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ABSTRACT

To improve language models’ proficiency in mathematical reasoning via con-
tinual pretraining, we introduce a novel strategy that leverages base language
models for autonomous data selection. Departing from conventional supervised
fine-tuning or trained classifiers with human-annotated data, our approach Au-
tonomous Data Selection (AutoDS) utilizes meta-prompted language models as
zero-shot verifiers to evaluate and select high-quality mathematical content au-
tonomously. To demonstrate the efficacy of our method, we continuously pre-
trained a 7B-parameter language model on our curated dataset, achieving sub-
stantial improvements in downstream performance on the MATH, GSM8K, and
BIG-Bench Hard (BBH) tasks with a token amount reduced by orders of mag-
nitude compared to previous continual pretraining works. Our method show-
cases a 2 times increase in pretraining token efficiency compared to state-of-the-
art baselines, underscoring the potential of our approach in enhancing models’
mathematical reasoning capabilities. The AutoMathText dataset is available at
https://huggingface.co/datasets/math-ai/AutoMathText‡.

1 INTRODUCTION

In the field of language modeling research (Devlin et al., 2018; Radford et al., 2018; 2019; Brown et al.,
2020; OpenAI, 2023; Anil et al., 2023), the incorporation of domain-specific knowledge emerges as a
crucial area for exploration (Lewkowycz et al., 2022; Azerbayev et al., 2023b). This is particularly
important in the realm of mathematical reasoning, where the development and curation of specialized
datasets for pretraining and finetuning represent a critical need and a challenge (Hendrycks et al.,
2021; Paster et al., 2023; Wang et al., 2023). The drive toward creating language models proficient
in complex mathematical reasoning underscores the importance of high-quality, domain-specific
datasets. However, the mathematical field faces a scarcity of such resources, highlighting the need for
innovative solutions to cultivate models with deep understanding and problem-solving skills.

Recent endeavors, such as those by Gunasekar et al. (2023) and Li et al. (2023), have made significant
strides in addressing this challenge. They demonstrated the potential of leveraging GPT-4 to assess
the educational value of code data within the Stack dataset (Kocetkov et al., 2022), employing
model-generated annotations to train a random forest classifier for quality prediction. These studies
mark a pivotal step toward enhancing the quality of data for model training. Nonetheless, they can
only assign discrete labels to the data points, e.g., good or bad, instead of assigning continuous real
scores, e.g., a data point of educational value 0.95 vs a data point of value 0.001.

As we will demonstrate later, computing real-valued scores for training data can significantly improve
the pretraining token efficiency because the model can focus on the most informative data points,

∗Equal contribution.
†Corresponding authors.
‡The code is available at https://github.com/yifanzhang-pro/AutoMathText.
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where “informative” is defined by a scoring threshold. However, generating scores can be difficult
for large language models (LLMs), as it has been observed that LLMs are not good at accurately
generating numbers or sampling from complex distributions (Hopkins et al., 2023; Hu et al., 2023).
Inspired by the innovative DPO method (Rafailov et al., 2023), we propose leveraging the logits
of specific tokens to directly formulate a quantitative score function, circumventing the need for
extensive data labeling or classifier training.
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Figure 1: Visualization of performances of continual pretrained models with different data selection
methods on GSM8K (Hendrycks et al., 2021), BIG-Bench Hard (BBH) (Suzgun et al., 2022) and
MATH (Hendrycks et al., 2021) tasks.

In this work, we introduce a strategy that utilizes the intrinsic capabilities of base language models,
equipped with zero-shot meta-prompts, to autonomously evaluate the mathematical quality and
educational value of content. Our score function offers a more nuanced and granular analysis, unlike
previous methods that primarily focused on binary classification (Li et al., 2023; Paster et al., 2023).
This enables a refined and sophisticated training strategy that extends beyond the limitations of binary
filtering.

The core of our contribution lies in the autonomous content evaluation without the necessity for
alignment with human-labeled scores through Supervised Fine-Tuning (SFT), Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al., 2022), or Direct Preference Optimization
(DPO) (Rafailov et al., 2023). By employing a softmax function over logits for ‘YES’ and ‘NO’
tokens, our method autonomously assesses content relevance and value. This facilitates an active
learning process where the model customizes its learning journey by querying the educational merit
of materials. This approach signifies an attempt towards the realization of autonomous learning
systems that are dynamic, proactive, and capable of self-directed evaluation and learning, especially
in specialized fields like mathematics.

Our contributions can be listed as three-fold:

• We showcase the efficacy of leveraging base language models with meta-prompts for zero-shot
verification using a straightforward score function derived from logits. Our method, Autonomous
Data Selection (AutoDS) advances beyond traditional alignment strategies such as SFT and RLHF
without the reliance on human-annotated data, facilitating autonomous content evaluation.

• We address the shortage of labeled high-quality mathematical training resources by introducing
the open-source AutoMathText dataset. This comprehensive dataset is designed to enrich AI
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model training with mathematical content, thereby enhancing their performance in math-intensive
tasks.

• Through empirical evidence, we demonstrate the effectiveness of our methodology by continu-
ously pretrain a 7B parameter Mistral language model on the AutoMathText dataset. Our results
highlight substantial improvements in downstream performance on the MATH (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), and BIG-Bench Hard (BBH) tasks (Suzgun et al., 2022)
with 2 times pretraining token efficiency, underscoring the practical benefits of our approach in
mathematical reasoning tasks.

2 LANGUAGE MODELS AS ZERO-SHOT VERIFIERS

The proliferation of language models has introduced unprecedented opportunities for advancing AI
systems capable of intricate reasoning and decision-making (Wei et al., 2022; Bubeck et al., 2023).
In this context, our work explores the frontier of employing base language models as zero-shot
verifiers, a concept that diverges from traditional few-shot learning paradigms (Brown et al., 2020) by
eliminating the need for task-specific fine-tuning or example-based prompting (Reynolds & McDonell,
2021; Kojima et al., 2022; Zhang et al., 2023b). Our methodology embraces the zero-shot approach to
leverage the inherent capabilities of language models, thereby enabling a direct assessment of textual
content’s relevance and educational value in the domain of mathematics without prior alignment with
human-generated labels.

Central to our approach AutoDS is the formulation of a scoring function, as delineated in Equation
(1), which quantitatively evaluates the language model’s inclination towards affirming or negating the
mathematical content and educational merit of a given piece of content. This function operates on the
logits associated with ‘YES’ and ‘NO’ responses to meta-prompts, offering a nuanced mechanism for
content evaluation:

LM-Score(·) = exp(logit(‘YES’))
exp(logit(‘YES’)) + exp(logit(‘NO’))

. (1)

This scoring function represents a novel integration of language models’ prediction capabilities
into an autonomous evaluation framework, bypassing the limitations associated with traditional
supervised learning techniques. Our approach forgoes the conventional reliance on manually labeled
datasets or classifier training, instead offering a direct and nuanced assessment of content across
varied mathematical sources, as exemplified in Figures 3 and 7. Figure 2 demonstrates the meta-
prompt designed for autonomous data selection, illustrating how language models can evaluate the
mathematical and educational value of content from diverse sources such as Common Crawl, arXiv,
and GitHub (see Figure 8 and 9). Our use of meta-prompts not only serves as in-context alignment
for base language models but also ensures that the language models operate within a specifically
tailored syntax, enhancing their ability to produce type-safe foreseeable responses. Notice that the
‘<system>’ tags are directly using plain text instead of special tokens for ease of implementation
without modifying the tokenizers. Responses from the model are constrained to four possibilities,
thereby allowing for a refined selection process tailored to educational content in mathematics.

Leveraging the capacity for handling multiple queries within a single prompt, our methodology
interprets the LM score as a pseudo-probability. This interpretation facilitates a layered assessment by
aggregating the scores of individual questions. In our framework, the language model is tasked with
addressing two queries simultaneously, and we derive the composite LM-Score for these inquiries
utilizing Equation (2). In subsequent discussions, we refer to this aggregated measure simply as the
LM-Score. This approach emphasizes the redundancy of collecting annotated data for alignment
techniques like Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback
(RLHF), proposing a more streamlined, zero-shot in-context alignment strategy. This refined strategy
not only simplifies the evaluation process but also enhances the efficiency and scalability of our
AutoDS method.

LM-Score(Q1, Q2) = LM-Score(Q1) · LM-Score(Q2). (2)

Importantly, the utilization of base language models equipped with meta-prompts is instrumental
in our approach, offering a highly efficient pathway for continual pretraining and active life-long
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“<system>
You are ChatGPT, equipped with extensive expertise in mathematics and coding, and skilled
in complex reasoning and problem-solving. In the following task, I will present a text excerpt
from a website. Your role is to evaluate whether this text exhibits mathematical intelligence
and if it is suitable for educational purposes in mathematics. Please respond with only YES
or NO
</system>

User: {
“url”: “{url}”,
“text”: “{text}”

}
1. Does the text exhibit elements of mathematical intelligence? Respond with YES or NO
2. Is the text suitable for educational purposes for YOURSELF in the field of mathematics?
Respond with YES or NO

Assistant: 1. ”

Figure 2: Illustration of a zero-shot meta-prompt designed for the AutoDS method.

learning. Through the strategic use of meta-prompts, we can tap into the innate instruction-following
capabilities of these models, bypassing the need for traditional alignment mechanisms. This intrinsic
property allows for the direct application of a model’s latest checkpoint to autonomously determine the
suitability of data for subsequent pretraining epochs. Such a method not only streamlines the process
of data curation but also ensures that the model remains dynamically attuned to the evolving landscape
of mathematical content, thereby enhancing its learning trajectory and adaptability over time. This
underscores the transformative potential of our approach in leveraging the existing competencies
of language models for autonomous data evaluation and selection, setting a new precedent for the
development of self-evolving AI systems specialized in the domain of mathematics.

Moreover, our approach deliberately avoids SFT or RLHF to anticipate and leverage the evolving
superiority of language models over human evaluative capabilities, especially in domains requiring
specialized knowledge like mathematics. This decision is substantiated by the examples depicted in
Figures 3 and 7, which highlight the potential limitations of trained classifier-based and human-led
content evaluation. OpenWebMath (Paster et al., 2023) trained a model to predict the probability a
document is mathematical, which turns out not to be very satisfying (see Figure 3).

Language models, free from human biases and constraints, present a scalable and objective mech-
anism for content assessment, as humans may be seen as weak supervisors compared to language
models themselves (Burns et al., 2023). Our methodology advocates for autonomous supervision
through direct engagement by eliciting language models. This paradigm shift towards self-supervised
evaluation and selection paves the way for the next generation of AI systems, characterized by their
autonomous learning and adaptability in specialized knowledge domains.

3 AUTONOMOUS DATA SELECTION WITH LANGUAGE MODELS FOR
MATHEMATICAL TEXTS

Our study leverages three primary data sources: Common Crawl (specifically, the OpenWebMath
subset (Paster et al., 2023)), arXiv (via the RedPajama dataset (Computer, 2023)), and GitHub (the
Stack dataset (Kocetkov et al., 2022; Azerbayev et al., 2023b)). These sources were chosen for their
rich mathematical content, spanning a broad spectrum of complexity and formats.

Experiment Details. We employ the Qwen-72B base language model (Bai et al., 2023), notable for
its MMLU score of 77.4, to process our datasets. Specifically, we utilize:

1. 6.32M documents from the OpenWebMath dataset (Paster et al., 2023), a curated subset of
Common Crawl;

2. 1.54M documents from the arXiv subset of the RedPajama dataset (Computer, 2023);
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“Commutative Property Of Addition. If A is
an n×m matrix and O is a m×k zero-matrix,
then we have: AO = O. Note that AO is the
n× k zero-matrix. ...”
[LM-Score (Q1, Q2): 0.946]
[OWMath Classifier Score: 0.767]

“Inequality involving sums with binomial co-
efficient I am trying to show upper- and
lower-bounds on 1

2n
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)
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(where n ≥ 1) to show that it grows as
Θ(n). The upper-bound is easy to get since
min(i, n − i) ≤ i for i ∈ {0, . . . n}
so that 1
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)
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1
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(
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i

)
i = n

2
. ...” [LM-

Score (Q1, Q2): 0.931]
[OWMath Classifier Score: 0.999]

“The radius of convergence is half the length
of the interval of convergence. We noticed
that, at least in the case of the geometric se-
ries, there was an interval in which it con-
verged, but it didn’t converge at the endpoints.
Show that the following alternating harmonic
series converges: Series of Both Positive
and Negative Terms Theorem: Convergence
of Absolute Values Implies Convergence If∑

|an| converges, then so does
∑

an. Let
f : [1,∞) → R+ be a non-negative ... ”
[LM-Score (Q1, Q2): 0.923]
[OWMath Classifier Score: 0.906]

“# User talk:173.79.37.192 ## March 2009
Welcome to Wikipedia. Although everyone
is welcome to make constructive contribu-
tions to Wikipedia, at least one of your re-
cent edits, such as the one you made to Re-
action time, did not appear to be construc-
tive and has been reverted. Please use the
sandbox for any test edits you would like to
make, and read the welcome page to learn
more about contributing constructively to this
encyclopedia. Thank you. Hotcrocodile
(talk) 01:33, 11 March 2009 (UTC) If this
is a shared IP address, and you didn’t make
any unconstructive edits, consider creating
an account for yourself so you can avoid
further irrelevant warnings. ## NAYLA
MATTHW [1] [[Media:Example.oggfhf... ”
[LM-Score (Q1, Q2): 1.58× 10−5]
[OWMath Classifier Score: 0.612]

“ I’ve just had one recent comment flag de-
clined on a noisy comment. This com-
ment was a reply to a deleted ’+1’ com-
ment and said simply: @FrankL Thanks! ”
[LM-Score (Q1, Q2): 1.21× 10−5]
[OWMath Classifier Score: 0.830]

Figure 3: Several examples on selecting web texts. The first example in the left column is from ‘track-
it.nz’, while the second one in the left column is from ‘math.stackexchange.com’, and the third one
in the left column is from ‘bwni.pw’. In the right column, the first example is from ‘wikipedia.org’,
and the second one is from ‘’math.stackexchange.com’. The trained classifier (denoted as OWMath
Classifier) used in OpenWebMath (Paster et al., 2023) may mainly focus on how many latex symbols,
$ and digits exist in the text, and the examples in the right column show that it may not be very
effective.

3. 3.40M documents from the Algebraic Stack dataset (Azerbayev et al., 2023b), a specialized
subset of the Stack dataset.

This selection encompassing over 200GB of data, while not exhaustive, serves as a representative
demonstration, prioritizing cost-effectiveness and coverage. Our computational setup includes A100-
80G and A800-80G GPUs, employing the vLLM inference framework (Kwon et al., 2023) for efficient
language model inference. Processing the combined 11.26M documents required approximately 750
hours on 4 A100-80G GPUs, translating to 3000 GPU hours in total. Contrastingly, manual annotation
of this dataset by experts familiar with undergraduate-level and beyond mathematical content would
cost upwards of $10 million, assuming a rate of $1 per document. Our method significantly reduces
this cost to approximately $10,000 (the cost is estimated by using Azure’s machine learning service
at $3.4 per A100 GPU hour).

3.1 VISUALIZATION OF DATA COMPOSITION

The visualization of data composition is essential to discern the quality and diversity of the web
subset of our datasets. Figure 4 displays a tree map detailing the Top30 domains by LM-Score
(Q1, Q2) ranges from 0.50 to 1.00 and 0.75 to 1.00, respectively. This representation not only
spotlights the disparity in quality across different sources but also reveals the high-quality nature of
data from StackExchange. This domain stands out, showcasing a considerable volume of content
that demonstrates superior quality, yet a substantial portion of this data remains unexplored in
existing literature (Wang et al., 2023; Liu et al., 2024), signifying a valuable opportunity for further
investigation.
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Delving deeper, Figure 5 offers a granular view of the LM-Score distribution across the Top10
domains. It is apparent that StackExchange, mathhelpforum.com, and physicsforums.com are leading
in terms of high-quality content, with the highest proportions of scores within the 0.75 to 1.00 range.
This detailed breakdown elucidates the domains where our autonomous data selection method is
particularly effective, guiding the strategic direction for subsequent data preprocessing and model
training efforts.
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Figure 5: Visualization of LM-Score distribution within the Top10 domain occurrences, demonstrating
the content quality and variety of different domains.

4 EXPERIMENTS

In this section, we want to test the effectiveness of the AutoDS method in enhancing the mathematical
reasoning capabilities of language models. To this end, we continually pretrained a 7B-parameter
Mistral language model (Jiang et al., 2023) showcasing the efficiency of our data selection method.
Contrasting with the extensive 200B-token training performed by Llemma (Azerbayev et al., 2023b),
we utilized merely less than 1.5% of that amount (less than 3B tokens), thereby emphasizing the
potential of our data-efficient training approach. Our experiments include baselines employing
uniform sampling, DSIR (Xie et al., 2023b), Qurating (Wettig et al., 2024), and our AutoDS method
leveraging LM-Score-based selection. Token counts were balanced among different types of training
data to ensure comparability.
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4.1 EXPERIMENTS ON CONTINUAL PRETRAINING

Experiment details. Utilizing the LLaMA-Factory (hiyouga, 2023), we perform the continual
pretraining of the Mistral-7B-v0.1 model with three epochs, using a cosine learning rate schedule
with a 3% warm-up period and a peak learning rate of 5e-6. The DeepSpeed framework (Rajbhandari
et al., 2020) with ZeRO-2 Stage optimization facilitates our training acceleration. The models are
continual-pretrained on a node comprising 8xA800 GPUs. We use a micro-batch size of 8 and
gradient accumulation of 4 to achieve the total batch size of 256. We first utilize the selected data
from the web subset with the highest quality for a preliminary evaluation.

Evaluation results. Our evaluation protocol adheres to the standard eval harness framework (Gao
et al., 2023a), consistent with the Huggingface Leaderboard’s protocol §. The results, as detailed in
the tables below, illuminate the efficacy of our AutoDS dataset in enhancing the model’s performance.

Table 1: MATH test accuracy post continual pretraining.
LM-Score Type # Tokens (M) Accuracy (%)

- Baseline (w/o pretraining) 0 12.88

- OpenWebMath 328.9 10.50
0.75-1.00 AutoDS 328.9 13.68

Table 2: MATH test accuracy after fine-tuning on MetaMathQA (Yu et al., 2023). Notice that the
baseline accuracy is reproduced by ourselves for a fair comparison.

LM-Score Type # Tokens (M) Accuracy (%)

- Baseline (w/o pretraining) 0 27.20

- OpenWebMath 328.9 26.98
0.75-1.00 AutoDS 328.9 28.06

In Table 1, we compare the MATH test accuracy of models after continual pretraining. The auto-
selected data consistently outperforms its uniform counterpart, achieving higher accuracy percentages.
Notice that the uniformly sampled data from the OpenWebMath dataset have already been filtered
using OpenWebMath’s rule-based filter and trained classifier. This enhancement in performance
highlights the strategic advantage of using high-quality, domain-specific data for continual model
pretraining. Table 2 further examines the MATH test accuracy after supervised fine-tuning (SFT) on
the MetaMathQA dataset. In this SFT setting, the auto-selected data models again exhibit superior
accuracy, affirming the robustness of our pretraining approach. These results underscore the AutoDS
dataset’s ability to enhance model performance and as a foundation for subsequent fine-tuning
processes.

4.2 COMPARISON WITH BASELINES

In this subsection, we conduct experiments at a larger scale to comprehensively evaluate different
data selection methods. Specifically, we continually pretrained Mistral-7B models for one epoch with
approximately 2.5 billion tokens.

Experiment details. In this experiment, we use a constant learning rate of 1e-6 as the default
for all methods for fair comparisons. For the OpenWebMath dataset (Paster et al., 2023), we use
uniform sampling as a baseline, notice that the OpenWebMath has already been selected using trained
classifiers. The AutoDS method’s data selection ranged from LM-Scores of 0.6 to 1.0 within the web
subset. For the DSIR method, it requires a target dataset to calculate the KL divergence between
the source dataset and the target dataset. We use the Pile (Gao et al., 2020) dataset’s wiki validation
set as the target dataset. For the Qurating method (Wettig et al., 2024), we directly utilized the
QuratedPajama dataset, selecting data based on top-k scores of educational value.

Experimental results. In Figure 1, the checkpoint evaluation every 100 steps, approximately 52
million tokens. From Figure 1 and Table 3, models pretrained with the data selected using the AutoDS
method consistently show superior performance across a diverse set of complex reasoning tasks

§https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.
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Figure 6: Comparative training loss trajectories for OpenWebMath (Uniform) and AutoMathText
(Selected) data with size of 328.9M tokens, showcasing a substantial reduction in the training loss for
Auto-selected AutoMathText data .

including MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), and BIG-Bench Hard (Suz-
gun et al., 2022), highlighting the method’s robustness and the AutoDS dataset’s effectiveness in
enhancing models’ reasoning capabilities. Notably, on the MATH dataset, AutoDS shows 2.36 times
pretraining token efficiency compared to the OpenWebMath uniform sampling baseline (14.26%),
achieving 16.14% accuracy with only 2.5B tokens for continual pretraining.

Beyond complex reasoning, we extended our evaluation to assess how well the models adapted to other
cognitive domains, such as commonsense reasoning, world knowledge, and reading comprehension.
Table 4 encapsulates this multi-faceted performance evaluation. It’s noteworthy that while AutoDS
did not universally top all categories, its overall average performance across diverse tasks (including
all tasks shown in Table 3 and Table 4) shows the superiority of our method compared to other data
selection methods. These outcomes strongly advocate for the AutoDS approach’s potential to advance
language models in mathematical reasoning and beyond.

Table 3: Comparison of continual pretrained models using different data selection methods on
complex reasoning tasks, showcasing the notable superiority of the AutoDS method.

Selection Method MATH (5-shot) GSM8K (5-shot) BIG-Bench Hard (3-shot)

– (Mistral-7B Base) 12.88 38.82 55.92

Uniform (OpenWebMath) 14.26 44.12 56.50
DSIR 12.30 42.00 55.97
QuRating 12.90 36.32 55.63
AutoDS 16.14 45.41 58.61

Table 4: Comprehensive comparison of continual pretrained models across diverse reasoning and
comprehension tasks. The table is divided into three major sections: commonsense reasoning, world
knowledge, and reading comprehension§.

H.S. PIQA W.G. NQ MMLUSTEM ARC-E ARC-C SciQ LogiQA BoolQ
Selection Method (10) (6) (15) (5) (5) (25) (25) (2) (2) (0) Average
– (Mistral-7B Base) 62.82 82.10 81.22 29.81 52.39 84.68 57.25 97.40 30.26 83.58 59.16

Uniform (OpenWebMath) 62.21 82.21 80.19 29.17 52.17 84.18 56.66 97.20 31.03 83.82 59.52
DSIR 63.10 81.94 81.37 29.22 52.62 84.72 57.25 97.30 30.26 73.76 58.59
QuRating 62.64 81.99 80.11 28.89 52.01 85.48 57.76 97.30 31.18 82.81 58.85
AutoDS 62.72 82.21 80.03 29.06 52.30 84.18 55.20 96.80 31.03 83.12 59.76

§Herein, H.S. denotes HellaSwag and W.G. signifies WinoGrande, and numbers with parenthetical reflecting
few-shot example counts.

8



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

5 RELATED WORK

Mathematical datasets and language models. The emergence of chain-of-thought prompting
methodologies (Radford et al., 2019; Wei et al., 2022; Wang et al., 2022; Fu et al., 2022; Gao et al.,
2023b; Yao et al., 2023; Zhang et al., 2023a; Gou et al., 2023) has been instrumental in harnessing
and enhancing the reasoning capabilities inherent within language models. Our research, however,
distinctly concentrates on the domain of continual pretraining with a focus on mathematical datasets.
The creation of mathematical datasets has been critical in propelling AI models’ proficiency in
mathematical comprehension and reasoning. Foundational contributions, such as the AMPS dataset
by Hendrycks et al. (2021) and the Proof-Pile dataset by Azerbayev et al. (2023a), have provided
capstones for models to systematically tackle mathematical problems and proofs. The Llemma
model (Azerbayev et al., 2023b) builds upon this foundation, dedicating its efforts to the continual
pretraining of language models with mathematical data especially the OpenWebMath dataset (Paster
et al., 2023), aiming to refine their complex reasoning skills further. Nevertheless, the meticulous
selection of mathematical data is still an area fraught with challenges.

Data selection in language modeling. The landscape of data selection in language modeling has
seen a variety of approaches aimed at refining the quality and relevance of training data. Techniques
have ranged from employing binary classifiers used by GPT-3 (Brown et al., 2020) and PaLM
(Chowdhery et al., 2023) to filter web data towards more formal sources like Wikipedia and books, to
more nuanced strategies that consider the difficulty or domain-specificity of the data. For example,
the Minerva model (Lewkowycz et al., 2022) used rule-based filtering for mathematical content,
while DSIR (Xie et al., 2023b) applied importance resampling to align the data distribution with
a target domain. Furthermore, DoReMi (Xie et al., 2023a) introduces a novel angle, optimizing
domain weights with a proxy model to minimize worst-case excess loss across domains. However,
the low inherent perplexity (entropy) in math-related and code-related corpora suggests that DoReMi
might not be optimally suited for enhancing mathematical pretraining. Recently, Gunasekar et al.
(2023); Li et al. (2023) demonstrated the utility of GPT-4 in annotating data quality for the Stack
dataset (Kocetkov et al., 2022), subsequently using a random forest model for classification based
on these annotations. Wettig et al. (2024) propose to train a reward model called Qurating for data
selecting. Our work diverges from previous approaches by introducing a fully autonomous data
selection method that leverages the intrinsic capabilities of language models without the need for
human-generated (and AI-generated) annotations or external trained classifiers.

Data selection across various domains. The strategy of data selection transcends NLP tasks,
extending its utility to a variety of domains, including vision and general domain adaptation. The
Moore-Lewis technique, as introduced by Moore & Lewis (2010) and further refined by Axelrod
(2017), exemplifies this approach by employing the cross-entropy differential between n-gram
language models (LMs) tailored to specific targets and general corpora. Similarly, discrepancies in
feature space and n-gram distributions have been effectively leveraged for data selection in domain
adaptation scenarios, as evidenced by the work of Jiang & Zhai (2007), Liu et al. (2019), and Ruder
& Plank (2017). Moreover, the significance of strategic data selection is equally acknowledged
within the realm of computer vision, where methodologies aimed at optimizing training datasets
have demonstrated substantial benefits. Notable contributions in this area include the pioneering
curriculum learning framework by Bengio et al. (2009), the exploration of submodularity for efficient
data selection by Wei et al. (2015), and recent advancements in prioritized data selection techniques
by Coleman et al. (2019) and Mindermann et al. (2022).

6 CONCLUSION

Our method leverages the inherent self-evaluation and active learning capabilities of language models
significantly improving the quality and relevance of training data in intricate and specialized fields like
mathematics. This research opens the door to further investigations into autonomous data curation
and model training techniques, heralding a new era in AI’s capacity for understanding, reasoning,
and innovation within specialized domains.
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ETHIC STATEMENT

This study, aimed at enhancing the capabilities of language models through autonomous data selection
and continual pretraining, presents insightful implications for the field of AI research, particularly
in the training and development of language models with specialized knowledge. The deployment
of autonomous systems for the selection of training data introduces considerations of transparency,
fairness, and accountability within the AI development process. By reducing reliance on human-
labeled data, our method shifts the responsibility for content evaluation to the AI itself, raising
important questions about the model’s decision-making processes. Ensuring these processes are
transparent and free from biases is essential to prevent the perpetuation of existing inequalities or the
introduction of new biases into AI systems.
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A APPENDIX FOR EXAMPLES

A.1 WEB SUBSET

Example: Commutative Property Of Addition
“Commutative Property Of Addition 2. If A is an n×m matrix and O is a m×k zero-matrix, then we
have: AO = O Note that AO is the n×k zero-matrix. Matrix Matrix Multiplication 11:09. We have 1.
To understand the properties of transpose matrix, we will take two matrices A and B which have
equal order. The identity matrix is a square matrix that has 1’s along the main diagonal and 0’s for all
other entries. In a triangular matrix, the determinant is equal to the product of the diagonal elements.
This matrix is often written simply as I , and is special in that it acts like 1 in matrix multiplication.
Is the Inverse Property of Matrix Addition similar to the Inverse Property of Addition? The identity
matrices (which are the square matrices whose entries are zero outside of the main diagonal and 1
on the main diagonal) are identity elements of the matrix product. Learning Objectives. In fact, this
tutorial uses the Inverse Property of Addition and shows how it can be expanded to include matrices!
Keywords: matrix; matrices; inverse; additive; additive inverse; opposite; Background Tutorials. ...”
LM-Score (Q1): 0.991, LM-Score (Q2): 0.954, LM-Score (Q1, Q2): 0.946

Example: Comparing the magnitudes of expressions
“# Comparing the magnitudes of expressions of surds I recently tackled some questions on maths-
challenge / maths-aptitude papers where the task was to order various expressions made up of surds
(without a calculator, obviously). I found myself wondering whether I was relying too much on
knowing the numerical value of some common surds, when a more robust method was available
(and would work in more difficult cases). For example, one question asked which is the largest of:
(a)

√
10 (b)

√
2 +

√
3 (c) 5 −

√
3 In this case, I relied on my knowledge that

√
10 ≈ 3.16 and√

2 ≈ 1.41 and
√
3 ≈ 1.73 to find (a) ≈ 3.16, (b) ≈ 3.14 and (c) ≈ 3.27 so that the required

answer is (c). But this seemed inelegant: I felt there might be some way to manipulate the surd
expressions to make the ordering more explicit. I can’t see what that might be, however (squaring all
the expressions didn’t really help). ...”
LM-Score (Q1): 0.991, LM-Score (Q2): 0.946, LM-Score (Q1, Q2): 0.937

Example: In Calculus, function derivatives
“# In Calculus, how can a function have several different, yet equal, derivatives? I’ve been pondering
this question all night as I work through some problems, and after a very thorough search, I
haven’t found anything completely related to my question. I guess i’m also curious how some
derivatives are simplified as well, because in some cases I just can’t see the breakdown. Here

is an example: f(x) =
x2 − 6x+ 12

x− 4
is the function I was differentiating. Here is what I got:

f ′(x) =
x2 − 8x+ 12

(x− 4)2
which checks using desmos graphing utility. Now, when I checked my

textbook(and Symbolab) they got: f ′(x) = 1 − 4

(x− 4)2
which also checks on desmos. To me,

these derivatives look nothing alike, so how can they both be the equal to the derivative of the
original function? Both methods used the quotient rule, yet yield very different results. Is one of
these ”better” than the other? I know that it is easier to find critical numbers with a more simplified
derivative, but IMO the derivative I found seems easier to set equal to zero than the derivative found
in my book.I also wasn’t able to figure out how the second derivative was simplified, so I stuck with
mine. I’m obviously new to Calculus and i’m trying to understand the nuances of derivatives. ...”
LM-Score (Q1): 0.985, LM-Score (Q2): 0.950, LM-Score (Q1, Q2): 0.936
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Example: Math help on cubics
“# Math Help - working backwards - cubics 1. ## working backwards - cubics Write an equation that
has the following roots: 2, -1, 5 Answer key: x3 − 6x2 + 3x + 10 = 0 For quadratic equations,
I use the sum and product of roots, this is a cubic equation, how do I solve this? Thanks. 2.
Originally Posted by shenton Write an equation that has the following roots: 2, -1, 5 Answer key:
x3 − 6x2 + 3x + 10 = 0 For quadratic equations, I use the sum and product of roots, this is a
cubic equation, how do I solve this? Thanks. (x − 2)(x + 1)(x − 5) 3. Thanks! That turns out
to be not as difficult as imagined. I thought I needed to use sum and products of roots to write the
equation, it does makes me wonder a bit why or when I need to use sum and products of roots. 4.
Write an equation that has the following roots: 2, -1, 5 Is there any other way to solve this other than
the (x-2)(x+1)(x-5) method? If we have these roots: 1, 1 +

√
2, 1−

√
2 the (x - 1) (x− 1−

√
2)

(x− 1 +
√
2) method seems a bit lenghty. When we expand (x - 1) (x− 1−

√
2) (x− 1 +

√
2)

the first 2 factors, it becomes: (x2 − x − x
√
2 − x + 1 +

√
2) (x − 1 +

√
2) collect like terms:

(x2 − 2x− x
√
2 + 1 +

√
2) (x− 1 +

√
2) To further expand this will be lenghty, my gut feel is

that mathematicians do not want to do this - it is time consuming and prone to error. There must be a
way to write an equation other than the above method. Is there a method to write an equation with 3
given roots (other than the above method)? ...”
LM-Score (Q1): 0.991, LM-Score (Q2): 0.943, LM-Score (Q1, Q2): 0.935

Example: Work and time
“# Work and time, when work is split into parts I’m stuck on a particular type of work and time
problems. For example, 1) A,B,C can complete a work separately in 24,36 and 48 days. They started
working together but C left after 4 days of start and A left 3 days before completion of the work.
In how many days will the work be completed? A simpler version of the same type of problem
is as follows: 2) A can do a piece of work in 14 days while B can do it in 21 days. They begin
working together but 3 days before the completion of the work, A leaves off. The total number of
days to complete the work is? My attempt at problem 2: A’s 1 day work=1/14 and B’s 1 day work=
1/21 Assume that it takes ’d’ days to complete the entire work when both A and B are working
together. Then, (1/14 + 1/21)*d= 1 -¿ d=42/5 days. But it is stated that 3 days before the completion
of the work, A left. Therefore, work done by both in (d-3) days is: (1/14 + 1/21)*(42/5 - 3)= 9/14
Remaining work= 1- 9/14 = 5/14 which is to be done by B alone. Hence the time taken by B to do
(5/14) of the work is: (5/14)*21 = 7.5 days. Total time taken to complete the work = (d-3) + 7.5 =
12.9 days. However, this answer does not concur with the one that is provided. My Understanding
of problem 1: Problem 1 is an extended version of problem 2. But since i think i’m doing problem 2
wrong, following the same method on problem 1 will also result in a wrong answer. Where did i go
wrong? ...”
LM-Score (Q1): 0.991, LM-Score (Q2): 0.941, LM-Score (Q1, Q2): 0.932

Example: Inequality Involving Sums
“Inequality involving sums with binomial coefficient I am trying to show upper- and lower-bounds
on 1

2n

∑n
i=0

(
n
i

)
min(i, n− i) (where n ≥ 1) in order to show that it basically grows as Θ(n). The

upper-bound is easy to get since min(i, n−i) ≤ i for i ∈ {0, . . . n} so that 1
2n

∑n
i=0

(
n
i

)
min(i, n−

i) ≤ 1
2n

∑n
i=0

(
n
i

)
i = n

2
. Thanks to Desmos, I managed to find a lower bound, but I am struggling

to actually prove it. Indeed, I can see that the function f(n) = n−1
3

does provide a lower-bound.
One can in fact rewrite n−1

3
= 1

2n

∑n
i=0

(
n
i

)
2i−1

3
. I was thus hoping to show that for each term we

have 2i−1
3

≤ min(i, n− i), but this is only true if i ≤ 3n+1
5

and not generally for i ≤ n. I imagine
there is a clever trick to use at some point but for some reason, I am stuck here. Any help would be
appreciated, thank you! EDIT: Thank you everyone for all the great and diverse answers! I flagged
River Li’s answer as the ”accepted” one because of its simplicity due to the use of Cauchy-Schwartz
inequality, which does not require a further use of Stirling’s approximation. ...”
LM-Score (Q1): 0.988, LM-Score (Q2): 0.941, LM-Score (Q1, Q2): 0.931

15



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

Example: Finding the minimum number
“# Finding the minimum number of students There are p committees in a class (where p ≥ 5), each
consisting of q members (where q ≥ 6).No two committees are allowed to have more than 1 student
in common. What is the minimum and maximum number of students possible? It is easy to see that
the maximum number of student is pq,however I am not sure how to find the minimum number of
students.Any ideas? 1) pq −

(
q
2

)
2) pq −

(
p
2

)
3) (p − 1)(q − 1) - Something is missing. Is

every student supposed to be on a committee? – JavaMan Aug 31 ’11 at 16:24 @DJC:Not mentioned
in the question,I guess we may have to consider that to get a solution. – Quixotic Aug 31 ’11 at
16:28 @DJC: For the minimum number of students this does not matter. – TMM Aug 31 ’11 at
16:30 @Thijs Laarhoven:Yes you are right but as the problem also asked for maximum number I
have considered it in my solution. – Quixotic Aug 31 ’11 at 16:31 @Thijs, FoolForMath, I guess my
question is, should the minimum answer be in terms of p and q? – JavaMan Aug 31 ’11 at 16:31 For
1 ≤ i ≤ p, let Ci be the set of students on the ith committee. Then by inclusion-exclusion, or more
accurately Boole’s inequalities, we have∑

i

|Ci| −
∑
i<j

|CiCj | ≤ |C1 ∪ C2 ∪ · · · ∪ Cp| ≤
∑
i

|Ci|.

From the constraints of the problem, this means

pq −

(
p

2

)
≤ # students ≤ pq.

- What is j here?and I can’t relate this with your answer. j is also a generic index
that runs from 1 to p. The inequalities are also known as Bonferroni inequalities (planet-
math.org/encyclopedia/BonferroniInequalities.html), and can apply to cardinalities instead of prob-
abilities. – Byron Schmuland Sep 1 ’11 at 14:10 I think the following theorem might be relevant:
Theorem. Let F be a family of subsets of {1, . . . , n} with the property that |A ∩ B| = 1 for all
A,B ∈ F . Then |F| ≤ n. Also this theorem could be relevant as well. - For the case in which
p ≤ q + 1 an arrangement that yields the minimum number of students can be described as follows.
Let P = {⟨m,n⟩ : 1 ≤ m ≤ p, 1 ≤ n ≤ q + 1}, and let S = {⟨m,n⟩ ∈ P : m < n}. If P is
thought of as a p× (q + 1) grid, ...”
LM-Score (Q1): 0.985, LM-Score (Q2): 0.863, LM-Score (Q1, Q2): 0.850

Example: Applied Linear Algebra
“Let w1 = (0, 1, 1). Expand {w1} to a basis of R3. I am reading the book, Applied Linear Algebra
and Matrix Analysis. When I was doing the exercise of Section3.5 Exercise 7, I was puzzled at
some of it. Here is the problem description: Let w1 = (0, 1, 1). Expand {w1} to a basis of R3.
I don’t understand its description well. I think it wants to get a span set like {(0, 1, 1), (1, 0, 0),
(0, 0, 1)} which is a basis of R3. And I check the reference answer, which is as followings: (0, 1, 1),
(1, 0, 0), (0, 1, 0) is one choice among many. I think what I have done is what question wants. So
can anyone tell me am I right or wrong? Thanks sincerely. • I think you are right Apr 16, 2019 at
6:02 There is a kind of ’procedure’ for dealing with questions of this kind, namely to consider the
spanning set {w1, e1, e2, e3}. Consider each vector from left to right. If one of these vectors is in
the span of the previous one/s, then throw it out. If not, keep it. So in this case, we start by keeping
w1. Moving to the next vector, e1 is not in the span of w1, so we keep it as well. Moving to the
next, e2 is not in the span of the previous two vectors so we keep it as well. Now, considering the
vector e3 we see that it is in fact in the span of the previous three vectors, since e3 = w1 − e2. So
we throw out the vector e3 and end up with the basis {w1, e1, e2}. This explains the solution in

the reference answer. Your solution is also correct, however.

1 0 0
0 1 1
0 0 1

 has independent rows.

Hence you have found 3 independent vectors in R3, that is it spans R3 and it forms a basis. You are
correct. (0, 1, 1), (1, 0, 0), (0, 0, 1) is a basis of R3. Any element (a, b, c) in R3 can be expressed
as a(1, 0, 0) + b(0, 1, 1) + (c − b)(0, 0, 1). If your basis is w1, w2, w3, the textbook’s choice is
w1, w2, w1 − w3 ...”
LM-Score (Q1): 0.964, LM-Score (Q2): 0.882, LM-Score (Q1, Q2): 0.850
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Example: Vector equations
“# Vector equations, possible to solve for x? #### Jonsson Hello there, In scalar algebra, I find
solving for variables a useful tool. Say ohms law, I want to find R so:

U = RI ⇐⇒ R =
U

I

Can I do something analogous in vector equations? I.e. May I solve for ω⃗ in equations using cross
or dot products?

v⃗ = ω⃗ × r⃗ ⇐⇒ ω⃗ =?

or:
α⃗ · β⃗ = γ ⇐⇒ β⃗ =?

It would be fantastic if I could solve for vectors in some way. Hope you are able to help. Kind
regards, Marius #### maajdl Gold Member Solving v=wxr makes sense, since this can be seen
as solving 3 equations with 3 unknowns (each components). You can find the solution easily by
”multiplying” both sides by r: rxv = rx(wxr) = w (r.r) - r (w.r). ...”
LM-Score (Q1): 0.950, LM-Score (Q2): 0.842, LM-Score (Q1, Q2): 0.800

Example: Linear programming
“# If then Constraint 2 Hello all: I want to implement the following constraint in my linear programing
model: If A=B then C=1 Else C=0 I have been looking around and there are similar problems but
nobody has been helpful to address the ’non equal to’ condition. Thank you in advance. asked 27
Sep ’14, 17:45 Chicago 33 5 accept rate: 0% 3 As I understand the question, you want c to be binary,
and c = 1 if and only if A = B. I will make a couple of assumptions: There is a (large) positive M
such that |A−B| ≤ M for every feasible (A,B). There is a (small) positive ϵ such that whenever
A ̸= B, we can assume there is a solution satisfying |A−B| ≥ ϵ. Here’s the formulation:

A ≤ B +My − ϵz

B ≤ A+Mz − ϵy

c+ y + z = 1

c, y, z ∈ {0, 1}

Now, if c = 1, then y = z = 0. In this case, the constraints reduce to A ≤ B and B ≤ A, so
A = B. Otherwise, c = 0. Then y + z = 1. There are two cases. ...”
LM-Score (Q1): 0.950, LM-Score (Q2): 0.842, LM-Score (Q1, Q2): 0.800

Example: Distance formula
“The distance formula is a formula that is used to find the distance between two points. These points
can be in any dimension. The x-z plane is vertical and shaded pink . . . If observation i in X or
observation j in Y contains NaN values, the function pdist2 returns NaN for the pairwise distance
between i and j.Therefore, D1(1,1), D1(1,2), and D1(1,3) are NaN values.. Contents. Print the the
distance between two points on the surface of earth: —– Input the latitude of coordinate 1: 25 Input
the longitude of coordinate 1: 35 Input the latitude of coordinate 2: 35.5 Input the longitude of
coordinate 2: 25.5 The distance between those points is: 1480.08 Flowchart: C++ Code Editor:
Contribute your code and comments through Disqus. Interactive Distance Formula applet. Distance
Formula Calculator. Find the square root of that sum:

√
90 = 9.49. In a 3 dimensional plane, the

distance between points (X 1, Y 1, Z 1) and (X 2, Y 2, Z 2) are given. The distance between two
points on the three dimensions of the xyz-plane can be calculated using the distance formula The
distance formula is derived from the Pythagorean theorem. and: Line passing through two points.
Parameters first Iterator pointing to the initial element. Distance between 2 points in 3D space
calculator uses Distance between 2 points=

√
(x2− x1)2 + (y2− y1)2 + (z2− z1)2 to calculate

the Distance between 2 points, ...”
LM-Score (Q1): 0.950, LM-Score (Q2): 0.737, LM-Score (Q1, Q2): 0.700
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Example: Estimate from below of the sine
“# Estimate from below of the sine (and from above of cosine) I’m trying to do the following exercise
with no success. I’m asked to prove that sin(x) ≥ x − x3

2
, ∀x ∈ [0, 1] By using Taylor’s

expansion, it’s basically immediate that one has the better estimate sin(x) ≥ x− x3

6
, ∀x ∈

[0, 1] as the tail converges absolutely, and one can check that the difference of consecutive terms
is positive. I suppose then, there is a more elementary way to get the first one. Question is: how?
Relatedly, the same exercise asks me to prove that cos(x) ≤ 1√

1+x2
, ∀x ∈ [0, 1] which again

I can prove by using differentiation techniques. But these haven’t been explained at that point of
the text, so I wonder how to do it ”elementary”. I showed by comparison of areas that for first
quadrant angles sin θ cos θ ≤ θ ≤ tan θ If one multiplies the left of these inequalities by 2 it
becomes sin 2θ < 2θ so we arrive at sin θ ≤ θ ≤ tan θ Rearrange the right of these inequalities to
sin θ
θ

≥ cos θ or 1− sin θ
θ

≤ 1− cos θ = 2 sin2 θ
2
≤ 2

(
θ
2

)2
= θ2

2
Where we have used the left of

the above inequalities above. This rearranges to sin θ ≥ θ − θ3

2
for first quadrant angles. ...”

LM-Score (Q1): 0.950, LM-Score (Q2): 0.737, LM-Score (Q1, Q2): 0.700

Example: Force on side of pool from water
“Force on side of pool from water Given a pool with dimensions ℓ×w× h , I am trying to derive an
equation that will yield the force by the water on the sides of the pool, namely ℓ× h or w × h .
For the side of the pool with dimensions ℓ× h, I started by using the familiar equation for pressure
F = PA . Plugging in the expression for hydrostatic pressure for P gives F = ρghA = ρgh(ℓ×
h) = ρgℓh2 . Is my reasoning, and corresponding solution correct? Hydrostatic pressure changes
with height. You have just multiplied by area, which means that you have assumed it to be constant.
Instead, you should integrate over the area. You’ll get an extra 1/2 term for the force. – Goobs Sep
15 ’15 at 4:21 As @Goobs says, the pressure force is 0 at the top of the water line and increases to
ρ g y dA on a surface of area dA at depth y. Since this pressure increases linearly from 0 to ρ g y the
average force on the wall is the average of the start and end: so, it is half of this value, and the total

pressure is 1
2
ρgh(hℓ). Would this be correct?

∫
dF =

∫ H

0
ρgA dh = ρgℓ

∫ H

0
h dh =

1

2
ρgH2 –

rgarci0959 Sep 15 ’15 at 4:51 Yes. For bonus points you would write it as
∫
dA ρ g h to start with,

as that’s one of those forces that you ”know” is correct ...”
LM-Score (Q1): 0.987, LM-Score (Q2): 0.662, LM-Score (Q1, Q2): 0.653

Example:
“# In mathematics the monomial basis of a polynomial ring is its basis (as vector space or free
module over the field or ring of coefficients) that consists in the set of all monomials. The monomials
form a basis because every polynomial may be uniquely written as a finite linear combination of
monomials (this is an immediate consequence of the definition of a polynomial). One indeterminate
The polynomial ring K[x] of the univariate polynomial over a field K is a K-vector space, which
has 1, x, x2, x3, . . . as an (infinite) basis. More generally, if K is a ring, K[x] is a free module,
which has the same basis. The polynomials of degree at most d form also a vector space (or a free
module in the case of a ring of coefficients), which has 1, x, x2, . . . as a basis The canonical form of
a polynomial is its expression on this basis: a0 + a1x+ a2x

2 + . . .+ adx
d, or, using the shorter

sigma notation:
∑d

i=0 aix
i. The monomial basis in naturally totally ordered, either by increasing

degrees 1 < x < x2 < · · · , or by decreasing degrees 1 > x > x2 > · · · . Several indeterminates
In the case of several indeterminates x1, . . . , xn, a monomial is a product xd1

1 xd2
2 · · ·xdn

n , where
the di are non-negative integers. Note that, as x0

i = 1, an exponent equal to zero means that the
corresponding indeterminate does not appear in the monomial; in particular 1 = x0

1x
0
2 · · ·x0

n is a
monomial. ...”
LM-Score (Q1): 0.987, LM-Score (Q2): 0.662, LM-Score (Q1, Q2): 0.653
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“ Define a function called isOdd that takes an argument, n ∈ N, and returns a proposition that
asserts that n is odd. The function will thus be a predicate on values of type N. Hint: a number is
odd if it’s one more than an even number.

def isOdd(n : N) : Prop := ∃m : nat, 2 ·m+ 1 = n

To test your predicate, use “example” to write and prove isOdd(15).

example : isOdd 15 :=
begin
unfold isOdd,
apply exists.intro 7,
apply rfl,
end

Define isSmall : N → Prop, to be a predicate that is true exactly when the argument, n, is such
that n = 0 ∨ n = 1 ∨ n = 2 ∨ n = 3 ∨ n = 4 ∨ n = 5. (Don’t try to rewrite this proposition as
an inequality; just use it as is.)

def isSmall(n : N) : Prop := n = 0 ∨ n = 1 ∨ n = 2 ∨ n = 3 ∨ n = 4 ∨ n = 5

...”
[LM-Score (Q1, Q2): 0.963]

“ Define the universes and variables for the context of our category and functor:

universes v u

variables {J : Type v} [small category J ] {C : Type u} [category.{v} C] (F : J → C)

Enter noncomputable theory mode and define the initial object’s colimit cocone:

def is_initial.colimit_cocone {j : J} (hj : is_initial j)
[has_colimit F] [\forall (a b : J) (f : a \rightarrow b),
is_iso (F.map f)] :

cocone F :=
{ X := F.obj j,

\iota :=
{ app := $\lambda$ i, inv (F.map $ hj.to _),
naturality’ := begin
intros a b f,
dsimp,
simp only [is_iso.eq_inv_comp, is_iso.comp_inv_eq,
category.comp_id],
simp_rw ← F.map_comp,
congr’ 1,
apply hj.hom_ext,

end } }

...”
[LM-Score (Q1, Q2): 0.439]

Figure 7: Examples contain Lean4 code. It is difficult for human beings without math expertise to
judge the educational value of these examples for language models on learning mathematics.

A.2 CODE SUBSET
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Example: Lagrange’s Interpolation Method

X = [0, 20, 40, 60, 80, 100]
Y = [26.0, 48.6, 61.6, 71.2, 74.8, 75.2]
n = len(X)-1
# Degree of polynomial = number of points - 1
print("X =", X)
print("Y =", Y, end=’\n\n’)
xp = float(input("Find Y for X = "))
# For degree of polynomial 3, number of points n+1 = 4:
# L[1] = (x-x2)/(x1-x2) * (x-x3)/(x1-x3) * (x-x4)/(x1-x4)
# L[2] = (x-x1)/(x2-x1) * (x-x3)/(x2-x3) * (x-x4)/(x2-x4)
# L[3] = (x-x1)/(x3-x1) * (x-x2)/(x3-x2) * (x-x4)/(x3-x4)
# L[4] = (x-x1)/(x4-x1) * (x-x2)/(x4-x2) * (x-x3)/(x4-x3)
# L[i] *= (x-xj)/(xi-xj) where i, j = 1 to n+1 and j != i
# y += Y[i]*L[i] where i = 1 to n+1
# List index 0 to n
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Method 1: Using for loop ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
yp = 0
# Initial summation value
for i in range(n+1):

L = 1
# Initial product value
for j in range(n+1):

if j == i:
continue

# j == i gives ZeroDivisionError
L *= (xp - X[j]) / (X[i] - X[j]) yp += Y[i]*L

# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Method 2: Using numpy array, prod ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
from numpy import array, prod
X = array(X, float)
Y = array(Y, float)
yp = 0
for Xi, Yi in zip(X, Y):

yp += Yi * prod((xp - X[X != Xi]) / (Xi - X[X != Xi]))

LM-Score (Q1): 0.977, LM-Score (Q2): 0.959, LM-Score (Q1, Q2): 0.937

Example: Scientific Computing Theory

# Question 01, Lab 04
# AB Satyaprakash - 180123062
# imports ----------------------------------------------------------------------------
from sympy.abc import x
from sympy import cos, exp, pi, evalf, simplify
# functions --------------------------------------------------------------------------
def midpointRule(f, a, b):

return ((b-a)*f.subs(x, (b-a)/2)).evalf()

def trapezoidalRule(f, a, b):
return (((b-a)/2)*(f.subs(x, a)+f.subs(x, b))).evalf()

def simpsonRule(f, a, b):
return (((b-a)/6)*(f.subs(x, a)+4*f.subs(x, (a+b)/2)+f.subs(x, b))).evalf()

# program body
# part (a) I = integrate cosx/(1+cosˆ2x) from 0 to pi/2 -- exact value = 0.623225
f = cos(x)/(1 + cos(x)**2)
a, b = 0, pi/2
print(’To integrate {} from {} to {}’.format(simplify(f), a, b))
print(’Evaluated value of integral using Midpoint rule is’, midpointRule(f, a, b))
print(’Evaluated value of integral using Trapezoidal rule is’, trapezoidalRule(f, a, b))
print(’Evaluated value of integral using Simpson rule is’, simpsonRule(f, a, b))
print(’Exact value = 0.623225\n’)

# part (b) I = integrate 1/(5+4cosx) from 0 to pi -- exact value = 1.047198
f = 1/(5 + 4*cos(x))
a, b = 0, pi
print(’To integrate {} from {} to {}’.format(simplify(f), a, b))
print(’Evaluated value of integral using Midpoint rule is’, midpointRule(f, a, b))
print(’Evaluated value of integral using Trapezoidal rule is’, trapezoidalRule(f, a, b))
print(’Evaluated value of integral using Simpson rule is’, simpsonRule(f, a, b))
print(’Exact value = 1.047198\n’)

# part (c) I = integrate exp(-xˆ2) from 0 to 1 -- exact value = 0.746824
f = exp(-x**2)
a, b = 0, 1

LM-Score (Q1): 0.982, LM-Score (Q2): 0.946, LM-Score (Q1, Q2): 0.929
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Example: Fourth Order Runge-Kutta (RK4) Method

from numpy import exp, linspace, empty
f = lambda x: exp(x-2) - 3 # Analytical Solution
dy = lambda x, y: y+3 # Equation to be solved, y’ = y+3
x = 2 # Lower limit, [2
xn = 4 # Upper limit, 4]
y = -2 # Initial condition, y(2) = -2
h = 0.1 # Width of each division, step size
n = int((xn-x)/h) # Number of divisions of the domain
# Plot Arrays
xp = linspace(x, xn, n+1)
# Divides from x to xn into n+1 points
yp = empty(n+1, float)
yp[0] = y
print(’x \t\ty(RK4) \t\ty(Analytical)’)
# Header of Output
print(’%f \t% f \t% f’ % (x, y, f(x)))
# Initial x and y
for i in range(1, n+1):

K1 = h * dy(x,y)
K2 = h * dy(x + h/2, y + K1/2)
K3 = h * dy(x + h/2, y + K2/2)
K4 = h * dy(x + h, y + K3)
y += 1/6*(K1 + 2*K2 + 2*K3 + K4) # y(x+h) = y(x) + 1/6(K1+2K2+2K3+K4)
yp[i] = y
x += h # x for next step,
x = x + h
print(’%f \t% f \t% f’ % (x, y, f(x)))
# ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Plotting the function ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
import matplotlib.pyplot as plt # pyplot.
plt.plot(xp, yp, ’ro’, xp, f(xp)) # Default plot is continuous blue line
plt.xlabel(’x’)
plt.ylabel(’y’)
plt.legend([’RK4’, ’Analytical’])
plt.show()

LM-Score (Q1): 0.982, LM-Score (Q2): 0.945, LM-Score (Q1, Q2): 0.928

Example: Real roots of the quadratic equation

from math import sqrt
from numpy.testing import assert_equal, assert_allclose
def real_quadratic_roots(a, b, c):
"""
Find the real roots of the quadratic equation a xˆ2 + b x + c = 0, if they exist.
Parameters ----------
a : float Coefficient of xˆ2
b : float Coefficient of xˆ1
c : float Coefficient of xˆ0
Returns -------
roots : tuple or float or None The root(s) (two if a genuine quadratic, one if linear, None
otherwise)

Raises ------
NotImplementedError If the equation has trivial a and b coefficients, so isn’t solvable.
"""

discriminant = b**2 - 4.0*a*c
if discriminant < 0.0:

return None
if a == 0:

if b == 0:
raise NotImplementedError("Cannot solve quadratic with both a" " and b

coefficients equal to 0.")
else: return -c / b

x_plus = (-b + sqrt(discriminant)) / (2.0*a)
x_minus = (-b - sqrt(discriminant)) / (2.0*a)
return x_plus, x_minus

def test_no_roots():
"""
Test that the roots of xˆ2 + 1 = 0 are not real.
"""
roots = None
assert_equal(real_quadratic_roots(1, 0, 1), roots, err_msg="Testing xˆ2+1=0; no real roots.")

LM-Score (Q1): 0.977, LM-Score (Q2): 0.950, LM-Score (Q1, Q2): 0.928
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A.3 ARXIV SUBSET

Example: “Convergence directions of the randomized Gauss–Seidel method and its
extension”
“... Linear least squares problem is a ubiquitous problem arising frequently in data analysis and
scientific computing. Specifically, given a data matrix A ∈ Rm×n and a data vector b ∈ Rm, a
linear least squares problem can be written as follows

min
x∈Rn

∥b−Ax∥22. (3)

In the literature, several direct methods have been proposed for solving its normal equations ATAx =
AT b through either the QR factorization or the singular value decomposition (SVD) of ATA
(bjorck1996numerical, Higham2002), which can be prohibitive when the matrix is large–scale.
Hence, iterative methods are considered for solving large linear least squares problem, such as the
famous Gauss–Seidel method (Saad2003). In (Leventhal2010), Leventhal and Lewis proved that the
randomized Gauss–Seidel (RGS) method, also known as the randomized coordinate descent method,
converges to the solution at a linear rate in expectation. This method works on the columns of the
matrix A at random with probability proportional to their norms. Later, Ma, Needell and Ramdas
(Ma2015) provided a unified theory of the RGS method and the randomized Kaczmarz (RK) method
(Strohmer2009), where the latter method works on the rows of A, and showed that the RGS method
converges to the minimum Euclidean norm least squares solution x⋆ of (3) only when the matrix A
is of full column rank. To further develop the RGS method for more general matrix, inspired by the
randomized extended Kaczmarz (REK) method (Completion2013), Ma et al. (Ma2015) presented a
variant of the RGS mehtod, ...”
LM-Score (Q1): 0.991, LM-Score (Q2): 0.818, LM-Score (Q1, Q2): 0.810

Example: “A fixed point theorem for the infinite-dimensional simplex”
“... In finite dimensions, one of the simplest methods for proving the Brouwer fixed point theorem is
via a combinatorial result known as Sperner’s lemma (Sper28), which is a statement about labelled
triangulations of a simplex in Rn. In this paper, we use Sperner’s lemma to prove a fixed point
theorem on an infinite-dimensional simplex in R∞. We also show that this theorem implies the
infinite-dimensional case of Schauder’s fixed point theorem on normed spaces. Since R∞ is locally
convex, our theorem is a consequence of Tychonoff’s fixed point theorem (Smar74). However, some
notable advantages of our approach are: (1) the constructive nature of Sperner’s lemma provides a
method for producing approximate fixed points for functions on the infinite-dimensional simplex,
(2) the proof is based on elementary methods in topology and analysis, and (3) our proof provides
another route to Schauder’s theorem. Fixed point theorems and their constructive proofs have found
many important applications, ranging from proofs of the Inverse Function Theorem (Lang97), to
proofs of the existence of equilibria in economics (Todd76, Yang99), to the existence of solutions of
differential equations (Brow93, Smar74).
Working in R∞ Let R∞ and I∞ =

∏
[0, 1] be the product of countably many copies of R, and

I = [0, 1], respectively. We equip R∞ with the standard product topology, which is metrizable
(BePe75) by the complete metric

d̄(x, y) =

∞∑
i=1

|xi − yi|
2i(1 + |xi − yi|)

.

In Rn, a k-dimensional simplex, or k-simplex, σk is the convex hull of k + 1 affinely independent
points. The standard n-simplex in Rn+1, denoted ∆n, is the convex hull of the n+ 1 standard basis
vectors of Rn. The natural extension of this definition to R∞ is to consider ∆∞, the convex hull of
the standard basis vectors {ei} in R∞, where (ei)j = δij , the Kronecker delta function. ...”
LM-Score (Q1): 0.974, LM-Score (Q2): 0.831, LM-Score (Q1, Q2): 0.810
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Example: On connectedness of power graphs of finite groups
“Study of graphs associated to algebraic structures has a long history. There are various
graphs constructed from groups and semigroups, e.g., Cayley graphs (cayley1878desiderata, bud-
den1985cayley), intersection graphs (MR3323326, zelinka1975intersection), and commuting graphs
(bates2003commuting). Kelarev and Quinn (kelarev2000combinatorial, kelarevDirectedSemigr)
introduced the notion of directed power graph of a semigroup S as the directed graph

−→
G (S) with

vertex set S and there is an arc from a vertex u to another vertex v if v = uα for some natural
number α ∈ N. Followed by this, Chakrabarty et al. (GhoshSensemigroups) defined (undirected)
power graph G(S) of a semigroup S as the (undirected) graph with vertex set S and distinct vertices
u and v are adjacent if v = uα for some α ∈ N or u = vβ for some β ∈ N. Several authors studied
power graphs and proved many interesting results. Some of them even exhibited the properties of
groups from the viewpoint of power graphs. Chakrabarty (GhoshSensemigroups) et al. proved that
the power graph of a finite group is always connected. They also showed that the power graph of a
finite group G is complete if and only if G is a cyclic group of order 1 or pk, for some prime p and
k ∈ N. Cameron and Ghosh observed isomorphism properties of groups based on power graphs. In
(Ghosh), they showed that two finite abelian groups with isomorphic power graphs are isomorphic.
Further, if two finite groups have isomorphic directed power graphs, then they have same numbers of
elements of each order. Cameron (Cameron) proved that if two finite groups have isomorphic power
graphs, then their directed power graphs are also isomorphic. It was shown by Curtin and Pourgholi
that among all finite groups of a given order, the cyclic group of that order has the maximum number
of edges and has the largest clique in its power graph (curtin2014edge,curtin2016euler). It was
observed in (doostabadi2013some) and (MR3266285) that the power graph of a group is perfect.
Perfect graphs are those with the same chromatic number and clique number for each of their induced
subgraphs. Shitov (MR3612206) showed that for any group G, the chromatic number of G(G) is at
most countable. ...”
LM-Score (Q1): 0.985, LM-Score (Q2): 0.803, LM-Score (Q1, Q2): 0.790

Example: Communication-optimal parallel and sequential QR and LU factorizations
“In this section, we review known lower bounds on communication bandwidth for parallel and
sequential Θ(n3) matrix-matrix multiplication of matrices stored in 2-D layouts, extend some of
them to the rectangular case, and then extend them to LU and QR, showing that our sequential and
parallel CAQR algorithms have optimal communication complexity with respect to both bandwidth
(in a Big-Oh sense, and sometimes modulo polylogarithmic factors). We will also use the simple
fact that if B is a lower bound on the number of words that must be communicated to implement
an algorithm, and if W is the size of the local memory (in the parallel case) or fast memory (in the
sequential case), so that W is the largest possible size of a message, then B/W is a lower bound on
the latency, i.e. the number of messages needed to move B words into or out of the memory. We use
this to derive lower bounds on latency, which are also attained by our algorithms (again in a Big-Oh
sense, and sometimes modulo polylogarithmic factors). We begin in section MMlowerbounds by
reviewing known communication complexity bounds for Θ(n3) matrix multiplication, due first to
Hong and Kung (hong1981io) in the sequential case, and later proved more simply and extended to
the parallel case by Irony, Toledo and Tiskin (irony2004communication). It is easy to extend lower
bounds for matrix multiplication to lower bounds for LU decomposition via the following reduction
of matrix multiplication to LU:I 0 −B

A I 0
0 0 I

 =

I
A I
0 0 I

I 0 −B
I A ·B

I

 . (4)

See (grigori2008calu) for an implementation of parallel LU that attains these bounds. See
(toledo1997locality) for an implementation of sequential LU and a proof that it attains the bandwidth
lower bound (whether the latency lower bound is attained is an open problem). It is reasonable to
expect that lower bounds for matrix multiplication will also apply (at least in a Big-Oh sense) to
other one-sided factorizations, such as QR. ...”
LM-Score (Q1): 0.970, LM-Score (Q2): 0.815, LM-Score (Q1, Q2): 0.790
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B MORE ON EXPERIMENTS

B.1 PROMPTS

“<system>
You are ChatGPT, the most capable large language model equipped with extensive expertise
in mathematics and coding, particularly skilled in complex reasoning and problem-solving.
In the following interaction, I will provide you with a text excerpt from the arXiv website.
Your task is to evaluate whether this text contains elements of mathematical intelligence and
if it is suitable for educational purposes for YOURSELF in the field of mathematics. Please
respond with only YES or NO
</system>

User: {
“Title”: “{title}”,
“Abstract”: “{abstract}”,
“Text”: “{text}”

}
1. Does the text contain elements of mathematical intelligence? Reply with only YES or NO
2. Is the text suitable for educational purposes for YOURSELF in the field of mathematics?
Reply with only YES or NO

Assistant: 1. ”

Figure 8: Prompt for selecting the papers from arXiv.org.

“<system>
You are ChatGPT, the most capable large language model equipped with extensive expertise
in mathematics and coding, particularly skilled in complex reasoning and problem-solving.
In the following interaction, I will provide you with a code excerpt from a website. Your
task is to evaluate whether this code contains elements of mathematical intelligence and if
it is suitable for educational purposes for YOURSELF in the field of mathematics. Please
respond with only YES or NO
</system>

User: {
“url”: “{url}”,
“text”: “{text}”

}
1. Does the code contain elements of mathematical intelligence? Reply with only YES or
NO
2. Is the code suitable for educational purposes for YOURSELF in the field of mathematics?
Reply with only YES or NO

Assistant: 1. ”

Figure 9: Prompt for selecting code snippets from GitHub.

B.2 ALTERNATIVE SCORE FUNCTIONS

One can use alternative scoring functions corresponding to different partition functions, such as the
formulas shown below.

LM-Scorealternative(·) = exp(max(logit(‘YES’),logit(‘Yes’)))
exp(max(logit(‘YES’),logit(‘Yes’)))+exp(max(logit(‘NO’),logit(‘No’)))

(5)

Or:
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LM-Scorealternative-II(·) = exp(logit(‘YES’))+exp(logit(‘Yes’))
exp(logit(‘YES’))+exp(logit(‘Yes’))+exp(logit(‘NO’))+exp(logit(‘No’))

(6)
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