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Abstract

Solving the math word problems (MWPs) is001
a challenging task. Some existing MWP002
solvers retrieve textually similar problems and003
draw on their solution to solve the given004
problem. However textually similar ques-005
tions are not guaranteed to have similar solu-006
tions. And questions could share the same so-007
lution but with different descriptions. There-008
fore in this work, we investigate the logi-009
cal consistency among different problems and010
propose a novel framework named MATH-011
ion which solves math word problems with012
the logically consistent problems. Experimen-013
tal results show that our method outperforms014
many strong baselines, including some pre-015
trained language model based methods. Fur-016
ther analysis shows that our retrieval method017
can learn the logical similarity between ques-018
tions and plays a key role in our model’s per-019
formance.020

1 Introduction021

Solving a Math Word Problem (MWP) is to take022

a mathematical descriptive problem as input and023

then generate an expression that can be evaluated024

to obtain the final answer (Zhang et al., 2020a). It025

needs the machine to extract relevant information026

from natural language text and perform mathemati-027

cal reasoning to solve it (Patel et al., 2021).028

Modern deep learning based MWP solvers usu-029

ally adopt an encoder-decoder framework (Huang030

et al., 2018; Shen and Jin, 2020; Liu et al., 2019).031

Some methods propose sophisticated models for032

encoding quantities mentioned in the problem to033

produce a good expression (Shen and Jin, 2020;034

Tsai et al., 2021; Zhang et al., 2020c; Li et al.,035

2020; Qin et al., 2021). Some other methods re-036

trieve similar problems from a problem bank and037

leverage their solutions to help solving the given038

problem. For instance, Robaidek et al. (2018) and039

Wang et al. (2019) have employed Jaccard and Co-040

sine similarity metrics, Wang et al. (2017) have uti-041

Problem 1: Mary is 5 years old and Mike is 2 

years older than her, so how old is Mike? 

Expression: x = 5 + 2

Solving template: x = N + N

Problem 2: Mary is 5 years old and Mike is 2 

years younger than her, so how old is Mike? 

Expression: x = 5 – 2

Solving template: x = N - N 

Problem 3: Stephen had 10 cows. His brother 

gave him 2 cows and 15 chickens, how many 

cows does he have now? 

Expression: x = 10 + 2

Solving template: x = N + N

Textually

Similar

Logically

Consistent

Figure 1: Example of the textually similar problems
and logically consistent problems.

lized word frequency based TF-IDF model, Huang 042

et al. (2021) encode problems with word2vec em- 043

beddings and then use Maximum Inner Product 044

(MIP) to retrieve similar problems. 045

The previous retrievers usually tended to rely 046

on textual similarity to find the most similar prob- 047

lem. However, textually similar problems are not 048

guaranteed to have the similar solutions. Hence the 049

similarity between problems should focus more on 050

the logical perspective. For the rest of this paper, 051

we say that two math word problems are logical 052

consistent if they have the same solving template. 053

Taking Fig. 1 for an example, although the problem 054

1 and the problem 2 only have one different word 055

(“older” has been changed to “younger”), their so- 056

lution is completely different. Hence they are tex- 057

tually similar but not logically consistent. 058

Since textual similarity based retrievers could 059

be easily confused by this kind of problems, they 060

tend to introduce noisy information. Therefore, the 061

need of a retriever that can see through the narrative 062

description and perceive the intrinsic logic of the 063

problem arises urgently for solving MWPs. 064

In this paper, we propose a contrastive learn- 065

ing based “retrieve-then-generate” approach named 066

MATHion, which solves math word problems with 067
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the logically consistent problems. Compared with068

the previous methods, we employ contrastive learn-069

ing to train the retriever to mainly focus on the log-070

ical consistency instead of textual similarity when071

extracting similar problems. Besides, we propose a072

gated initialization and an aligned guidance mecha-073

nism thus the model could regard the solving tem-074

plate of the problem retrieved as hints to generate075

the final calculation formula.076

The main contributions of this work are as fol-077

lows: 1) We introduce a new method to retrieve078

logically consistent problems. To the best of our079

knowledge, this is the first attempt to consider the080

logical consistency among MWPs. 2) We pro-081

pose two novel components, a gated initialization082

method and an aligned guidance mechanism, to083

integrate the retrieved solving template with our084

backbone generative model. 3) Experimental re-085

sults show that our method outperform all baselines,086

including some pre-trained language model based087

methods.1.088

2 Related Works089

The methods for solving Math Word Problems090

(MWPs) can be dated back to the 1960s (Char-091

niak, 1969), and range from the rule-based meth-092

ods (Mukherjee and Garain, 2008), semantic pars-093

ing based methods (Kwiatkowski et al., 2013; Shi094

et al., 2015; Huang et al., 2017) to deep learning095

based methods (Wang et al., 2018, 2019; Qin et al.,096

2020; Zhang et al., 2020b; Hong et al., 2021). Cur-097

rent deep learning based approaches usually regard098

solving MWPs as a sequence to sequence task and099

adopt an encoder-decoder framework to generate100

the solution. Extensive efforts are devoted to ob-101

taining more accurate and substantial embedding102

of the input text (Wu et al., 2020; Tsai et al., 2021;103

Zhang et al., 2020c; Shen and Jin, 2020; Li et al.,104

2020; Qin et al., 2021). But the retrieval-based105

methods are relatively rare (Wang et al., 2019,106

2017; Huang et al., 2021), it is probably because107

the current textual similarity based retrievers do not108

performs very well, which motivates us to develop109

a novel retriever to capture the logical consistency110

among problems.111

Contrastive Learning (CL) has recently shown112

its high efficiency for learning representations in a113

self-supervised manner for both computer vision114

(Chen et al., 2020; He et al., 2020) and natural115

language processing domains (Jaiswal et al., 2020;116

1The code and data are available at “anonymous”

Tian et al., 2020). Many previous works also used 117

CL for training a neural network model to retrieve 118

relevant examples, such as passages (Zhang et al., 119

2018; Karpukhin et al., 2020), images (El-Nouby 120

et al., 2021; Deepak and Ameer, 2020) and even 121

videos (Liu et al., 2021). 122

3 Preliminary 123

In this section, we give the problem definition 124

and briefly review our backbone generative model 125

GTS (Xie and Sun, 2019). 126

3.1 Problem Definition 127

Formally, the MWP is formulated as follows: given 128

a sequence of words X = (x1, x2, . . . , xm) as the 129

input problem, our goal is to generate expression 130

Y = (y1, y2, . . . , yn), which is the pre-order traver- 131

sal sequence of a binary math expression tree (Liu 132

et al., 2019). All numbers in the original prob- 133

lems X are replaced with the special token num 134

and all non-constants numbers in Y are replaced 135

with the special token numi where i is the order of 136

the number’s appearance. Thus for each problem 137

X , the set of numbers appearing in X is defined 138

as V = (num1, num2, . . . , numk). When gener- 139

ating expression Y , the entire output vocabulary 140

contains V , the constants and the operators. 141

3.2 GTS Model 142

GTS (Xie and Sun, 2019) is a auto-regressive 143

sequence-to-tree model to generate math expres- 144

sion tree in following steps. 145

Encoding An embedding layer and a bidirec- 146

tional GRU (Cho et al., 2014) are employed to 147

encode all tokens (x1, x2, . . . , xm) in problem X 148

as (h1, h2, . . . , hm). The final hidden states in for- 149

ward and backward directions are concatenated to 150

obtain hX for representing problem X . 151

Initialization To start the tree decoding process, 152

the root embedding and the target vocabulary 153

should be initialized. The root node embedding 154

q0 is initialized as hX . The target vocabulary Vtar 155

contains three parts, i.e., the operators Vo, the con- 156

stants Vcon, and the numbers appearing in problem 157

V . The embedding in Vtar are initialized by the 158

following equation: 159

e(y|X) =


Eop(y) if y ∈ Vo
Econ(y) if y ∈ Vcon
hloc(y,X) if y ∈ V

(1) 160
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where Eop and Econ are two embedding matrices,161

loc(y,X) is the index position of y in X .162

Tree decoding The whole tree decoding process163

involves following modules: (1) Context module:164

given a goal vector q and the encoder outputs, it165

derives a context vector c. (2) Predict module:166

given goal vector q and context vector c, it calcu-167

lates the decoding score s(y|X) of all the tokens in168

Vtar. The predicted token ŷ is assigned to the token169

that gets the highest score. (3) Merge module: a170

recursive neural network to encode the left sub-tree171

as an embedding tl. (4) Left and right module:172

Given current goal vector q and predicted token ŷ.173

If ŷ is an operator, left module is used to generate174

the left sub-goal ql = LM(q, e(ŷ|X)). Otherwise,175

the right module takes into account the embedding176

tl of left sibling and generate the right sub-goal177

qr = RM(q, tl, e(ŷ|X)), where LM and RM are178

trainable networks defined in the original paper.179

As such the entire tree decoding procedure can180

be summarized as follows: the numbers are leaf181

nodes, and the operators are non-leaf nodes and182

must have two children. After initialization, the183

left child node is repeatedly generated according184

to the matching score s(y|X) until it is a leaf node.185

Afterward, merge module encodes the left subtree186

in a bottom-up manner and right module generates187

the right child nodes until the whole tree is filled up188

(See Algorithm 1 in Appendix A for more details).189

4 Methodology190

In order to imitate logically consistent problems,191

MATHion extends the encoder-decoder framework192

with a logical retriever. It contains two stages:193

1) Retrieval Stage: As illustrated in Fig. 2, the194

problems with same solving template are regarded195

as positive problem pairs, then the contrastive loss196

is employed to train our retriever. Afterward, the197

trained retriever serves to extract problems from the198

problem bank to help the subsequent generation.199

2) Generation Stage: GTS (Xie and Sun, 2019)200

is deployed as our backbone generative model in201

this stage. Given a retrieved problem (could be202

wrong), we propose a gated initialization to partly203

filter out the wrong information and use its solving204

template as guidance in each generation step.205

4.1 Retrieval Stage206

Encoder An embedding layer and a two-layer207

bidirectional GRU (Cho et al., 2014) are employed208

as the encoder to map each MWP to a dense vector.209

Anchor Problem: Mary is 5 

years old and Mike is 2 years 

older than her, so how old is 

Mike? 

Expression: x = 5 + 2

Solving template: x = N + N

Contrastive loss

Negatives

(-)

Positives

(+)

Problem: Mary is 5 years old and 

Mike is 2 years younger than her, 

so how old is Mike? 

Expression: x = 5 – 2

Solving template: x = N – N

Problem: Mary is 5 years old and 

Mike is 2 years younger than her, 

so how old is Mike? 

Expression: x = 5 – 2

Solving template: x = N – N

Problem: ……
Solving template: x = N * N

Problem: ……
Solving template: x = N * N

…………

In batch negative strategyIn batch negative strategy

Problem: Mary is 5 years old and 

Mike is 2 years younger than her, 

so how old is Mike? 

Expression: x = 5 – 2

Solving template: x = N – N

Problem: ……
Solving template: x = N * N

……

In batch negative strategy

Problem: Stephen had 10 cows. His 

brother gave him 2 cows and 15 

chickens, how many cows does he 

have now? 

Expression: x = 10 + 2

Solving template: x = N + N

Problem: Stephen had 10 cows. His 

brother gave him 2 cows and 15 

chickens, how many cows does he 

have now? 

Expression: x = 10 + 2

Solving template: x = N + N

Problem: ……
Solving template: x = N + N

Problem: ……
Solving template: x = N + N

…… …… 

Dynamically sampled from problem bankDynamically sampled from problem bank

Problem: Stephen had 10 cows. His 

brother gave him 2 cows and 15 

chickens, how many cows does he 

have now? 

Expression: x = 10 + 2

Solving template: x = N + N

Problem: ……
Solving template: x = N + N

…… 

Dynamically sampled from problem bank

Problem: Mary is 5 years old and 

Mike is 2 years younger than her, 

so how old is Mike? 

Expression: x = 5 – 2

Solving template: x = N – N

Problem: ……
Solving template: x = N * N

……

In batch negative strategy

Problem: Stephen had 10 cows. His 

brother gave him 2 cows and 15 

chickens, how many cows does he 

have now? 

Expression: x = 10 + 2

Solving template: x = N + N

Problem: ……
Solving template: x = N + N

…… 

Dynamically sampled from problem bank

Figure 2: Our contrastive learning based retriever. The
problems with the same solving template are positives.
During training, each batch is dynamically composed
to allow our model to see more diverse examples.

Afterwards the average of all word tokens’ hidden 210

states is calculated to represent the entire problem 211

and denoted as H . 212

Positive and Negative Problem Pairs Construc- 213

tion To employ contrastive learning, we first need 214

to tell the model which problems are logically con- 215

sistent and which are not. Hence, given two differ- 216

ent problems (Xi, Xj) and their corresponding ex- 217

pressions (Yi, Yj), we replace all numbers (except 218

constants) in expression with token N to obtaining 219

their solving templates Y ′
i and Y

′
j . For example 220

10 + 2 changes to N + N when transferred into 221

solving template. If Y
′
i = Y

′
j , we regard (Xi, Xj) 222

as a positive pair. Since there is possibly more than 223

one problem that can form positive pair with Xi, 224

we call this set Pi. If Y
′
i 6= Y

′
j , they are regarded as 225

a negative problem pair and the negative set for Xi 226

are defined as Ni. It is worth noting that although 227

Y
′
i = Y

′
j is not the necessary and sufficient con- 228

dition to the logical consistency of problem pair 229

(Xi, Xj) since one expression Y may have many 230

equal variants, we will prove the feasibility of our 231

method through experiments. 232

Dynamic Batch Composition Assume that we 233

have randomly grabbed B problems (i.e., {Xi|i ∈ 234

[1, B]}) from training data, in order to ensure each 235

problem Xi has at least n positive examples in 236

this mini-batch and allow our model to see more 237

diverse examples, we propose a dynamic batch 238

composition technique. Specifically, for problem 239

Xi, we concatenate another n positive problems 240
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that are randomly sampled from the problem bank.241

As such we dynamically formed a batch with batch242

size (n+1)B, and each problem could see multiple243

positive and negative problems in different epoch244

during training.245

Contrastive Loss Since CL aims at reducing the246

distance between positive samples and pushing247

away the negative ones, it is coherent with our248

needs of clustering logically consistent problems249

and separating the inconsistent ones. Thereby we250

utilize InfoNCE loss function (van den Oord et al.,251

2018) and In-batch negatives strategy (Karpukhin252

et al., 2020) for contrastive learning. Given a batch253

of problems (X1, · · · , X(n+1)B), they are encoded254

as (H1, · · · , H(n+1)B). For problem Xi, its posi-255

tive set Pi and negative set Ni are also given, then256

the InfoNCE loss Li for Xi in this batch is defined257

as:258

Li = − log
dpi

dpi + dni
, (2)259

dpi =
∑

Xj∈Pi

exp

(
HT

j Hi/τ

||Hj || · ||Hi||

)
, (3)260

dni =
∑

Xj∈Ni

exp

(
HT

j Hi/τ

||Hj || · ||Hi||

)
, (4)261

where τ is a hyper-parameter called temperature,262

thus the final loss for this mini-batch is:263

L = E{Xi|i∈[1,(n+1)B]}[Li] (5)264

Memory queue During training, we maintain265

and update a queue to store the representations266

of all problems in the problem bank. During in-267

ference, we retrieve the problem with the highest268

cosine similarity score in the problem bank.269

4.2 Generation Stage270

4.2.1 Solving Template Encoder271

Given a problem retrieved and its corresponding272

solving template Y
′
, we first use an embedding273

layer to map tokens in Y
′

into dense vectors. After-274

ward, a one-layer bidirectional GRU is exploited to275

encode sequential information. Finally, we calcu-276

late the sum of the final hidden states in forward
−→
hyn277

and backward
←−
hy0 for representing the entire solving278

template:279

hyi = [
−→
hyi ,
←−
hyi ], hY ′ =

−→
hyn +

←−
hy0 (6)280

where hyi and hY ′ represent the hidden states of281

tokens and of Y
′
, respectively.282

4.2.2 Gated Initialization and Aligned 283

Guidance Mechanism 284

Gated Initialization Since the first token de- 285

coded is very crucial in the auto-regressive model, 286

we incorporate solving template embedding hY ′ 287

right from the initialization. The original GTS 288

model only initialize the root node with the prob- 289

lem embedding hX , here we propose a gated mech- 290

anism to fuse these two embeddings hY ′ and hX : 291

292

q0 = tanh(W1 · q̂0) ◦ sigmoid(W2 · q̂0), (7) 293

where q̂0 = [hX , hY ′ ],W1 andW2 are trainable pa- 294

rameters, [, ] and ◦ represent the concatenation and 295

the element-wise multiplication of vectors respec- 296

tively. Since the retrieval model cannot achieve per- 297

fect accuracy, the retrieval problems are inevitably 298

mixed with some wrong results. This gate mecha- 299

nism is to adjust the portion of hY ′ ’s contribution. 300

Aligned Guidance In an auto-regressive model, 301

the token generated previously has a significant 302

impact on the next, thereby we utilize the solving 303

template of problem retrieved to guide the tree de- 304

coder in each generation step. As mentioned in 3.2, 305

the original GTS model decodes each token accord- 306

ing to the goal vector, which is generated using its 307

left or right module, here as shown in Fig. 3, we 308

add the embedding hyi+1 to provide extra guiding 309

information when generate the goal vector qi+1: 310

qi+1 =

{
LM(qi, e(ŷi|X)) + hyi+1 ŷi ∈ Vo
RM(qi, e(ŷi|X), tl) + hyi+1 else

(8) 311

where i denotes the i-th generation step, LM and 312

RM represent the left and right module proposed 313

in GTS. As such, the solving template could guide 314

the entire tree decoding process step by step. 315

4.2.3 Training 316

Cross Entropy Loss For a problem expression 317

pair (X,Y ) in training data, our objective is to min- 318

imize cross entropy loss l, which is defined as the 319

sum of negative log-likelihood of the probabilities 320

for predicting each token yi: 321

l(X,Y ) =
∑
−log(p(yi|X)) (9) 322

where p(yi|X) is the probability calculated with 323

the decoding score s(y|X): 324

p(yi|X) =
exp(s(yi|X))∑

yj∈Vtar
exp(s(yj |X))

(10) 325
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Trained Retriever

Problem Encoder 

for Generation

Given: A set of sportswear 

sells for $240. The top Sells (5/

8) of the selling price. If you 

buy only pants. How much 

should you pay?

Retrieved: The canteen bought 135 kg of 

potatoes. After one week, there is (1/3) 

left.  How many potatoes were eaten? 

x=135*(1-(1/3))

Gated 

initialization

Mask Duplicate

Problems

Solving

Template

Encoder

Solving

Template

Encoder

* N - 1 N* N - 1 N

* 240 - 1 5/8* 240 - 1 5/8

Tree

 Decoder

Tree

 Decoder

Problem Bank

Training 

Data

Problem Bank

Training 

Data

Aligned Guidance

Figure 3: The inference process of our generative model. Given a problem, a trained retriever extracts a logically
consistent problem. Then its solving template is leveraged into decoding procedure to generate the expression.

Artificial Noise Our retriever inevitably retrieves326

some wrong problems. To simulate this scenario327

and to improve the robustness of our generative328

model, we introduce a hyper-parameter teacher329

rate t to add extra artificial noises. During train-330

ing, given a problem Xi, a random number n and331

teacher rate t, we provide a problem from Pi when332

n is smaller than t, otherwise we randomly sample333

one from Ni.334

5 Experiment335

5.1 Experimental Settings336

Datasets Three datasets are used in this research.337

Ape210K (Zhao et al., 2020) consists of 210, 488338

Chinese MWPs. Since different previous works339

(Wu et al., 2021; Liang et al., 2021; Zhao et al.,340

2020; Mikolov et al., 2013) applied different data341

filtering strategies and obtained their own ver-342

sion of the dataset, which makes comparison in-343

equitable. Due to this reason, we utilize Ape210k344

just for problem bank construction. Math23K345

dataset (Wang et al., 2017) is labeled with 22, 161346

elementary Chinese MWPs for training and 1, 000347

MWPs for testing. Following most previous works,348

we experiment on the original split of data and con-349

duct 5-fold cross-validation as well. We also want350

to evaluate MATHion on a widely-used English351

dataset MAWPS (Koncel-Kedziorski et al., 2016).352

But we have not found the appropriate English353

dataset for constructing problem bank. There exists354

large-scale English datasets but they follow very355

different annotation format with MAWPS (Amini356

et al., 2019; Cobbe et al., 2021), thus we propose357

MAWPS’s Chinese version CMWP. To this end,358

we first use online translation tool2 and then proof- 359

read it manually. Except for the language, all other 360

settings remain the same. Likewise, we conduct 361

5-fold cross-validation on CMWP. 362

Configuration All words appearing less than 5 363

times are replaced by unknown token. All param- 364

eters are trained from scratch and initialized ran- 365

domly. We utilize the training set and Ape210K to 366

construct the entire problem bank. The duplicate 367

problems are masked during retrieving to prevent 368

leaking answer expression. The constant n for 369

constructing a batch dynamically is set as 3 for 370

Math23K and 2 for CMWP. The constant B is 64. 371

The teacher rate t is set as 0.825 for both datasets. 372

Following previous works, we use answer accuracy 373

to evaluate our MWP solver, the expression is con- 374

sidered correct if it induced the same number as 375

the ground truth. To evaluate our retrieval model, 376

we employ top-k accuracy which is defined as the 377

number of times where top k problems retrieved 378

contain at least one positive problem belonging to 379

positive set P . 380

Baselines We conduct a comprehensive compari- 381

son with the following baselines: DNS (Wang et al., 382

2017): a sequence-to-sequence model that directly 383

maps problems to expressions. DNS-Re (Wang 384

et al., 2017): a variant of DNS that combines a 385

word frequency based retriever. T-RNN (Wang 386

et al., 2019): a recursive neural network that pre- 387

dicts the missing operators of the predicted expres- 388

sion template. T-RNN-Re (Wang et al., 2019): T- 389

RNN combined with a word frequency based re- 390

triever. GTS (Xie and Sun, 2019): our backbone 391

model. G2T (Zhang et al., 2020c): a GTS based 392

2www.deepl.com
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Model Math23K Math23K* CMWP*

DNS - 58.1% -
DNS-Re† - 64.7% -
T-RNN - 66.9% -
T-RNN-Re† - 68.7% -
GTS 75.6% 74.3% 68.9%
G2T 77.4% 75.5% 70.7%
KA-S2T 79.3% 76.3% 72.2%
TS-G2T 79.1% 77.2% 71.0%
NUMS2T 79.6% 78.1% 74.2%
REAL-0 - 79.9% -
REAL† 82.3% 80.8% -

MATHion-RR† 76.2% 75.1% 67.71%
MATHion† 84.0% 81.9% 77.2%

Table 1: The answer accuracy results of MATHion and
other baselines on Math23K and CMWP dataset. * de-
notes the 5-fold cross validation. † denotes the methods
that combine a retriever. The italic numbers are not re-
ported in original paper and obtained by running the
public released codes. The other results are collected
from the original paper.

solver that designs a graph network to enrich quan-393

tity representations. KA-S2T (Wu et al., 2020):394

a knowledge-aware GTS in which the entities in395

the problem and their categories are modeled as an396

entity graph. TS-G2T (Liang and Zhang, 2021):397

a G2T based model with an extra teacher mod-398

ule that makes the MWP encoding vector match399

the correct solution and disaccord from the wrong400

ones. NUMS2T (Wu et al., 2021): a KAS2T based401

model that explicitly incorporate numerical value402

information via the proposed number encoder and403

the auxiliary tasks. REAL (Huang et al., 2021):404

the first model that learns to solve MWP using405

human-like analogical learning way and it contains406

a memory module (REAL retriever), BERT ini-407

tialized representation module, BERT initialized408

analogy module and a reasoning module. REAL-409

0 (Huang et al., 2021): REAL without memory410

module. MATHion-RR: our generation model411

trained with teacher rate set as 0.55 and tested using412

problems retrieved by REAL retriever.413

5.2 Overall results414

The evaluation results of our model and the base-415

lines are summarized in Table 1. There are the416

following observations: 1) MATHion has achieved417

a substantial gain over all baselines on all datasets.418

This should owe to the good performance of our419

proposed retrieval model since the answer accu-420

racy drops severely if we employ the problems421

retrieved by the REAL retriever. 2) By comparing422

the performance of DNS-Re over DNS, T-RNN423

over T-RNN-Re, REAL over REAL-0, MATHion 424

over GTS, we find that the retrieved problems do 425

effectively help and our method brings the great- 426

est improvement. DNS-Re surpasses DNS by 6.6% 427

since the DNS can only solve a part of the problems 428

that can be directly solved by the TF-IDF retrieval 429

model. REAL surpass REAL-0 by only 0.9% since 430

the BERT-initialized REAL-0 model already solves 431

most problems. MATHion outperforms its back- 432

bone model GTS by 7.6%, illustrating that the logi- 433

cally consistent problems are tremendously helpful. 434

3) Compared with other GTS based baselines (G2T, 435

KAS2T, NUMS2T) that integrate different kinds 436

of knowledge, leveraging the information from the 437

logically consistent problems is more effective. 4) 438

The accuracy on CMWP is positively correlated 439

with the accuracy on MATH23k, and the gaps be- 440

tween methods are similar too, which manifests 441

that the results on CMWP are reasonable and the 442

proposed CMWP is of high quality. 443

5.3 Ablation Study 444

top-k Math23K Math23K* CMWP*

DNS-Re Retriever

1 34.2% 31.20% 49.15%
3 43.9% 42.09% 60.99%
5 49.9% 48.00% 65.38%

10 57.9% 55.78% 70.49%

REAL Retriever

1 52.3% 50.81% 55.49%
3 63.0% 61.52% 66.70%
5 67.2% 66.41% 70.54%

10 72.6% 72.39% 74.80%

MATHion Retriever

1 83.0% 81.59% 80.76%
3 88.0% 88.03% 82.79%
5 88.1% 89.50% 83.55%

10 91.4% 91.05% 84.65%

Table 2: The top-1, top-3, top-5 and top-10 accuracy
of DNS-Re retriever, REAL retriever and MATHion re-
triever. * denotes the results of five fold cross valida-
tion. The results of DNS-Re retriever and REAL re-
triever are obtained by reproduction.

Retriever Performance Since our generation 445

model is based on our retriever, we report the per- 446

formance of our retriever as well. To our best ac- 447

knowledgment, few studies improve their model 448

by retrieving associated questions. Moreover, there 449

was not an acknowledged evaluation indicator since 450

the ground truth of whether two problems are re- 451

lated is not given. Following our positive problem 452
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Given Problem Retrieved Problem 

The farm harvested 24.2 tons of apples this autumn, which is 0.2 

tons more than the 80% of pears harvested. How many tons of 

pears were harvested? 

x= (24.2-0.2)/80% 

In the long history of the planet, 90979 species of birds 

have died out, 769 more than 10 times the number of birds 

today. How many species of birds exist? 

x= (90979-769)/10 

The red balls are 4 times the black balls. Touch one random ball at 

a time. After several touches, what is the ratio of the red ball 

touched? 

x=4/ (4+1)  

The sum of a number expanded to 10 times and this original 

number is 84.15. What is the original number?  

x=84.15/ (10+1) 

The building has 4 floors, each with 5 classrooms. 120 lamps are 

installed. How many lamps are installed in each classroom on 

average?  

x=120/4/5 

The farm has 5 barns, each barn is with 20 cows. Feed all 

cows 1200 kg of feed a day. How much feed to each cow 

on average per day? 

x=1200/ (20*5) 

Mum buys cabbage for $1.80 a kilo. The price of potatoes is 1.5 

times the price of cabbage. How much more expensive are the 

potatoes than the cabbage per kilo? 

x=1.8*(1.5-1) 

A cow weighs 156 kg. An elephant weighs 36 times as 

much as this cow How many kilograms does this elephant 

weigh more than this cow? 

x=156*36-156 

 

Figure 4: The cases chosen form Math23K and translated. The problems given and retrieved are not necessarily
the same in terms of semantic context and solving expression, but are logically consistent.

pairs construction method, we can exploit top-k453

accuracy as evaluation metrics to evaluate the re-454

trieval performance. In this research, we select two455

retrievers of the previous state-of-the-art works as456

baselines. 1) DNS Retriever (Wang et al., 2017): a457

traditional statistical word frequency based TF-IDF458

retriever. 2) REAL Retriever (Huang et al., 2021):459

a word2vec based retriever that calculates the av-460

erage of all word tokens’ embedding to represent461

the whole problem and employs MIP search algo-462

rithm. As shown in Table 2, MATHion retriever463

performs much better than the other two methods.464

DNS-Re retriever does not perform well because465

it only attends to the word co-occurrence relations466

between questions. REAL-retriever performs bet-467

ter as it integrates certain semantic information.468

However, both of them can not succeed in deduc-469

ing whether two problems are logically consistent.470

Because they heavily rely on textual information of471

the problem, as such they are likely to be misled by472

the problems that are textually similar but logically473

different.474

Case Study To illustrate that our retrieval model475

does partly see through the narrative description476

and perceive the intrinsic logic of the problems,477

we give the following cases shown in Fig. 4. We478

observe that although the given problems and re-479

trieved problems do not always share similar texts,480

the intrinsic logic is consistent. Such as the first line481

in Fig. 4, the given problem discusses the harvest482

in the orchard, whereas the retrieved problem takes483

the species of birds as semantic context, but we484

can use the identical template to solve both prob-485

lems because the essence of them is alike. In addi- 486

tion, we also find that the top-k accuracy is not a 487

completely accurate evaluation indicator since our 488

positive pairs construction method cannot cover all 489

logically consistent problems, such as a× (b+ c) 490

and a×b+a×c are equivalent mathematically but 491

are treated as negative pairs. However, our retrieval 492

model still breaks through this limitation. Such as 493

the third and the fourth line in Fig. 4, the given 494

problems and retrieved problems have different se- 495

mantic contexts, different solution templates, but 496

the same intrinsic logic. 497

Effect of the Proposed Gate and Aligned Guid- 498

ance Mechanism We conduct ablation study on 499

Math23K to investigate the effect of our proposed 500

gated initialization and aligned guidance mecha- 501

nism. The experimental results in the Table 3 show 502

that both two mechanisms bring improvement. We 503

also observe that although without those two mech- 504

anisms, our model still achieves very comparable 505

performance, further illustrating the importance of 506

logical consistency between math word problems.

Model Math23k Math23K*

MATHion 84.0% 81.93%
w/o gate 83.4% 81.31%

w/o guidance 83.3% 81.35%
w/o gate & guidance 83.0% 81.18%

Table 3: Ablation study results on gated initialization
and aligned guidance mechanism. w/o gate means the
root node embedding is directly initialized as q̂0

507
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Influence of teacher rate As aforementioned, in508

order to simulate the distribution of retrieval results,509

we introduce a parameter teacher rate t to add arti-510

ficial noises during training. To investigate its influ-511

ence, we first randomly re-split the entire Math23K512

dataset in the ratio of 8:1:1 and train a retrieval513

model of which top-1 accuracy attains 79.6% on514

the test set and 81.2% on the development set. Then515

we train our generative model by setting t as differ-516

ent values, the results are presented in Fig. 5. We517

find that the teacher rate significantly affects the518

model’s performance. Because we use it to control519

the ratio of problems from Pi and Ni while train-520

ing our generative model. Either larger or smaller521

teacher rate increases the distribution gap between522

training data and testing data. The model suffers523

from the overmuch wrong information when t is 0.524

Conversely, the model fully relies on the retrieved525

results when t is 1. The appropriate value is 0.8526

because it is the closest to the top-1 accuracy.

0.60

0.65

0.70

0.75

0.80

0.85

0 0.2 0.4 0.6 0.8 1

dev ans acc

test ans acc

dev equ acc

test equ acc

Figure 5: Answer and equation accuracy of the genera-
tive model trained with different teacher rate.

527

5.4 Model Analysis528

Performance on problems with different num-529

ber of quantities Figure 6 illustrates how our530

method and several baselines perform on problems531

with different number of quantities. For retrieval532

stage, when the quantity is less than 5, although533

there are many such problems in the problem bank,534

our retriever can still find the logically consis-535

tent problems, while the performance of REAL536

retriever is relatively poor. Conversely, when there537

are more quantities, the simple GRU has difficulty538

understanding the internal logic of the problem, but539

the REAL retriever achieves better results because540

such problems are rarely distributed in the prob-541

lem bank and are textually similar. For generation542

stage, MATHion has achieved the best performance543

when the quantity is less than 4 but its performance544

declines when quantity gets more.545

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

≤1 2 3 4 5 6 ≥7

Proproption in PB NUMS2T MATHion

MATHion-RR REAL retriever Our retriever

Figure 6: The answer accuracy and top-1 retrieval ac-
curacy on problems with different number of quantities.
PB is short for problem bank.

Performance on problems of different length 546

Figure 7 illustrates how our retriever and REAL 547

retriever perform on problems of different lengths. 548

As the problems get longer, the encoding capability 549

of GRU becomes relatively inadequate, thus the 550

top 1 accuracy declines almost linearly and reduces 551

to nearly 50% when the problem contains more 552

than 90 characters. As for REAL retriever, once 553

the problem length exceeds 20 the accuracy drops 554

to below 50% severely.

94.79%

90.10%
87.21%

83.70%
80.70%

75.51%

71.09%

61.02%

57.65%

47.80%

66.38%

77.47%

51.68%

46.88%
45.29%

50.46%
48.82%

47.08%
49.49%

47.17%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

<10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 >90

MATHion top1 rerieval accuracy

REAL top1 retrieval accuracy

Figure 7: Performance of our retriever and REAL re-
triever on problems with different lengths.

555

6 Conclusion 556

In this work, we proposed MATHion which solves 557

MWPS with logically consistent problems. Unlike 558

previous textual similarity based retriever, we inves- 559

tigated the logical consistency between problems 560

through contrastive learning and incorporate this 561

information into the generative procedure. The ex- 562

perimental results have proved that it outperforms 563

most previous methods. Except for MWPs, it can 564

also be employed on other generative tasks such as 565

abstract generation and machine translation. 566
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A The algorithm for describing the801

entire tree decoding process802

Here we present the entire tree decoding process803

in Algorithm 1. All module mentioned such as804

Predict-module, LM are comletely defined in the805

paper of Xie and Sun (2019), see original paper for806

more concrete definition.

Algorithm 1: Tree decoding process
Input: q0 and {hi, i ∈ [1,m]}
Output: pre-order traversal expression

Step1: Calculate context vectors c

Step2: Generate ql and predict ŷ
while ŷ is an operator do

ŷ = Predict-module(ql, c);
ql = LM(q, e(ŷ|x));
c = Context-module(q, h1, · · · , hm)

Step3: Generate qr, predict token ŷr and
combine the embedding of subtree

if ŷr is an operator then go to Step2;
else go to step 4;

Step4: backtrack to find empty right node
if empty position exists then go to Step2;
else generation completed;

807

B Influence of the temperature while808

contrastive training809

Influence of temperature The temperature τ in810

Eq. (4) is to control the difficulty of distinguish-811

ing positive examples from negative ones. It has812

a significant impact on the results of contrastive813

learning. To explore its influence, we randomly814

split the Math23K in the ratio of 8:1:1 and train815

our retrieval model with different value of τ and816

present the results in Fig. 8. The performance is817
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Figure 8: The top1 and top3 accuracy of different τ

the best when τ = 0.1, and the performance of the 818

retrieval model is not very sensitive to τ when τ is 819

smaller than 0.1. Conversely, it decrease severely 820

when τ getting larger because a large temperature 821

may make this task to hard for simple GRU to learn. 822

In this work, we set τ as 0.1 in our experiments. 823
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