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ABSTRACT

Quantum-centric supercomputing presents a compelling framework for large-
scale hybrid quantum-classical tasks. Although quantum machine learning (QML)
offers theoretical benefits in various applications, challenges such as large-size
data encoding in the input stage and the reliance on quantum resources in the in-
ference stage limit its practicality for tasks like fine-tuning large language models
(LLMs). Quantum parameter generation, a novel approach of QML, addresses
these limitations by using quantum neural networks (QNNs) to generate classi-
cal model weights (parameters) exclusively during training, thereby decoupling
inference from quantum hardware. In this work, we introduce Quantum Parame-
ter Adaptation (QPA) in the framework of quantum parameter generation, which
integrates QNNs with a classical multi-layer perceptron mapping model to gen-
erate parameters for fine-tuning methods. Using Gemma-2 and GPT-2 as case
studies, QPA demonstrates significant parameter reduction for parameter-efficient
fine-tuning methods, such as Low-Rank Adaptation (LoRA), while maintaining
comparable or improved performance in text generation tasks. Specifically, QPA
reduces the number of parameters to 52.06% of the original LoRA for GPT-2
with a slight performance gain of 0.75%, and to 16.84% for Gemma-2, with a
marginal performance improvement of 0.07%. These results highlight QPA’s abil-
ity to achieve efficient parameter reduction without sacrificing performance in the
quantum parameter generation framework. This work showcases the potential of
quantum-enhanced parameter reduction, offering a scalable quantum-classical so-
lution for fine-tuning LLMs while preserving the feasibility of inference on clas-
sical hardware.

1 INTRODUCTION

Decomposing complex problems into components suited for classical or quantum computing allows
for more efficient problem-solving. Classical systems are well-suited for tasks like data process-
ing, while quantum computing shows potential in optimization and exploring large state spaces.
Quantum-centric supercomputing (Bravyi et al., 2022; Gambetta, 2022) combines these strengths,
offering scalable solutions for challenging problems. This hybrid approach holds promise in quan-
tum machine learning (QML), with the potential to support the training and fine-tuning of large
models. Conventional QML approaches employ parameterized quantum circuits (PQCs) as quan-
tum neural networks (QNNs) (Chen et al., 2020), where data is input through specific data encoding
methods (Pérez-Salinas et al., 2020; Schuld et al., 2021). The updates to QNN parameters during
the training process are computed on the classical side, creating a hybrid quantum-classical com-
puting framework (Mari et al., 2020). When scaled up, quantum-centric supercomputing offers a
promising paradigm that could reshape the landscape of computational science, particularly in the
current Noisy Intermediate-Scale Quantum (NISQ) era (Preskill, 2018). Classical neural networks
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(NNs) can also be combined with QNNs, serving as either pre-processing or post-processing layers
(Mari et al., 2020; Liu et al., 2021). While both empirical and theoretical results suggest that QML
can offer improvements in specific applications (Cerezo et al., 2022; Huang et al., 2022; Biamonte
et al., 2017; Caro et al., 2022; Huang et al., 2021), significant challenges remain—particularly in
data encoding for large datasets. For instance, gate-angle encoding can result in quantum circuits
that are either too deep or require an impractical number of qubits. Another major obstacle to the
practicality of QML is the need for a quantum computer during the model inference stage.
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Figure 1: Overview of (a) Quantum Machine Learning (Mari et al., 2020; Mitarai et al., 2018), (b)
Quantum Parameter Generation (Liu et al., 2024b), (c) our proposed Quantum Parameter Adaptation
(QPA), and (d) Parameter-Efficient Fine-Tuning methods (Houlsby et al., 2019).

One such proposal to address both the data encoding challenge and the requirement for quantum
hardware during the inference stage is quantum parameter generation (Sidhu & Kok, 2020; Liu et al.,
2024b). Instead of using a QNN to interact directly with the data, this approach leverages QNNs
to “generate” the weights of a target classical NN model during the training process. This quantum
parameter generation method: 1) keeps the data input process entirely within the classical model,
2) eliminates the exorbitant need for quantum computing hardware during inference, as the trained
model is purely classical, and 3) reduces the number of training parameters on a polylogarithmic
scale by mapping quantum state basis to the target NN parameters, assuming the QNN is constructed
with a polynomial number of layers relative to the qubit count. Further details will be provided in
the following sections.

Current studies (Liu et al., 2024c; Lin et al., 2024) of quantum parameter generation have primarily
focused on small-scale models with fewer than one million parameters, where the largest model is
up to 0.28M. To more clearly demonstrate the practicality of this quantum approach, the size of the
models or problems investigated should be scaled to more realistic levels, extending beyond basic
tasks such as handwritten digit classification and simplified reinforcement learning environments.

As model sizes grow, both in quantum and classical machine learning (ML), scaling becomes a
key computation challenge. This is especially evident in the rise of large language models (LLMs),
which have become foundational in natural language processing tasks. However, training and fine-
tuning LLMs—such as GPT-2 (Radford et al., 2019), GPT-3 (Brown, 2020), and the more recent
Gemma-2 (Team et al., 2024)—presents its own set of challenges. The immense number of pa-
rameters in these models requires vast computational resources, making conventional fine-tuning
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approaches computationally expensive and impractical for many use cases. To address these is-
sues, parameter-efficient fine-tuning methods (PEFT) like Low-Rank Adaptation (LoRA) (Hu et al.,
2021), Weight-Decomposed Low-Rank Adaptation (DoRA) (Liu et al., 2024d), Prefix-Tuning (PT)
(Li & Liang, 2021; Yang et al., 2021b), and adapters have been proposed (Houlsby et al., 2019; Lin
et al., 2020). These methods aim to reduce the number of trainable parameters while maintaining
model performance, yet the challenge of balancing efficiency and effectiveness remains a critical
area of research.

We draw inspiration from both quantum parameter generation and PEFT methods for LLMs, which
demonstrate that PQCs can serve as parameter generators for machine learning models, and changes
to LLM weights can be captured by low-rank or smaller-sized representations (models). We sug-
gest that the training parameters in PEFT methods can be generated using a combination of QNNs
and a classical multi-layer perceptron (MLP) mapping model, further reducing the parameter count.
This leads to our introduction of the Quantum Parameter Adaptation (QPA) method. QPA enables
additional parameter reduction during fine-tuning by leveraging the quantum parameter generation
method to generate PEFT parameters, as shown in Fig. 1. The figure also provides an overview of
QML, quantum parameter generation, and PEFT for comparison, clearly illustrating how QPA gen-
erates the PEFT parameters. In experiments with Gemma-2 (Team et al., 2024) and GPT-2 (Radford
et al., 2019), we demonstrate that QPA reduces the number of parameters in methods such as LoRA,
DoRA, PT, and Feed-Forward Adapters (FFAs) by nearly an order of magnitude (e.g., 106 → 105),
while achieving better or comparable perplexity in text generation tasks. QPA marks the first exam-
ple of quantum computing applied to fine-tuning classical LLMs at a practical scale, while enabling
inference to be performed entirely on classical hardware. Further theoretical analysis of QPA’s con-
vergence behavior, as well as its trainability and learnability properties, is left for future work.

The main contributions of QPA include:

• Efficient adaptation through quantum parameter generation: QPA utilizes quantum
parameters from the PQC, which scale in proportion to the number of qubitsN , to generate
parameters that scale with the Hilbert space size 2N . When applied to tunable parameters
in PEFT tasks, this property enables highly efficient adaptation by generating parameters
through quantum methods.

• Practical application of QML in LLMs: By incorporating quantum parameter generation,
our approach to combining QML with LLMs is more practical compared to conventional
QML methods (i.e., Quantum Transformer (Di Sipio et al., 2022)). The data-encoding
issues associated with conventional QML (Yang et al., 2021a) have been eliminated, and
the inference stage no longer requires quantum hardware. This is particularly important for
tasks that demand short response times, as reliance on remote quantum computers could
introduce delays due to queuing and increased costs.

• Scaling up the size of existing quantum parameter generation studies: In this study, we
scale up the application of quantum parameter generation by fine-tuning up to the linear
layer of the Gemma-2 (2B) model, where the target layer consists of 0.52B parameters.
This is approximately 1785 times larger than the largest previously studied model (0.28M),
significantly pushing the boundaries of how QML can be applied.

• Flexibility, applicability, and efficiency in classical fine-tuning methods: We demon-
strate that quantum parameter generation is not only capable of generating classical NN
parameters, but is also applicable to a wide-range of popular parameter-tuning tasks. These
tasks include tuning parameters in methods such as LoRA, DoRA, PT, and FFA, all while
achieving comparable or better perplexity in text generation tasks with reduced parameter
requirements.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning (PEFT) Methods. To address the challenge of fine-tuning
LLMs, PEFT methods aim to reduce the number of trainable parameters while maintaining or even
improving model performance. Key PEFT approaches include LoRA (Hu et al., 2021) and DoRA
(Liu et al., 2024d), which assume that the changes in model weights during fine-tuning lie in a
low-rank subspace. Instead of updating the full weight matrices, these methods add small, train-
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able low-rank decomposition matrices to the model’s weights, effectively reducing the number of
trainable parameters while capturing the essential adjustments. Another approach involves adapters,
which are small feed-forward layers inserted between existing layers of the neural network (Houlsby
et al., 2019; Lin et al., 2020). Only these adapter layers are fine-tuned, leaving the rest of the model
unchanged, thus significantly reducing the training overhead. PT (Li & Liang, 2021; Yang et al.,
2021b) takes a different approach by introducing tunable prefix vectors that are prepended to the in-
put or hidden states at each layer. During fine-tuning, only these prefix vectors are updated, while the
core model parameters remain frozen. These techniques optimize fine-tuning efficiency by focusing
on smaller, task-specific modifications.

From Quantum Circuit Learning to Large-Scale Representation Modeling. QML leverages
quantum properties such as superposition and entanglement, presenting a theoretically promising
approach to accelerate the training and learning process (Du et al., 2021a; Schuld & Killoran, 2019;
Farhi & Neven, 2018). However, the process of encoding classical data into quantum states increases
the depth of quantum circuits, further adding to the depth of QNNs (Pérez-Salinas et al., 2020;
Schuld et al., 2021). We refer to QML approaches that directly interact with data as “conventional
QML,” distinct from the quantum parameter generation approach discussed later. There have been
proposals suggesting that the GPT model could be integrated into the quantum computing paradigm
(Liao & Ferrie, 2024), where the transformer architecture is implemented using quantum circuits
(Gao et al., 2023; Khatri et al., 2024). In such case, the input data is encoded into quantum states
through amplitude encoding methods. Consequently, these QML methods require access to quantum
computers during the inference stage.

Training Classical Neural Networks via Quantum Computing. Leveraging quantum computing
to train classical NNs offers a promising approach where the resulting model remains entirely clas-
sical, effectively addressing the challenges of data encoding and the reliance on quantum hardware
during inference. One example involves utilizing quantum walks as a search process to optimize the
parameters of classical NNs (de Souza et al., 2021). Another method proposes employing a quantum
hypernetwork to train a classical binary NN (Carrasquilla et al., 2023). However, the practical utility
of this approach is constrained by its ability to train only binary NNs, limiting its applicability in
more general settings.

3 QUANTUM PARAMETER GENERATION BASED EFFICIENT ADAPTATION

In LoRA and DoRA, one primary assumption is that weight updates can be represented by low-rank
matrices. However, these methods often lack flexibility in exploring parameter settings between
integer ranks r and r+1, leaving the intermediate values unexamined. A method capable of investi-
gating the parameter space between r and r+ 1 could potentially enhance performance by enabling
more precise, “fine-grained” adjustments. This limitation also applies to other PEFT methods with
rigid configurations, such as PT, where the number of trainable parameters is strongly tied to the
input size.

Inspired by this idea and combined with quantum circuit based compression, which uses PQC and
mapping model to train the target NN with fewer parameters, we hypothesize that using PQC-based
QNN and mapping model as a parameter generator can take advantage of the fact that only a small
number of QNN parameters are required to control the measurement probabilities, governed by the
dimension of the Hilbert space. In other words, we propose that the high-dimensional Hilbert space
facilitates an efficient representation for adaptation. This could lead to a more detailed and precise
exploration of the representation space in PEFT methods.

3.1 QUANTUM CIRCUIT BASED MODEL PARAMETER GENERATION.

We consider a parameter generation process that provides a different approach from conventional
QML. Consider a target NN model with parameters a = (a1, a2, . . . , am), where m is the number
of parameters. A PQC with N = ⌈log2m⌉ qubits and L layers is constructed using a circuit ansatz,
represented as:

|ψ(θ)⟩ =

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
Y (θ

(L)
j )

L

|0⟩⊗N , (1)
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where the single-qubit rotation gate Rj
Y is associated with the tunable parameter θ(L)

j , with qubit
index j and layer index L, and CNOT represents the two-qubit controlled-NOT gate. With a Hilbert
space of size 2N , where 2N ≥ m, this PQC produces 2N distinct measurement probabilities,
|⟨ϕi|ψ(θ)⟩|2 ∈ [0, 1] for i ∈ {1, 2, . . . , 2N}. The parameter size of θ depends on N and L, where L
is a hyperparameter similar to those in classical ML. Typically, L scales proportionally to the num-
ber of qubits, either O(N) or in some cases O(N2) (Cerezo et al., 2021; Sim et al., 2019; Benedetti
et al., 2019), though it can be generalized to a looser polynomial scale, O(poly(N)). Thus, with
polynomial layers in the PQC, we can generate 2⌈log2 m⌉ ≥ m parameters (probabilities) using
O(polylog(m)) PQC parameters.

At this stage, the measurement probabilities are values between 0 and 1. To map these probabilities
to the target parameters a ∈ Rm, we employ a MLP mapping model G with tunable parameters
b. The input to G is the binary representation of the basis (of length N ) and the corresponding
measurement probability, such that

Gb(|ϕi⟩, |⟨ϕi|ψ(θ)⟩|2) = ai, ∀i ∈ {1, 2, . . . ,m}. (2)

Here, only the first m basis states are used to cover all parameters in the target NN. Since the input
size ofGb isN +1, the size of b can also be controlled at a scale ofO(polylog(M)). Consequently,
a is generated from the output of the PQC and the mapping model Gb. By tuning θ and b, we
effectively influence the value of the loss function L, which is evaluated by the target NN for a given
task.

Gradient Estimation of Quantum Circuit Compressed Parameters. The target NN parameters a
are generated through the use of a PQC coupled with a mapping model. The quantum-dependent
parameters, represented as (θ, b), impact the target NN parameters via the quantum state prepara-
tion and measurement steps. The gradient of the loss function, reflecting the influence of quantum
parameters, is expressed as:

∇θ,bL =

(
∂a

∂(θ, b)

)T

· ∇aL. (3)

In this expression, ∂a
∂(θ,b) denotes the Jacobian matrix, which describes how sensitive the classical

parameters a are to changes in the quantum parameters (θ, b). This provides a high-level overview
of the gradient in an exact quantum state simulation. In practical applications involving real quantum
computers, the gradient calculation must account for the parameter shift rule and its variants (Mitarai
et al., 2018; Schuld et al., 2019).

Parameter Update of Quantum Circuit Compressed Parameters. The learning rate η is a critical
factor, particularly due to the complex dynamics introduced by the quantum-classical interface. The
update for the quantum parameters is defined as:

θt+1, bt+1 = θt, bt + η∇θ,bL. (4)

This rule ensures that the quantum parameters are updated to optimize the performance of the target
NN.

Using the gradient computation and parameter update rule, the parameter generation process of QPA
has been applied to image classification with convolutional neural networks (CNNs) (Liu et al.,
2024b;a; Liu & Chen, 2024), flood prediction (time series) with long short-term memory (LSTM)
models (Lin et al., 2024), and policy gradient reinforcement learning in CartPole and MiniGrid
environments (Liu et al., 2024c). These applications demonstrated a reduction in training parameters
while maintaining similar performance.

Table 1: Configuration of the mapping model G̃b, with N representing the number of qubits for
each task.

Hyperparameter Meaning Value

Input size Input of the mapping model (|ϕi⟩, |⟨ϕi|ψ(θ)⟩|2) N + 1
Hidden dimension Main structure of the MLP mapping model [32, 64, 128, 128, 64, 32, nmlp]
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3.2 BATCHED PARAMETER GENERATION OF QUANTUM PARAMETER ADAPTATION (QPA)

If the target NN model consists of m parameters, the required number of qubits is N = ⌈log2m⌉.
For instance, scaling this up to m = 109 (one billion) parameters would require N = 30 qubits.
Although a quantum system with 30 qubits is feasible on today’s hardware and in classical simu-
lations, the GPU memory requirements (around 16 GB) and evaluation time (several seconds per
circuit) (Google, 2024) make it impractical for ML tasks that demand extensive repetitions within a
reasonable time frame.

In our approach, the m parameters (following the above syntax) of the target NN model are split
into nch chunks, with each chunk containing nmlp parameters, such that nch = ⌈m/nmlp⌉. In other
words, the qubit count can be reduced by generating more than one parameter of the target NN per
quantum basis.

The mapping model, now represented as G̃b, takes as input |ϕi⟩ and |⟨ϕi|ψ(θ)⟩|2, and outputs a
batch of nmlp parameters a for each chunk:

a = (ã1, ã2, . . . , ãnch
), (5)

G̃b(|ϕi⟩, |⟨ϕi|ψ(θ)⟩|2) = ãi, ∀i ∈ {1, 2, . . . , nch}, (6)
ãi = (ai,1, ai,2, . . . , ai,j), ∀j ∈ {1, 2, . . . , nmlp}. (7)

This is achieved by using a decoder-like structure in the MLP within the mapping model G̃b, where
the output size is expanded from 1 to nmlp, the detailed configuration is shown in Table. 1. As a
result, the number of qubits required is reduced from N = ⌈log2m⌉ to

N = ⌈log2 nch⌉ = ⌈log2
(
⌈ m

nmlp
⌉
)
⌉. (8)

This adjustment effectively reduces the qubit requirement by approximately ⌈log2 nmlp⌉ qubits com-
pared to the original quantum parameter generation. The original method can be viewed as a special
case where nmlp = 1. Although this reduction in qubit count increases the number of parameters in
the mapping model (due to the expanded output size), it offers a significant memory reduction, as
the memory needed to store the quantum state decreases by a factor of 1/nmlp.

For example, with m = 109 and nmlp = 1024, the qubit usage can be reduced to N =

⌈log2
(
⌈ 109

1024⌉
)
⌉ = 20. This 33% of qubit saving reduces the memory required to store the quantum

state to just 1/1024 of what is needed for 30 qubits, and speedup the classical simulation as well.

3.3 FROM MODEL TUNING TO GENERAL PARAMETER-TUNING TASK

In QPA, we consider the tuning target of quantum parameter generation from the full model param-
eters of a target NN to the parameters of a PEFT method, enabling significantly larger tasks to be
handled. Additionally, with the help of batch parameter generation, the scale of the target task is
further amplified. Following the previous notation, the parameter a now represents the parameters
of a PEFT method.

Taking LoRA as an example, for a pre-trained weight matrix W0 ∈ Rd×k, the low-rank decomposi-
tion of the update is W0 +∆W = W0 + BA, with B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k). In
this case, QPA generates these two low-rank matrices using Eq. 6 and Eq. 7, where a represents the
elements of A and B, and the required qubit count is:

N = ⌈log2
(
⌈r(d+ k)

nmlp
⌉
)
⌉ (LoRA case). (9)

The tuning of QPA can then follow the gradient evaluation and update rules in Eq. 3 and Eq. 4. A
similar situation applies to DoRA, where there are additional k parameters in the magnitude vector
to be tuned. In this case, the required qubit count is:

N = ⌈log2
(
⌈r(d+ k) + k

nmlp
⌉
)
⌉ (DoRA case). (10)
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These examples can be generalized to other parameter-tuning tasks. The schematic of QPA is shown
in Fig. 1, where the PEFT method is applied to only one layer in the LLM, as we will discuss in
Sec. 4, which describes the experiment. For scenarios where gradient-based tuning is not supported,
other non-gradient-based optimizers (e.g. Nelder-Mead and COBYLA) may be required for the
parameter update process.

4 EMPIRICAL EXPERIMENTS

Our objective is to assess the effectiveness of QPA, as outlined in Sec. 3, to determine whether the
proposed QPA can effectively reduce the number of parameters while maintaining or surpassing
the performance of existing PEFT methods. This evaluation is based on one hypothesis that the
high-dimensional Hilbert space enables efficient representation for adaptation. The experiment is
conducted using quantum circuit simulation via PyTorch and TorchQuantum (Wang et al., 2022). At
this stage, noise effects on the quantum system are ignored, and the quantum state amplitudes (prob-
abilities) are obtained exactly. A discussion on the impact of finite measurement shots and noise
is provided in Appendix G. We assess the text generation perplexity of Gemma-2 (2B) and GPT-2
(80M), fine-tuned on the WikiText-2 dataset, using several well-known PEFT methods, including
LoRA, DoRA, PT, and Feed-Forward Adapter (FFA). Gemma-2 was selected as one of the most
recent LLMs1, offering competitive performance relative to models such as Phi-2-2B (Javaheripi
et al., 2023), LLaMA2-7B (Touvron et al., 2023), and Mistral-7B (Jiang et al., 2023). Additionally,
we assess GPT-2 XL (1.5B) with QPA, with further discussion provided in Appendix A.1. For com-
parison, we apply QPA to generate the parameters for these PEFT methods following the procedure
outlined in Sec. 3.3. The full hyperparameter configurations are provided in Appendix C, while
additional results on a different dataset are presented in Appendix E. To isolate the effects of QPA,
we simplify the PEFT setup by freezing all layers of Gemma-2 and GPT-2, and fine-tuning only the
final linear layer, commonly referred to as the “lmhead.” This layer comprises 38.59M parameters in
GPT-2 and 0.52B parameters in Gemma-2. The QNN repetition L is fixed at 8 for all cases, except
those discussed in the “Effect of Deeper QNN” paragraph.

4.1 PERFORMANCE OF QPA

Low-rank adaptation methods with QPA. First, using LoRA and DoRA as baselines, QPA
is applied to generate the low-rank matrices for these methods, with an additional magnitude
vector generated for DoRA. In this experiment, the rank of the low-rank matrices to be gen-
erated is fixed at 4 (other results could be found at Appendix D), and various chunk sizes
nmlp are investigated to adjust the number of trainable parameters. Specifically, nmlp ∈
{256, 512, 1024, 2048, 4096, 8192} for GPT-2 with LoRA, nmlp ∈ {512, 1024, 2048, 4096, 8192}
for GPT-2 with DoRA, nmlp ∈ {1024, 4096, 8192, 16258, 32768, 65536} for Gemma-2 with LoRA,
and nmlp ∈ {512, 1024, 2048, 4096, 8192}. For comparison, the results for LoRA and DoRA are
obtained by varying the rank r ∈ {1, 2, 4, 8, 16, 32}.

In the results, as illustrated in Fig. 2, QPA consistently outperforms LoRA and DoRA across various
parameter configurations. For GPT-2, QPA achieves lower testing perplexity compared to LoRA,
particularly in configurations with fewer trainable parameters, demonstrating its efficiency. Even
with larger parameter counts, QPA maintains comparable or better performance than LoRA. The
best result in terms of parameter reduction and improved perplexity is achieved with 106264 train-
able parameters and a perplexity of 1.583 for QPA, while LoRA requires 204100 trainable param-
eters and achieves a perplexity of 1.595. This indicates that QPA reduces the trainable parameters
to 52.06% while delivering a 0.75% improvement in performance. Similarly, for Gemma-2, QPA
demonstrates significant improvements over LoRA in the lower parameter regime, with the gap nar-
rowing as the parameter count increases, yet QPA consistently maintains better perplexity overall.
The best result here is 173, 888 trainable parameters with a perplexity of 1.417 for QPA, compared to
1, 032, 192 trainable parameters with a perplexity of 1.418 for LoRA. This corresponds to a reduc-
tion to 16.84% in trainable parameters with a 0.07% performance improvement. When comparing
QPA to DoRA, the results initially show QPA having higher perplexity with fewer parameters for
both GPT-2 and Gemma-2. However, as the number of trainable parameters increases, QPA sur-

1We selected the deployed Gemma-2 version released on August 8th, 2024: https://huggingface.
co/google/gemma-2-2b.
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Figure 2: Testing perplexity of GPT-2 and Gemma-2 models compared to the number of trainable
parameters for LoRA, DoRA, and QPA on the WikiText-2 dataset.

Table 2: Training parameters and testing perplexity for GPT-2 and Gemma-2 using PEFT and
QPA methods, with emphasis on configurations achieving the most significant parameter reduc-
tions. Complete results are provided in Fig. 2 and Fig. 3.

PEFT Method GPT-2 Gemma-2
# Params (%) PPL # Params (%) PPL

LoRA 0.52 1.595 0.19 1.418
QPA LoRA (Ours) 0.27 1.583 0.03 1.417
DoRA 4.36 5.003 0.09 5.504
QPA DoRA (Ours) 0.27 4.955 0.05 5.487
PT 1.01 2.225 0.20 1.530
QPA PT (Ours) 0.18 2.327 0.01 1.540
FFA 0.76 1.763 0.40 1.439
QPA FFA (Ours) 0.18 1.689 0.01 1.507

passes DoRA, ultimately achieving comparable or better results. The result with best parameter
reduction are concluded in Table. 4.1, with the parameter ratio calculated relative to the number
of parameters in the target layer. In the case of Gemma-2, the performance gap between QPA and
DoRA also narrows as the number of trainable parameters increases, with QPA remaining compet-
itive across all scales. While the magnitude of these performance improvements may appear small,
the key takeaway is that QPA can significantly reduce the number of trainable parameters in PEFT
methods without incurring significant loss in performance.

QPA on Prefix-Tuning and Feed-forward adapter. In the context of PT, QPA is applied to the
tunable prefix vector that is prepended to the input of the target linear layer, where the length
of this vector is traditionally fixed to match the input size of the layer. QPA offers a more
flexible approach by allowing different parameter configurations, enabling exploration beyond
the conventional constraints of input length. The QPA setup uses various chunk sizes nmlp ∈
{256, 512, 1024, 2048, 4096, 8192} for GPT-2 and nmlp ∈ {1024, 2048, 4096, 8192, 16258, 32768}
for Gemma-2, with an additional nmlp = 65536 for QPA-FFA case.

As shown in Fig. 3 and Table. 4.1, for GPT-2, QPA does not outperform PT at lower parameter
counts but shows potential for extending the parameter space and achieving better results as the
number of parameters increases. In the scenario with the most parameter reduction, QPA achieves
72, 552 trainable parameters and a perplexity of 2.327, compared to PT with 393, 216 trainable
parameters and a perplexity of 2.225. This indicates that QPA reduces the number of parameters to
18.45%, at the cost of a 4.38% performance loss.

For Gemma-2, QPA initially performs on par with PT but surpasses it as the number of trainable
parameters increases, leading to superior performance at higher parameter scales. This flexibility in
parameter tuning afforded by QPA allows for a broader exploration of the parameter space, poten-
tially resulting in better outcomes than traditional PT. By inserting small feed-forward layers before
the target linear layer, QPA generates the parameters for the FFA. For GPT-2, QPA initially outper-
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Figure 3: Testing perplexity of GPT-2 and Gemma-2 models compared to the number of trainable
parameters for prefix-tuning (PT), feed-forward adapter (FFA), and QPA on the WikiText-2 dataset.

forms FFA at lower parameter counts, but as the number of parameters increases, QPA’s performance
deteriorates compared to FFA. In contrast, for Gemma-2, QPA does not outperform the classical FFA
approach across the entire parameter range. However, it still demonstrates competitive performance,
maintaining comparable testing perplexity even with larger parameter counts. Although QPA does
not consistently outperform PT and FFA in terms of testing perplexity, the significant reduction in
trainable parameters (0.20% → 0.01% for PT and 0.40% → 0.01% for FFA on Gemma-2, as shown
in Table 4.1) with only a slight performance loss remains a notable and promising result.

4.2 EFFECTS OF QPA SETTINGS
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Figure 4: (a) Qubit usage versus the number of trainable parameters for QPA applied to LoRA and
DoRA on GPT-2 and Gemma-2 models. (b) The relationship between testing perplexity and LoRA
rank for QPA applied to GPT-2 and Gemma-2. (c) and (d) Testing perplexity depending on the QNN
repetition L for QPA applied to LoRA on GPT-2 and Gemma-2.

Trade-off of qubits counts and parameter size. As described in Sec. 3.2, the qubit usage in QPA
follows Eq. 8. Increasing the chunk size nmlp for batched parameter generation increases the total
number of trainable parameters in QPA, as nmlp also determines the output size of the MLP mapping
model. Consequently, as per Eq. 8, the required qubit count decreases. Fig. 4 (a) illustrates the qubit
usage corresponding to the QPA results shown in Fig. 2. The actual qubit usage ranges between 4
and 11 qubits, which are reasonable values for both classical simulations and fault tolerant quantum
computers in the foreseeable future 2. While QPA settings with more qubits tend to reduce the
number of trainable parameters in PEFT, this often results in higher perplexities. To achieve optimal
performance, nmlp should be carefully tuned to balance the number of trainable parameters and the
resulting perplexity.

Optimal LoRA rank. As observed in previous LoRA and DoRA studies, increasing the rank of the
low-rank matrices does not necessarily lead to better results. In fact, there exists an optimal rank for

2IBM Quantum announced the achievement of discovering the quantum error correcting code with the prop-
erty of preserving up to 12 logical qubits using 288 physical qubits through error correction methods (Bravyi
et al., 2024): https://www.ibm.com/quantum/blog/nature-qldpc-error-correction.
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the best performance. A similar behavior can be seen when applying QPA to low-rank adaptation
methods. As shown in Fig. 4 (b), the optimal LoRA ranks (indicated by stars) highlight that QPA
achieves its best performance at a LoRA rank of 2 for GPT-2 and 4 for Gemma-2, with Gemma-2
consistently maintaining lower perplexity than GPT-2 across all ranks. The chunk size is fixed at
nmlp = 2048 for GPT-2 and nmlp = 8192 for Gemma-2. As the LoRA rank increases, testing
perplexity for GPT-2 rises significantly, while for Gemma-2, it remains relatively stable.

Effect of Deeper QNN. In this study, the QNN (quantum circuit) ansatz is shown in Eq. 1, con-
structed by RY and CNOT gates. The performance comparison of different circuit ansatz is pre-
sented in Appendix F. The expressiveness of the QNN strongly depends on the number of repeti-
tions L of the corresponding ansatz. A larger number of L results in a deeper QNN, which enhances
expressiveness. In Fig. 4 (c) and (d), the testing perplexity results for different QNN repetitions L in
QPA applied to LoRA on GPT-2 and Gemma-2 are shown. The orange lines represent the baseline
LoRA testing perplexity without QPA, where LoRA rank = 4 for GPT-2 and rank = 2 for Gemma-2.
Fig. 4 (c) shows that for GPT-2, QPA LoRA achieves lower perplexity, which slightly decreases as
L increases, with the LoRA rank fixed at 4 and nmlp = 2048. Similarly, in Fig. 4 (d), for Gemma-2
(LoRA rank = 2 and nmlp = 8192), QPA LoRA initially performs comparably to standard LoRA
but begins to outperform LoRA when L exceeds 64, with more significant reductions in perplexity
observed at higher values of L.

In general, when using a universal gate set, such as one containing RX , RY , RZ , phase shift P (φ),
and CNOT gates, the Solovay–Kitaev theorem (Dawson & Nielsen, 2005) guarantees that a QNN
can approximate any unitary transformation to arbitrary precision. Thus, with sufficient depth (i.e.,
larger L), a QNN constructed from such a gate set can approximate any quantum state, including
those that optimally map to the PEFT parameters. As the depth of the QNN increases, it gains
the expressivity required to model more complex transformations (Du et al., 2020; Childs, 2017),
allowing it to approximate optimal parameter configurations for fine-tuning. This is evident in the
reduction of testing perplexity as L grows, illustrating the advantages of deeper QNNs in capturing
richer quantum representations. Notably, in practice, good performance can still be attained with a
more restricted gate set and practical layer depths. In our study, we employ RY and CNOT gates
with L = 8 in the main experiments, and extend up to L = O(N2) in this section, demonstrating the
scalability of the approach. Notably, an investigation into the gradient variance of quantum circuit
parameters is presented in Appendix H. Our findings indicate that the gradient variance does not
exhibit the exponential vanishing behavior (commonly referred to as the barren plateau) as qubit
usage increases. However, a slight downward trend is observed with increasing L.

5 CONCLUSION

In conclusion, this work introduces Quantum Parameter Adaptation (QPA) as a new approach for
enhancing PEFT methods by leveraging QNNs to generate trainable parameters for LLMs. QPA ad-
dresses the critical challenge of reducing the number of parameters required for fine-tuning, which is
particularly important for large-scale models. By incorporating QPA into established PEFT methods,
such as LoRA, DoRA, PT, and FFA, we demonstrate that QPA significantly reduces the trainable
parameters (i.e., from 0.40% to 0.01%) while maintaining comparable or even improving model
performance in text generation tasks. Moreover, the decoupling of near-term available quantum re-
sources (i.e., 4 to 11 qubits) from the inference phase ensures that the quantum benefits are leveraged
during training without adding deployment complexities. These results underscore the scalability
and efficiency of QPA in fine-tuning LLMs, making it a promising solution for quantum-classical
hybrid computational frameworks.

Looking ahead, future research will focus on a more comprehensive theoretical investigation of
QPA, particularly in terms of convergence behavior, trainability, and learnability. Expanding QPA’s
application across a broader range of neural network architectures and tasks beyond text generation
will be critical for validating its generalizability and robustness. Furthermore, while we have an-
alyzed QPA using a real quantum computer noise model in Appendix G, conducting experiments
on actual quantum hardware will be a crucial step toward developing practical quantum-classical
hybrid solutions. These efforts will contribute to establishing QPA as a foundational approach for
fine-tuning LLMs in the emerging landscape of quantum-centric supercomputing.
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A APPENDIX: A DISCUSSION ON MODEL COMPRESSION

Model compression is a critical and evolving area of research aimed at enabling efficient training
and inference in machine learning models. Common techniques include quantization (Dettmers
et al., 2022; 2024; Frantar et al., 2022), pruning (Ma et al., 2023; Sun et al., 2023), and the PEFT
methods discussed in the main text. Quantization reduces memory and computational costs by
lowering the precision of model weights, while pruning removes less significant weights, thereby
reducing the overall parameter count. The QPA framework introduced in this work, by “generating”
the parameters of PEFT methods, can be seamlessly integrated with other compression techniques,
such as quantization and pruning. This combination enhances its practical applicability and opens
promising avenues for further exploration of the QPA approach in the context of model compression.

A.1 EFFICIENT LLM SELECTION FOR QPA

We provide a detailed rationale for selecting Gemma-2 and GPT-2 as the focus models. Prioritizing
parameter-efficient models, we chose those that are both open-source and commercially accessible
to ensure broad applicability and seamless integration into various systems. Given that QPA elim-
inates the need for quantum hardware during the inference stage, making QML more practical, we
also focused on selecting classical models that are widely available and have manageable hardware
requirements.

While the main text presents results for GPT-2 (80M), Table. 3 also includes QPA LoRA results
for GPT-2 XL (1.5B), which exhibit similar trends, demonstrating QPA’s ability to reduce training
parameters while maintaining performance comparable to other PEFT methods.

Although the proposed QPA is applicable to any LLM and PEFT method (as outlined in Sec. 3),
Gemma-2 (2B) was selected for this study as it offers the best balance between performance and
resource efficiency given current computational constraints, whereas models with over 70B param-
eters remain beyond the scope of this work. Future research will explore the application of QPA to
these larger models.

Table 3: Training parameters and testing perplexity for GPT-2 XL (1.5B) using LoRA and QPA
methods, with emphasis on configurations achieving the most significant parameter reductions.

PEFT Method GPT-2 XL
# Params (%) PPL

LoRA 0.12 1.474
QPA LoRA setting 1 (Ours) 0.07 1.485
QPA LoRA setting 2 (Ours) 0.09 1.475
QPA LoRA setting 3 (Ours) 0.13 1.469

A.2 QUBIT NUMBER LIMITATIONS OF NON QUANTUM PARAMETER GENERATION
METHODS

While it is possible to generate parameters for tuning tasks using conventional QML methods,
that replacing the PEFT methods with VQC modules, a key difference lies in the output size.
For an output of size n, conventional QML utilizes the expectation value of the Pauli-z operator,
⟨ψ(θ)|σ(i)

z |ψ(θ)⟩, for each qubit, resulting in a qubit requirement of n, as described in Eq. 14 of
(Mari et al., 2020). In contrast, quantum parameter generation leverages the measurement probabil-
ity |⟨ϕi|ψ(θ)⟩|2 for each basis, reducing the qubit requirement to ⌈log2 n⌉.

In practical terms, the qubit usage in the PEFT experiments presented in this study ranges between 4
and 11 qubits. If conventional QML were employed, the required qubit count would scale exponen-
tially, from 24 to 211, an impractically large number that would make conventional QML infeasible
for PEFT applications.
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B DISCUSSION ON ERROR PERFORMANCE

Prior works have examined the theoretical error performance of VQC in regression tasks (Qi et al.,
2023) and classification tasks (Du et al., 2021b). For regression, the representational capacity is
bounded by (Eq. 11 in (Qi et al., 2023)):

LD(f
∗
D) = ∥h∗D(x)− Tlr (E [g(x;θvqc,θttn)])∥1 ≤ Θ(1)√

U
+O(

1√
M

), (11)

where U represents the number of qubits andM the number of measurement shots. While our quan-
tum parameter generation framework diverges from traditional quantum machine learning method-
ologies, a promising direction for analyzing the approximation error of the QPA in estimating PEFT
parameters may be guided by insights from the universal approximation theorem. Specifically, the
representation power of pre-trained large language models (LLMs) could leverage population risk
estimation, as outlined in previous theoretical work on parameter-efficient learning with Wasserstein
measurements in Hilbert space (Yang et al., 2021b). In particular, the dimensionality of classical
hidden neurons may align with that of the Hilbert space, utilizing fewer qubits and quantum gate pa-
rameters. This alignment suggests that a quantum approach may achieve comparable approximation
accuracy with fewer parameters than classical counterparts as one perspective for future studies.

C TRAINING HYPERPARAMETER CONFIGURATION

In this section, we provide the training hyperparameter configuration used for the results presented
in the main text. Notably, α represents the scaling factor in the low-rank adaptation methods. All
experiments were conducted on NVIDIA V100S and NVIDIA H100 GPUs.

Table 4: Hyperparameter configurations of LoRA and QPA LoRA for fine-tuning GPT-2 and
Gemma-2 with WikiText-2 dataset.

Hyperparameters LoRA QPA LoRA
GPT-2 Gemma-2 GPT-2 Gemma-2

α 2r 2r
Dropout 0.05 0.0 0.05 0.0
Optimizer AdamW AdamW
LR 1e-5 1e-5
LR Scheduler Linear Linear
Batch size 1 1
Warmup Steps 0 0
Epochs 3 5 3 5

Table 5: Hyperparameter configurations of DoRA and QPA DoRA for fine-tuning GPT-2 and
Gemma-2 with WikiText-2 dataset.

Hyperparameters DoRA QPA DoRA
GPT-2 Gemma-2 GPT-2 Gemma-2

α 2r 2r
Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 2e-6 2e-6
LR Scheduler Linear Linear
Batch size 1 1
Warmup Steps 100 100
Epochs 5 5

17



Published as a conference paper at ICLR 2025

Table 6: Hyperparameter configurations of PT and QPA PT for fine-tuning GPT-2 and Gemma-2
with WikiText-2 dataset.

Hyperparameters PT QPA PT
GPT-2 Gemma-2 GPT-2 Gemma-2

Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 5e-6 1e-6
LR Scheduler Linear Linear
Batch size 1 1
Warmup Steps 0 0
Epochs 5 5

Table 7: Hyperparameter configurations of FFA and QPA FFA for fine-tuning GPT-2 and Gemma-2
with WikiText-2 dataset.

Hyperparameters FFA QPA FFA
GPT-2 Gemma-2 GPT-2 Gemma-2

Dropout 0.0 0.0
Optimizer AdamW AdamW
LR 5e-6 5e-6
LR Scheduler Linear Linear
Batch size 1 1
Warmup Steps 0 0
Epochs 5 10 5 10

D QPA APPLIED AT DIFFERENT LORA RANKS

In Sec. 4.1, to maintain clarity in the main text, we presented results only for QPA applied at LoRA
and DoRA ranks of 4. In this appendix, we provide the full set of results in Fig. 5, showing QPA
applied across various LoRA and DoRA ranks. Additionally, it can be observed that different val-
ues of nmlp may yield distinct optimal LoRA and DoRA ranks. Notably, the optimal LoRA rank
identified in Sec. 4.2 was based on a fixed nmlp for simplicity.

Figure 5: Full perplexity comparison of GPT-2 and Gemma-2 models versus the number of trainable
parameters for LoRA, DoRA and QPA, evaluated on the WikiText-2 dataset. This figure shows the
complete results with QPA applied across different LoRA and DoRA ranks, complementing the
partial results presented in the main text.

E ON PENN TREEBANK DATASET

While the main text presents results obtained on the WikiText-2 dataset, we extend our analysis to
showcase the broader applicability of QPA across additional datasets. In this section, we report re-
sults of QPA applied to LoRA, Prefix Tuning (PT), and Feed-Forward Adapter (FFA) on the Penn
Treebank dataset. The findings indicate that QPA achieves its strongest advantage in the lower-
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parameter regime for LoRA, consistently outperforms PT across all parameter ranges, and demon-
strates comparable performance to FFA with a reduced number of trainable parameters. These
observations align with the results reported in the main text for the WikiText-2 dataset.

Figure 6: Testing perplexity of GPT-2 and Gemma-2 models versus the number of trainable param-
eters on the Penn Treebank dataset. The comparison includes LoRA and QPA applied at different
LoRA ranks (r = 1, 2, and 4). The third subplot compares QPA with PT, and the fourth compares
QPA with FFA, further illustrating QPA’s competitive performance in various parameter configura-
tions.

F EFFECTS OF DIFFERENT CIRCUIT ANSATZ

In the main context, the usage of the RY circuit is inspired by the fact that the rotation RY (θ) =(
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

)
produces quantum states with real amplitudes. This contrasts with RX(θ) =(

cos( θ2 ) −i sin( θ2 )
−i sin( θ2 ) cos( θ2 )

)
andRZ(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
, which involve complex numbers. Since the

ultimate goal is to generate the parameters for the PEFT methods, which are typically real numbers,
this rationale led us to select the RY circuit in the main content.

While the quantum circuit ansatz in the main content is constructed as a combination of RY and
CNOT gates, it is also possible to explore alternative circuit ansatz to potentially improve perfor-
mance. Similar to the construction of theRY + CNOT ansatz in the main content (Eq. 1), alternative
ansatz can be developed by replacing the parameterized RY gate with other parameterized gates,
such as RX :

|ψ(θ)⟩ =

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
X(θ

(L)
j )

L

|0⟩⊗N (RX + CNOT circuit). (12)

And the circuits combined with RZ gates:

|ψ(θ)⟩ =

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
Z(θ

(L,Z)
j )

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
X(θ

(L,X)
j )

L

|0⟩⊗N

(RXRZ + CNOT circuit), (13)

|ψ(θ)⟩ =

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
Z(θ

(L,Z)
j )

N−1∏
i=1

CNOTi,i+1
N∏
j=1

Rj
Y (θ

(L,Y )
j )

L

|0⟩⊗N

(RYRZ + CNOT circuit). (14)

In Fig. 7, the LoRA results from Fig. 2 are extended to include an investigation of different circuit
constructions, as described earlier. Notably, the overall performance differences are minimal, sug-
gesting that the choice of circuit construction has only a minor impact under ideal conditions. The
influence of more realistic conditions will be examined in detail in the following appendix section.
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Figure 7: Testing perplexity of GPT-2 versus the number of trainable parameters on different circuit
ansatz. The comparison includes LoRA and QPA applied at LoRA rank (r = 4).

G EFFECTS OF FINITE MEASUREMENT SHOTS AND NOISE

In the main content, the amplitudes and measurement probabilities of the basis states are computed
exactly. Although the implementation on actual quantum hardware is left for future work, it is possi-
ble to simulate QPA performance on a real quantum computer by accounting for finite measurement
shots and incorporating a noise model based on the real quantum hardware. On real quantum com-
puters, measurement probabilities are derived from a finite number of measurement shots. The
higher the number of shots, the more accurate the probability estimates. To understand the scaling
behavior of the required measurement shots, we can draw parallels to tasks that approximate one
quantum state with another. Based on theoretical findings from quantum fidelity tomography, the
goal is to achieve a fidelity F (|γ⟩, |φ⟩) ≥ 1 − ϵ between the output state |φ⟩ and an unknown state
|γ⟩, with a given infidelity ϵ. Prior work suggests that the sufficient number of measurement shots is

nshot = O

(
2N

ϵ
log

(
2N

ϵ

))
(15)

(Haah et al., 2017), where N represents the number of qubits.

As the number of measurement shots scales exponentially with the system size N, adopting a lin-
ear scaling strategy with respect to 2N emerges as a practical approach to improve both train-
ing and testing performance in larger systems. In Fig. 8, the LoRA and QPA results for GPT-2
from Fig. 2 are analyzed under finite measurement shots. By comparing measurement shot counts
nshot ∈ {10 × 2N , 20 × 2N , 40 × 2N}, where N is the number of qubits, it can be observed that
increasing the number of measurement shots leads to improved results. As expected, the outcomes
progressively approach the exact measurement results as the shot count increases. Specifically, the
results for nshot = 40 × 2N are notably close to the exact measurement results in certain cases.
The number of qubits N in Fig. 8, corresponding to the progression from the smallest number of
trainable parameters to the largest, is (10, 9, 8, 7, 6, 5), as indicated in Fig. 4(a).

Consequently, the ability to swiftly gather measurement data is critical for the effective application
of the QPA method. Generative models present a viable alternative by simulating measurement
outcomes efficiently (Ahmed et al., 2021), which can alleviate the burden of needing exponentially
large numbers of shots. By utilizing generative models, it becomes possible to reduce computational
complexity and enhance the practicality of quantum state tomography in large-scale systems, thereby
increasing the feasibility of applying QPA in real-world scenarios.

As discussed earlier, by simulating finite measurement shots and incorporating a noise model based
on real quantum hardware, it is possible to analyze the performance behavior of QPA on an actual
quantum computer. In this appendix section, we use noise models derived from the IBM quantum
computers ibm torino and ibm fez in our finite measurement shot simulations 3.

3IBM Quantum provides noise models based on the properties of real hardware back-
ends:https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.providers.aer.
noise.NoiseModel.
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Figure 8: Testing perplexity of GPT-2 versus the number of trainable parameters on different
number of measurement shots with RY + CNOT ansatz. The comparison includes LoRA and QPA
applied at LoRA rank (r = 4).
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Figure 9: Testing perplexity of GPT-2 versus the number of trainable parameters on different noise
setting withRY + CNOT andRX+ CNOT ansatz. The comparison includes LoRA and QPA applied
at LoRA rank (r = 4), where nshot is fixed at nshot = 20× 2N .

In Fig. 9, the QPA performance results are presented in the presence of quantum computer noise
models for two circuit constructions: RX+ CNOT and RY + CNOT. In the noiseless case, the RY

circuit outperforms the RX circuit in overall trends. Interestingly, when noise from ibm torino and
ibm fez is introduced, although performance decreases slightly in some cases, it improves in most
instances. This phenomenon aligns with previous observations in some quantum computing studies,
where quantum noise has been shown to enhance performance in certain paradigms (Domingo et al.,
2023).

Similarly, in classical machine learning, studies have demonstrated that a small amount of noise can
be beneficial for fine-tuning LLMs (Wu et al., 2022). Since the quantum circuit in QPA generates
measurement probabilities that are subsequently input into a classical MLP mapping model to pro-
duce PEFT parameters, this suggests that quantum noise may play a role analogous to the “small
noise” effect observed in prior studies, aiding in the fine-tuning of LLMs, exploring more parameter
spaces.

H ON GRADIENT VARIANCE OF QUANTUM CIRCUIT PARAMETERS

The occurrence of barren plateaus is a critical challenge in the training of QNNs (McClean et al.,
2018; Zhang et al., 2022). Barren plateaus typically arise in learning tasks where the objective is the
expectation value of some Hermitian operator H , expressed as:

E(θ) = ⟨0|U(θ)†HU(θ)|0⟩. (16)

In contrast, our QPA approach deviates from this framework. The objective of QPA is the loss
function of a target classical model (LLM, in this study). The parameters of this target model are
updated using PEFT methods, with these parameters being generated by a mapping model that
processes information derived from the measurement results of the QNN. Consequently, the output
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of our QNN is the measurement result of basis states, rather than the expectation value of a Hermitian
operator. As a result, whether the exponential vanishing gradient characteristic of barren plateaus
occurs in QPA remains an open question.

To investigate whether barren plateaus are present in QPA, we analyzed the variance of the QNN
gradient ∂θ in the QPA-LoRA results for GPT-2, as shown in Fig. 10. Notably, no significant
downward trend in gradient variance is observed with increasing qubit count. This behavior may
stem from the fact that QNN gradients are propagated backward through the subsequent mapping
model, preventing them from behaving like the expectation value-based objectives typically seen in
traditional QML.

Interestingly, however, as the QNN repetition L increases, a slight downward trend in gradient
variance is observed. This behavior bears some resemblance to both classical deep feedforward
neural networks and barren plateaus in QNNs, as described in (Glorot & Bengio, 2010; McClean
et al., 2018), albeit to a much lesser extent. This suggests that, while QPA does not exhibit barren
plateaus in the same way as traditional QML (specifically with respect to qubit counts), its gradient
dynamics may still reflect certain characteristics of both quantum and classical learning paradigms.
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Figure 10: Variance of the gradient ∂θ with respect to the number of qubits (N) and the QNN
repetition depth (L).

I ON COMPUTATIONAL TIME

The total execution times for LoRA and QPA, as presented in Fig. 2, are detailed in Table 8 and Ta-
ble 9. For the LoRA results in Fig. 2, the average batch execution times for classical LoRA and QPA
are 0.0154s and 0.0460s for GPT-2, and 0.0207s and 0.0576s for Gemma-2, respectively. Therefore,
when accounting for the additional quantum circuit simulation and computational overhead of QPA,
its average execution time is approximately three times that of LoRA.

Based on this observation, we can compare the performance of LoRA and QPA under similar total
computational time. Specifically, for every epoch of QPA training, LoRA can complete approx-
imately 3 epochs. In Fig. 11, we compare the performance of QPA and LoRA under different
numbers of training epochs. For GPT-2, since both LoRA and QPA originally undergo 3 epochs
of training, the QPA results with 1 epoch serve as a benchmark for comparing QPA’s performance
under a similar total execution time to that of LoRA.

For Gemma-2, the analysis follows a similar rationale. With 5 training epochs set as the baseline, we
provide results for 1 and 2 epochs of QPA to estimate its performance under a total execution time
comparable to LoRA. The results show that, although QPA with a similar total execution time does
not outperform LoRA to the same extent as when both methods have the same number of epochs, it
still exhibits better performance in regions with smaller parameter sizes.

J IMPLEMENTATION DETAIL

This section provides a minimal example of how QPA is applied to LoRA in a Gemma-2 model, im-
plemented using PyTorch and TorchQuantum. The code snippets demonstrate the key components
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Table 8: Training parameters and total execution time for GPT-2 using LoRA and QPA methods.
Corresponding to the results provided in Fig. 2

GPT-2 LoRA GPT-2 QPA
# Params Total execution time (s) # Params Total execution time (s)

51025 1696 47248 5965
102050 1677 55656 5520
204100 1695 72512 5223
408200 1712 106264 4910
816400 1700 173808 4570
1632800 1729 308936 4245

Table 9: Training parameters and total execution time for Gemma-2 using LoRA and QPA methods.
Corresponding to the results provided in Fig. 2

Gemma-2 LoRA Gemma-2 QPA
# Params Total execution time (s) # Params Total execution time (s)

258048 3796 72592 13861
516096 3794 173888 11602
1032192 3798 309016 8316
2064384 3690 575154 9252
4128768 4002 1119944 11768
8257536 3816 2201248 8702

of the QPA process, including the modification of the target layer and the generation of low-rank
matrices using a quantum parameter generation approach.

1 class QPA_LoRAGemma2(nn.Module):
2
3 def __init__(self, gemma_model):
4 super(QPA_LoRAGemma2, self).__init__()
5
6 self.gemma_model = gemma_model
7
8 for name, module in self.gemma_model.named_modules():
9 if name == 'lm_head':

10 lora_layer = QPA_LoRALayer(module, r=LoRA_rank, alpha=LoRA_rank*2)
11 setattr(self.gemma_model, name, lora_layer)
12
13 def forward(self, input_ids, attention_mask, labels):
14
15 outputs = self.gemma_model(input_ids, attention_mask=attention_mask, labels =

labels)↪→
16
17
18 return outputs

In the above example, the “lm head” layer is modified using the QPA LoRALayer function, defined
as follows:

1 class QPA_LoRALayer(nn.Module):
2 def __init__(self, original_layer, r, alpha):
3 super(QPA_LoRALayer, self).__init__()
4 self.original_layer = original_layer
5 self.r = r
6 self.alpha = alpha
7 self.dropout = nn.Dropout(p=0.0)
8 self.dtype = torch.float32 # Ensure all tensors are of this type
9

10 # Generate the parameters of A and B
11 self.QPA_res = nn.ModuleList([
12 QPA_Net(
13 original_layer.weight.size(0)*r + r*original_layer.weight.size(1),
14 1)
15 ]).cuda()

23



Published as a conference paper at ICLR 2025

105 106

# Trainable Parameters

1.56

1.58

1.60

1.62
Te

st
in

g 
pe

rp
le

xi
ty

GPT-2
LoRA - 3 epoch
QPA - 1 epoch
QPA - 3 epoch

105 106 107

# Trainable Parameters

1.40

1.42

1.44

1.46

1.48

Gemma-2
LoRA - 5 epoch
QPA - 1 epoch
QPA - 2 epoch
QPA - 5 epoch

Figure 11: Comparison of testing perplexity against the number of trainable parameters for GPT-2
(left) and Gemma-2 (right) models using LoRA and QPA approaches across different epochs.

16
17
18 # Freeze the original layer's parameters
19 for param in self.original_layer.parameters():
20 param.requires_grad = False
21
22 def forward(self, x):
23
24 gen_weights = []
25 for sub_res in self.QPA_res:
26 gen_weights.append(sub_res())
27 self.generated_weights = torch.cat(gen_weights,

dim=0).view(-1)[:self.original_layer.weight.size(0)*self.r +
self.r*self.original_layer.weight.size(1)].cuda()

↪→
↪→

28 self.generated_weights_A =
self.generated_weights[:self.original_layer.weight.size(0)*self.r]↪→

29 self.generated_weights_A =
self.generated_weights_A.view(self.original_layer.weight.size(0),
self.r).type(self.dtype)

↪→
↪→

30 self.generated_weights_B =
self.generated_weights[self.original_layer.weight.size(0)*self.r:]↪→

31 self.generated_weights_B = self.generated_weights_B.view(self.r,
self.original_layer.weight.size(1)).type(self.dtype)↪→

32
33 batch_size, seq_len, hidden_size = x.size()
34 x_reshaped = self.dropout(x).view(-1, hidden_size)
35 delta = (x_reshaped @ self.generated_weights_B.t()) @ self.generated_weights_A.t()
36 delta = delta * (self.alpha / self.r)
37 delta = delta.view(batch_size, seq_len, self.generated_weights_A.shape[0])
38 return self.original_layer(x) + delta
39

As shown in lines 28 and 30, the low-rank matrices A and B are generated by the QPA Net object,
which implements the method described in Sec. 3. The QPA Net class is defined as follows:

1 class QPA_Net(nn.Module):
2 def __init__(self, vocab_size, hidden_size):
3 super(QPA_Net, self).__init__()
4
5 self.n_sub_res = 1
6 self.weight_length = int(np.ceil((vocab_size * hidden_size) / self.n_sub_res ))
7
8 self.out_dim_mlp = 32
9 self.out_dim_MLP = chunk_size

10 self.batch_size = int(np.ceil((self.weight_length/self.out_dim_MLP)))
11 self.dropout = nn.Dropout(p=0.)
12
13 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
15 self.init_mapping = "MLP"
16 self.classical_layers = "MLP"
17
18
19 self.n_qubit_qpa = int(np.ceil(np.log2(self.batch_size)))
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20 self.n_qubit = self.n_qubit_qpa
21 self.q_depth = qnn_depth
22 self.QuantumNN = QLayer(self.q_depth, self.n_qubit_qpa).to(self.device)
23
24 if self.init_mapping == "MLP":
25 self.MappingNetwork = MappingModel(self.n_qubit+1, [32, 64, 128, 128, 64, 32],

self.out_dim_mlp)↪→
26
27
28 if self.classical_layers == "MLP":
29 self.fc1 = nn.Linear(self.out_dim_mlp, self.out_dim_MLP)
30
31
32 def forward(self):
33
34 compute_method = "checkpoint"
35
36
37 probs_ = self.QuantumNN().flatten()
38 probs_ = probs_[:self.batch_size]
39 probs_ = probs_.reshape(self.batch_size, 1, 1)
40
41
42 qubit_states_torch = generate_qubit_states_torch(self.n_qubit,

self.batch_size)[:self.weight_length].to(self.device)↪→
43
44 combined_data_torch = torch.cat((qubit_states_torch, probs_), dim=2)
45
46 prob_val_post_processed_list = []
47 if compute_method == "checkpoint":
48
49
50 batch_data = combined_data_torch[0:self.batch_size]
51 batch_data.requires_grad_()
52
53 prob_val_post_processed_batch = checkpoint(self.MappingNetwork, batch_data)
54
55 if self.classical_layers == "MLP":
56
57 prob_val_post_processed_batch = checkpoint(self.dropout,

prob_val_post_processed_batch)↪→
58 prob_val_post_processed_batch = checkpoint(self.fc1,

prob_val_post_processed_batch)↪→
59
60
61 prob_val_post_processed_list.append(prob_val_post_processed_batch)
62
63 torch.cuda.empty_cache()
64
65 prob_val_post_processed_list = prob_val_post_processed_list[:self.weight_length]
66 prob_val_post_processed = torch.cat(prob_val_post_processed_list, dim=0)
67
68 prob_val_post_processed = prob_val_post_processed.view(-1)[:self.weight_length]
69 prob_val_post_processed = prob_val_post_processed - prob_val_post_processed.mean()
70
71 torch.cuda.empty_cache()
72
73 return prob_val_post_processed

This implementation demonstrates how QPA is applied to generate low-rank matrices using quan-
tum parameter genreation, which can be seamlessly integrated into LLMs to improve parameter
efficiency.
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