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ABSTRACT

In recent years, the task of video prediction—forecasting future video given past
video frames—has attracted attention in the research community. In this paper
we propose a novel approach to this problem with Vector Quantized Variational
AutoEncoders (VQ-VAE). With VQ-VAE we compress high-resolution videos into
a hierarchical set of multi-scale discrete latent variables. Compared to pixels, this
compressed latent space has dramatically reduced dimensionality, allowing us to
apply scalable autoregressive generative models to predict video. In contrast to
previous work that has largely emphasized highly constrained datasets, we focus
on very diverse, large-scale datasets such as Kinetics-600. We predict video at a
higher resolution, 256× 256, than any other previous method to our knowledge.
We further validate our approach against prior work via a crowdsourced human
evaluation.

1 INTRODUCTION

When it comes to real-world image data, deep generative models have made substantial progress.
With advances in computational efficiency and improvements in architectures, it is now feasible to
generate high resolution, realistic images from vast and highly diverse datasets (Brock et al., 2019;
Razavi et al., 2019; Karras et al., 2017). Apart from the domain of images, deep generative models
have also shown promise in other data domains such as music (Dieleman et al., 2018; Dhariwa et al.,
2020), speech synthesis (Oord et al., 2016), 3D voxels (Liu et al., 2018; Nash & Williams, 2017), and
text (Radford et al., 2019). One particular fledgling domain is video.

While some work in the area of video generation (Clark et al., 2020; Vondrick et al., 2016; Saito
& Saito, 2018) has explored video synthesis—generating videos with no prior frame information—
many approaches actually focus on the task of video prediction conditioned on past frames (Ranzato
et al., 2014; Srivastava et al., 2015; Patraucean et al., 2015; Mathieu et al., 2016; Lee et al., 2018;
Babaeizadeh et al., 2018; Oliu et al., 2018; Xiong et al., 2018; Xue et al., 2016; Finn et al., 2016; Luc
et al., 2020). It can be argued that video synthesis is a combination of image generation and video
prediction. In other words, one could decouple the problem of video synthesis into unconditional
image generation and conditional video prediction from a generated image. Therefore, we specifically
focus on video prediction in this paper. Potential computer vision applications of video forecasting
include interpolation, anomaly detection, and activity understanding. More generally, video prediction
also has more general implications for intelligent systems—the ability to anticipate the dynamics of
the environment. The problem is thus also relevant for robotics and reinforcement learning (Finn
et al., 2016; Ebert et al., 2017; Oh et al., 2015; Ha & Schmidhuber, 2018; Racanire et al., 2017).

Approaches toward video prediction have largely skewed toward variations of generative adversarial
networks (Mathieu et al., 2016; Lee et al., 2018; Clark et al., 2020; Vondrick et al., 2016; Luc
et al., 2020). In comparison, we are aware of only a relatively small number of approaches which
propose variational autoencoders (Babaeizadeh et al., 2018; Xue et al., 2016; Denton & Fergus, 2018),
autoregressive models (Kalchbrenner et al., 2017; Weissenborn et al., 2020), or flow based approaches
(Kumar et al., 2020). There may be a number of reasons for this situation. One is the explosion in the
dimensionality of the input space. A generative model of video needs to model not only one image
but tens of them in a coherent fashion. This makes it difficult to scale up such models to large datasets
or high resolutions. In addition, previous work (Clark et al., 2020) suggests that video prediction may
be fundamentally more difficult than video synthesis; a synthesis model can generate simple samples
from the dataset while prediction potentially forces the model to forecast conditioned on videos that
are outliers in the distribution. Furthermore, most prior work has focused on datasets with low scene
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Figure 1: In this paper we predict video at a high resolution (256× 256) using a compressed latent
representation. The first 4 frames are given as conditioning. We predict the next 12, two of which
(9th and 16th) we show on the right. All frames shown here have been compressed by VQ-VAE.
Videos licensed under CC-BY. Attribution for videos in this paper can be found in supplementary
material. Best seen in video in the supplementary material.

diversity such as Moving MNIST (Srivastava et al., 2015), KTH (Schuldt et al., 2004), or robotic arm
datasets (Finn et al., 2016; Ebert et al., 2017). While there have been attempts to synthesize video at a
high resolution (Clark et al., 2020), we know of no attempt—excluding flow based approaches—to
predict video beyond resolutions of 64x64.

In this paper we address the large dimensionality of video data through compression. Using Vector
Quantized Variational Autoencoders (VQ-VAE) (van den Oord et al., 2017), we can compress video
into a space requiring only 1.3% of the bits expressed in pixels. While this compressed encoding is
lossy, we can still reconstruct the original video from the latent representation with a high degree
of fidelity. Furthermore, we can leverage the modularity of VQ-VAE and decompose our latent
representation into a hierarchy of encodings, separating high-level, global information from details
such as fine texture or small motions. Instead of training a generative model directly on pixel space,
we can instead model this much more tractable discrete representation, allowing us to train much
more powerful models, use large diverse datasets, and generate at a high resolution. While most prior
work has focused on GANs, this discrete representation can also be modeled by likelihood-based
models. Likelihood models in concept do not suffer from mode-collapse, instability in training, and
lack of diversity of samples often witnessed in GANs (Denton & Fergus, 2018; Babaeizadeh et al.,
2018; Razavi et al., 2019). In this paper, we propose a PixelCNN augmented with causal convolutions
in time and spatiotemporal self-attention to model this space of latents. In addition, because the latent
representation is decomposed into a hierarchy, we can exploit this decomposition and train separate
specialized models at different levels of the hierarchy.

Our paper makes four contributions. First, we demonstrate the novel application of VQ-VAE to video
data. Second, we propose a set of spatiotemporal PixelCNNs to predict video by utilizing the latent
representation learned with VQ-VAE. Third, we explicitly predict video at a higher resolution than
ever before. Finally, we demonstrate the competitive performance of our model with a crowdsourced
human evaluation.

2 BACKGROUND

2.1 VECTOR QUANTIZED AUTOENCODERS

VQ-VAEs (van den Oord et al., 2017) are autoencoders which learn a discrete latent encoding for
input data x. First, the output of non-linear encoder ze(x), implemented by a neural network, is
passed through a discretization bottleneck. ze(x) is mapped via nearest-neighbor into a quantized
codebook e ∈ RK×D where D is the dimensionality of each vector ej and K is the number of
categories in the codebook. The discretized representation is thus given by:

zq(x) = ek where k = argminj ||ze(x)− ej ||2 (1)
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Figure 2: Here we demonstrate the compression capability of VQ-VAE. The top and bottom rows
represent two different frames within the same video. The top layer retains most of the global
information, while the bottom layer adds fine detail. Videos licensed under CC-BY. Attribution for
videos in this paper can be found in the supplementary material

Equation 1 is not differentiable; however, (van den Oord et al., 2017) notes that copying the gradient
of zq(x) to ze(x) is a suitable approximation similar to the straight-through estimator (Bengio et al.,
2013). A decoder D, also implemented by a neural network, then reconstructs the input from zq(x).
The total loss function for the VQ-VAE is thus:

L = ||D(zg(x))− x||22 + ||sg[zg(x)]− e||22 + β||zg(x)− sg[e]||22 (2)

Where sg is a stop gradient operator, and β is a parameter which regulates the rate of code change.
As in previous work (van den Oord et al., 2017; Razavi et al., 2019), we replace the second term in
equation 2 and learn the codebook e ∈ RK×D via an exponential moving average of previous values
during training:
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Where γ is a decay parameter and n(t)i is the numbers of vectors in zg(x) in a batch that will map to
ei.

2.2 PIXELCNN MODELS

PixelCNN and related models have shown promise in modeling a wide variety of data domains
(van den Oord et al., 2016; Oord et al., 2016; Kalchbrenner et al., 2017; Weissenborn et al., 2020).
These autoregressive models are likelihood-based—they explicitly optimize negative log-likelihood.
They exploit the fact that the joint probability distribution input data x can be factored into a product
of conditional distributions for each dimension of the data:

Pθ(x) =

n∏
i=0

pθ(xi|x<i) (4)

Where n is the full dimensionality of the data. This factorization is implemented by a neural network,
and the exact set of conditional dependencies is determined by the data domain. Image pixels may
depend on regions above and to the left of them (van den Oord et al., 2016), while temporal dimensions
may depend on past dimensions (Oord et al., 2016; Kalchbrenner et al., 2017; Weissenborn et al.,
2020).

3



Under review as a conference paper at ICLR 2021

Bottom Layer Top Layer

Quantize

Video

Resize and Concatenate

Encoder

Decoder

ze(x)b ze(x)t

zq(x)b
zq(x)t

X

Y

T

Top Layer 

Bottom Prior Model

X

Top Prior Model

Y
T

Conditioning 
Frames Bottom Layer 

Generated Frames

VQ-VAE Model Predicting Video

Figure 3: Here we show an overview of our approach. On the left we show the process of compressing
video with VQ-VAE. On the right we show the process of generating video with the latents. The top
conditional prior model is a PixelCNN with causal convolutions to incorporate all past information
at each point in space-time. The bottom conditional prior model is simply a 2D PixelCNN which
generates slice by slice. It is conditioned with a convolutional tower which incorporates a window
of time slices from the top latents and past bottom latents. The slices outside of this window are
colored grey in this diagram. Blue arrows represent conditioning, green arrows generation, and pink
feed-forward decoding. Videos licensed under CC-BY. Attribution for videos in this paper can be
found in the supplementary material.

3 METHOD

Our approach consists of two main components. First, we compress video segments into a discrete
latent representation using a hierarchical VQ-VAE. We then propose a multi-stage autoregressive
model based on the PixelCNN architecture, exploiting the low dimensionality of the compressed
latent space and the hierarchy of the representation.

3.1 COMPRESSING VIDEO WITH VQ-VAE

Similar to (Razavi et al., 2019), we use VQ-VAE to compress video in a hierarchical fashion. This
multi-stage composition of the latent representation allows decomposition of global, high level
information from low-level details such as edges or fine motion. For image information (Razavi et al.,
2019) this approach confers a number of advantages. First, the decomposition allows latent codes
to specialize at each level. High level information can be represented in an even more compressed
manner, and the total reconstruction error is lower. In addition, this hierarchy leads to a naturally
modular generative model. We can then develop a generative model that specializes in modeling the
high-level, global information. We can then train a separate model, conditioned on global information,
that fills in the details and models the low-level information further down the hierarchy. In this paper,
we adopt the terminology of (Razavi et al., 2019) and call the set of high-level latents the top layer
and the low-level latents the bottom layer.

Consistent with the experimental setup of previous work in video prediction, we deal with 16-frame
videos. Most of the videos in our training dataset are 25 frames per second. We use frames at a
256 × 256 resolution. The full video voxel is thus 256 × 256 × 16. Using residual blocks with
3D convolutions, we downsample the video spatiotemporally. At the bottom layer, the video is
downsampled to a quantized latent space of 64× 64× 8, reducing the spatial dimension by 4 and the
temporal dimension by 2. Another stack of blocks reduces all dimensions by 2, with a top layer of
32× 32× 4. Each of the voxels in the layer is quantized into 512 codes with a different codebook for
both layers.

The decoder then concatenates the bottom layer and the top layer after upsampling using transposed
convolutions. From this concatentation as input, the decoder deterministically outputs the full
256 × 256 × 16 video. Overall, we reduce a 256 × 256 × 16 × 3 × log(256) space down to a
64×64×8× log(512)+32×32×4× log(512) space, a greater than 98% reduction in bits required.
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Table 1: Human Evaluation on Kinetics-600
Prefer Video VQ-VAE Prefer (Luc et al., 2020) Indifferent

65.7% 12.8% 21.5%

During training, we randomly mask out the bottom layer in the concatenated input to the decoder.
Masking encourages the model to utilize the top latent layer and prevent codebook collapse.

3.2 PREDICTING VIDEO WITH PIXELCNNS

With VQ-VAE, our 256× 256× 16 video is now decomposed into a hierarchy of quantized latents
at 64× 64× 8 and 32× 32× 4. Previous autoregressive approaches involved full pixel videos at
64 × 64 × 16 (Weissenborn et al., 2020) or 64 × 64 × 20 (Kalchbrenner et al., 2017). Our latent
representation is thus well within the range of tractability for these models. Furthermore, given
the hierarchy, we can factorize our generative model into a coarse-to-fine fashion. We denote the
model of the top layer the top prior and model of the bottom layer the bottom prior. Because we
are focusing on video prediction, we emphasize that both are still conditioned on a series of input
frames. While previous work used 5 frames and predicted 11 (Weissenborn et al., 2020; Clark et al.,
2020), the power-of-two design of our architecture leads us to condition on 4 and predict 12. When
conditioning our prior models on these frames, we need not use a large stack directly on the original
images but save memory and computation by training a smaller stack of residual layers on their
latent representation, compressing these 4 conditional frames into a small latent space of 32× 32 and
64× 64× 2.

We first model the top layer with a conditional prior model. Our prior model is based on a PixelCNN
with multi-head self attention layers (Chen et al., 2018). We adapt this architecture by extending the
PixelCNN into time; instead of a convolutional stack over a square image, we use a comparable 3D
convolutional stack over the cube representing the prior latents. The convolutions are masked in the
same way as the original PixelCNN in space—at each location in space, the convolutions only have
access to information to the left and above them. In time, present and future timesteps are masked
out, and convolutions only have access to previous timesteps. While spatiotemporal convolutions can
be resource intensive, we can implement most of this functionality with 2D convolutions separately
in the x− t plane and the y − t plane. We take 1D convolutions in the horizontal and vertical stacks
in the original PixelCNN (van den Oord et al., 2016) and add the extra dimension of time to them,
making them 2D. Our only true 3D convolution is at the first layer before the addition of gated stacks.
We use multi-head attention layers analogous to (Razavi et al., 2019); this time the attention is applied
to a 3D voxel instead of a 2D layer as in (Razavi et al., 2019). Attention is applied every five layers.
During sampling we can generate voxels left-to-right, top-to-bottom within each temporal step as in
the original PixelCNN. Once a final step is generated, we can generate the next step conditioned on
the previous generated steps.

Once we have a set of latents from the top layer, we can condition our bottom conditional prior model
and generate the final bottom layer. Because the bottom layer has a higher number of dimensions
and relies on local information, we don’t necessarily need a 3D PixelCNN. Instead, we use a 2D
PixelCNN with multi-head self attention every five layers analogous to (Razavi et al., 2019). We
implement a 3D conditional stack, however, that takes in a window of time steps from the top layer
as well as a window of past generated time steps in the bottom layer. The window sizes we used were
4 and 2 respectively. This conditional stack is used as conditioning to the 2D PixelCNN at the current
timestep.

4 RELATED WORK

Video Prediction and Synthesis: In the last few years, the research community has focused a
spotlight on the topic of video generation—either in the form of video synthesis or prediction. Early
approaches involved direct, deterministic pixel prediction (Ranzato et al., 2014; Srivastava et al.,
2015; Oh et al., 2015; Patraucean et al., 2015). Given the temporal nature of video, such approaches
often incorporated LSTMs. These papers usually applied their deterministic models on datasets such
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Table 2: FVD Scores on Kinetics-600. Lower is better.
Method FVD Score (↓)
Video Transformer (64 × 64) (Weissenborn et al., 2020) 170 ± 5
DVD-GAN-FP (64 × 64) (Clark et al., 2020) 69.15 ± 1.16
TRIVD-GAN-FP (64 × 64) (Luc et al., 2020) 25.74 ± 0.66

Video VQ-VAE (64 × 64) 64.30 ± 2.04
Video VQ-VAE FVD* (64 × 64) 54.30 ± 3.49
Video VQ-VAE (256 × 256) 129.85 ± 1.64
Video VQ-VAE FVD* (256 × 256) 82.45 ± 1.16

as moving MNIST characters (Srivastava et al., 2015); because of their deterministic nature, rarely
were they successfully applied to more complex datasets. Given this situation, researchers started
to adapt popular models for image generation to the problem starting with generative adversarial
models (Mathieu et al., 2016; Vondrick et al., 2016; Lee et al., 2018; Babaeizadeh et al., 2018; Clark
et al., 2020; Saito & Saito, 2018; Luc et al., 2020; Xiong et al., 2018), variational autoencoders (Xue
et al., 2016), and autoregressive models (Kalchbrenner et al., 2017; Weissenborn et al., 2020). Others
stepped aside from the problem of full pixel prediction and instead predicted pixel motion (Finn et al.,
2016; Walker et al., 2016; Jia et al., 2016) or a decomposition of pixels and motion (Denton & Fergus,
2018; Gao et al., 2019; Jang et al., 2018; Hao et al., 2018; Li et al., 2018a; Tulyakov et al., 2018;
Villegas et al., 2017a). Finally, some have proposed a hierarchical approach based on structured
information—generating video conditioned on text (Li et al., 2018b), semantic segments (Luc et al.,
2017; 2018), or human pose (Walker et al., 2017; Villegas et al., 2017b)

Compressing Data with Latents: The key element in our video prediction framework is
compression—representing videos through lower dimensional latents. We apply the framework
of VQ-VAE (van den Oord et al., 2017; Razavi et al., 2019) which has been successfully applied to
compress image and sound data. Related to VQ-VAE, other researchers have explored hierarchies of
latents for generation of images (Fauw et al., 2019) and music (Dieleman et al., 2018).

Autoregressive Models: The foundation of our model is based on PixelCNN (van den Oord
et al., 2016). Distinct from implicit likelihood models such as GANs and approximate methods
such as VAEs, the family of PixelCNN architectures have shown promise in modeling a variety of
data domains including images (van den Oord et al., 2016), sound (Oord et al., 2016), and video
(Kalchbrenner et al., 2017; Weissenborn et al., 2020). In line with our paper, recent work with these
models has shifted toward decomposing autoregression through hierarchies (Menick & Kalchbrenner,
2019; Reed et al., 2017) and latent compression (van den Oord et al., 2017; Razavi et al., 2019;
Dhariwa et al., 2020).

5 EXPERIMENTS

In this section, we evaluate our model quantitively and qualitatively on the Kinetics-600 dataset
(Carreira et al., 2018). This dataset of videos is very large and highly diverse, consisting of hundreds
of thousands of videos selected from YouTube across 600 actions. While most previous work has
focused on more constrained datasets, only a few (Clark et al., 2020; Luc et al., 2020; Weissenborn
et al., 2020) have attempted to scale to larger size and complexity. We train our top and bottom models
for around 1000000 iterations with a total batch sizes of 512 and 32 respectively. Our VQ-VAE model
was trained on a batch size of 16 for 1000000 iterations.

5.1 QUALITATIVE EVALUATION

While the Kinetics-600 dataset is publicly available for use, the individual videos in the dataset may
not be licensed for display in an academic paper. Therefore, in this paper, we apply our model trained
on Kinetics-600 to videos licensed under Creative Commons from the YFCC100m dataset (Thomee
et al., 2015). In figure 4 we show some selected predictions. We find that our approach is able to
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Figure 4: Selected prediction results. The first 4 frames are given as conditioning. We predict the next
12, two of which (9th and 16th) we show on the right. All frames shown here have been compressed
by VQ-VAE. Videos licensed under CC-BY. Attribution for videos in this paper can be found in the
supplementary material. Best seen in video in the supplementary material.
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model camera perspective, parallax, inpainting, deformable human motions, and even aspects of
crowd motion across a variety of different visual contexts.

5.2 QUANTITATIVE EVALUATION

Quantitative evaluation of generative models of images, especially across different classes of models,
is an open problem (Theis et al., 2016). It is even less explored in the realm of video prediction.
One proposed metric used on larger datasets such as Kinetics-600 is the Fréchet Video Distance
(Unterthiner et al., 2018). As no previous approach has attempted 256×256 resolution, we downscale
our videos to 64 × 64 for a proper comparison against prior work. We also compute FVD on the
full resolution as a baseline for future work. We use 2-fold cross-validation over 39000 samples to
compute FVD. We show our results in Table 7. We find performance exceeds (Clark et al., 2020)
but not necessarily (Luc et al., 2020). We also find that comparing the VQ-VAE samples to the
reconstructions, not the original videos, leads to an even better score (shown by FVD*). This result is
similar to the results on images for VQ-VAE (Razavi et al., 2019). As GAN-based approaches are
explicitly trained on classifier (discriminator) based losses, FVD—a metric based on a neural-network
classifier—may favor GAN-based approaches versus log-likelihood based models even if the quality
of the samples are comparable. Given the possible flaws in this metric, we also conduct a human
evaluation similar to (Vondrick et al., 2016). We had 15 participants compare up to 30 side-by-side
videos generated from our approach and that of (Luc et al., 2020). Each video had at least 13
judgements. For each comparison, both models used the exact set of conditioning frames and had a
resolution of 64x64. Participants could choose a preference for either video, or they could choose
indifference—meaning the difference in quality between two videos is too close to perceive. We
show our results in Table 1. Out of a total of 405 judgements, participants preferred ours 65.7% of
the time, (Luc et al., 2020) 12.8%, and 21.5% were judged to be too close in quality. Even though
(Luc et al., 2020) has a much lower FVD score, we find that our participants had stronger preference
for samples generated from our model.

6 CONCLUSION

In this paper we have explored the application of VQ-VAE towards the task of video prediction. With
this learned compressed space, we can utilize powerful autoregressive models to generate possible
future events in video at higher resolutions. We show that we are also able to achieve a level of
performance comparable to contemporary GANs.
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A APPENDIX

Table 3: VQ-VAE Architecture Details
Parameter Value

Input Size 256×256×16×3
Latent layers 32×32×4, 64×64×8

β (commitment loss coefficient) 0.25
Batch size 16

Hidden units 128
Residual units 32

Layers 2
Codebook size 512

Codebook dimension 64
First Stage Encoder twh-Conv Filter Size 4 8 8

First Stage Encoder twh-Conv Filter Stride 2 4 4
Second Stage Encoder twh-Conv Filter Size 4 4 4

Second Stage Encoder twh-Conv Filter Stride 2 2 2
Upsampling twh-Conv Filter Size 4 8 8

Upsampling twh-Conv Filter Stride 2 4 4
Training steps 1000000
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Table 4: PixelCNN Prior Details
Parameter Top Prior Bottom Prior

Input size 32×32×3 64×64
Batch size 512 32

Hidden units 512 512
Residual units 1024 1024

Layers 40 20
Attention layers 8 4
Attention heads 8 8
Conv Filter size 3 5

Dropout 0.5 0.0
Training steps 1016000 950000

Table 5: Top Prior Conditioning Stack
Parameter Values

Input size 32×32 (upsampled to 64×64×2), 64×64×2
Hidden units 512

Residual units 128
Layers 4

Table 6: The conditioning frames 256×256×4×3 are compressed using our VQ-VAE into a
32×32 and 64×64×2 space. These two layers are then concatenated, downsampled back down
to 32×32×256 by a convolutional layer, tiled to 32×32×3×256, and finally fed through another
convolutional layer to 32×32×3×512 before being fed through four residual blocks.

Table 7: Bottom Prior Conditioning Stack
Parameter Values

Input size 32×32×4, 64×64×4
Hidden units 1024

Residual Blocks 20

Table 8: Let n be the timestep to be modeled by the bottom prior. The 32×32×4 top layer is
upsampled to 64×64×8×1024 through a series of three convolutional layers with kernel sizes (4, 3,
3)→(3,4,4)→(3, 3, 3) and strides (2, 1, 1)→(1, 2, 2)→(1, 1, 1) respectively. From this output, the
nth slice is chosen as input. For the bottom layer, an input the past n− 4, n− 3, ...n− 1 timesteps are
fed into a series of 4 convolutional layers at size (4, 3, 3) and stride (2, 1, 1) each. This downsamples
to a layer of size 64×64. This is concatenated with the output from the top layer and fed into a
conditioning stack identical to the one described in (Razavi et al., 2019)
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