed. How many lamps are installed in each classroom on cows 1200 kg of feed a day. How much feed to each cow

average?
x=120/4/5

on average per day?
x=1200/ (20*5)

Mum buys cabbage for $1.80 a kilo. The price of potatoes is 1.5 A cow weighs 156 kg. An elephant weighs 36 times as
times the price of cabbage. How much more expensive are the much as this cow How many kilograms does this elephant

potatoes than the cabbage per kilo?
x=1.8%(1.5-1)

weigh more than this cow?
x=156%36-156

Figure 4: The cases chosen form Math23K and translated. The problems given and retrieved are not necessarily
the same in terms of semantic context and solving expression, but are logically consistent.

pairs construction method, we can exploit top-k
accuracy as evaluation metrics to evaluate the re-
trieval performance. In this research, we select two
retrievers of the previous state-of-the-art works as
baselines. 1) DNS Retriever (Wang et al., 2017): a
traditional statistical word frequency based TF-IDF
retriever. 2) REAL Retriever (Huang et al., 2021):
a word2vec based retriever that calculates the av-
erage of all word tokens’ embedding to represent
the whole problem and employs MIP search algo-
rithm. As shown in Table 2, MATHion retriever
performs much better than the other two methods.
DNS-Re retriever does not perform well because
it only attends to the word co-occurrence relations
between questions. REAL-retriever performs bet-
ter as it integrates certain semantic information.
However, both of them can not succeed in deduc-
ing whether two problems are logically consistent.
Because they heavily rely on textual information of
the problem, as such they are likely to be misled by
the problems that are textually similar but logically
different.

Case Study To illustrate that our retrieval model
does partly see through the narrative description
and perceive the intrinsic logic of the problems,
we give the following cases shown in Fig. 4. We
observe that although the given problems and re-
trieved problems do not always share similar texts,
the intrinsic logic is consistent. Such as the first line
in Fig. 4, the given problem discusses the harvest
in the orchard, whereas the retrieved problem takes
the species of birds as semantic context, but we
can use the identical template to solve both prob-

lems because the essence of them is alike. In addi-
tion, we also find that the top-k accuracy is not a
completely accurate evaluation indicator since our
positive pairs construction method cannot cover all
logically consistent problems, such as a x (b + ¢)
and a X b+ a X c are equivalent mathematically but
are treated as negative pairs. However, our retrieval
model still breaks through this limitation. Such as
the third and the fourth line in Fig. 4, the given
problems and retrieved problems have different se-
mantic contexts, different solution templates, but
the same intrinsic logic.

Effect of the Proposed Gate and Aligned Guid-
ance Mechanism We conduct ablation study on
Math23K to investigate the effect of our proposed
gated initialization and aligned guidance mecha-
nism. The experimental results in the Table 3 show
that both two mechanisms bring improvement. We
also observe that although without those two mech-
anisms, our model still achieves very comparable
performance, further illustrating the importance of
logical consistency between math word problems.

Model | Math23k Math23K*
MATHion 84.0% 81.93%
w/o gate 83.4% 81.31%
w/o guidance 83.3% 81.35%
w/o gate & guidance 83.0% 81.18%

Table 3: Ablation study results on gated initialization
and aligned guidance mechanism. w/o gate means the
root node embedding is directly initialized as gy

Influence of teacher rate As aforementioned, in
order to simulate the distribution of retrieval results,
we introduce a parameter teacher rate ¢ to add arti-
ficial noises during training. To investigate its influ-
ence, we first randomly re-split the entire Math23K
dataset in the ratio of 8:1:1 and train a retrieval
model of which top-1 accuracy attains 79.6% on
the test set and 81.2% on the development set. Then
we train our generative model by setting ¢ as differ-
ent values, the results are presented in Fig. 5. We
find that the teacher rate significantly affects the
model’s performance. Because we use it to control
the ratio of problems from F; and N; while train-
ing our generative model. Either larger or smaller
teacher rate increases the distribution gap between
training data and testing data. The model suffers
from the overmuch wrong information when ¢ is 0.
Conversely, the model fully relies on the retrieved
results when ¢ is 1. The appropriate value is 0.8
because it is the closest to the top-1 accuracy.

0.85 +

o—dev ans acc
—e—test-ans acc

o—dev equ acc
0.60 - —e—test equ acc

0 0.2 0.4 0.6 0.8 1

Figure 5: Answer and equation accuracy of the genera-
tive model trained with different teacher rate.

5.4 Model Analysis

Performance on problems with different num-
ber of quantities Figure 6 illustrates how our
method and several baselines perform on problems
with different number of quantities. For retrieval
stage, when the quantity is less than 5, although
there are many such problems in the problem bank,
our retriever can still find the logically consis-
tent problems, while the performance of REAL
retriever is relatively poor. Conversely, when there
are more quantities, the simple GRU has difficulty
understanding the internal logic of the problem, but
the REAL retriever achieves better results because
such problems are rarely distributed in the prob-
lem bank and are textually similar. For generation
stage, MATHion has achieved the best performance
when the quantity is less than 4 but its performance
declines when quantity gets more.

100.00%
80.00%

60.00%

40.00% \\

\]
20.00% I
o M I - _ _
<1 2 3 4 5

6 >7

MATHion
----Our retriever

—e—NUMS2T
REAL retriever

-— Prup;optiun inPB
MATHion-RR

Figure 6: The answer accuracy and top-1 retrieval ac-
curacy on problems with different number of quantities.
PB is short for problem bank.

Performance on problems of different length
Figure 7 illustrates how our retriever and REAL
retriever perform on problems of different lengths.
As the problems get longer, the encoding capability
of GRU becomes relatively inadequate, thus the
top 1 accuracy declines almost linearly and reduces
to nearly 50% when the problem contains more
than 90 characters. As for REAL retriever, once
the problem length exceeds 20 the accuracy drops
to below 50% severely.

100.00%

94.79% ——MATHion topl rerieval accuracy

90.00% ——REAL topl retrieval accuracy

80.00% 77.47%

70.00%

66.38%
60.00%

50.00% ~——,
51.68% y
N S e TN~
;
46. 88/04529% 47.08% 17%
40.00%
<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 >90

Figure 7: Performance of our retriever and REAL re-
triever on problems with different lengths.

6 Conclusion

In this work, we proposed MATHion which solves
MWPS with logically consistent problems. Unlike
previous textual similarity based retriever, we inves-
tigated the logical consistency between problems
through contrastive learning and incorporate this
information into the generative procedure. The ex-
perimental results have proved that it outperforms
most previous methods. Except for MWPs, it can
also be employed on other generative tasks such as
abstract generation and machine translation.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable
math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2357-2367.

Eugene Charniak. 1969. Computer solution of calcu-
lus word problems. In Proceedings of the 1st Inter-
national Joint Conference on Artificial Intelligence,
pages 303-316.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey E. Hinton. 2020. A simple framework
for contrastive learning of visual representations. In
Proceedings of the 37th International Conference on
Machine Learning, pages 1597-1607.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1724—1734.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Ja-
cob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to
solve math word problems. CoRR, abs/2110.14168.

S. Deepak and P. M. Ameer. 2020. Retrieval of brain
MRI with tumor using contrastive loss based similar-
ity on googlenet encodings. Comput. Biol. Medicine,
125:103993.

Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev,
and Hervé Jégou. 2021. Training vision transform-
ers for image retrieval. CoRR, abs/2102.05644.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020. Momentum contrast for
unsupervised visual representation learning. In Pro-
ceedings of the 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9726—
9735.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang, and
Song-Chun Zhu. 2021. Learning by fixing: Solving
math word problems with weak supervision. In Pro-
ceedings of the 35th AAAI Conference on Artificial
Intelligence, pages 4959-4967.

Danqging Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 213-223.

Danqging Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In Proceedings of the

2017 Conference on Empirical Methods in Natural
Language Processing, pages 805-814.

Shifeng Huang, Jiawei Wang, Jiao Xu, Da Cao, and
Ming Yang. 2021. Recall and learn: A memory-
augmented solver for math word problems. CoRR,
abs/2109.13112.

Ashish Jaiswal, Ashwin Ramesh Babu, Moham-
mad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. 2020. A survey on contrastive self-
supervised learning. CoRR, abs/2011.00362.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6769—
6781.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 1152—1157.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1545-
1556.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 2841-2852.

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xi-
angliang Zhang. 2021. MWP-BERT: A strong
baseline for math word problems. CoRR,
abs/2107.13435.

Zhenwen Liang and Xiangliang Zhang. 2021. Solving
math word problems with teacher supervision. In
Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence, pages 3522-3528.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
2370-2379.

Song Liu, Haoqi Fan, Shengsheng Qian, Yiru Chen,
Wenkui Ding, and Zhongyuan Wang. 2021. Hit: Hi-
erarchical transformer with momentum contrast for
video-text retrieval. CoRR, abs/2103.15049.

Tomdas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of 1st Inter-
national Conference on Learning Representations.

Anirban Mukherjee and Utpal Garain. 2008. A review
of methods for automatic understanding of natural
language mathematical problems. Artificial Intelli-
gence Review, 29(2):93-122.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing, pages 5870-5881.

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned univer-
sal tree-structured solver for math word problems.
In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3780-3789.

Benjamin Robaidek, Rik Koncel-Kedziorski, and
Hannaneh Hajishirzi. 2018. Data-driven meth-
ods for solving algebra word problems. CoRR,
abs/1804.10718.

Yibin Shen and Cheqing Jin. 2020. Solving math word
problems with multi-encoders and multi-decoders.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2924-2934.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,

pages 1132-1142.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive multiview coding. In Proceedings of
16th European Conference on Computer Vision, vol-
ume 12356, pages 776-794.

Shih-hung Tsai, Chao-Chun Liang, Hsin-Min Wang,
and Keh-Yih Su. 2021. Sequence to general tree:
Knowledge-guided geometry word problem solving.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, pages 964-972.

Aédron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. CoRR, abs/1807.03748.

10

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating math word
problem to expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064—10609.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. MathDQN:
Solving arithmetic word problems via deep rein-
forcement learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
pages 5545-5552.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence,
pages 7144-7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845—
854, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuanjing
Huang. 2020. A knowledge-aware sequence-to-tree
network for math word problem solving. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 7137-7146.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. 2021. Math word problem solving with
explicit numerical values. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing, pages

5859-5869.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 5299—
5305.

Dongxiang Zhang, Lei Wang, Luming Zhang,
Bing Tian Dai, and Heng Tao Shen. 2020a. The
gap of semantic parsing: A survey on automatic
math word problem solvers. [EEE Transactions

on Pattern Analysis and Machine Intelligence,
42(9):2287-2305.

Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Gra-
ham Neubig, and Satoshi Nakamura. 2018. Guiding
neural machine translation with retrieved translation
pieces. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-

nologies, pages 1325-1335.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei
Qin, Lei Wang, Jie Shao, and Qianru Sun. 2020b.
Teacher-student networks with multiple decoders for

solving math word problem. In Proceedings of the
29th International Joint Conference on Artificial In-
telligence, pages 4011-4017.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020c. Graph-to-
tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928—
3937.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. CoRR,
abs/2009.11506.

A The algorithm for describing the
entire tree decoding process

Here we present the entire tree decoding process
in Algorithm 1. All module mentioned such as
Predict-module, LM are comletely defined in the
paper of Xie and Sun (2019), see original paper for
more concrete definition.

Algorithm 1: Tree decoding process
Input: g and {h;,i € [1,m]}
Output: pre-order traversal expression

Stepl: Calculate context vectors c

Step2: Generate g; and predict g
while ¢ is an operator do
¢ = Predict-module(q;, ¢);
q = LM(q; e(gx));

¢ = Context-module(q, hy, -+, hm)

Step3: Generate ¢, predict token 3, and
combine the embedding of subtree

if ¢, is an operator then go to Step2;

else go to step 4;

Step4: backtrack to find empty right node
if empty position exists then go to Step2;
else generation completed;

B Influence of the temperature while
contrastive training

Influence of temperature The temperature 7 in
Eq. (4) is to control the difficulty of distinguish-
ing positive examples from negative ones. It has
a significant impact on the results of contrastive
learning. To explore its influence, we randomly
split the Math23K in the ratio of 8:1:1 and train
our retrieval model with different value of 7 and
present the results in Fig. 8. The performance is

11

0.9

0.85 =——topl

—@—top3
0.8

0.6

0.05

0.55 0.02° 0.1

0.15

0.2 0.5 1

Figure 8: The topl and top3 accuracy of different 7

the best when 7 = 0.1, and the performance of the
retrieval model is not very sensitive to 7 when 7 is
smaller than 0.1. Conversely, it decrease severely
when 7 getting larger because a large temperature
may make this task to hard for simple GRU to learn.
In this work, we set 7 as 0.1 in our experiments.

