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ABSTRACT

Transformer models are widely used in many learning tasks but incur large memory
and compute costs, limiting their deployability. Post-Training Quantization (PTQ)
is a promising solution but can lead to significant performance degradation. Many
PTQ methods estimate weight and activation distributions with calibration data to
account for outliers and maintain quantized performance. We propose a data-free
approach to improve quantization by exploiting parameter space symmetries. We
address outliers and high variability in weights by finding a transformation of
the model weights that minimizes quantization error variance. Our approach is
light-weight, data-free, and can be integrated as a pre-processing step within other
PTQ methods. We evaluate our approach by testing quantized large language
models on several benchmark tasks.

1 INTRODUCTION

Transformer models Vaswani et al. (2023) have found widespread success as generative models for
language modeling and computer vision tasks. Transformers have become increasingly complex
incurring large computational and memory storage costs far beyond other models, limiting their
usability. The highest performing models have hundreds of billions of parameters Radford et al.
(2019); Zhang et al. (2022) requiring immense training time and massive GPU memory. Even
inference on pre-trained models can be prohibitively slow and exceed memory capacity of resource
constrained systems. Effective model compression is essential for addressing these limitations.

Many model compression methods such as model-pruning Zhu et al. (2024) and low-bit quantiza-
tion Chen et al. (2024); Ma et al. (2024) require re-training which is infeasible for models with billions
of parameters. Post-training quantization (PTQ) which compresses models without re-training is a
promising solution but can result in significant performance degradation. Many PTQ methods utilize
calibration data and specialized heuristics to preserve model performance Bondarenko et al. (2021);
Nagel et al. (2020). This requires access to high-quality calibration sets and can incur additional
overhead for inference of the quantized model. Data-free methods for improving quantization perfor-
mance have been proposed for MLPs and CNNs Meller et al. (2019); Nagel et al. (2019) but to our
knowledge there are no similar methods for transformers.

In this paper, we develop a data-free method for improving post-training quantization of transformers
by leveraging the symmetry of attention weights. Instead of designing a new quantization process,
we provide a pre-quantization algorithm which finds equivalent weight configurations which are
less sensitive to quantization. An equivalent weight configuration is a transformation of the weights
which does not change the layer output. Our approach works by finding a linear transformation of
the weights which minimizes the expected quantization error variance. This results in a new set
of weights which when quantized results in lower quantization error during inference. There are
several advantages to this strategy. First, we operate directly on the weights without any forward
passes through the model. Second, our method is a pre-processing step which is compatible with any
quantization algorithm allowing it to be stacked with existing techniques. This allows our method to
be very lightweight, needing only enough memory for each layer’s weights individually, while also
being highly flexible and fast.
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Our contributions include:

• A closed-form approximation of quantization error variance in attention.

• An optimization algorithm for finding optimal weight transformations.

• Empirical evaluation of our method showing its impact on linear quantization.

2 RELATED WORK

Quantization of large language models (LLMs) Quantization reduces the numerical precision
of neural network parameters to decrease model size and accelerate inference. This is essential for
deploying LLMs efficiently across various hardware platforms. Common quantization techniques
include quantization-aware training (QAT) and post-training quantization (PTQ) (Nagel et al., 2021;
Zhu et al., 2024). QAT simulates quantization during training and adjusts model parameters to
minimize quantization-induced error (Jacob et al., 2018; Esser et al., 2019). PTQ methods directly
quantize pre-trained models. PTQ techniques include analytical methods that adjust weight dis-
tributions, such as range equalization and bias correction, enabling accurate quantization without
access to training data (Nagel et al., 2019; Meller et al., 2019). Other PTQ approaches optimize
quantization parameters on small calibration sets (Nagel et al., 2020; Hubara et al., 2021; Li et al.,
2021). Recently, PTQ has become prominent for quantizing transformers and large language models
(Frantar et al., 2022; Yao et al., 2022; Xiao et al., 2023; Dettmers et al., 2022). Our work follows the
post-training quantization paradigm, aiming to further reduce quantization-induced accuracy loss
through optimized parameter symmetry transformations.

Using symmetry in quantization Neural networks often have parameter space symmetries, mean-
ing certain transformations of their parameters leave the network’s loss unchanged. Examples include
the scaling symmetry in networks with ReLU or linear activations (Badrinarayanan et al., 2015), and
permutation symmetry among neurons within a hidden layer (Hecht-Nielsen, 1990). Several works
have explicitly used such weight transformations to reduce quantization error. A common strategy
is to exploit scale invariances to adjust the range of weights or activations before quantization. For
example, Nagel et al. (2019) and Meller et al. (2019) propose equalizing weight ranges across layers
in ReLU-based networks using the scaling symmetry. Xiao et al. (2023) improve speed and reduce
memory during inference for linear operations, defined as computing the product of activations (output
from previous computations) and weights, by applying a loss-invariant scaling on both parts before
quantization. While this transformation is defined jointly on parameters and activations, it can be
expressed as a parameter symmetry when the activation is the output of a linear operation. Similarly,
Kim et al. (2024) scales activation and weights in CNN-transformer hybrid architectures to align
parameter distributions with hardware-friendly quantization constraints, thereby improving inference
efficiency. Our approach extends these ideas by considering the full general linear group, optimizing
over a broader class of symmetry transformations to achieve superior quantization accuracy.

Optimization in transformer model level sets Recent works have also explored optimization over
the loss level sets in transformers for applications other than quantization. This optimization is often
done on symmetry group orbits, leveraging the general linear group symmetry in self-attention layers.
For example, Zhang et al. (2025) improves model fusion by minimizing the distance between two
self-attentions without affecting their loss. Their method first finds an optimal rotation of key and
query matrices, followed by an optimal scaling. Similarly, Wu et al. (2025) accelerates the training
of transformers by searching in the loss level set for points better suited for optimization. We also
optimize over the symmetry group orbits of transformer models, but with the specific goal of finding
transformations that minimize accuracy loss in quantization.

3 BACKGROUND

3.1 TRANSFORMER ATTENTION

A standard transformer layer consists of two main modules: a multi-head attention(MHA) module
and a multi-layer perceptron(MLP). In this work we focus on improving the quantization of the
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attention module. The attention module has four weight matrices Wq,Wk,WV ,WO. For a given
transformer layer with input x ∈ Rn×d the attention scores are computed as:

A = xWqW
T
k xT (1)

A softmax is applied after to normalize the scores and the final layer output is computed:

MHA(x) = softmax
(

A√
d

)
xWV WO (2)

We focus on quantizing Wq,Wk although we believe our results may be generalized to include Wv

and WO.

3.2 QUANTIZATION

At a high-level, quantization works by mapping full-precision floating point values into a smaller set
of low-bit numbers (e.g. 8-bit, 4-bit integers). The low-bit numbers are used during computation and
then the resulting output is reconstructed by de-quantization which uses the inverse map to recover
the approximate floating point value.

Uniform Quantization A common mapping used in quantization is uniform quantization. Uniform
quantization splits the range R of a tensor Y uniformly onto a set of b-bit signed integers. The range
R can be defined for symmetric quantization or asymmetric quantization. For symmetric quantization
R is defined as the maximum absolute value max(|Y |) while asymmetric quantization sets R as
max(Y )− min(Y ). Quantization is defined as:

Quant(Y ) = Clamp
(

Round
(
Y 2b−1

R

)
,−2b−1, 2b−1 − 1

)
(3)

Quantization error is computed between the original tensor Y and the de-quantized reconstruction Ŷ .
Ŷ is obtained by the inverse map DeQuant() = Quant−1(). Since quantization is surjective, there can
be errors in the reconstruction. We write this element-wise quantization error as ∆Y = Ŷ − Y . The
full tensor quantization error is defined as the L2 norm of the per-element error ||∆Y ||22 = |∆Y |2.

Uniform quantization depends heavily on the range R. When R is lower than the actual range of
values in the tensor, extremal values are clamped leading to large and inconsistent quantization error.
Conversely a large range results in a lower resolution mapping leading to higher uncertainty in the
reconstruction for all values. This means quantization error is driven primarily by the extremal
values of Y , so outlier values can dramatically impact quantization. Under uniform quantization, the
quantization error is approximately distributed uniformly Marco & Neuhoff (2005); Lin et al. (2016):

∆Y ∼ Uniform
(
−R

2b
,
R

2b

)
(4)

Neural Network Quantization Neural network quantization consists of two parts. Weight quan-
tization is quantization applied to the model weights. The simplest form of weight quantization is
per-tensor where R is computed for each individual weight tensor which are quantized independently.
Activation quantization is quantization of the layer outputs and is similarly applied per-tensor.

Weight quantization is straightforward since the weights are fixed and R is easily computed directly
from the weights. By contrast, activation quantization requires calibration by estimating R over a
calibration dataset of inputs. The layer outputs depend on layer inputs so the range of values are
not known a priori. If the calibration set does not capture the true range of activations seen during
inference the estimated range R will be too small resulting in high quantization error. This sensitivity
to calibration is especially impactful in settings where the training data is not accessible or when
there is a limited amount of calibration data.

4 DATA-FREE ESTIMATION OF QUANTIZATION NOISE

To improve quantization without data, we compute an analytic expression for the quantization noise,
which gives a data-free objective for minimizing the error under quantization. Intuitively quantization
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noise is an estimate of the variance of quantization error seen during inference. We use this as a
data-free objective for reducing the calibration sensitivity of activation quantization.

This approach is inspired by Meller et al. (2019). Meller et. al. develop a greedy algorithm for
re-scaling weights of CNNs to minimize quantization noise of activations. Our method uses a
similar objective but differs in two ways. Our approach is data-free without requiring estimations for
activation ranges and considers orthogonal transforms of the weights instead of rescaling.

Quantization Error Let Y = WqW
T
k which when quantized and reconstructed gives Ŷ =

ŴqŴk
T

. Rewriting this in terms of the quantization error we get an expression for ∆Y :

Y +∆Y =(Wq +∆Wq)(Wk +∆Wk)
T

∆Y =Wq∆WT
k +∆WqW

T
k +∆Wq∆WT

k (5)
The element-wise quantization errors ∆Wq,∆Wk are both random tensors approximately distributed
as:

∆Wq ∼ Uniform
(
−Rq

2b+1
,
Rq

2b+1

)
(6)

∆Wk ∼ Uniform
(
−Rk

2b+1
,
Rk

2b+1

)
(7)

where Rq, Rk are the ranges of Wq,Wk respectively and b is the quantization bit-width. This means
∆Y is also a random tensor which depends on ∆Wq,∆Wk.

Quantization Noise Objective We define the quantization noise as the average element-wise
variance mean(E(|∆Y |2)) which is the expected magnitude of the full tensor quantization error. Intu-
itively higher quantization noise corresponds to higher uncertainty in the de-quantized reconstruction
Ŷ which is driven by outliers which pose significant challenges to effective quantization. This makes
minimizing quantization noise a promising data-free objective that can lead to fewer outliers and
better quantization.

We now show how to compute the quantization noise, for a full proof see Appendix A. In what
follows ⊙ is element-wise multiplication. Expanding and simplifying E(|∆Y |2) yields a sum over
over 6 term matrices. Equations for each of these terms is included in Appendix 1.
Lemma 4.1.

E(|∆Y |2) = E[|Wq∆WT
k |2 + |∆WqW

T
k |2 (8)

+ |∆Wq∆WT
k |2

+ |Wq∆WT
k | ⊙ |∆WqW

T
k |

+ |Wq∆WT
k | ⊙ |∆Wq∆WT

k |
+ |∆WqW

T
k | ⊙ |∆Wq∆WT

k |]

Since we only need the element-wise mean of this matrix expression, these terms can be further
reduced giving the following proposition.
Proposition 4.2. Let Wq,Wk ∈ Rn×m with elements denoted qij , kij . Let ∆Wq,∆Wk be their quan-
tization error matrices respectively. If ∆Wq ∼ Uniform (−rq, rq) and ∆Wk ∼ Uniform (−rk, rk)
then the mean of the elements in the matrix expression in Equation 8 is:

r2k
n

(∑
i,j q

2
ij

12
+

∑
i,j,t qijqit

4

)
+

r2q
n

(∑
i,j k

2
ij

12
+

∑
i,j,t kijkit

4

)

+
mr2qr

2
k

16

(
m+

7

9

)
+

rqrk
2n2

∑
i,j

qij

∑
i,j

kij


+

rqr
2
k(3m+ 1)

12n

∑
i,j

qij +
r2qrk(3m+ 1)

12n

∑
i,j

kij

where the summands correspond to those in Equation 8.
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5 METHOD

In this section we introduce our algorithm for minimizing quantization noise. Our approach finds
a transformation of Wq,Wk which minimizes the quantization noise without changing the layer
function through gradient descent using the equation in 4.2 as an objective. At a high-level, we
parameterize an orthogonal matrix g for each layer which can be optimized independently or batched
to be feasible on wide variety of hardware. Our approach only modifies the weights of the attention
layers in a transformer without impacting model behavior or specialized quantization heuristics. It is
therefore compatible as a pre-processing step with any downstream quantization algorithm that uses
uniform quantization.

From Equation 1, the attention scores are computed as A = xWqW
T
k xT where Wq,Wk ∈ Rn×m.

An invertible matrix g ∈ Rm×m and its inverse can be inserted between Wq and Wk giving an equal
attention score:

A = xWqgg
−1WT

k xT (9)

Replacing the original weights with W ′
q = Wqg, and W ′

k = Wk(g
−1)T gives a new set of weights

without changing the layer functionally.

Our goal is to find such a transformation g which minimizes the quantization noise for the new
weights. Instead of searching over the group GL(m), all invertible m×m matrices, we restrict g
to be orthogonal. The group O(m) is compact, which assures the existence of a global minimum,
making the optimization problem well posed. This approach compliments weight rescaling which is
a common technique for improving quantization Nagel et al. (2019); Meller et al. (2019); Xiao et al.
(2023) by exploring a different subspace of parameter symmetries. Due to orthogonality the new
weights are W ′

q = Wqg and W ′
k = Wkg. Our objective more concretely is to solve the following

minimization:

g = argming∈O(m)mean(E(∆Y ′2)) (10)

This is solvable by gradient descent using the expression from Proposition 4.2 as a loss function. We
parameterize g by instantiating a square random matrix M and setting g as the orthogonal component
of the QR decomposition QR(M). Since the QR decomposition is differentiable, this makes for a
suitable parameterization. We perform this procedure for each layer of the transformer model and for
each head in multi-headed attention layers which can be batched to improve efficiency.

Our method ensures that the product of queries and keys is maintained resulting in identical attention
scores but the individual weight matrices Wq,Wk are changed to W ′

q,W
′
k. The transformed weights

will have different ranges and therefore have different quantization error from weight quantization.
Similarly the query Q = xWq and key K = xWk values will also be transformed to Q′,K ′. The
transformed values will in general have different quantization errors from activation quantization.
Quantization of the intermediate Q,K tensors is not always performed Yao et al. (2022) in which
case the activation quantization will not be impacted by our transformation beyond the impact to
activations due to weight quantization.

Analyzing Impact of Learned Transformations We begin by comparing the product QKT for
the original weights and the transformed weights. Figure 1a shows that our method indeed produces
identical attention scores at full-precision. This ensures that the output for every layer in the model is
identical and so the overall model behavior is maintained for any input.

Weight quantization however is changed after transformation since the original weight matrix ranges
Rq, Rk are different from the transformed ranges R′

q, R
′
k. Since the quantization error of weight

quantization depends on these ranges, the transformed weights will have different quantization
performance despite the functional equivalency of the full-precision model. We compare the ranges
before and after transformation in figure 1b and find that the learned transformation reduces the
weight ranges for both queries and keys which results in lower quantization error on average.

The query activations Q and key activations K are also changed since our transformation only
maintains functional equivalency of the product QKT . This means our transformation will also
impact activation quantization error. We compare the activation ranges over a set of 100 inputs in
figure 2. We find that our transformed weights generally reduced the ranges for query activations by
15.3% and for key activations by 4.1% averaged over all layers. There are some layers where the
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(a) Average per-element difference of prod-
ucts WqW

T
k and W ′

qW
′T
k for OPT1.3b. The

average per-element change over all layers is
3.8× 10−5 showing that the transformation
g does not change the attention scores.

(b) Relative change in weight ranges for
OPT1.3b. Ranges are reduced on average by
44.4% for Wq and 18.2% for Wk. The re-
duction in weight ranges after transformation
results in lower weight quantization error.

Figure 2: Percentage change in activation ranges for queries Q and keys K from transformed weights
over 100 input sentences. Ranges are reduced on average by 15.3% for Q and 4.1% for K. This
shows that the learned transformation reduces the activation ranges despite being optimized data-free.

range is slightly increased however. This shows that the data-free quantization noise objective is a
promising metric for outlier reduction even for data dependent activations.

6 EXPERIMENTAL EVALUATION

Setups As a proof of concept, we tested our approach by validating the relative performance impact
of quantization with and without our transformation. We compare text classification accuracy for
Bertbase Devlin et al. (2018) fine-tuned for two benchmark GLUE tasks, SST-2 and MNLI. In addition
we compare text generation performance of OPT350m and OPT1.3b by measuring perplexity over
the WikiText-2 dataset. For text generation we evaluate both the fine-tuned performance as well as
zero-shot performance.

Implementation We implement both symmetric per-tensor weight quantization and symmetric
per-tensor activation quantization. In our experiments we test both 4-bit and 8-bit weight quantization.
We also add 8-bit activation quantization for the text generation experiments. These are denoted
WxAy where x is the bits for weight quantization and y is the bits for activation quantization. The
full-precision models use 16-bit floating points so W16 and A16 refer to no quantization for weights
or activations respectively.

Text Classification Results We used Bertbase Devlin et al. (2018) fine-tuned for two benchmark
GLUE tasks, SST-2 and MNLI. The model weights were quantized to 8-bit and 4-bit integers without

6
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Model SST-2 - Acc. MNLI - Acc.
Full-Prec. 92.2% 84.1%
Baseline W8A16 91.9% 84.1%
Transformed W8A16 91.9% 84.1%
Stand. 4-bit 91.7% 84.0%
Transformed W4A16 91.9% 84.1%

Table 1: MNLI and SST-2 quantization performance results. Baseline W8A16 and W4A16 were
quantized without weight transformation. Transformed W8A16 and W4A16 applied weight transfor-
mation before quantization.

any activation quantization. The transformation optimization was run for 5,000 iterations for both
tasks. The results are summarized in Table 1. W8A16 and W4A16 weight quantization did not
degrade performance nearly at all for either task suggesting the prediction accuracy is not very
sensitive to weight quantization. We see a marginal improvement in quantization performance using
the transformed weights but the generally low impact of weight quantization suggests a more sensitive
metric and task are needed to evaluate our approach.

Text Generation Results We compared quantization performance of OPT350m and OPT1.3b over
the WikiText-2 dataset. Perplexity is much more sensitive to quantization which is confirmed in the
results of other quantization research Xiao et al. (2023). We use a calibration set of 10 randomly
selected sentences from the training set for activation quantization.

Fine-tuned Perplexity
Model Full-Prec. W8A8 W4A8

OPT-350m 17.9 355.3 3853.4
Transf. OPT-350m 17.9 254.0 3235.7

OPT-1.3b 12.3 4284.8 9097.0
Transf. OPT-1.3b 12.3 4193.2 8844.8

Zero-Shot Perplexity
Full-Prec. W8A8 W4A8

23.6 472.8 5378.1
23.6 446.4 5217.9
15.3 7804.9 10392.9
15.3 7116.6 10242.5

Table 2: Fine-tuned and zero-shot text generation perplexity results evaluated over WikiText-2.
The transformed weights improve the performance for quantized models over the standard uniform
symmetric quantization baseline. The performance is identical for full-precision models due to the
functional equivalency of the transformed weights.

Table 2 shows the fine-tuned performance of the models. We find that the transformed model
substantially improves quantization performance for both models. This improvement is relatively
stronger for W8A8 quantization than W4A8 quantization where the relative impact is reduced.

Table 2 shows the zero-shot performance of the models which mirrors the previous fine-tuned
performance. The baseline performance is lower than the fine-tuned models with much lower
quantized performance. This suggests the zero-shot performance is more sensitive to quantization
error. The transformation again improves quantization performance but with a lower impact than the
fine-tuned models.

These results show that our method can consistently reduce quantization error. The lower relative
impact for high quantization error may be caused by the propagation of large quantization errors
in early layers which reduce the impact of the weight transformations for later layers. The weight
transformations for later layers are computed on the full-precision weights which does not account
for the accumulation of quantization errors from earlier layers resulting in a larger difference between
the inputs to full-precision and quantized layers.

7 CONCLUSION AND FUTURE WORK

In this paper we explored using parameter symmetries to improve quantization. We derived an
estimate for quantization noise in query and key attention. Our approach for minimizing quantization
noise is a highly efficient pre-processing step which is compatible with other downstream quantization
approaches and consistently reduces weight ranges and on average reduces query and key activation
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ranges. In quantization sensitive tasks such as text generation, the learned weight transformations
improve quantization performance however the impact is limited for high quantization error where
the quantized values differ significantly from the full-precision values we optimize over.

In the future we plan to generalize our quantization noise estimation to per-group and per-channel
quantization which may provide a more fine-grained estimate and more effective weight transforma-
tions. Removing the orthogonal transformation restriction is another future direction which contains
both our current orthogonal parameter symmetry as well as the common weight rescaling symmetry.
Exploring the parameter symmetries of the value and output weight matrices may also lead to more
consistent and larger improvements to quantization.

Finally, the quantization noise estimate may be a useful metric for quantization aware training (QAT).
Our approach for minimizing quantization noise can be used to transform weights during training
similarly to teleportation Wu et al. (2025).
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A QUANTIZATION NOISE ESTIMATION PROOF

In this section we provide a proof of the equations found in proposition 4.2. In the following
proofs, Qi,Ki denote the m-dimensional i-th row vectors of Wq,Wk and δQi, δKi are the rows of
∆Wq,∆Wk.

1st Term: |Wq∆WT
k |2 We begin by first considering the matrix E[|Wq∆WT

k |2]. The value
E[|Wq∆WT

k |2ij ] at index i, j is computed as follows:

E[|Wq∆WT
k |2ij ] = E[|Qi(δKj)T |2]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

Qi
vδK

j
v |]

Expanding this product, the expectation can be distributed through the sum. In this expanded product
there are 2 cases, when u = v and u ̸= v.

When u = v, this gives E[|Qi
uδK

j
u|2] = (Qi

u)
2 r2k

3 since |δKj
u| ∼ Uniform(0, rk). Since u, v go

from 1 to m, this will give us r2k
3

m∑
u=1

(Qi
u)

2 in the sum.

When u ̸= v, the value is E[|Qi
uδK

j
u|]E[|Qi

vδK
j
v |] since δKj

u and δKj
v are independent random

values so their expectations are multiplied. This gives r2k
4

∑
u̸=v

Qi
uQ

i
v .

Putting both cases together we get the final value for index i, j of

E[|Wq∆WT
k |2ij ] =

r2k
3

n∑
u=1

(Qi
u)

2 +
r2k
4

∑
u̸=v

Qi
uQ

i
v

=
r2k
3

n∑
u=1

(Qi
u)

2 +
r2k
4

∑
u,v

Qi
uQ

i
v −

r2k
4

n∑
u=1

(Qi
u)

2

=
r2k
12

n∑
u=1

(Qi
u)

2 + r2k
∑
u

Qi
u

∑
v

Qi
v

Note that this final value does not depend on j meaning all of the values in row i will have this value
giving us a total of n copies.

We now take the average over the n2 values in E[|Wq∆WT
k |2ij ] which gives us the desired form:

mean(E[|Wq∆WT
k |2]) = r2k

n
(

∑
i,j

q2ij

12
+

∑
i

(
∑
j,t

qijqit)

4
)

2nd Term: |∆WqW
T
k |2 Following the same reasoning as the previous term, the value

E[(∆WqW
T
k )2ij ] is:

E[|∆WqW
T
k |2ij ] = E[|δQi(Kj)T |2]

= E[|
∑
u

δQi
uδK

j
u| · |

∑
v

δQi
vK

j
v |]

The exact same simplifications as before occur but since δQi is the random vector, we instead will
get a formula which does not depend on i:

E[|Wq∆WT
k |2ij ] =

r2q
12

n∑
u=1

(Kj
u)

2 +
r2q
4

∑
u

Kj
u

∑
v

Kj
v

Taking the average over the n2 values gives the final form:

mean(E[|∆WqW
T
k |2]) =

r2q
n
(

∑
i,j

k2ij

12
+

∑
i

(
∑
j,t

kijqit)

4
)
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3rd Term: |∆Wq∆WT
k |2 This case is much easier since the values of ∆Wq,∆WT

k are i.i.d. and
so every value of the matrix E[|∆Wq∆WT

k |2] are equal. A single value of this matrix is computed:

E[|∆Wq∆WT
k |2ij ] = |

∑
u

δQi
uδK

j
u| · |

∑
v

δQi
vδK

j
v |

In the first case u = v, the result is E[|δQi
uδK

j
u|2] =

r2qr
2
k

9 . This will happen m times since u, v go
from 1 to m.

The second case u ̸= v gives E[|δQi
uδK

j
u| · |δQi

vδK
j
v |] =

r2qr
2
k

16 . This happens for when u ̸= v so we
will have this m(m− 1) times in the sum.

Putting these two together we get a simplified per element value of:

E[|∆Wq∆WT
k |2ij ] = m

r2qr
2
k

9
+ (m2 −m)

r2qr
2
k

16

=
mr2qr

2
k

16
(m+

7

9
)

The average value is exactly equal to the per element value since every element is equivalent under
expectation.

4th Term: |Wq∆WT
k | ⊙ |∆WqW

T
k | Once again begin with the i, j entry of the matrix:

E[|Wq∆WT
k | ⊙ |∆WqW

T
k |ij ] = E[|Qi(δKj)T | · |δQi(Kj)T |]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

δQi
vK

j
v |]

= (m
rk
2

∑
u

Qi
u)(m

rq
2

∑
v

Kj
v)

Averaging over all i, j elements gives the final form:

mean(E[|Wq∆WT
k | ⊙ |∆WqW

T
k |]) = rqrk

2n2
(
∑
i,j

qij)(
∑
i,j

kij)

5th Term: |Wq∆Wk ⊙∆Wq∆Wk|
E[|Wq∆WT

k | ⊙ |∆Wq∆WT
k |ij ] = E[|Qi(δKj)T | · |δQi(δKj)T |]

= E[|
∑
u

Qi
uδK

j
u| · |

∑
v

δQi
vδK

j
v |]

Once again there are 2 cases when u = v and when u ̸= v. In the first case
E[(Qi

uδK
j
u)(δQ

i
uδK

j
u)] =

rq
2

r2k
3 Qi

u. In the second case the random values are all independent

so the result is: E[(Qi
uδK

j
u)(δQ

i
uδK

j
v)] =

rq
2

r2k
4 Qi

u.

Adding this up and simplifying gives the value for element i, j:

E[|Wq∆WT
k | ⊙ |∆Wq∆WT

k |ij ] = m
rqr

2
k

6

∑
u

Qi
u + (m2 −m)

rqr
2
k

8

∑
u

Qi
u

Averaging over all i, j elements gives:

mean(E[|Wq∆WT
k | ⊙ |∆Wq∆WT

k |] = rqr
2
k(3m+ 1)

12n

∑
i,j

qij

6th Term: |∆WqW
T
k | ⊙ |∆Wq∆WT

k | This term follows the same reasoning as above. Starting
with entry i, j:

E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |ij ] = E[|δQi(Kj)T | · |δQi(δKj)T |]

= E[|
∑
u

δQi
uK

j
u| · |

∑
v

δQi
vδK

j
v |]
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In the case where u = v we get E[(δQi
uK

j
u)(δQ

i
uδK

j
u)] =

r2q
3

rk
2 Kj

u. Similarly for u ̸= v gives

E[(δQi
uK

j
u)(δQ

i
uδK

j
v)] =

r2q
4

rk
2 Kj

u.

Adding both cases up and simplifying gives:

E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |ij ] = m
r2qrk

6

∑
u

Kj
u + (m2 −m)

r2qrk

8

∑
u

Kj
u

Averaging over all i, j elements gives the final equation:

mean(E[|∆WqW
T
k | ⊙ |∆Wq∆WT

k |] =
r2qrk(3m+ 1)

12n

∑
i,j

kij
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