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ABSTRACT

Model-based approaches to offline Reinforcement Learning (RL) aim to remedy
the problem of sample complexity in offline learning via first estimating a pes-
simistic Markov Decision Process (MDP) from offline data, followed by freely
exploring in the learned MDP for policy optimization. Recent advances in model-
based RL techniques mainly rely on an ensemble of models to quantify the un-
certainty of the empirical MDP which is leveraged to penalize out-of-distribution
state-action pairs during the policy learning. However, the performance of ensem-
bles for uncertainty quantification highly depends on how they are implemented in
practice, which can be a limiting factor. In this paper, we propose a systematic way
to measure the epistemic uncertainty and present EMO, an Entropy-regularized
Model-based Offline RL approach, to provide a smooth error estimation when
leaving the support of data toward uncertain areas. Subsequently, we optimize a
single neural architecture that maximizes the likelihood of offline data distribution
while regularizing the transitions that are outside of the data support. Empirical
results demonstrate that our framework achieves competitive performance com-
pared to state-of-the-art offline RL methods on D4RL benchmark datasets.

1 INTRODUCTION

Following the major success of deep Reinforcement Learning (RL) in numerous applications (Mnih
et al., 2013; 2015; Silver et al., 2018), offline RL has emerged to cope with the problems where
simulation or online interaction is impractical, costly, and/or dangerous, thus, allowing to automate
a wide range of decision-making problems from healthcare and education to finance and robotics
(Levine et al., 2020). The primary challenge in these scenarios is however that learning new policies
from data stored with a different (possibly sup-optimal) policy, aka behavior policy, suffers from
distributional shifts resulting in extrapolation error, which is infeasible to improve due to lack of
additional exploration (Fujimoto et al., 2019; Kumar et al., 2019). This is why standard (online)
RL methods perform poorly in offline settings (Yu et al., 2020). Consequently, several model-free
offline RL algorithms are introduced to regularize the learned policies to stay close to the behavior
policy, by constraining out-of-distribution trajectories (Fujimoto et al., 2019; Kumar et al., 2019;
Wu et al., 2019; Kumar et al., 2020; Agarwal et al., 2020).

In model-free methods, policy optimization is limited to already observed states which most likely
do not provide sufficient coverage of the entire state space. Alternatively, model-based methods first
learn the corresponding empirical Markov Decision Process (MDP) using the offline dataset and then
freely explore in the learned environment for policy optimization, which can attain excellent sample
efficiency compared to model-free methods (Chua et al., 2018; Janner et al., 2019). Most recently,
model-based algorithms are specifically designed for offline settings to address distributional shifts
in the learned model and have been proved effective in certain problems compared to their model-
free counterparts (Yu et al., 2020; 2021; Kidambi et al., 2020; Zhan et al., 2021; Swazinna et al.,
2021; Chen et al., 2021; Rigter et al., 2022)

However, prominent model-based methods, i.e., MOPO (Yu et al., 2020) and MOReL (Kidambi
et al., 2020), mainly leverage an ensemble of models for uncertainty quantification. Ensemble un-
certainty quantification is a special case of uncertainty quantification in Bayesian neural networks
with latent variables using nearest-neighbor methods, introduced by Depeweg et al. (2018), where
each model in the ensemble corresponds to sample from the posterior distribution. In these methods,
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a measure of ensemble discrepancy determines the estimation error. This can be particularly restric-
tive when theoretical assumptions on the ensemble do not hold in practical scenarios. In practice, an
ensemble usually consists of a small number of models, where each model is a different initialization
of the same neural architecture, trained on the same data. Hence, the models in the ensemble are
likely to correlate to one another after training, which might make their variation a poor indicator
of uncertainty. Yu et al. (2021) study this behavior and demonstrate that the uncertainty estimated
via maximum variance over the learned ensemble (as in MOPO) struggles to accurately predict the
model’s error , and could lead to poor performance (see Fig. 2 in Yu et al. (2021)).

Accordingly, there have been efforts to eliminate the need for bootstrap ensembles for uncertainty
estimation in model-based offline RL methods. Yu et al. (2021) propose utilizing model rollouts
to conservatively learn the Q-function by penalizing the values over out-of-distribution areas, while
Rigter et al. (2022) introduce an adversarial framework for training the policy and the model at the
same time, such that at each step, the policy is trained to maximize the return, while the model is
tuned to minimize it. In addition, Tennenholtz et al. (2021) propose to quantify uncertainty using
a k-nearest neighbors approach, where the distance measure is defined as an approximate metric
on the learned (Riemannian) manifold in a latent space encoded by a VAE. Although RAMBO-
RL (Rigter et al., 2022) and COMBO (Yu et al., 2021) have shown promising empirical results
on standard benchmark datasets, they both forgo the modularity aspect of methods such as MOPO
and MOReL, and GELATO (Tennenholtz et al., 2021) is computationally expensive. Instead, we
aim to get the best of both worlds and present a general-purpose, task-agnostic, computationally
efficient framework to learn a pessimistic model of the environment that can be coupled with any
RL algorithm to learn optimal policies, without ensemble learning.

In this paper, we address this problem by proposing a novel method that eliminates the need for
ensemble uncertainty quantification, while still being modular in the sense that the trained model
can be combined with arbitrary RL algorithms to learn arbitrary tasks. Therefore, we present EMO,
an Entropy-regularized Model-based Offline RL approach, that learns a pessimistic MDP using only
a single model which can provide accurate estimates of the dynamics in the support of offline data
while softly quantifies an upper bound for the uncertainty of model predictions when leaving the data
support. To this end, we devise a regularized loss function to minimize the negative log-likelihood
of the model w.r.t. the offline data distribution, and simultaneously, maximize the entropy of pre-
dictions outside of the data support in a single model. Furthermore, we propose to warm-start the
learning procedure by only optimizing the unconstrained objective function, where the initial learned
model in this step is used to generate rollouts for optimizing the uncertainty estimation.

Our extensive empirical study illustrates that our approach achieves better or on par performance
compared to state-of-the-art (SOTA) offline RL techniques, both model-free and model-based, on
D4RL benchmark datasets for MuJoCo environments.

2 RELATED WORK

Offline reinforcement learning (Lange et al., 2012), which allows for optimizing policies from static
offline datasets, has received a lot of attention throughout the recent years, as the practical issues
of applying online RL to many real-world scenarios became more apparent. Model-free offline
RL approaches optimize a policy solely based on the visited states from the static offline data,
without utilizing a learned model of the environment. Constraining the policy to be close to the
behavior policy (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021),
conservative estimation of value functions (Kumar et al., 2020; Kostrikov et al., 2021), incorporating
the uncertainty of predictions to stabilize Q-functions (Agarwal et al., 2020; Wu et al., 2021), and
adversarial training of actor and critic (Cheng et al., 2022) are among active lines of work in model-
free offline RL. However, due to their limited generalization, the performance of model-free methods
is highly reliant on the optimality of the offline data.

On the other hand, model-based approaches incorporate a model of the environment to improve
generalization and sample efficiency, which is used as a surrogate for the actual MDP to optimize
a policy, combined with the original offline data. MOPO (Yu et al., 2020) and MOReL (Kidambi
et al., 2020) incorporate ensemble uncertainty estimation to penalize highly uncertain transitions.
COMBO (Yu et al., 2021) combines the idea of conservative estimation of value functions in CQL
(Kumar et al., 2020) with a model-based learning framework. RAMBO-RL (Rigter et al., 2022)
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Figure 1: General scheme of EMO.

proposes an adversarial framework for training the policy and the model at the same time, such that
at each step, the policy is trained to maximize the return, while the model is tuned to minimize it.

As discussed in (Yu et al., 2021), algorithms like MOPO and MOReL that rely on ensemble uncer-
tainty estimation, are prone to erroneous estimations of uncertainty. On the other hand, COMBO
and RAMBO-RL are not modular frameworks; COMBO applies the idea of conservative learning of
value function as a part of its proposed RL algorithm, and RAMBO-RL tunes the model to be pes-
simistic with respect to the current policy of the agent; therefore, the resulting model from learning a
particular task with either of these methods cannot be utilized to learn a new task in the environment.
EMO, however, tries to eliminate the need for ensemble uncertainty quantification, while remaining
a modular framework that can be extended to various tasks and RL algorithms.

3 EMO: ENTROPY-REGULARIZED MODEL-BASED OFFLINE RL

3.1 PRELIMINARIES

The Reinforcement Learning (RL) problem is characterized via a Markov Decision Process (MDP)
(Sutton & Barto, 2018), represented by M = (S,A, T, r, γ, ρ0), where S and A denote the state
space and action space, respectively, T (s′|s, a) is the transition distribution, r(s, a) is the reward
function, γ ∈ (0, 1) is the discount factor, and ρ0 is the distribution of the initial state. A policy
π(a|s) is defined as a mapping from states to a distribution over actions, π : S ×A → [0, 1], and the
goal is to learn a policy π∗ which maximizes the expected discounted return η

M
(π) when followed

π∗ = argmax
π

η
M
(π) where η

M
(π) = Eπ,ρ0,T

[ ∞∑
t=0

γtr(st, at)
]
.

However, in offline settings, we are not able to accurately evaluate the return values under dif-
ferent policies as there is no further interaction with the environment. Instead, a static dataset
D = {(si, ai, ri, s′i)}ni=1 which is collected under an arbitrary policy in the environment is pro-
vided. Therefore, the objective turns into finding the best policy that can be solely optimized on the
available offline data D. Note that in this context, best policy might be different from the optimal
policy, as the performance of the resulting policy, regardless of the learning algorithm, is affected
and capped by factors such as distribution and optimality of the static data.

In this paper, we focus on model-based offline reinforcement learning, where an empirical model
of the environment is estimated and leveraged to enhance sample efficiency over model-free ap-
proaches. In this framework, the offline dataset is used to train a pessimistic MDP M̂ which
is then employed as a surrogate for the actual model of the environment. Subsequently, the RL
agent interacts with this model and optimizes its policy based on both the acquired information
and the original transitions from the offline data. Ideally, we aim to find a policy π̂∗ with min-
imum sub-optimality with respect to the optimal policy, i.e., π̂∗ = argmin

π
η
M
(π∗) − η

M
(π).

π̂∗ = argmin
π

ηM (π∗)− ηM̂ (π).

The general workflow of EMO is depicted in Figure 1. In this figure, the offline dataset is first
utilized to train a pessimistic model of the environment in a two-phase training regime. After that,
the model is considered as a surrogate for the actual environment to train a policy π̂∗(a|s).
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3.2 MODEL OPTIMIZATION

In this section, we present a novel approach for model optimization, as the main part of EMO, that
learns a pessimistic MDP using only a single neural network with two aims. First, the estimated
model should accurately capture the dynamics of the environment (which can only be reliable in
the support of offline data,) and second, it should relatively quantify the uncertainty associated
with model predictions in the form an error estimator. Consequently, we address these goals in a
regularized optimization setting, where both the likelihood of the data as well as the error estimation
are jointly optimized in a single model.

The error estimator, denoted by u, allows the framework to relatively differentiate between the
reliable and unreliable predictions of the model, which accordingly, can be utilized to penalize
unreliable predictions based on their estimated uncertainty. Let r(s, a) and u(s, a) be the asso-
ciated reward function and estimated error for a particular state-action pair (s, a), respectively.
A pessimistic model can be determined by defining an alternative reward value in the form of
r̃(s, a) = r(s, a) − λu(s, a), where λ is a constant value to control the amount of penalty associ-
ated with the state-action pair. As a result, the policies will be prevented from exploiting unreliable
predictions, which can translate to conservative exploration in the actual environment.

Inspired by Yu et al. (2020); Kidambi et al. (2020), we characterize the one-step model of the en-
vironment with a Gaussian distribution over the next state and reward, conditioned on the current
state and action, i.e., P (s′, r|s, a) = N

(
µθ(s, a),Σϕ(s, a)

)
, where θ and ϕ are the weights of the

corresponding neural networks. Both the mean vector µθ(s, a) and covariance matrix Σϕ(s, a) are
of the size d + 1, where d is the dimensionality of the state space and the covariance matrix is as-
sumed to be diagonal. In this work, the main reason for explicitly estimating the covariance matrix
lies in the fact that the entropy of a Gaussian distribution, as a quantitative measure for uncertainty,
is formulated as a function of the covariance matrix

H =
1

2
log

(
det

(
Σϕ(s, a)

))
+

(d+ 1)

2

(
1 + log(2π)

)
,

and assuming that the covariance matrix is diagonal, we have:

H =
1

2

d+1∑
i=1

log
(
Σϕ,i(s, a)

)
+

(d+ 1)

2

(
1 + log(2π)

)
. (1)

Consequently, Σϕ(s, a) can solely act as the uncertainty/error estimator, while µθ(s, a) is trained to
model the transition dynamics. In this way, both terms can be optimized in a single model to learn a
pessimistic MDP that allows for utilizing the offline data in a more efficient and reliable way.

Furthermore, we propose a two-step algorithmic framework for learning the pessimistic model of
the environment. During the first phase, indicated by the warm-up phase, the model is trained via
maximum likelihood following the prior work (Yu et al., 2020; Kidambi et al., 2020), while in the
second phase, which we call the regularization phase, the model is leveraged to generate synthetic
rollouts, that are then used to maximize the entropy of model predictions over the out-of-distribution
data points. Note that the warm-up phase is essential to the next phase, since the additionally gener-
ated data from the model needs to be as close to the actual dynamics of the environment as possible,
particularly, in the support of offline data and possibly its generalizable neighborhood.

3.2.1 WARM-UP PHASE

In this phase, we employ the Gaussian negative log-likelihood (NLL) loss to train an initial model
M̂init of the environment on the offline dataset. Let BD be a batch sampled from the offline data D,
the NLL objective function denoted by L1 can be written as in Equation 2

L1(θ, ϕ;BD) =
1

|BD|
∑

(s,a,r,s′)∈BD

d+1∑
i=1

1

2

(
log(Σϕ,i(s, a)) +

(µθ,i(s, a)− [s′, r]i)
2

Σϕ,i(s, a)

)
. (2)

At the end of the warm-up phase, we expect µθ(s, a) to provide accurate and reliable predictions
for (s′, r) conditioned on (s, a) in the support of the offline data. Additionally, depending on the
generalizability of the model, the performance can be extended to a neighborhood around the offline
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Algorithm 1 Generating Rollouts

Require: D, µθ, Σϕ, πe, batch size b, rollout horizon h, penalty coefficient λ
1: Set B̄πe ← ∅
2: for 1, 2, ..., b (in parallel) do
3: Set ρ← ∅
4: Sample state s1 from D for the initialization of the rollout.
5: for j = 1, 2, ..., h do
6: Sample an action aj ∼ πe(sj)
7: Obtain sj+1, rj = µθ(sj , aj)

8: (Optional) Compute r̃j = rj − λ
√
tr(Σϕ(sj , aj)

9: Add (sj , aj , r̃j , sj+1) to ρ
10: end for
11: Add ρ to B̄πe

12: end for
13: return B̄πe

data distribution. Similarly, Σϕ(s, a) can capture the uncertainty in the areas that we have the support
of offline data. However, no devoted argument can be made about µθ and Σϕ over out-of-distribution
(OOD) data points, and thus, they might predict arbitrary values in those regions.

3.2.2 REGULARIZATION PHASE

If we directly employ the trained model from the warm-up phase as a surrogate for the actual envi-
ronment and optimize a policy, the learned policy will most likely perform poorly in the real MDP
(Levine et al., 2020). This happens because while training the policy, the RL algorithm will query
the model in OOD data points as well, meaning that it will rely on potentially inaccurate predictions
of the model, which might lead to inferior policies due to over- or under-estimation of the values.
Nevertheless, this is not an inherent issue in standard model-based RL as the model can be improved
over time by collecting more transitions, whereas in offline settings, the problem remains due to lack
of additional interactions with the real environment. Therefore, we aim to find an efficient way to ei-
ther prevent the policies from exploiting unreliable predictions, or prevent the unreliable predictions
from affecting the values of state-action pairs.

To address this problem, we propose using a regularized objective function and a second phase for
training the model. Once we have a preliminary empirical model, we expand the loss function to
include a second objective to maximize the entropy of model predictions over the OOD domains.
Since the model is characterized by a Gaussian distribution, entropy is a monotonically increasing
function of det

(
Σϕ(s, a)

)
= ΣiΣϕ,i(s, a) (Equation 1). Hence, higher entropy, which translates

to higher uncertainty, results in a higher value for det
(
Σϕ(s, a)

)
, and vice versa. As a result, the

maximized entropy, which can be attained by maximizing det
(
Σϕ(s, a)

)
, provides an upper-bound

estimation on the uncertainty of model predictions.

Let µθ(s, a) and Σϕ(s, a) be the mean and covariance of the Gaussian distribution over the next
state and reward, i.e., P (s′, r|s, a) = N

(
µθ(s, a),Σϕ(s, a)

)
, and B̄πe be a sample batch of rollouts

generated from the trained dynamics µθ(s, a) using an exploration policy πe(a|s), i.e., (s′, r) =
µθ

(
s, a ∼ πe(a|s)

)
, the second loss L2 is thus defined as

L2(ϕ; B̄πe
) =

1

|B̄πe
|

∑
(s,a,r,s′)∈B̄πe

d+1∑
i=1

−1

2
log

(
Σϕ,i(s, a)

)
, (3)

which together with L1 introduced in Equation 2 yield the hybrid loss L

L(θ, ϕ;BD, B̄πe
) = L1(θ, ϕ;BD) + αL2(ϕ; B̄πe

), (4)

and α is a fixed constant to control the effect of regularization on the NLL loss.

Algorithm 1 summarizes the procedure to generate a sample batch of b rollouts of length h given an
offline dataset D, a trained model in the form of N

(
µθ(s, a),Σϕ(s, a)

)
, and an exploration policy
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Algorithm 2 EMO

Require: Offline data D, exploration policy πe, batch size b, rollout horizon h, penalty coefficient
λ, regularization coefficient α

1: Initialize θ and ϕ
2: for K1 iterations do ▷ Warm-up phase
3: Sample a batch of transitions BD from the offline dataset D.
4: Compute L1(θ, ϕ;BD) (Equation 2.)
5: Compute gradients and update θ and ϕ.
6: end for
7: for K2 iterations do ▷ Regularization phase
8: Sample a batch of transitions BD from the offline dataset D.
9: Compute L1(θ, ϕ;BD) (Equation 2.)

10: Generate a batch of transitions B̄πe
using model rollouts (Algorithm 1.)

11: Compute L2(ϕ; B̄πe
) (Equation 3.)

12: Compute L(θ, ϕ;BD, B̄πe
) = L1(θ, ϕ;BD) + αL2(ϕ; B̄πe

).
13: Compute gradients and update θ and ϕ.
14: end for

πe(a|s). In this algorithm, µθ(s, a) models the transition dynamics and Σϕ(s, a) is used as the
uncertainty estimator. We leverage an exploratory policy as well as the dynamics model, which is
initially trained in the warm-up phase, to generate rollouts additional to samples from offline data
to be employed in the regularized optimization problem. Note that the dynamics model will be
gradually updated as the training progresses. Accordingly, Algorithm 2 plots the overall learning
procedure of EMO, in which the batches of data from both the offline dataset as well as the generated
rollouts from the model are utilized to minimize the hybrid loss in Equation 4.

In the regularization phase, the model is trained to maximize the likelihood of the offline data,
collected by a (possibly unknown) behavior policy, while maximizing the entropy of predictions
over the distribution induced by an exploratory policy. Hence, L1 ensures that µθ and Σϕ maintain
their accuracy in the support of offline data, while L2 aims to increase Σϕ as we leave the support
of offline dataset (over the distribution induced by the exploration policy πe.) As a result, Σϕ(s, a)
can be used as an upper bound indicating how reliable/accurate the trained model is for a certain
pair of s and a, as long as the distribution of rollouts generated by the exploration policy covers this
particular state-action pair. In other words, as long as the distribution of rollouts generated from
πe covers the potential distributions of other exploratory policies, (which will be used later during
policy optimization in Section 3.3,) Σϕ(s, a) can be leveraged as the error estimator to relatively
penalize unreliable predictions.

Furthermore, by considering a small value for α, we ensure that the effect of L2 will be negligible
compared to L1 where the distribution of offline data D overlaps with the distribution of rollouts
under the exploratory policy πe. In this way, the performance of the model is practically unaffected
in the support of offline data and possibly other generalizable neighborhoods. Note that L2 will still
be effective in the OOD areas, since L1 is non-existent in those regions.

Algorithm 3 General Framework for Model-based Offline RL

Require: Offline dataset D = {(si, ai, ri, s′i)}ni=1; penalty coefficient λ.
1: Train the dynamics model µθ and admissible uncertainty estimator Σϕ using D. (Algorithm 2)

2: Define u(s, a) =
√
det

(
Σϕ(s, a)

)
3: Define empirical MDP M̂ with dynamics µθ and reward r̃(s, a) = r(s, a)− λu(s, a).
4: Run any RL algorithm on M̂ until convergence to obtain π̂∗ = argmax

π
ηM̂ (π).

3.3 POLICY LEARNING

Once the model is trained using EMO, we will utilize its components to define a pessimistic MDP,
which can be coupled with any policy optimization technique to obtain the output policy π̂∗. Sub-
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sequently, the overall learning framework, which also adheres to prior work (Yu et al., 2020; Ki-
dambi et al., 2020), is summarized in Algorithm 3. In this algorithm, the offline dataset D is first
used to train a dynamics model µθ along with an admissible error/uncertainty estimator Σϕ. Next,
a new pessimistic MDP is defined as M̂ = (S,A, Tµ, r̃, γ, ρ0), with Tµ = {µθ,i(s, a)}di=1 and
r̃(s, a) = r(s, a) − λu(s, a), where u(s, a) =

√
tr(Σϕ(s, a)) (see section 3.2). Lastly, the pes-

simistic MDP M̂ is leveraged as a surrogate model to train an RL algorithm and obtain π̂∗.

3.4 THEORETICAL GROUNDS OF EMO

We argue that EMO is an extension to MOPO (Yu et al., 2020), while addresses the limitations of
MOPO regarding learning an ensemble of models for uncertainty estimation. Accordingly, we ex-
pand the theoretical grounds of MOPO to EMO, where we guarantee conservative policy evaluation
and safe policy improvement of EMO, regardless of the stochasticity of the environment. For a
detailed discussion on the theoretical analysis, refer to Appendix A.1.

4 EMPIRICAL STUDY

In this section, we evaluate the performance of our approach on D4RL benchmark datasets for Mu-
JoCo environments (Fu et al., 2020). We include data from three different environments: halfchee-
tah, hopper, and walker2d, and four different types from each, i.e., random, medium, medium-replay,
and medium-expert, which results in twelve different datasets. Throughout the experiments, we aim
to investigate the following questions: (1) How does EMO perform compared to SOTA methods on
standard offline RL benchmark? (2) What impact do entropy regularization and reward penalty have
on the performance of the trained policies? (3) What is the effect of exploration policy πe on the
generalization ability of the trained models and the performance of the resulting policies? (4) What
is the effect of regularization coefficient α on the performance of EMO?

4.1 EXPERIMENTAL SETUPS

Following the setup in Yu et al. (2020), we characterize the model as a 4-layer feed-forward neural
network across all domains, with 200 hidden units in each layer. Subsequently, the output of the last
hidden layer is fed into a two-head network architecture to generate µθ(s, a) and Σϕ(s, a), where
µθ and Σϕ are two outputs of a single neural network, i.e., they share the same network, except for
their output layers. Instead of directly estimating the reward function, the model predicts the center
of mass velocity, and the reward is calculated afterwards based on its formulation in each domain.

For all the experiments, a soft actor-critic (SAC) agent1 (Haarnoja et al., 2018) is used as the re-
inforcement learning agent for policy optimization on the trained pessimistic MDP M̂ . At each
time step, a batch of k-step rollouts are generated and added to the replay memory of the SAC agent,
where the actions for generating the rollouts are taken based on the current policy of the agent, while
transitions and rewards are produced by M̂ . Next, the agent optimizes its policy based on samples
from both its replay memory and the offline data D. Note that in our implementation, the agent will
only utilize its own replay memory for policy optimization, meaning that samples from offline data
are not directly utilized for policy optimization (see Algorithm 5 in Appendix A.5). Consequently,
the resulting policies from SAC are evaluated in the real MuJoCo environment for testing.

4.2 OVERALL PERFORMANCE

We compare the performance of EMO to SOTA model-based offline algorithms, i.e., MOPO (Yu
et al., 2020), MOReL (Kidambi et al., 2020), COMBO (Yu et al., 2021), RAMBO-RL (Rigter et al.,
2022), and GELATO (Tennenholtz et al., 2021), as well as 3 model-free counterparts, i.e., UWAC
(Wu et al., 2021), CQL (Kumar et al., 2020), and ATAC (Cheng et al., 2022). The performance
results of both model-based and model-free techniques are summarized in Table 1. All the presented
scores are normalized according to the procedure proposed in Fu et al. (2020). For EMO, the results
are the performance of policy at the last iteration of training, averaged over 3 random seeds ±

1https://github.com/pranz24/pytorch-soft-actor-critic
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Table 1: Performance results of offline RL algorithms on D4RL benchmark datasets.

Dataset Environment EMO (Ours) RAMBO-RL COMBO MOPO MOReL UWAC CQL ATAC GELATO
random halfcheetah 36.3 ± 1.7 39.5 ± 1.1 38.8 ± 1.5 35.4 25.6 14.5 35.4 3.9 21.1
random hopper 31.6 ± 0.1 25.4 ± 2.4 17.9 ± 0.6 11.7 53.6 22.4 10.8 17.5 21.2
random walker2d 5.3 ± 2.9 0.0 ± 0.1 7.0 ± 1.5 13.6 37.3 15.5 7.0 6.8 9.0
medium halfcheetah 68.5 ± 0.9 77.9 ± 1.1 54.2 ± 0.6 42.3 42.1 46.5 44.4 53.3 42.6
medium hopper 36.5 ± 25.1 87.0 ± 4.9 97.2 ± 0.9 28.0 95.4 88.9 86.6 85.6 51.8
medium walker2d 84.1 ± 2.5 84.9 ± 0.8 81.9 ± 1.1 17.8 77.8 57.5 79.2 89.6 27.6
medium-replay halfcheetah 56.7 ± 5.9 68.7 ± 1.7 55.1 ± 0.4 53.1 40.2 46.8 46.2 48.0 -
medium-replay hopper 77.4 ± 16.9 99.5 ± 1.5 89.5 ± 0.7 67.5 93.6 39.4 48.6 102.5 -
medium-replay walker2d 83.6 ± 1.3 89.2 ± 2.1 56.0 ± 3.5 39.0 49.8 27.0 26.7 92.5 -
medium-expert halfcheetah 80.2 ± 3.9 95.4 ± 1.7 90.0 ± 2.3 63.3 53.3 127.4 62.4 94.8 65.8
medium-expert hopper 92.1 ± 2.8 88.2 ± 6.5 111.1 ± 1.2 23.7 108.7 134.7 111 111.9 17.7
medium-expert walker2d 110.8 ± 3.0 56.7 ± 12.3 103.3 ± 2.3 44.6 95.6 99.7 98.7 114.2 33.0

standard error. The results for CQL are taken from D4RL benchmark white-paper (Fu et al., 2020).
As for the values of other methods, the result are taken from their respective papers.

The outlined results in Table 1 demonstrate that EMO outperforms MOPO and GELATO in almost
all cases, which shows that EMO, as an extension to MOPO, clearly improves upon its predecessor
by replacing ensemble uncertainty quantification with entropy regularization. Furthermore, EMO
achieves competitive results compared to COMBO and MOReL, outperforming both on 5 out of
12 datasets, which places EMO among the highest-performing model-based algorithms. Although
EMO can achieve comparable results to RAMBO-RL in certain scenarios, its performance falls short
in some cases, and only outperforms RAMBO-RL on one dataset. This can be attributed to the fact
that RAMBO-RL is a task-specific method, which tunes the model to be pessimistic with respect
to the current policy of the agent, while EMO utilizes a general purpose, task-agnostic model of
the environment for policy optimization. In addition, bear in mind that EMO achieves this level
of performance using only a single model of the environment, while an ensemble of models is
utilized in other model-based methods. Moreover, Table 1 illustrates that EMO outperforms CQL
and UWAC techniques in 8 out of 12 datasets, and performs competitively against ATAC, while
outperforming ATAC on 4 out of 12 datasets, which highlights the effectiveness of our simple,
efficient method in keeping up with the SOTA baselines.

Table 2: Performance results of policy optimization on different model configurations

Dataset Environment EMO NLL+SAC (λ ̸= 0) NLL+SAC (λ = 0)
medium halfcheetah 68.5 ± 0.9 35.1 ± 8.0 0.9 ± 0.9
medium walker2d 84.1 ± 2.5 13.0 ± 13.0 5.6 ± 5.1
medium-replay halfcheetah 56.7 ± 5.9 4.0 ± 3.8 10.8 ± 1.6
medium-replay walker2d 83.6 ± 1.3 18.7 ± 15.8 6.4 ± 1.2

4.3 ABLATION STUDIES

In order to address question (2), we conduct an experiment to compare the performance of EMO with
two simplified versions of the algorithm: (i) training the policy on a model that is only trained via
the NLL loss (i.e., the resulting model from the warm-up phase) without utilizing the reward penalty
(λ = 0), denoted by NLL+SAC (λ = 0), and (ii) the same model with the reward penalty (λ ̸= 0)
leveraging the covariance matrix from the warm-start phase, indicated by NLL+SAC (λ ̸= 0). The
outcomes of the experiment are outlined in Table 2 on 4 different datasets. The results confirm
that although penalizing the reward values in OOD areas improves the performance of the model,
it is still insufficient to achieve comparable results to state-of-the-arts. The reason lies in the fact
that the penalties depend on the arbitrary predictions of the covariance matrix in the OOD domains.
However, by incorporating the entropy regularization step, we ensure that reward penalties will
be proportional to the associated uncertainty of the predictions, which leads to a considerable gap
between the performance of the resulting policies. This finding empirically validates the impact of
the entropy regularization coupled with penalizing the reward values in uncertain regions.

In the second ablation study, we investigate the impact of using an informed exploration policy vs. a
random policy to address question (3). One could argue that for a specific task, utilizing an informed
policy (i.e., the current policy of the agent) instead of a random policy can be beneficial. In this case,

8
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Table 3: Performance results of policy optimization for random vs. informed exploration policy

Dataset Environment EMO Modified EMO RAMBO-RL
medium-replay halfcheetah 56.7 ± 5.9 61.1 ± 0.4 68.7 ± 1.7
medium-replay walker2d 83.6 ± 1.3 85.5 ± 3.5 89.2 ± 2.1

the entropy regularization phase can be guided more efficiently toward the areas that are more likely
to be explored by the learning agent. Subsequently, the coverage of the rollouts generated under an
informed policy is expected to be a small subset of the rollouts generated from a random policy.

Consequently, we propose a modified version of EMO, summarized in Algorithm 4 in Appendix A.5,
in which the (SAC) agent and the model (only the regularization phase) are trained simultaneously,
rather than modular. In this variant, the model utilizes the current policy of the agent as the explo-
ration policy for entropy regularization in order to benefit from an informed exploration scheme. We
further examine this modification on two offline datasets, namely halfcheetah-medium-replay and
walker2d-medium-replay, compared to RAMBO-RL. The summarized results in Table 3 indicate
that informed exploration can indeed improve the performance of trained policies. Such improve-
ments in the performance are expected since the modified version of EMO has a more specialized,
task-specific approach for model optimization compared to the original version. Furthermore, al-
though EMO can achieve comparable results compared to RAMBO-RL and even outperform it on
one set of data (see Table 1), the modified version can tighten the gap and make the results more
competitive to RAMBO-RL. However, we still prioritize the original EMO, as it has general pur-
pose, task-agnostic pessimistic model of the environment, which can be employed in any modular
framework with any RL algorithm for training policies. Whereas this cannot be achieved using the
modified version of EMO or methods such as RAMBO-RL.

Figure 2: Performance of EMO variants in
terms of α on walker2d-medium-replay.

To answer question (4), we demonstrate the per-
formance of EMO and modified EMO for different
configurations of the regularization coefficient α on
walker2d-medium-replay dataset in figure 2. The
figure illustrates how α affects the performance of
both methods, also compared to RAMBO-RL. As
we increase α, the regularization term in Equation
4 becomes more dominant, leading to more con-
servative algorithms, and vice versa. As a result,
smaller values of α are preferred to achieve best per-
formance when offline data has limited coverage of
the state-action space or contains less informative
data. Conversely, when the offline data provides a
better coverage, higher values for α are preferred. In
addition, since the datastes from the medium-replay
category are considerably smaller than other D4RL
benchmark data (aka limited coverage), both EMO
and modified EMO are expected to perform better
when α is set to smaller numbers, as shown in fig-

ure 2. However, if α is too small, then the algorithms will not regularize very well, and that can
lead a decrease in performance as well. The same can be said when the algorithm becomes too
conservative, which is the case when α is set too large.

5 CONCLUSIONS

In this paper, we presented EMO, an entropy-regularized optimization algorithm to learn a pes-
simistic MDP for model-based offline RL problems. In this framework, we devised a hybrid loss
function to minimize the NLL of the model on the distribution of offline data while maximizing the
entropy over OOD domains. We thus optimized both objectives in a single model rather than an
ensemble of models as in SOTA model-based approaches. Moreover, our empirical study on D4RL
benchmark data showed that our approach competes with SOTA offline RL techniques.

9
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the results, the codes are provided in the supplementary materials.
Configurations and the choice of hyperparameters are also included in the supplementary materi-
als in readme.txt file. To facilitate the understanding of theoretical formulation and practical
implementation, additional algorithms and theories are also included in the appendix.
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A APPENDIX

A.1 THEORETICAL GROUNDS OF EMO

As discussed in Section 3.4, EMO can be considered as an extension to MOPO (Yu et al., 2020),
with the aim to address the limitations of ensemble uncertainty estimation. Accordingly, in this
section, we expand upon Lemma 4.1 from MOPO in order to establish the theoretical grounds for
EMO.

A.1.1 PRELIMINARIES

We specify a Markov decision process (MDP) by the tuple M = (S,A, T, r, µ0, γ), where S and A
denote the state space and action space, respectively, T (s′|s, a) is the transition dynamics, r(s, a) is
the reward function, γ ∈ (0, 1) is the discount factor, and µ0 is the distribution of the initial state. A
policy π(a|s) is defined as a mapping from states to a distribution over actions π : S × A → [0, 1].
If we define P(st = s|µ0, π, T ) as the probability of being in state s at time step t when following
policy π from an initial state sampled from µ0, in an environment with transition dynamics T , then
the discounted state-action visitation distribution of policy π under dynamics T can be defined as
ρπT (s, a) = (1− γ)π(a|s)

∑∞
t=0 γ

tP(st = s|µ0, π, T ). The goal is to learn a policy that maximizes
the expected discounted return η

M
(π) when followed: maxπ ηM (π) := 1

1−γE(s,a)∼ρπ
T (s,a)[r(s, a)].

The value function, V π
M (s) = Eπ,T [Σ

∞
t=0γ

tr(st, at)|s0 = s], is regarded as the value of a particular
state s under the policy π, which is defined as the expected discounted return under π when starting
from s.

In offline RL framework, we only have access to a static dataset of transition tuples D =
{(s, a, r, s′)}, which is collected by running a behavior policy πB in the real environment. In offline
RL setting, the goal is to find the best possible policy using the static offline dataset D.

A.1.2 THEORETICAL FORMULATION

We start by expanding the theoretical formulation of EMO and proving that EMO can guarantee
conservative policy evaluation and safe policy improvement. First, we quantify the relationship
between the performance of a policy π under two arbitrary MDPs. From the theoretical formulation
of MOPO (Yu et al., 2020), we have:

Lemma A.1.1 (Telescoping lemma). Let M and M̂ be two MDPs with the same reward func-
tion r, but different dynamics T and T̂ respectively. For any arbitrary policy π, let Gπ

M̂
(s, a) :=

Es′∼T̂ (s,a)[V
π
M (s′)]− Es′∼T (s,a)[V

π
M (s′)]. Then,

ηM̂ (π)− ηM (π) =
γ

1− γ
E(s,a)∼ρπ

T̂
(s,a)[G

π
M̂
(s, a)] (5)

Next, we expand on Lemma A.1.1 to include MDPs with different rewards as well.

Lemma A.1.2. Let M and M̂ be two MDPs with reward functions r and r̂, and transition dy-
namics T and T̂ respectively. For any arbitrary policy π, let Gπ

M̂
(s, a) := Es′∼T̂ (s,a)[V

π
M (s′)] −

Es′∼T (s,a)[V
π
M (s′)], and r̂(s, a)− r(s, a) = δr(s, a). Then,

ηM̂ (π)− ηM (π) =
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a) + γGπ

M̂
(s, a)] (6)

Proof. Considering r̂(s, a) = r(s, a) + δr(s, a), we have

ηM̂ (π) =
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[r(s, a)] +

1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a)] (7)

The first term in the RHS of Equation 7 corresponds to the return of the policy under dynamics T̂
and reward r. According to Lemma A.1.1, we have
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1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[r(s, a)] = ηM (π) +

γ

1− γ
E(s,a)∼ρπ

T̂
(s,a)[G

π
M̂
(s, a)] (8)

Now, by substituting Equation 8 into Equation 7, we get

ηM̂ (π)− ηM (π)=
γ

1− γ
E(s,a)∼ρπ

T̂
(s,a)[G

π
M̂
(s, a)] +

1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a)]

=
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a) + γGπ

M̂
(s, a)]

(9)

Lemma A.1.2 quantifies the difference between the return of a policy under two arbitrary MDPs,
as long as they share the same (S,A, µ0, γ). For the specific case of EMO, we can consider M as
the actual MDP, and M̂ as the learned MDP on the offline data, based on EMO algorithm, before
applying the reward penalty. For now, we model the penalized reward function by r̃(s, a) = r̂(s, a)−
λ∆r(s, a), where λ∆r(s, a) is the penalty we apply to the learned reward, such that λ ≥ 0. Let
M̃ = (S,A, T̂ , r̃, µ0, γ) denote the MDP with transition dynamics T̂ and reward function r̃(s, a).
We have

ηM̃ (π)=
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[r̃(s, a)]

=
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[r̂(s, a)]−

λ

1− γ
E(s,a)∼ρπ

T̂
(s,a)[∆r(s, a)]

(10)

The first term in the RHS of Equation 10 corresponds to the return of the policy under dynamics T̂
and reward r̂, namely ηM̂ (π). Using Lemma A.1.2, we can rewrite this term as

ηM̂ (π) =
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[r̂(s, a)] = ηM (π) +

1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a) + γGπ

M̂
(s, a)]

(11)

By substituting 11 in 10 we have

ηM̃ (π)− ηM (π) =
1

1− γ
E(s,a)∼ρπ

T̂
(s,a)[δr(s, a) + γGπ

M̂
(s, a)]− λ

1− γ
E(s,a)∼ρπ

T̂
(s,a)[∆r(s, a)]

(12)

In order to achieve conservative policy evaluation, we need to ensure that the performance of any
policy is not overestimated under the penalized MDP M̃ . Thus, we need to ensure that ηM̃ (π) −
ηM (π) ≤ 0 for all π.

Proposition A.1. The penalized MDP M̃ preserves conservative policy evaluation if,

λE(s,a)∼ρπ
T̂
(s,a)[∆r(s, a)] ≥ E(s,a)∼ρπ

T̂
(s,a)[δr(s, a) + γGπ

M̂
(s, a)],∀π ∈ Π (13)

Proposition A.1 establishes the condition on the adjustment λ∆r(s, a) to guarantee conservative
policy evaluation. Once again, note that in order to preserve conservative policy evaluation in the
penalized MDP M̃ , the condition stated in 13 should hold for any arbitrary policy π. A direct
implication of Proposition A.1 is that training any policy in M̃ is equal to optimizing a lower bound
on the return under the real MDP M .

Practical Implication. If we can ensure E(s,a)∼ρπ
T̂
(s,a)[∆r(s, a)] ≥ 0,∀π ∈ Π, we can satisfy the

condition on conservative policy evaluation by choosing λ large enough, assuming that δr(s, a) and
Gπ

M̂
(s, a) are bounded.
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In addition to conservative policy evaluation, we want to guarantee safe policy improvement over
the behavior policy πB as well. Let π̃ be the optimal policy trained on the penalized MDP M̃ . We
first quantify the performance difference between πB and π̃ under the actual MDP M :

ηM (π̃)− ηM (πB)

(12)
= ηM̃ (π̃)− 1

1− γ
E(s,a)∼ρπ̃

T̂
(s,a)[δr(s, a) + γGπ̃

M̂
(s, a)] +

λ

1− γ
E(s,a)∼ρπ̃

T̂
(s,a)[∆r(s, a)]

−ηM̃ (πB) +
1

1− γ
E
(s,a)∼ρπB

T̂
(s,a)

[δr(s, a) + γGπB

M̂
(s, a)]− λ

1− γ
E
(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)]

= ηM̃ (π̃)− ηM̃ (πB)− 1

1− γ
E(s,a)∼ρπ̃

T̂
(s,a)[δr(s, a) + γGπ̃

M̂
(s, a)]

+
1

1− γ
E
(s,a)∼ρπB

T̂
(s,a)

[δr(s, a) + γGπB

M̂
(s, a)]

+
λ

1− γ
(E(s,a)∼ρπ̃

T̂
(s,a)[∆r(s, a)]− E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)])

Note that since π̃ is the optimal policy under the penalized MDP M̃ , then we have ηM̃ (π̃) −
ηM̃ (πB) = CM̃ (πB) ≥ 0.

Proposition A.2. Let π̃(a|s) be the optimal policy trained on the penalized MDP M̃ . Then, π̃ is a
safe policy improvement over πB , i.e. ηM (π̃) ≥ ηM (πB), if

λ(E(s,a)∼ρπ̃
T̂
(s,a)[∆r(s, a)]−E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)])

≥ E(s,a)∼ρπ̃
T̂
(s,a)[δr(s, a) + γGπ̃

M̂
(s, a)]

−E
(s,a)∼ρπB

T̂
(s,a)

[δr(s, a) + γGπB

M̂
(s, a)]− (1− γ)CM̃ (πB)

(14)

which satisfies

ηM (π̃)− ηM (πB)

= CM̃ (πB)− 1

1− γ
E(s,a)∼ρπ̃

T̂
(s,a)[δr(s, a) + γGπ̃

M̂
(s, a)]

+
1

1− γ
E
(s,a)∼ρπB

T̂
(s,a)

[δr(s, a) + γGπB

M̂
(s, a)]

+
λ

1− γ
(E(s,a)∼ρπ̃

T̂
(s,a)[∆r(s, a)]− E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)])

(15)

Proposition A.2 establishes the condition on the penalty λ∆r(s, a) to guarantee safe policy improve-
ment over πB in the form of Inequality 14, and quantifies the improvement over πB in the form of
Equation 15.

Practical Implication. If we can ensure E(s,a)∼ρπ̃
T̂
(s,a)[∆r(s, a)] ≥ E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)],

we can satisfy the condition for safe policy improvement by choosing λ large enough, assuming
that δr(s, a) and Gπ

M̂
(s, a) are bounded. Another similar yet more practical approach could be to

ensure that E(s,a)∼ρπ
T̂
(s,a)[∆r(s, a)] ≥ E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)] for all π ∈ Π, which subsumes the

original condition.

Conservative policy evaluation of EMO. In EMO, we define the penalty term as a positive, increas-
ing function of the entropy ∆r(s, a) = u(s, a) =

√
det(Σϕ(s, a)). Thus, we have ∆r(s, a) ≥ 0

for all (s, a) ∈ S ×A, and it is obvious that E(s,a)∼ρπ
T̂
(s,a)[∆r(s, a)] ≥ 0 for all π ∈ Π; as a result,

according to the practical implications of Proposition A.1, conservative policy optimization can be
achieved by choosing λ large enough.
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Safe policy improvement of EMO. Although we cannot theoretically guarantee safe policy im-
provement for ∆r(s, a) =

√
det(Σϕ(s, a)) (which is also the case for MOPO Yu et al. (2020),

MOReL Kidambi et al. (2020), and COMBO Yu et al. (2021)), it is reasonable to assume that in
practice, regardless of the stochasticity of the environment, ∆r(s, a) is smaller over ρπ

B

T̂
(s, a) than

ρπ
T̂
(s, a) for any arbitrary π. Note that throughout the regularization phase of EMO, we specifically

try to maximize the entropy over the OOD domains, and as a result, we expect lower entropy over
the support of data, which we can assume has a distribution very close to ρπ

B

T̂
(s, a). By defin-

ing the penalty term as a positive, increasing function of the entropy, we can practically assume
that E(s,a)∼ρπ

T̂
(s,a)[∆r(s, a)] ≥ E

(s,a)∼ρπB

T̂
(s,a)

[∆r(s, a)] for all π ∈ Π, and guarantee safe policy

improvement according to practical implications of Proposition A.2, by choosing λ large enough.

Thus, EMO in its original formulation, can be applied to any environment, whether deterministic or
stochastic, and guarantee conservative policy evaluation and safe policy improvement.

A.2 DIFFERENTIATION BETWEEN ALEATORIC AND EPISTEMIC UNCERTAINTY AND
APPLICABILITY TO STOCHASTIC ENVIRONMENTS

Our model does not explicitly differentiate between aleatoric and epistemic uncertainties over OOD
domains, and penalizes the rewards based on an upper bound over total uncertainty, instead of only
epistemic uncertainty. However, we argue that this is a good approach in practice, even in the case of
stochastic environments. In general, uncertainty, be it aleartoric or epistemic, is a source of error in
RL algorithms. If we have a reliable and accurate estimation of either of these uncertainties, we can
calculate their effect in our evaluations and algorithms. Otherwise, we should find ways to indirectly
account for these sources of error, in order to prevent our methods from exploiting potential errors
caused by these sources (e.g. by forming performance lower bounds with reward penalties etc.).

Same as any other measure, we argue that aleatoric uncertainty cannot be reliably quantified over
OOD domains either, especially when we only have a single model; even if we have an ensemble
of models, where we can estimate the aleatoric uncertainty by averaging over the variances of each
model (Depeweg et al., 2018), the estimation would be inaccurate, as in practice, the sample size
from the posterior distribution of parameters (the number of models in the ensemble) is small and
samples are potentially correlated for the reasons discussed in the paper. Thus, aleatoric uncertainty
over OOD domains becomes an unmeasurable source of error itself. As a result, it is reasonable to
penalize a measure of total uncertainty over OOD domains, rather than only penalizing epistemic
uncertainty, as we cannot confidently rely on the estimated aleatoric uncertainty over such domains.
As for the in-distribution aleatoric uncertainty, we will show that our method preserves the reliable
estimation of in-distribution aleatoric uncertainty. For this, we will discuss the characteristics of a
model trained based on EMO over the support of data as well as OOD domains. We first restate the
formulation of the proposed hybrid loss in Equation 4:

L(θ, ϕ;BD, B̄πe) = L1(θ, ϕ;BD) + αL2(ϕ; B̄πe)

where L1 corresponds to NLL loss, L2 corresponds to entropy regularization term, and α is the
regularization coefficient. Please note that as discussed in Section 3.2.2 of the paper, we assume α
has a small value.

(i) Since we assume that α is small, hybrid loss will be dominated by the NLL loss (L1) over the
support of offline data. As a result, Σϕ(s, a) will actually correspond to the aleatoric uncertainty
over those regions (which, in the case of deterministic environments, is close to zero). Note that this
estimation is reliable since it is learned over the support of offline data.

(ii) Over OOD domains, NLL loss (L1) does not exist (as we do not have any supervised data over
OOD domains), and hybrid loss will be dominated by entropy regularization term. Thus, Σϕ(s, a)
will correspond to an upper bound of total uncertainty/error over OOD domains.

As a result, the estimated aleatoric uncertainty over the in-distribution data, is preserved by Σϕ(s, a),
as discussed in (i). We also present in Table 4 the average value of

√
det(Σϕ(s, a)) over the samples

drawn from the offline dataset for: (1) a model trained based on EMO; and (2) an NLL model, which
goes to show that the uncertainty quantification is practically unaffected over in-distribution data,
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meaning that the reliable aleatoric uncertainty is preserved in a model trained by EMO, which can
be accounted for with minimal modifications to the original EMO algorithm, e.g. by excluding it
from the penalty term.

Environment Dataset EMO NLL
walker2d medium 1.340 1.414
walker2d medium-replay 2.694 2.792
walker2d medium-expert 1.273 1.378

Table 4: the average value of
√
det(Σϕ(s, a)) over the samples drawn from the offline dataset D

for: (1) a model trained based on EMO; and (2) an NLL model.

Still, we would like to mention that EMO in its original form proposed in this paper, theoretically
guarantees conservative policy evaluation and safe policy improvement, regardless of the stochas-
ticity of the environment (please refer to our theoretical analysis in Appendix A.1).

A.3 PRACTICAL EFFECTIVENESS OF ENTROPY MAXIMIZATION

We present in Table 5 the average error (penalty) predicted by EMO trained on 3 different datasets
over: (1) Samples drawn from offline dataset D; (2) Generated rollouts of horizon H = 2 using a
random exploration policy; and (3) Generated rollouts of horizon H = 5 using a random exploration
policy. Please note that the predicted penalty for each transition directly corresponds to the upper
bound of total uncertainty attributed to the transition by EMO. The difference between the average
predicted errors goes to show that our method of entropy maximization is indeed effective and trust-
worthy, as there is a distinguishable difference between uncertainty estimation over in-distribution
data (samples from D), and datasets that are dominated by OOD samples (generated rollouts). The
difference between average predicted errors over rollouts of different horizons, however, depends
on the value of hyperparameter α. When α is large, the algorithm is more conservative, thus it is
expected to see a small margin between the average error for rollouts of different horizons, as is the
case for walker2d-medium and walker2d-medium-expert; but when α is comparatively smaller, we
expect to see a larger margin between the average error over rollouts of varying horizons, as is the
case of walker2d-medium-replay.

The difference between the relative scale of predicted errors over different datasets comes from the
upper bound on the predicted entropy. We view the optimal relative scale of OOD uncertainty against
in-distribution uncertainty as a function of environment and dataset charachteristics (e.g. coverage,
optimality). As a result, in our practical implementation of EMO, we set an upper bound on the
uncertainty prediction of the model, i.e. Σϕ(s, a) ≤ Σmax,∀(s, a) ∈ S × A, which indirectly con-
trols the scale of OOD uncertainty against the in-distribution uncertainty. For each environment and
dataset configuration, we treat Σmax as a hyperparameter, and optimize it along other hyperparame-
ters of EMO. Although our observations are not conclusive and generalizable, we have observed that
environment-dataset configurations which allow models to have better generalization (e.g. stable en-
vironments such as halfcheetah, and datasets that provide broad coverage such as medium datasets),
will have smaller optimal values for Σmax. In addition, we have also observed that optimality of the
dataset can affect the optimal value of Σmax. Datasets with more optimal transitions tend to have
larger optimal values for Σmax.

On top of that, we conduct another experiment to compare the average of predicted penalties of
EMO and MOPO associated to OOD samples. In this experiment, we train the models of EMO
and MOPO on walker2d-medium-replay dataset, and calculate the average of predicted penalties of
each model on generated rollouts under the learned models using a random exploration policy. For
rollout horizon H = 2, the average of predicted penalties for EMO was 7.198 compared to 2.818
of MOPO; and, for rollout horizon H = 5, the average of predicted penalties for EMO was 8.544
against 3.011 of MOPO, which shows that EMO takes a more conservative approach by penalizing
an upper bound of uncertainty rather than penalizing a (potentially inaccurate) estimation of the
uncertainty.
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Environment Dataset D H = 2 H = 5
walker2d medium 1.340 11.386 11.465
walker2d medium-replay 2.694 7.198 8.544
walker2d medium-expert 1.273 30.962 31.177

Table 5: Average error predicted by EMO for 3 different datasets over: (1) Samples drawn from
offline dataset D; (2) Generated rollouts of horizon H = 2 using a random exploration policy; and
(3) Generated rollouts of horizon H = 5 using a random exploration policy.

A.4 COMPUTATION AND MEMORY EFFICIENCY

Although we cannot directly compare EMO against previous ensemble-based methods in terms of
computation resource (as their implementations are different, which can heavily affect such mea-
sures), we still provide some indirect indications of the computation and memory efficiency of EMO.
EMO manages to achieve this level of performance with about 0.34M parameters, while ensemble
methods (MOPO, COMBO, RAMBO-RL) operate with around 1.1M parameters, which is an indi-
rect indication that EMO improves upon SOTA in terms of memory and computational efficiency.
In addition, we present in Figure 3 the performance progress of EMO against MOPO on walker2d-
medium-expert dataset, averaged over 3 random seeds, where we can attribute the faster convergence
rate of EMO as an indirect indicator of its computational efficiency compared to MOPO.

(a) Without moving average. (b) Moving average of window size 10
for both EMO and MOPO.

(c) Moving average of window size 10
for EMO and of size 100 for MOPO.

Figure 3: Performance progress of EMO against MOPO on walker2d-medium-expert dataset, aver-
aged over 3 random seeds. The raw data is depicted in Figure 3a. In order to make the the raw figure
more interpretable, we apply two configurations of moving averages over the results of EMO and
MOPO.
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A.5 REFERENCED ALGORITHMS

Algorithm 4 Modified Version of EMO

Require: Offline data D, batch size b, rollout horizon h, penalty coefficient λ, regularization coef-
ficient α

1: Initialize θ and ϕ
2: Initialize policy π
3: for K1 iterations do ▷ Warm-up phase
4: Sample a batch of transitions BD from the offline dataset D.
5: Compute L1(θ, ϕ;BD) (Equation 2.)
6: Compute gradients and update θ and ϕ.
7: end for
8: for K2 iterations do
9: for K3 iterations do

10: Sample a batch of transitions BD from the offline dataset D.
11: Compute L1(θ, ϕ;BD) (Equation 2.)
12: Generate a batch of transitions B̄π using model rollouts (Algorithm 1.)
13: Compute L2(ϕ; B̄πe

) (Equation 3.)
14: Compute L(θ, ϕ;BD, B̄πe

) = L1(θ, ϕ;BD) + αL2(ϕ; B̄πe
).

15: Compute gradients and update θ and ϕ.
16: end for
17: Define empirical MDP M̂ with dynamics µθ and reward r̃(s, a) = r(s, a)−λu(s, a), where

u(s, a) =
√
det

(
Σϕ(s, a)

)
.

18: for K4 iterations do
19: Update π on M̂ with any arbitrary RL algorithm.
20: end for
21: end for
22: return π

Algorithm 5 Policy Optimization Method for Experiments

Require: pessimistic MDP M̂ = (S,A, Tµ, r̃, γ, ρ0), rollout batch size b, rollout horizon h, offline
dataset D

1: Initialize policy π and empty replay buffer Dmodel ← ∅
2: for K iterations do
3: for 1, 2, ..., b (in parallel) do
4: Sample the initial state s1 of the rollout by sampling from offline data D.
5: for j = 1, 2, ..., h do
6: Sample an action based on the current policy of the agent aj ∼ π(sj).
7: Compute the next state in the pessimistic MDP s′j = Tµ(sj , aj).
8: Compute the reward in the pessimistic MDP r̃j = r̃(sj , aj).
9: Add transition (sj , aj , r̃j , s

′
j) to Dmodel.

10: end for
11: end for
12: Draw samples from D ∪Dmodel, use SAC to update π.
13: end for

18


	Introduction
	Related Work
	EMO: Entropy-Regularized Model-based Offline RL
	Preliminaries
	Model Optimization
	Warm-up Phase
	Regularization Phase

	Policy Learning
	Theoretical Grounds of EMO

	Empirical Study
	Experimental Setups
	Overall performance
	Ablation Studies

	Conclusions
	Reproducibility Statement
	Appendix
	Theoretical Grounds of EMO
	Preliminaries
	Theoretical Formulation

	Differentiation Between Aleatoric and Epistemic Uncertainty and Applicability to Stochastic Environments
	Practical Effectiveness of Entropy Maximization
	Computation and Memory Efficiency
	Referenced Algorithms


