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Abstract—Modern deep neural network (DNN) trainings utilize
various training techniques, e.g., nonlinear activation functions,
batch normalization, skip-connections, etc. Despite their effec-
tiveness, it is still mysterious how they help accelerate DNN
trainings in practice. In this paper, we provide an empirical
study of the regularization effect of these training techniques
on DNN optimization. Specifically, we find that the optimization
trajectories of successful DNN trainings consistently obey a
certain regularity principle that regularizes the model update
direction to be aligned with the trajectory direction. Theoretically,
we show that such a regularity principle leads to a convergence
guarantee in nonconvex optimization and the convergence rate
depends on a regularization parameter. Empirically, we find
that DNN trainings that apply the training techniques achieve
a fast convergence and obey the regularity principle with a
large regularization parameter, implying that the model updates
are well aligned with the trajectory. On the other hand, DNN
trainings without the training techniques have slow convergence
and obey the regularity principle with a small regularization
parameter, implying that the model updates are not well aligned
with the trajectory.

Index Terms—Neural network, training techniques, nonconvex
optimization, optimization trajectories, regularity principle

I. INTRODUCTION

Deep learning has been successfully applied to various
domains such as computer vision, natural language processing,
etc, and has achieved state-of-art performance in solving
challenging tasks. Although deep neural networks (DNNs)
have been well-known for decades to have great expressive
power [5], the empirical success of training DNNs postponed
to recent years when sufficient computation power is accessible
and effective DNN training techniques are developed.

The milestone developments of DNN training techniques
can be roughly divided into two categories. First, various
techniques have been developed at different levels of neural
network design. Specifically, at the neuron level, various
functions have been applied to activate the neurons, e.g.,
sigmoid function, hyperbolic tangent (tanh) function and the
more popular rectified linear unit (ReLU) function [19]. At
the layer level, batch normalization (BN) has been widely
applied to the hidden layers of DNNs to stabilize the training
[13]. Moreover, at the architecture level, skip-connections have
been introduced to enable successful training of deep networks
[11], [12], [28], [29]. Second, various efficient stochastic
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optimization algorithms have been developed for DNN training,
e.g., stochastic gradient descent (SGD) [24], [26], SGD with
momentum [20], [22] and Adam [14], etc. Table I provides a
summary of these important DNN training techniques.

TABLE I
SUMMARY OF DNN TRAINING TECHNIQUES

Neuron
activation

Layer
normalization

Network
architecture

Optimization
algorithm

sigmoid,
tanh,
ReLU

Batch
normalization

Skip-
connection

SGD,
SGD-

momemtum,
Adam

Although these training techniques have been widely applied
in practical DNN training, there is limited understanding
of how they help facilitate the training to achieve a global
minimum of the network. In the existing literature, it is known
that the sigmoid and tanh activation functions can cause the
vanishing gradient problem, and the ReLU activation function
is a popular replacement that avoids this issue [9], [19]. On the
other hand, the batch normalization was originally proposed
to reduce the internal covariance shift [13], and more recent
studies show that it allows to use a large learning rate [2] and
improves the loss landscape [27]. The skip-connection has been
shown to help eliminate singularities and degeneracies [21]
and improve the loss landscape [10]. Moreover, regarding the
optimization algorithm, the momentum scheme has been well-
known to accelerate convex optimization [20] and is also widely
applied to accelerate nonconvex optimization [8], whereas the
Adam algorithm normalizes the update in each dimension to
accelerate deep learning optimization [14]. While these existing
studies provide partial explanations to the effectiveness of DNN
training techniques, their reasonings are from very different
perspectives and are lack of a principled understanding. In
particular, these studies do not fully explain why these diverse
types of DNN training techniques can facilitate the training in
practice.

In this paper, we take a step toward understanding DNN
training techniques by providing a systematic empirical study
of their regularization effect in the perspective of optimization.
We empirically show that the training techniques regularize the
optimization trajectory in practical DNN training following a
regularity principle, which quantifies the regularization effect



that further determines the convergence rate in nonconvex
optimization.

A. Related Work

DNN training techniques: Various training techniques have
been developed for DNN training. Examples include piece-
wise linear activation functions, e.g., ReLU [19], ELU [4],
leaky ReLU [18], batch normalization [13], skip-connection
[11], [28], [29] and advanced optimizers such as SGD with
momentum [22], Adagrad [7], Adam [14], AMSgrad [23].
The ReLU activation function and skip connection have been
shown to help avoid the vanishing gradient problem and
improve the loss landscape [10], [31], [33], [36]. The batch
normalization has been shown to help avoid the internal
covariance shift problem [13]. More recent studies show that
batch normalization allows to adopt a large learning rate [2]
and improves the loss landscape in the training [27]. The
convergence properties of the advanced optimizers have been
studied in nonconvex optimization [3].

Optimization properties of nonconvex ML: Many noncon-
vex ML models have amenable properties for accelerating the
optimization. For example, nonconvex problems such as phase
retrieval [30], low-rank matrix recovery, blind deconvolution
[16] and neural network sensing [32] satisfy the local regularity
geometry around the global minimum [16], [32], [33], [35],
which guarantees the linear convergence of gradient-based
algorithms. Recently, DNN trainings that use SGD have been
shown to follow a star-convex optimization path [34]. Moreover,
there are many works that study the convergence of gradient
methods in training neural networks, e.g., [1], [6], [17]

II. REGULARITY PRINCIPLE FOR NONCONVEX
OPTIMIZATION

We first introduce a regularity principle that regularizes the
optimization trajectory of stochastic algorithms.

A. Optimization Trajectory of Stochastic Algorithm

The goal of a machine learning task is to search for a good
ML model θ that minimizes the total loss f on a set of training
data samples Z : {zi}ni=1. The problem is formally written as

min
θ∈Rd

f(θ;Z) := 1

n

n∑
i=1

`(θ; zi), (P)

where `(·; zi) : Rd → R corresponds to the loss on the i-th
data sample zi. Consider a generic stochastic algorithm (SA)
that is initialized with certain model θ0. In each iteration k,
the SA samples a data sample zξk ∈ Z , where ξk ∈ {1, ..., n}
is obtained via random sampling with reshuffle. Based on the
current model θk and the sampled data zξk , the SA generates a
stochastic update U(θk; zξk) and applies it to update the model
with a learning rate η > 0 according to the update rule

(SA) : θk+1 = θk − ηU(θk; zξk), k = 0, 1, 2, ... (1)

Equation (1) covers the update rule of many existing optimizers
for DNN training. For example, the stochastic gradient descent
(SGD) algorithm chooses the update U(θk; zξk) to be the

stochastic gradient ∇`(θk; zξk). In comparison, the SGD with
momentum algorithm generates the update using an extra
momentum step, and the Adam algorithm generates the update
as a moving average of the stochastic gradients normalized
by the moving average of their second moments. We formally
define the optimization trajectory of SA as follows.

Definition 1 (Optimization trajectory). The optimization tra-
jectory of SA is the generated sequence of model parameters
{θk}k in the stochastic optimization process.

We note that the stochastic optimization trajectory generally
depends on the specific update rule U , which is affected
by the training techniques. For example, neuron activation
functions, batch normalization and skip-connections affect the
back-propagation process in the computation of the model
update U . On the other hand, optimization algorithms such as
SGD with momentum and Adam specify the model update U
in different forms. Therefore, we are motivated to understand
how the training techniques affect the optimization trajectory.

B. Regularity Principle for Optimization Trajectory

We next propose a regularity principle for the optimization
trajectory generated by SA.

Definition 2 (Regularity principle for SA). Apply SA to solve
the problem (P) for T iterations and generate an optimization
trajectory {θ0, θ1, ..., θT }. We say that the trajectory satisfies
the regularity principle with parameter γ > 0 if for all k =
0, 1, ...T − 1,

〈θk − θT , U(θk; zξk)〉 ≥
η

2
‖U(θk; zξk)‖2

+ γ
(
`(θk; zξk)− inf

θ∈Rd
`(θ)

)
. (2)

To elaborate, the left hand side of (2) measures the coher-
ence between θk − θT and the corresponding model update
U(θk; zξk). Intuitively, a positive coherence implies that the
model update is well aligned with the corresponding trajectory
direction θk − θT . On the other hand, the right hand side
of (2) regularizes the coherence by two non-negative terms.
Hence, a larger value of γ implies that the update U(θk; zξk)
is more coherent with the trajectory direction θk − θT . Fig. 1
illustrates two optimization trajectories that satisfy the regularity
principle with large and small γ, respectively. Intuitively, the
left trajectory is close to a straight line where the update
direction −U(θk; zξk) is well aligned with the trajectory
direction θk − θT , implying a large γ. As a comparison, the
right trajectory is curved and the update direction −U(θk; zξk)
diverges from the trajectory direction θk − θT , implying a
small γ. Therefore, the left trajectory is well regularized by the
regularity principle and the trajectory length is much shorter
than the curved trajectory, implying a faster convergence.

Next, we analyze the convergence of SA under the regularity
principle in over-parameterized nonconvex optimization. In
specific, we assume the model θ is over-parameterized so
that the global minimum of the total loss f(θ;Z) interpolates
all the sample losses {`(θ; zi)}ni=1, i.e., infθ∈Rd f(θ) =
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Fig. 1. Illustration of optimization trajectories. The left trajectory
satisfies regularity principle with large γ and the right trajectory
satisfies regularity principle with small γ.

1
n

∑n
i=1 infθ∈Rd `(θ; zi). Such a scenario is common in deep

learning where neural networks typically have more parameters
than samples and the training can overfit all the data samples.

Theorem 1 (Convergence under Regularity Principle). Apply
SA to solve the over-parameterized problem (P) and generate
an optimization trajectory {θ0, θ1, ..., θT }. If the optimization
trajectory satisfies the regularity principle with parameter γ >
0, then after T = nB,B ∈ N iterations (i.e., B epochs), the
average loss converges to the global minimum at the rate

1

T

T−1∑
k=0

`(θk; zξk)− inf
θ∈Rd

f(θ;Z) ≤ 1

2ηT

‖θ0 − θT ‖2

γ
. (3)

In Theorem 1, the convergence rate involves the factor γ−1.
Intuitively, if the optimization trajectory is well-regularized by
the regularity principle with a large γ, then the trajectory is
close to a straight line and the loss achieves a fast convergence
to the global minimum. Based on the convergence rate in
(3), we can quantify the regularization effect of the regularity
principle on the optimization trajectory by evaluating the
problem-dependent constant factor ‖θ0 − θT ‖2γ−1. In the
subsequent sections, we empirically compute such a factor
to explore the regularization effect of training techniques in
deep learning optimization.

III. EXPERIMENTS ON NETWORK-LEVEL TRAINING
TECHNIQUES

In this section, we examine the validity of the regularity
principle in training DNNs with different neural network-level
training techniques. We outline the exploration plan below.

Exploration plan: We train the network for a sufficient
number of epochs to achieve an approximate global minimum.
We store the optimization trajectory {θk}k, loss {`(θk; zξk)}k
and update {U(θk; zξk)}k that are generated in each training.
Then, we compute the upper bound for γ in each iteration
according to (2), where θT corresponds to the network
parameters produced in the last training iteration. We report
the convergence rate factor γ/‖θ0 − θT ‖2 in (3).

A. Effect of Neuron Activation Function on Regularity Principle

Experiment setup: We train a ResNet-18 [11] with different
choices of activation functions for all the nonlinear neurons.
The activation functions that we explore include sigmoid, tanh,
ReLU and leaky ReLU (with slope 10−2). We apply the
standard SGD optimizer with a fixed initialization point, a

mini-batch size 128 and a constant learning rate η = 0.05 to
train these networks for 150 epochs on the CIFAR-10 and
CIFAR-100 datasets [15] and use the cross-entropy loss.

Fig. 2 presents the ResNet training results of the training loss
and the factor γ/‖θ0−θT ‖2 involved in the convergence result
(3). It can be seen that all the trainings that adopt different
activation functions obey the regularity principle with γ > 0
in the training process. In particular, observe that the trainings
with ReLU types of activation functions converge faster than
those with tanh activation function, which is further faster
than the trainings with sigmoid activation function. Moreover,
one can see that the trainings with ReLU types of activation
functions satisfy the regularity principle with the largest γ,
whereas the trainings with sigmoid activation function have the
smallest γ. These observations are consistent with Theorem 1,
where a well-regularized optimization trajectory with a larger
γ implies faster convergence.
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Fig. 2. Training ResNet-18 with different activation functions.
Experiment setup: Next, we train a U-Net [25] with

different choices of activation functions on the CIFAR-10
and CIFAR-100 datasets. The activation functions that we
explore include sigmoid, tanh, ReLU and leaky ReLU (with
slope 10−2). We apply the standard SGD optimizer with a
fixed initialization point, a mini-batch size 128 and a constant
learning rate η = 0.005 to train these networks for 150 epochs,
and we use the MSE loss.

Fig. 3 shows the training loss curves and their corresponding
γ/‖θ0 − θT ‖2 of the regularity principle. In these U-Net
trainings, it can be seen that the trainings with the sigmoid
activation function converge faster than those with the ReLU
types of activation functions, and the trainings with the tanh
activation function converge the slowest. Furthermore, one
can observe that the training trajectories with the sigmoid
activation function obey the regularity principle with the largest
γ, whereas the training trajectories with the tanh activation
function satisfy the regularity principle with the smallest γ.
This is consistent with Theorem 1.
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Fig. 3. Training U-Net with different activation functions.

B. Effect of Batch Normalization on Regularity Principle

Experiment setup: We train a VGG-16 network with the
settings: 1) keep all the BN layers; 2) keep the first BN layer
in each block; and 3) remove all the BN layers. We remove
all dropout layers in the VGG networks. We apply SGD with
a fixed initialization, a constant learning rate (η = 0.01) and
batch size 128 to train on the CIFAR-10 and CIFAR-100
datasets, respectively, and we use the cross-entropy loss.

Fig. 4 shows the VGG training results on the CIFAR-10/100
datasets. It can be seen that the trainings with all BN layers
removed suffer from a significant convergence slow down, and
the corresponding optimization trajectories obey the regularity
principle with a very small γ. On the other hand, the trainings
that keep the first BN layer in each block converge as fast
as those that keep all the BN layers, and their optimization
trajectories obey the regularity principle with a large γ. These
empirical observations corroborate the theoretical implication
of the regularity principle in Theorem 1.

C. Effect of Skip-connection on Regularity Principle

Experiment setup: We train the ResNet-34 with the settings:
1) keep all the skip-connections; and 2) keep the first skip-
connection in each block; and 3) keep the first two skip-
connections in each block. We apply SGD with a fixed
initialization point, a constant learning rate η = 0.05 and
batch size 128 to train for 150 epochs on the CIFAR-10 and
CIFAR-100 datasets and use the cross-entropy loss.

Fig. 5 shows the ResNet-34 training results. One can see
that the trainings that keep more skip-connections achieve
a faster convergence, and the corresponding optimization
trajectories obey the regularity principle with a larger γ. These
observations are consistent with our theoretical understanding
of the regularity principle and they imply that skip-connection
helps to regularize the optimization trajectory.

Experiment setup: We also train a U-Net on the CIFAR-10
and CIFAR-100 datasets and consider the settings: 1) keep all
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Fig. 4. Training VGG with(out) batch normalization on CIFAR-10/100.
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Fig. 5. Training ResNet-34 with and without skip-connections.

the skip-connections; 2) keep the last 3,2,1 skip-connections,
respectively and 3) remove all the skip-connections. We apply
the standard SGD optimizer with a fixed initialization point,
a mini-batch size 128 and a constant learning rate η = 0.005
to train these networks for 150 epochs, and we use the MSE
loss. The training results are shown in Fig. 6, where one can
make similar observations as those above.

IV. EXPERIMENTS ON OPTIMIZATION-LEVEL TRAINING
TECHNIQUES

Experiment setup: We train the ResNet-18 using SGD,
SGD with momentum and Adam, respectively. We apply a
fixed initialization point, a constant learning rate η = 0.001 and
batch size 128 to all the optimizers and train these networks
on the CIFAR-10 and CIFAR-100 datasets and use the cross-
entropy loss. We set the momentum to be 0.5 for the SGD
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Fig. 6. Training U-Net with and without skip-connections.

with momentum and set β1 = 0.9, β2 = 0.999, ε = 10−2 for
the Adam.

Fig. 7 presents the ResNet training results on the CIFAR-
10 and CIFAR-100 datasets. In all these trainings, the Adam
algorithm achieves the fastest convergence and is followed by
the SGD with momentum, whereas the vanilla SGD achieves
the slowest convergence. Furthermore, it can be seen that the
optimization trajectories driven by Adam obey the regularity
principle with the largest γ, and the trajectories driven by
SGD types of algorithms is less regularized by the regularity
principle. All these observations corroborate the theoretical
implication of the regularity principle.
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Fig. 7. Training ResNet with different optimizers on CIFAR-10/100.

Experiment setup: Next, we train a U-Net on the CIFAR-10
and CIFAR-100 datasets using SGD, SGD with momentum and
Adam, respectively, and use the MSE loss. We apply a fixed
initialization, a constant learning rate η = 0.001 and a mini-

batch size 128 to all the optimizers. We set the momentum to be
0.5 for SGD with momentum and β1 = 0.9, β2 = 0.999, ε =
10−2 for the Adam.
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Fig. 8. Training U-Net with different optimizers.

Fig. 8 shows the training results, where one can make the
same conclusions.

V. CONCLUSIONS

In this paper, we propose a regularity principle for general
stochastic algorithms. The regularity principle guarantees a sub-
linear convergence rate that scales inverse proportionally to γ.
Through extensive DNN training experiments, we show that
practical DNN training trajectories obey the regularity principle
reasonably well, and the regularization parameter γ provides a
metric that quantifies the effect of different training techniques
on DNN optimization. In the future work, we expect that such
an optimization-level regularity principle can be exploited to
develop improved training techniques for deep learning.
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APPENDIX A
PROOF OF THEOREM 1

Note that the SA update rule implies that

‖θk+1 − θT ‖2 = ‖θk − ηU(θk; zξk)− θT ‖2

= ‖θk − θT ‖2 + η2‖U(θk; zξk)‖2

− 2η〈θk − θT , U(θk; zξk)〉
≤ ‖θk − θT ‖2 + η2‖U(θk; zξk)‖2

− η2‖U(θk; zξk)‖2

− 2ηγ
(
`(θk; zξk)− inf

θ
`(θ; zξk)

)
, (4)

where the last inequality follows from the regularity principle
in Definition 2. Note that the SA algorithm adopts the random
sampling with reshuffle scheme. Summing (4) over the B-th
epoch (i.e., k = nB, nB + 1, ..., n(B + 1)− 1) gives that

‖θn(B+1)−θT ‖2 ≤ ‖θnB − θT ‖2

− 2ηγ

n(B+1)−1∑
k=nB

(
`(θk; zξk)− inf

θ
`(θ; zξk)

)
.

Further telescoping over the epoch index, we obtain that for
all B

‖θnB−θT ‖2 ≤ ‖θ0 − θT ‖2

− 2ηγ

B−1∑
P=0

n(P+1)−1∑
k=nP

(
`(θk; zξk)− inf

θ
`(θ; zξk)

)
.

(5)

Therefore, for all T = nB, the above inequality further implies
that

0 ≤ ‖θ0 − θT ‖2 − 2ηγ

T−1∑
k=0

(
`(θk; zξk)− inf

θ
`(θ; zξk)

)
= ‖θ0 − θT ‖2 − 2ηγ

( T−1∑
k=0

`(θk; zξk)− T inf
θ
f(θ;Z)

)
,

(6)

where the last equality follows from the over-parameterization
of the model. Rearranging the above inequality yields that

1

T

T−1∑
k=0

`(θk; zξk)− inf
θ
f(θ;Z) ≤ ‖θ0 − θT ‖

2

2ηγT
.


