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ABSTRACT

We introduce contextual queueing bandits, a new context-aware framework for
scheduling while simultaneously learning unknown service rates. Individual jobs
carry heterogeneous contextual features, based on which the agent chooses a job
and matches it with a server to maximize the departure rate. The service/departure
rate is governed by a logistic model of the contextual feature with an unknown
server-specific parameter. To evaluate the performance of a policy, we consider
queue length regret, defined as the difference in queue length between the pol-
icy and the optimal policy. The main challenge in the analysis is that the lists of
remaining job features in the queue may differ under our policy versus the opti-
mal policy for a given time step, since they may process jobs in different orders.
To address this, we propose the idea of policy-switching queues equipped with a
sophisticated coupling argument. This leads to a novel queue length regret decom-
position framework, allowing us to understand the short-term effect of choosing
a suboptimal job-server pair and its long-term effect on queue state differences.
We show that our algorithm, CQB-ε, achieves a regret upper bound of Õ(T−1/4).
We also consider the setting of adversarially chosen contexts, for which our sec-
ond algorithm, CQB-Opt, achieves a regret upper bound ofO(log2 T ). Lastly, we
provide experimental results that validate our theoretical findings.

1 INTRODUCTION

Queueing systems play an important role in modern service platforms such as cloud job sched-
ulers, personalized recommendation systems, ride-hailing, delivery marketplaces, call centers, and
large-scale LLM inference (Neely, 2010; Aksin et al., 2007; Yang et al., 2024; Fu et al., 2024;
Mitzenmacher & Shahout, 2025; Lee et al., 2024a). A central difficulty in these platforms is the
necessity to account for individual jobs with diverse features and contexts, such as job sizes, power
usage, user profiles, and compatible devices, when assigning them to processors. Providing such
context-aware service is crucial to improving overall service quality. However, once heterogeneous
contextual features are allowed for different jobs, assuming a priori knowledge of service (departure)
rates for all job–server pairs is unrealistic. This motivates real-time scheduling algorithms that si-
multaneously learn unknown context-dependent service rates from observed queue dynamics while
making job-server assignments in real time.

There has been a substantial body of work on scheduling in uncertain environments, where the
scheduler must simultaneously learn unknown system parameters while making job–server alloca-
tion decisions. Among these efforts, approaches that model the problem of learning unknown service
rates using multi-armed bandit formulations have received significant attention (Krishnasamy et al.,
2016; Gaitonde & Tardos, 2020; Choudhury et al., 2021; Stahlbuhk et al., 2021; Sentenac et al.,
2021; Hsu et al., 2022; Freund et al., 2022; Yang et al., 2023; Huang et al., 2024; Krishnakumar
& Sinha, 2025). In particular, frameworks that minimize the notion of queue length regret (Krish-
nasamy et al., 2016; Stahlbuhk et al., 2021; Krishnakumar & Sinha, 2025), defined as the difference
in queue length under a given policy versus the optimal policy, provide a useful lens for developing
and analyzing algorithms that ensure stability even when service rates are unknown. However, these
existing works on queue length regret do not take into account individual job contexts.

Recently, Kim & Oh (2024) consider a context-aware approach in which each queue is assigned a
fixed contextual vector, and all jobs within the same queue share the same context. Then a job in
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Figure 1: Illustration of the queueing processes under our policy π and the optimal policy π∗ in
contextual queueing bandits with three servers. Due to a suboptimal choice by our policy π in round
t+ 1, the queue states diverge in round t+ 2, where we call this queue state misalignment.

a queue is allocated to a server whose service rate is determined by the contextual vector and the
unknown parameter of the server. However, since it is required for their model to fix the number of
distinct queues, it does not fully support heterogeneous contexts for different jobs. Another issue is
that they define regret to maximize the cumulative weight sum for the MaxWeight algorithm, which
is far from capturing queue length regret.

Motivated by these limitations, we propose contextual queueing bandits, a new context-aware frame-
work to learn unknown service rates where jobs arrive with heterogeneous contextual features, the
agent selects a job–server pair for assignment in each time step, and the service/departure rate is de-
termined by a logistic model with the contextual feature and the unknown server-specific parameter.
We present two algorithms, CQB-ϵ and CQB-Opt, and evaluate the policies via the notion of queue
length regret. Unlike previous work that assumes a fixed context for each queue, allowing heteroge-
neous contexts brings about a specific challenge. That is, the context features of the remaining jobs
in a queue under our policy may differ from those under the optimal policy, since the two distinct
policies may take different job processing orders. We call this phenomenon queue state misalign-
ment, illustrated in Figure 1. Addressing this issue is the main challenge in analyzing algorithms
designed to minimize queue length regret. Our contributions are summarized below in detail.

• We introduce contextual queueing bandits, a novel context-aware framework for schedul-
ing and queueing system control while simultaneously learning unknown service rates.
Jobs carry heterogeneous context information, based on which the agent selects a job and
assigns it to a server so that the departure rate is maximized. The departure rate is given
by a feature-based logistic model, whose parameter is unknown to the agent. To evaluate
policies, we take queue length regret, which is defined as the difference in queue length
under a given policy versus the optimal policy. This is the first work to establish a provable
decay rate for queue length regret under contextual queueing bandit settings.

• The main challenge in analyzing queue length regret is that, for a given time step, the list
of remaining job features in the queue under our policy may differ from the remaining
feature list under the optimal policy. This happens because our policy may process jobs
in a different order from the optimal policy. We refer to this as queue state misalignment,
which makes it difficult to compare the queue states under two distinct policies for a given
time step. To address this, we take policy-switching queues which follow our policy up to a
certain round and then switch to the optimal policy thereafter. This lets us decompose queue
length regret into a telescoping sum, each of whose terms is the difference in queue length
between two policy-switching queues whose moments of switching differ by exactly one
round. Under this alignment technique, equipped with a sophisticated coupling argument,
we can provide an upper bound on each term given by the product of (i) the difference in
departure rates for the round when two consecutive policy-switching queues apply different
policies and (ii) the long-term impact of queue state differences at the end of time horizon.

• We show that our algorithm, CQB-ε, achieves a queue length regret bound of Õ(T−1/4),
which vanishes for large T . To achieve the decaying bound, our algorithm proceeds with
two phases; it goes through a pure-exploration phase first and switches to an ε-greedy
policy. We can argue that the gap between service rates for the job-server pairs under the
algorithm and the optimal policy is nonincreasing. Furthermore, we show that the impact
of policy switching in one round on queue state differences at the end of time horizon
is nondecreasing. Combining these two via Chebyshev’s sum inequality, we provide the
desired queue length regret upper bound.
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• We also consider the setting where job contexts are chosen by the adversary. For the ad-
versarial setting, our second algorithm, CQB-Opt, achieves a queue length regret upper
bound ofO(log2 T ). The main difficulty for the analysis is that it is hard to uniformly con-
trol the uncertainty term, which is defined to capture the magnitude of the selected feature
vector relative to the previously chosen ones and its directional deviation from them. In
contrast, for the stochastic setting, we observe a smooth transition from a phase where the
uncertainty term is large to another phase where it is small, based on which we develop
the two phase structure of CQB-ε. However, for the adversarial setting, the uncertainty
term can still be large even towards the end of time horizon. To get around this issue, we
instead count the total number of such rounds and analyze the underlying randomness in
their occurrence. This lets us apply the coupling-based queue length regret decomposition
technique, subject to incurring a poly-logarithmic term in the regret upper bound.

We again emphasize that our analysis and proof techniques are novel, developed to characterize
queue length regret under queue state misalignment. In particular, our queue length regret decom-
position approach lets us understand the short-term effect of choosing a suboptimal job-server pair
and its long-term effect on queue state differences, which is of independent interest.

2 RELATED WORK

Queueing Bandits. Krishnasamy et al. (2016) introduce the framework of queueing bandits for
modeling queueing system control problems where learning unknown service rates is required while
scheduling jobs. By leveraging connections with multi-armed bandits and, at the same time, discov-
ering queueing-specific dynamics, they establish a decaying upper bound on queue length regret.
This work has motivated a significant body of follow-up work on designing algorithms for schedul-
ing while learning unknown service rates based on bandit learning, such as learning with dispatching
and MaxWeight-based algorithms (Krishnasamy et al., 2016; Gaitonde & Tardos, 2020; Choudhury
et al., 2021; Stahlbuhk et al., 2021; Sentenac et al., 2021; Hsu et al., 2022; Freund et al., 2022; Yang
et al., 2023; Huang et al., 2024; Krishnakumar & Sinha, 2025). However, these do not consider het-
erogeneous contexts for individual jobs, limiting their applications in modern personalized service
platforms. Recently, Kim & Oh (2024) consider a context-aware queueing bandit problem based
on the multinomial logit model. However, their setting still limits the number of distinct contextual
feature vectors, and they study a proxy notion of regret, missing a queue length regret analysis.

Logistic Bandits. We assume that the service rate of a server allocated to a job follows a logistic
model of the job’s contextual feature vector and the server-specific unknown parameter. Hence, the
problem of learning unknown server parameters relates to logistic bandits. Starting from the seminal
work of Filippi et al. (2010), there has been a flurry of activities to characterize and improve regret
bounds for logistic bandits (Faury et al., 2020; Li et al., 2017; Jun et al., 2021; Abeille et al., 2021;
Lee et al., 2024b; Bae & Lee, 2025). However, there are fundamental differences between logistic
bandits and our contextual queueing bandits framework, which makes it difficult to directly apply the
regret analyses for logistic bandits to our setting. First, logistic bandits consider exogenous action
sets shared by all policies, but action sets in our setting are endogenous and policy-dependent. To be
more precise, actions taken in previous rounds affect the queue state in the current and future rounds.
This leads to the phenomenon of queue state misalignment under our policy versus the optimal
policy. Moreover, we investigate queue length regret instead of cumulative reward regret, reflecting
the objective tailored to achieve queueing system control. These differences in the dynamics of
action sets and the regret definition require new techniques.

3 PROBLEM SETTING

We consider a discrete-time contextual queueing system with a single queue and K servers, given
as follows. In each round t ∈ [T ], the agent observes a queue state Xt ∈ X ⊂ Rd, given by the set
of contextual feature vectors of remaining jobs, chooses a job (with feature) xt ∈ Xt, and matches
it with a server kt ∈ [K]. Let Q(t) be the queue length at the beginning of round t, i.e. Q(t) = |Xt|.
Let A(t) ∈ {0, 1} indicate the random arrival of a job at time t with mean λ, and let D(t) ∈ {0, 1}
denote the random departure at time twith mean µ(xTt θ

∗
kt
) where µ(z) := (1+e−z)−1 is the logistic
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function and θ∗kt
∈ Rd is the unknown parameter of server kt. When A(t) = 1, we denote by x(t)

the feature of the job arriving at time t. Then
Xt+1 = Xt \ {xt : D(t) = 1} ∪ {x(t) : A(t) = 1}, Q(t+ 1) = [Q(t) +A(t)−D(t)]+,

where [q]+ = max{0, q}+. For technical convenience, we assume that a dummy job x0 ∈ Rd is
chosen when the queue is empty, while ignoring the feedback of the queueing process to avoid unfair
advantage. We denote by E(t) ∈ {0, 1} the random variable that indicates whether we run random
exploration in round t+1, used in Algorithm 1. We define the arrival tuple and the departure tuple as
A(t) := (A(t), x̃(t)), D(t) := (D(t), (xt, kt)), where x̃(t) is a masked feature defined as x̃(t) = x̃
if A(t) = 0 where x̃ ∈ Rd is a fixed symbol for the sign of no arrival, and x̃(t) = x(t) if A(t) =1.
Then we define the filtration Ft := σ(X1,A(1),D(1), E(1), . . . ,A(t− 1),D(t− 1)) for t ∈ [T ].

Our goal in this paper is to characterize how large the queue length can be under our policy π at
the end of the horizon, compared to the queue length under the optimal policy π∗ that runs with
prior knowledge of θ∗k for all k ∈ [K]. Here, given a set of remaining feature vectors Y ⊆ X ,
π∗ chooses a job-server pair that maximizes the departure rate given by maxx∈Y,k∈[K] µ(x

Tθ∗k). If
there is a tie, we assume that the job entering first is taken. Then queue length regret is defined as
RT = E[Q(T )−Q∗(T )], where Q∗(t) is the queue length at the beginning of time step t under the
optimal policy. Lastly, we state some standard assumptions for logistic and queueing bandits:
Assumption 3.1. ∥x∥2 ≤ 1 for all x ∈ X , and for some known constant S, θ∗k ∈ Θ := {θ : ∥θ∥2 ≤
S} for all k ∈ [K].
Assumption 3.2. There exist κ,R > 0 such that 1/κ ≤ µ̇(xTθ) ≤ R for all x ∈ X and θ ∈ Θ.
Assumption 3.3. The features of newly arriving jobs are assumed to be independently and identi-
cally distributed (i.i.d.) from an unknown distribution D. Moreover, there exists Σ ≻ 0 such that
Ex∼D[xx

⊤] ⪰ Σ with σ2
0 := λmin(Σ) > 0.

Assumption 3.4. There exists some traffic slack ϵ > 0 such that for each x ∈ X , there exists a
server k∗ ∈ [K] with µ(xTθ∗k∗)− λ ≥ ϵ.

Assumptions 3.1 and 3.2 are standard in the logistic bandit literature. Here, Assumption 3.2 provides
problem-dependent parameters to control the local behavior of µ̇(·). Assumption 3.3 is also standard
in sampling-based approaches for logistic bandits. Algorithm 1 works under Assumption 3.3, but
for the adversarial setting and Algorithm 2, we lift the assumption. Assumption 3.4 applies traffic
slack to guarantee stability, which can also be found in Kim & Oh (2024).

4 CHALLENGES AND NEW TECHNIQUES

Queue State Misalignment. To describe the challenge of the problem and motivate our approach,
we start with the simplest case where all new jobs share a single fixed context x1, which can be
viewed as the setting of previous work due to Krishnasamy et al. (2016); Kim & Oh (2024). Note
that in such a case, the queue state Xt under our policy and the optimal queue state X ∗

t have no
difference in the types of features. Now, a key measure for assessing the performance of a policy is
(the conditional expectation of) the gap between the departure ratesD∗(t) for the optimal queue and
oursD(t), given by E [D∗(t)−D(t) | Ft] = maxx∈X∗

t ,k∈[K] µ
(
xTθ∗k

)
−µ

(
xTt θ

∗
kt

)
. An optimistic

algorithm for the logistic bandit would choose xt, kt maximizing the upper confidence bound (UCB)
based on computing argmaxx∈Xt,k∈[K] µ(x

Tθ̂t−1,k) + bt(x, k) where θ̂t−1,k is the estimated pa-
rameter of server k, and bt(x, k) is a bonus term. Choosing the bonus term as an upper bound on
the prediction error |µ(xTθ̂t−1,k)− µ

(
xTθ∗k

)
| for all x ∈ X and k ∈ [K], the gap can be bounded

from above as
max

x∈X∗
t ,k∈[K]

µ(xTθ∗k)− µ(xTt θ∗kt
) ≤ max

x∈X∗
t ,k∈[K]

(µ(xTθ̂t−1,k) + bt(x, k))− µ(xTt θ∗kt
)

= max
x∈Xt,k∈[K]

(µ(xTθ̂t−1,k) + bt(x, k))− µ(xTt θ∗kt
)

= µ(xTt θ̂t−1,kt
) + bt(xt, kt)− µ(xTt θ∗kt

) ≤ 2bt(xt, kt)

where the first and last inequalities are due to the definition of bt(x, k), and the first equality holds
because X ∗

t = Xt. Then we may apply results on choosing bt(x, k) which leads to a sublinear upper
bound on the cumulative sum of gap terms. However, the result is viable only when X ∗

t = Xt or
X ∗

t ⊆ Xt. The condition does not necessarily hold as soon as we allow two distinct features.
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Aligning Queue States via Policy-Switching Queues. Taking a detour from the issue of queue
state misalignment, we introduce our new approach to analyze queue length regret. It is two-fold;
we consider policy-switching queues, and to compare their queue length at the end of horizon, we
develop a coupling argument.

We define Q(t1, t2) as the length of the queue at the beginning of time step t2 under our policy
applied from time steps t = 1 to t1 and the optimal policy applied from t = t1+1 to t2−1. In other
words, for Q(t1, t2), we switch from our policy to the optimal policy at time t1 + 1. By definition,
Q(t2 − 1, t2) = Q(t2) and Q(0, t2) = Q∗(t2). Moreover, we may decompose queue length regret
as RT = E[Q(t)−Q∗(t)] =

∑T−1
t=1 E[Q(t, T )−Q(t− 1, T )]. Here, Q(t, T )−Q(t− 1, T ) is the

length difference between two consecutive policy-switching queues whose moments of switching
differ by exactly one round.

To bound the gap Q(t, T )−Q(t− 1, T ) for two consecutive policy-switching queues, we construct
a coupling process for Q(t, T ) and Q(t − 1, T ) to align them. We denote by Q+(t) and Q−(t) the
coupled queue lengths of Q(t, T ) and Q(t − 1, T ). We use notations A+(t), A−(t) for their job
arrivals and D+(t), D−(t) for job departures. For job arrival in each round i ∈ [T ], we draw a
shared random variable Ui,1 ∼ Unif(0, 1). The two queues receive the same new job if Ui,1 ≤ λ,
i.e., A+(i) = A−(i) = 1, and if Ui,1 > λ, they receive no job, i.e., A+(i) = A−(i) = 0. Similarly,
for job departure in each round i ∈ [T ], we draw a shared random variable Ui,2 ∼ Unif(0, 1).
The server k+i assigned to the first queue succeeds, i.e., D+(t) = 1, if Ui,2 ≤ µ((x+i )

Tθ∗
k+
i

), and

D+(t) = 0 if Ui,2 > µ((x+i )
Tθ∗

k+
i

). Likewise, we have D−(t) = 1 if Ui,2 ≤ µ((x−i )
Tθ∗

k−
i

) and

D−(t) = 0 otherwise, where k−i is the server assigned to the second queue. This coupling process
preserves the marginals as E[Q(t, T )] = E[Q+(t)] and E[Q(t − 1, T )] = E[Q−(t)], implying in
turn that RT =

∑T−1
t=1 E[Q+(t)−Q−(t)].

Therefore, to establish an upper bound on RT , it suffices to consider
ψ(t, T ) := Q+(t)−Q−(t).

As the two coupled queues follow the same policy up to round t− 1, their queue states at time step
t are identical. With this alignment, we can characterize ψ(t, T ) as follows.
Lemma 4.1. We have ψ(t, T ) ∈ {−1, 0, 1} for all t ∈ [T ].

Moreover, the expected value of ψ(t, T ) can be bounded from above as follows.
Lemma 4.2. Let (x∗t , k

∗
t ) ∈ argmaxx∈Xt,k∈[K] µ(x

Tθ∗k), let F+
t := σ(Ft ∪ {E(t − 1),A(t)}),

and let ψ̃(t, T ) := E[ψ(t, T ) | F+
t , D

+(t) = 0, D−(t) = 1]. Then

E[ψ(t, T )] ≤

√
E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]
︸ ︷︷ ︸

=:mt

√
E
[
ψ̃(t, T )

]
︸ ︷︷ ︸

=:δt

.

We prove these lemmas in Appendix B. From the bound in Lemma 4.2,mt represents the immediate
error incurred when choosing a suboptimal job-server pair, and δt captures the long-term effect of
the difference in the queue states at time step t+ 1 of the two consecutive policy-switching queues.
Note that RT ≤

∑T−1
t=1 mtδt, and we may deduce an upper bound on the right-hand side by taking

the Cauchy-Schwarz inequality, applying the elliptical potential lemma (Abbasi-Yadkori et al., 2011,
Lemma 10) on

∑T−1
t=1 m2

t , and using Lemma 4.1 to get
∑T−1

t=1 δ2t ≤ T . This approach would give
us an upper bound of Õ(

√
T ) on RT , which matches typical regret upper bounds for contextual

bandits. However, such a bound is not sufficient, as we hope for a decaying bound.

In the following section, we take a more refined analysis and characterize some monotonic behaviors
of the sequences of mt and δt, based on which we prove a decaying upper bound of Õ(T−1/4) on
queue length regret. This establishes that the queue length difference vanishes as T gets large.

5 DECAYING REGRET FOR CONTEXTUAL QUEUEING BANDITS

Idea and Outline. Recall that mt represents instantaneous regret, so as we keep updating our es-
timators close to the true parameters, we expect to reduce it as t increases. δt captures the long-term

5
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Algorithm 1 CQB-ε

Initialize: ε = T−1/2, p = 0, V0,k = κλ0I, k = 1, . . . ,K
1: for t = 1, . . . , T do
2: if t ∈ [1, τ ] and A(t− 1) = 1 then ▷ Pure-exploration
3: xt ← x(t−1), kt ← p+ 1
4: p← p+ 1 (mod K)
5: else if t ∈ [τ + 1, T ] and E(t− 1) = 1 and A(t− 1) = 1 then ▷ ε-exploration
6: xt ← x(t−1), kt ∼ Unif([K])
7: else ▷ Exploitation
8: (xt, kt)← argmaxx∈Xt, k∈[K] µ(x

Tθ̂t−1,k) + βt−1,k ∥x∥V −1
t−1,k

9: end if
10: Match (xt, kt) and receive rt
11: for k = 1, . . . ,K do
12: if k = kt then
13: Update θ̂t,k as in Section 5, and βt,k as in Equation (1)
14: Vt,k ← Vt−1,k + xtx

T
t

15: else
16: θ̂t,k ← θ̂t−1,k, βt,k ← βt−1,k, Vt,k ← Vt−1,k

17: end if
18: end for
19: Sample E(t) ∼ Bern(ε)
20: end for

effect of the disagreement between two consecutive policy-switching queues, so one can anticipate
that δt will increase in t since an early disagreement (a small t) will wear off as they follow the same
optimal policy for the remaining T−t−1 rounds. In fact, we will show that our algorithm, described
in Algorithm 1, guarantees that mt ≤ Mt where {Mt}t∈[T ] is a nonincreasing sequence and that
δt ≤ ∆t where {∆t}t∈[T ] is a nondecreasing sequence. Then we apply Chebyshev’s sum inequality
to deduce RT ≤ (

∑T−1
t=1 Mt)(

∑T−1
t=1 ∆t)/(T − 1). Lastly, we show that

∑T−1
t=1 Mt = Õ(T 3/4)

and
∑T−1

t=1 ∆t = O(log(T )), which leads to a decaying upper bound on queue length regret.

Algorithm. Algorithm 1 consists of two phases. It starts with a pure-exploration phase
where, if a new job arrives, we select it while choosing a server in a round-robin man-
ner. After the pure-exploration phase, we apply the ε-greedy policy which, if a new job
arrives, explores it with probability ε and chooses a job-server pair optimistically by max-
imizing the UCB term as in Line 8. For both phases, we take an exploration step only
when a new job arrives, in which case the new job has to be chosen for exploration. Af-
ter a job-server matching, we receive binary feedback rt on whether the server completed the
job. Then we update the estimator θ̂t,k by maximizing the regularized cross-entropy loss as
θ̂
(1)
t,k = argmaxθ{

∑t
i=1 1{ki = k}

[
ri logµ(x

T
i θ) + (1− ri) log(1− µ(xTi θ))

]
− (λ/2)∥θ∥22} and

then projecting it onto the parameter set as θ̂t,k = argminθ∈Θ ∥
∑t

i=1 1{ki = k}[µ(xTi θ) −
µ(xTi θ̂

(1)
t,k )]xi∥V −1

t,k
. Lastly, we update the confidence radius βt,k as

βt,k =
κ

2

√√√√2d log

(
1 +

1

κλ0d

t∑
i=1

1{ki = k}

)
+ log(K/δ) +

κS
√
λ0

2
= O

(√
d log(T )

)
. (1)

We note that the choice of estimators for the logistic model parameters and the confidence radius is
due to Faury et al. (2020), thus we may obtain the following prediction error bound.

Lemma 5.1. It holds with probability at least 1−δ that |µ(xTθ̂t−1,k)−µ(xTθ∗k)| ≤ βt−1,k∥x∥V −1
t−1,k

for all t ∈ [T ], x ∈ X , and k ∈ [K].

In fact, we may take more recent parameter estimation frameworks developed for logistic bandits,
such as those that avoid a projection step and guarantee tighter confidence bounds. Nevertheless, we
take the basic estimation method for simpler presentation, letting us focus on the queueing part.

6
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Regret Analysis. Let βt := (κ/2)
√

2d log(1 + t/(κλ0d)) + log(K/δ) + κS
√
λ0/2, and let the

length of pure-exploration τ be given by

τ :=
2C3K

λ

(
d+ log(K/δ)

σ4
0

+
16β2

T

σ2
0(ϵ− 2ε)2

)
+

log(1/δ)

2λ2
= O

(
d log(T )

σ4
0ϵ

2

)
(2)

for some absolute constant C3 > 0. Then we can argue that after the pure-exploration phase, the
uncertainty term, defined as ∥x∥V −1

t−1,k
, can be uniformly bounded.

Lemma 5.2. It holds with probability at least 1−2δ that ∥x∥V −1
t−1,k

≤ ϵ−2ε
4βt−1,k

for all t ∈ [τ +1, T ],

x ∈ X , and k ∈ [K].

Next, we argue that random exploration steps by the ε-greedy policy reduce the uncertainty term
while its optimistic exploitation rounds successfully control instantaneous regret with the uncertainty
term. Combining these, we show that (conditional) expected instantaneous regret can be upper
bounded by a nonincreasing function in t. We define the good event, denoted Eg , as the event when
both Lemmas 5.1 and 5.2 hold.
Lemma 5.3. Under the ε-greedy policy, the expected instantaneous regret conditioned on the good
event Eg is bounded from above as

E[(µ((x∗t )Tθ∗k∗
t
)− µ(xTt θ∗kt

))2 | Eg] ≤ min
{
1, λε+ 4β2

T ν(t− 1)
}

∀t ∈ [τ + 1, T ], where ν(t) := (λ0 +
λε(t−τ)σ2

0

4K )−1 + 1
λ0

exp(− (t−τ)λε
8K ) + d

λ0
exp(− (t−τ)λεσ2

0

16K ).

Lastly, the following lemma shows that the expected difference between Q+ and Q− is upper-
bounded by a clipped exponential ramp, exhibiting an exponential growth until a certain round
(the threshold round) and then clipped to 1, which is nondecreasing in t. We carefully choose the
threshold round based on the length τ of the pure-exploration phase, where the uncertainty term can
be large. Consequently, if the number of remaining rounds T − t − 1 is large compared to τ , the
impact of disagreement in D+ and D− will disappear with high probability. When T − t − 1 is
small, we still have that ψ̃(t, T ) ≤ 1 by Lemma 4.1.
Lemma 5.4. Let ω := 4τ/ϵ, and let Cρ := 1 + 16/ϵ2.

E
[
ψ̃(t, T ) | Eg

]
≤
{
min

{
1, 2Cρ exp

(
−ϵ2 (T − t− 1− ω) /8

)}
if t ≤ T − ω − 1

1 if t > T − ω − 1
.

Here, T − ω− 1 is the threshold round. Now we are ready to show an upper bound on queue length
regret under Algorithm 1.
Theorem 5.5. Let δ ∈ (0, T−2], let τ be given as in Equation (2). For T ≥ max{τ, 4/ϵ2}, the
queue length regret of Algorithm 1 is bounded from above as

RT = O

(
d2T−1 log2(T )

σ8
0ϵ

5
+
dT−1/4 log(T )

σ4
0ϵ

3
+
d3/2T−1/4 log3/2(T )

σ5
0ϵ

3
+
d2T−1/2 log3/2(T )

σ6
0ϵ

3

)
.

Proof sketch. Let us consider the case where the good event Eg holds. We know that mt ≤ 1
t ∈ [1, τ ], and for t ∈ [τ + 1, T ], we apply Lemma 5.3 to deduce

mt ≤Mt :=

{
1 if t ≤ τ
min

{
1,
√
3δ +

√
λε+ 4β2

T ν(t− 1)
}

if t > τ
.

Next, by Lemma 5.4,

δt ≤ ∆t :=

{
min

{
1,
√
3δ +

√
2Cρ exp

(
−ϵ2 (T − t− 1− ω) /16

)}
if t ≤ T − ω − 1

1 if t > T − ω − 1
.

Since {Mt}t∈[T ] is nonincreasing in t and {∆t}t∈[T ] is nondecreasing in t, it follows from Cheby-
shev’s sum inequality that Rt ≤

∑T−1
t=1 mtδt ≤

∑T−1
t=1 Mt∆t ≤ (

∑T−1
t=1 Mt)(

∑T−1
t=1 ∆t)/(T − 1).
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Algorithm 2 CQB-Opt

Initialize: V0,k = κλ0I, k = 1, . . . ,K
1: for t = 1, . . . , T do
2: xt, kt ← argmaxx∈Xt,k∈[K] µ(x

Tθ̂t−1,k) + βt−1,k∥x∥V −1
t−1,k

3: Match (xt, kt) and receive rt
4: for k = 1, . . . ,K do
5: if k = kt then
6: Update θ̂t,k as in Section 5, and βt,k as in Equation (1)
7: Vt,k ← Vt−1,k + xtx

T
t

8: else
9: θ̂t,k ← θ̂t−1,k, βt,k ← βt−1,k, Vt,k ← Vt−1,k

10: end if
11: end for
12: end for

For the summation of Mt’s, we split it into two parts. Regret incurred from the first τ rounds is at
most τ = O(d log(T )/(σ4

0ϵ
2)). For t > τ , we have Mt = Õ(T−1 +

√
ε + 1/

√
εt). Hence, the

sum is bounded from above by Õ(T
√
ε+

√
T/ε), and taking ε = T−1/2 yields Õ(T 3/4). For the

summation of ∆t’s, the first T−ω−1 terms give rise to a geometric sum, which we show is bounded
by O(1/ϵ3), and for the rest of ω rounds, ∆t ≤ 1. Hence, in total, the sum is bounded above by
O(d log(T )/(σ4

0ϵ
3)). Combining these, we obtain the desired bound on queue length regret, while

the full proof is presented in Appendix E.1.

6 POLYLOGARITHMIC REGRET IN ADVERSARIAL CONTEXTS

In this section, we present Algorithm 2 for the setting of adversarial contexts, without Assump-
tion 3.3, and show that it achieves a polylogarithmic regret bound.

Bad Rounds. We say that t ∈ [T ] is a bad round if ∥xt∥V −1
t−1,kt

> ϵ/(4βt−1,kt
) and take B′ as

the collection of bad rounds. We call [T ] \ B′ good rounds. Hence, in a bad round, the uncertainty
term is large. Under Assumption 3.3, Lemma 5.2 shows that the uncertainty term can be uniformly
bounded after τ rounds of pure exploration. However, without the assumption, bad rounds can arise
even toward the end of horizon. As a result, for the adversarial context setting, we have to count the
number of bad rounds. For this, we use the counting version of the elliptical potential lemma.
Proposition 6.1. We have |B′| ≤ 32β2

TKd log(1 + T/(dKκλ0))/ϵ
2 = O(d2 log2(T )/ϵ2)

Another issue is to deal with the underlying randomness of whether or not a given round is a bad
round. Under Assumption 3.3, we designed the pure-exploration phase so that after τ rounds, each
time slot is a good round deterministically. The randomness complicates the derivation of a tail
bound for Q(t), while such a bound is crucial to determine how many jobs are backlogged in
the round of policy-switching for Q(t, T ). To handle the randomness, we define a Gt-measurable
weighted process, given by V (t) = α−B′(t−1)eηQ(t) for some constant α > 1, η > 0, where
Gt := σ(X1,A(1),D(1), . . . ,A(t− 1),D(t− 1)) and B′(t) = |{[t] ∩ B′}|.

Regret Analysis. As in the stochastic setting, we take ω′ to define the threshold round for studying
the expected difference in the queue lengths of two consecutive policy-switching queues, based on
the number of bad rounds in Proposition 6.1:

ω′ := 128β2
TKd log(1 + T/(dKκλ0))/ϵ

3 = O
(
d2 log2(T )/ϵ3

)
(3)

Let us define the good event E ′g for the adversarial setting as the event when Lemma 5.1 holds.

Lemma 6.2. Let G+t := σ(Gt ∪{A(t)}), and let ψ̃′(t, T ) := E[ψ(t, T ) | G+t , D+(t) = 0, D−(t) =
1]. Then

E
[
ψ̃′(t, T ) | E ′g

]
≤
{
min

{
1, 2Cρ exp

(
−ϵ2 (T − t− 1− ω′) /8

)}
if t ≤ T − ω′ − 1

1 if t > T − ω′ − 1
.
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Now we state a polylogarithmic upper bound on queue length regret under Algorithm 2.
Theorem 6.3. Set δ ∈ (0, T−1]. The queue length regret of Algorithm 2 is bounded from above as

RT = O
(
d2 log2(T )

ϵ1.5
+
d log(T )

ϵ2

)
.

Proof sketch. As in Lemma 4.2, we may deduce a similar upper bound on queue length regret, by
replacing ψ̃(t, T ) with ψ̃′(t, T ). For mt, since we always choose the job-server pair following the
optimistic rule, the difference in departure rates can be bounded from above by 2 times the bonus
term. Applying the elliptical potential lemma yields

∑T−1
t=1 m2

t = O(d log(T )). To bound
∑T−1

t=1 δ2t
with ψ̃′(t, T ), we apply Lemma 6.2 as before. The full proof can be found in Appendix E.2.

7 EXPERIMENTS

In this section, we empirically evaluate the performance of our algorithms.

Figure 2: Average queue length across algorithms and settings. (Left) CQB-ε and CQB-Opt versus
a random policy, the optimal policy, and additional baselines. (Middle) and (right) performance of
CQB-ε and CQB-Opt, respectively, for ϵ ∈ {0.05, 0.1, 0.15}

We generate random instances with λ = 0.7, ϵ = 0.1, K = 5, d = 5, and κ = 10. Feature vec-
tors x ∈ Rd and server-specific parameters θ∗k ∈ Rd for k ∈ [K] are sampled from Unif(−1, 1).
For each algorithm, we evaluate N = 10 instances over T = 5000 rounds and report the av-
erage queue length at time T with ±1 standard deviation across runs. For Algorithm 1, we set
τ = Cd3 log(T )Kλ−1(ϵ− 2ε)−2 with constant factor C = 3e− 4. The first plot of Figure 4 com-
pares our algorithms (Algorithms 1 and 2) against (i) a random policy and (ii) the optimal policy
(iii) four additional baseline algorithms; further details are provided in Appendix A. The random
policy chooses a job–server pair uniformly at random, while the optimal policy selects, in every
round, the job–server pair with the maximum departure rate. We observe a linear increase in queue
length under the random policy, whereas both of our algorithms decrease toward the optimal level
after a certain time. The second and third plots show how the performance of Algorithm 1 and Al-
gorithm 2, respectively, varies with ϵ ∈ {0.05, 0.1, 0.15}. In the second plot, Algorithm 1 exhibits
longer pure-exploration rounds for small ϵ, as dictated by τ , followed by a sharp decrease in queue
length. Our results in Figure 4 demonstrate that as ϵ increases (i.e., under lower load), our algorithms
converge faster toward the optimal queue length, consistent with our theoretical results. Additional
experiments varying K and d are provided in Appendix A due to space constraints.

8 CONCLUSION

We introduced contextual queueing bandits, a new context-aware framework for learning-while-
scheduling with logistic service models. Using policy-switching queues and a coupling argument,
we decompose queue length regret into the short-term effect of choosing a suboptimal job-server
pair and its long-term effect on queue state differences. We proved that CQB-ε attains Õ(T−1/4)
regret under stochastic contexts and CQB-Opt achieves O(log2 T ) regret against adversarially cho-
sen contexts, corroborated by experiments. Future directions include (i) establishing lower bounds
for queue length regret, (ii) extending the framework to multiple queues, and (iii) incorporating
operational constraints such as a maximum waiting time (time in queue) constraint.
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generalized linear case. Advances in neural information processing systems, 23, 2010.

Daniel Freund, Thodoris Lykouris, and Wentao Weng. Efficient decentralized multi-agent learning
in asymmetric queuing systems. In Conference on Learning Theory, pp. 4080–4084. PMLR,
2022.

Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao Zhang. Efficient llm scheduling
by learning to rank. Advances in Neural Information Processing Systems, 37:59006–59029, 2024.
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A ADDITIONAL EXPERIMENTS

Figure 3: Average queue length across varying K and d. (Top-left/right) CQB-ε/CQB-Opt for
K ∈ {3, 5, 7, 9}. (Bottom-left/right) CQB-ε/CQB-Opt for d ∈ {3, 5, 10, 20}.

Figure 4: Average queue length across algorithms and settings. (Left) shows the average queue
length for MNIST. (Middle) and (Right) show the performance for Heart Disease and In-Vehicle
Coupon Recommendation, respectively.

Baseline algorithms. We introduce four additional baselines as follows:

• CQB-ε-Opt: We follow the same algorithm as Algorithm 2, while performing random
exploration in every round with probability ε = T−1/2.

• CQB-TS: We follow the same algorithm as Algorithm 2, except that we replace the decision
rule by sampling rewards for all x ∈ Xt, k ∈ [K] as

r̃t(x, k) ∼ N
(
xTθt−1,k, R

−2βt−1,k∥x∥2V −1
t−1,k

)
and then choosing the job–server pair as (xt, kt) = argmaxx∈Xt,k∈[K] r̃t(x, k).

• Q-UCB (Algorithm 1 of Krishnasamy et al. (2021)): In every round t, we explore with
probability Bern(min{1, 3K(log2 t)/t}). We choose xt as the first-in job, and then choose

kt := argmax
k∈[K]

µ̂k(t) +

√
log2 t

2Tk(t− 1)
,

where µ̂k(t) =
∑t−1

i=1 1{ki = k}ri/Tk(t− 1) and Tk(t− 1) =
∑t−1

i=1 1{ki = k}.
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• Q-ThS (Algorithm 2 of Krishnasamy et al. (2021)): In every round t, we explore with
probability Bern(min{1, 3K(log2 t)/t}). We choose xt as the first-in job. For every k ∈
[K], we sample

r̃t(x, k) ∼ Beta(µ̂k(t)Tk(t− 1) + 1, (1− µ̂k(t))Tk(t− 1) + 1),

and choose kt := argmaxk∈[K] r̃t(x, k), where we use the same definitions of µ̂k(t) and
Tk(t− 1) as above.

Notice that Q-UCB and Q-ThS are the algorithms proposed by Krishnasamy et al. (2021), which is
the first work to study the queueing bandit problem and queue length regret in a multi-armed bandit
framework without contextual information.

Varying K and d. Figure 3 illustrates how varying values of K and d affect the performance of
Algorithms 1 and 2. In Figure 3 (top-left) and (top-right), we vary K ∈ {3, 5, 7, 9} for CQB-ε and
CQB-Opt, respectively holding all other parameters fixed. In Figure 3 (bottom-left) and (bottom-
right), we vary d ∈ {3, 5, 10, 20}, for CQB-ε and CQB-Opt, holding all other parameters fixed.
Consistent with our theoretical expectations, performance deteriorates as K and d increase.

Real-world dataset. For MNIST, we normalize each 28 × 28 image by dividing pixel values by
255, downsample by averaging over non-overlapping 4 × 4 blocks to obtain a 7 × 7 feature map,
and flatten this map into a 49-dimensional feature vector used as the context X . We set the average
arrival rate to λ = 0.15. For the Heart Disease dataset (UCI), we start from 297 records, remove
rows with missing values, apply one-hot encoding to categorical features, and standardize numerical
features. The class labels are imbalanced (from 160 samples in Class 0 to 13 in Class 4), so we apply
the synthetic minority oversampling technique (SMOTE) to obtain approximately balanced K = 5
classes and then sample 4000 instances with replacement for our simulations. We set λ = 0.2.
For the In-Vehicle Coupon Recommendation dataset (UCI), we remove rows with missing values,
one-hot encode all categorical features (120 features in total), standardize numerical features, and
convert the target into a binary label (accepted = 1, rejected = 0). We randomly sample 4000
instances from the processed data and set λ = 0.5. We comfortably used τ = T/10 for Algorithm 1
because real-world datasets typically have high dimensionality, which would cause unnecessarily
large exploration. The results in Figure 4 show that Algorithm 1 achieves the best performance on
all three datasets (MNIST, Heart Disease, and In-Vehicle Coupon Recommendation).

B PROOFS FOR SECTION 4

In this section, we prove Lemmas 4.1 and 4.2.

B.1 PROOF OF LEMMA 4.1

In fact, we prove the following lemma, which is a refined version of Lemma 4.1. Note thatD+(t) ≤
D−(t) holds for each t ∈ [T ] by definition of the coupling process, so Lemma 4.1 is a direct
consequence of Lemma B.1.

Lemma B.1. If D+(t) = D−(t) = 0 or D+(t) = D−(t) = 1, we have ψ(t, T ) ∈ {−1, 0}, and if
D+(t) = 0, D−(t) = 1, we have ψ(t, T ) ∈ {0, 1} for all t ∈ [T ].

Proof. For jobs x1, x2, we say that x1 has higher priority than x2, denoted as x1 ≻ x2, if

• maxk∈[K] µ(x
T
1 θ

∗
k) > maxk∈[K] µ(x

T
2 θ

∗
k), or

• maxk∈[K] µ(x
T
1 θ

∗
k) = maxk∈[K] µ(x

T
2 θ

∗
k) but job x1 enters the queue earlier than job x2.

In particular, the optimal policy chooses the job with the highest priority with respect to the binary
order ≻.

Recall that Q+(t) and Q−(t) are what are obtained after coupling the two consecutive policy-
switching queues defined for Q(t, T ) and Q(t − 1, T ). To characterize ψ(t, T ), we understand
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the dynamics of the coupled queues for time steps i ∈ [t + 1, T ]. Note that X+
t = X−

t . For
i ∈ [t + 1, T ], let X+

i and X−
i denote the queue states of the two coupled policy-switching queues

for round i. For i ∈ [t+ 1, T ], let us consider the following five states.

Si,0 =
{
X+

i = X−
i

}
,

S+
i,1 =

{
X+

i = X−
i ∪ {x

+
i }
}
,

S−
i,1 =

{
X−

i = X+
i ∪ {x

−
i }
}
,

S+
i,2 =

{
X+

i \ X
−
i = {x+i }, X

−
i \ X

+
i = {x−i }, x

+
i ≻ x

−
i

}
,

S−
i,2 =

{
X+

i \ X
−
i = {x+i }, X

−
i \ X

+
i = {x−i }, x

+
i ≺ x

−
i

}
.

Then we show that for X+
i and X−

i , it is sufficient to consider transitions between these five states.

For round t, note that X+
t = X−

t . As D+(t) ≤ D−(t), we consider two cases: (i) D+(t) = D−(t)
and (ii) D+(t) = 0, D−(t) = 1. If D+(t) = D−(t) = 0, then X+

t+1 = X+
t = X−

t = X−
t+1, in

which case we observe St+1,0 at time t + 1. If D+(t) = D−(t) = 1, the two policy-switching
queues have the same number of jobs at time t+ 1, and moreover, X−

t+1 is obtained from X−
t after

the optimal policy processing a job in X−
t . Therefore, when D+(t) = D−(t) = 1, the two possible

states for round t+ 1 are St+1,0 and S+
t+1,2. If D+(t) = 0 and D−(t) = 1, then round t+ 1 would

be in state S+
t+1,1.

Next, we consider round i ∈ [t + 1, T ] for which X+
i and X−

i are given. Assume that round i is in
one of the above five states. Then we will argue that so is round i + 1. As i ≥ t + 1, both X+

i and
X−

i take the optimal policy.

(C1) If round i is in state Si,0, then X+
i = X−

i , so the optimal policy would choose the same
job. As a result, round i+ 1 would be in state Si+1,0.

(C2) If round i is in state S+
i,1, it falls into the following two cases, based on whether the optimal

policy chooses x+i for X+
i .

(C2-1) If the optimal policy selects x+i for X+
i , this means that D+(i) ≥ D−(i). Therefore,

there are three possibilities. When D+(i) = D−(i) = 0, as the queues keep the same
sets of jobs for round i+ 1, we have S+

i+1,1 for round i+ 1. If D+(i) = D−(i) = 1,
as the optimal policy would choose another job in X−

i , we still have state S+
i+1,1 for

round i+ 1. When D+(i) = 1 and D−(i) = 0, round i1 would be in state Si+1,0.
(C2-2) : If the optimal policy does not choose x+i from X+

i , then it chooses the same job for
X+

i and X−
i , which means that round i+ 1 would be in state S+

i+1,1.

To summarize, for case (C2), we have Si+1,0 or S+
i+1,1 in round i+ 1.

(C3) If round i is in state S−
i,1, by the symmetry between S+

i,1 and S−
i,1, we may argue that we

have Si+1,0 or S−
i+1,1 in round i+ 1 with a similar argument as in case (C2).

(C4) If round i is in state S+
i,2, it falls into the following two cases, based on whether the optimal

policy chooses x+i for X+
i .

(C4-1) If the optimal policy selects x+i for X+
i , this means that D+(i) ≥ D−(i). Therefore,

there are three possibilities. When D+(i) = D−(i) = 0, as the queues keep the same
sets of jobs for round i+ 1, we have S+

i+1,2 for round i+ 1. If D+(i) = D−(i) = 1,
the optimal policy would choose another job in X−

i . If the optimal policy chooses x−i
from X−

i , we have state Si+1,0 in round i + 1. If not, round i + 1 would be in state
S+
i+1,2. When D+(i) = 1 and D−(i) = 0, round i1 would be in state S−

i+1,1.
(C4-2) If the optimal policy does not choose x+i from X+

i , then it would not choose x−i from
X−

i either. Hence, the optimal policy chooses the same job for X+
i and X−

i , so round
i+ 1 would be in state S+

i+1,2.

14
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In summary, for case (C4), we have Si+1,0 or S−
i+1,1 or S+

i+1,2 in round i+ 1.

(C5) If round i is in state S−
i,2, by the symmetry between S+

i,2 and S−
i,2, we may argue that we

have Si+1,0 or S+
i+1,1 or S−

i+1,2 in round i+ 1 with a similar argument as in case (C4).

Recall that if D+(t) = 0 and D−(t) = 1, then round t + 1 would be in state S+
t+1,1. Due to our

case analysis above, we have St+2,0 or S+
t+2,1 for round t+ 2. If the state of round t+ 2 is St+2,0,

then we have Si,0 for each round i ≥ t+ 2, in which case ψ(t, T ) = 0. If we have S+
t+2,1 for round

t+ 2, we repeat the same argument as for state t+ 1. If we observe S+
T,1 for round T , then we have

ψ(t, T ) = 1. Otherwise, round T would be in state ST,0, in which case ψ(t, T ) = 0.

Moreover, if D+(t) = D−(t), then round t + 1 would be in state St+1,0 or S+
t+1,2. By our case

analysis above, we have St+2,0 or S−
t+2,1 or S+

t+2,2 for round t + 2. If the state of round t + 2 is
St+2,0, then we have Si,0 for each round i ≥ t + 2, in which case ψ(t, T ) = 0. If we have S−

t+2,1

for round t+ 2, we have St+3,0 or S−
t+3,1 for round t+ 3. If St+3,0 is the state of round t+ 3, then

as before, we deduce ψ(t, T ) = 0. It the state is S−
t+3,1, we repeat the same argument as for state

t + 2. If we observe S−
T,1 for round T , then we have ψ(t, T ) = −1. Otherwise, round T would be

in state ST,0, in which case ψ(t, T ) = 0. If we observe S+
t+2,2 for round t+ 2, then we again repeat

the argument as for round t+ 1 to argue that ψ(t, T ) ∈ {0,−1}.
This finishes the proof of Lemma B.1.

B.2 PROOF OF LEMMA 4.2

Recall the definition of filtration given by F+
t := σ (Ft,∪{E(t− 1),A(t)}) for t ∈ [T ], and notice

that xt, kt are F+
t -measurable.

By the regret decomposition RT =
∑T−1

t=1 E [ψ(t, T )], we deduce that

RT =

T−1∑
t=1

E
[
E
[
ψ(t, T )

∣∣ F+
t

]]
=

T−1∑
t=1

E
[
P
(
D+(t) = 0, D−(t) = 0

∣∣ F+
t

)
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 0
]]

+

T−1∑
t=1

E
[
P
(
D+(t) = 1, D−(t) = 1

∣∣ F+
t

)
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 1, D−(t) = 1
]]

+

T−1∑
t=1

E
[
P
(
D+(t) = 0, D−(t) = 1

∣∣ F+
t

)
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]]

where the first equality holds due to the tower rule and the second equality holds since D+(t) ≤
D−(t) by our coupling process, which prevents the case where D+(t) = 1 and D−(t) = 0. For the
first part of the right-hand side, it follows from Lemma B.1 that

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 0
]
≤ 0,

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 1, D−(t) = 1
]
≤ 0.

Next, for the second part, notice that the departure disagreement event with D+(t) = 0, D−(t) = 1
occurs when

µ
(
(x+t )

Tθ∗
k+
t

)
≤ Ut,2 ≤ µ

(
(x−t )

Tθ∗
k−
t

)
, Ut,2 ∼ Unif(0, 1).

Moreover, as Q+(t) = Q(t) and (x∗t , k
∗
t ) ∈ argmaxx∈Xt,k∈[K] µ(x

Tθ∗k), we know that x+t = xt,
k+t = kt and x−t = x∗t , k−t = k∗t . Therefore, we have

P
(
D+(t) = 0, D−(t) = 1

∣∣ F+
t

)
= µ

(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

)
.
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Plugging in these observations to the above decomposition of RT , we obtain

RT ≤
T−1∑
t=1

E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]]

≤
T−1∑
t=1

√
E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]√
E
[
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]2]

where the second inequality follows from the Cauchy-Schwarz inequality. For the second square
root term,

E
[
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]2]

≤ E
[
E
[
(ψ(t, T ))

2
∣∣∣ F+

t , D
+(t) = 0, D−(t) = 1

]]
(E[X|F ]2 ≤ E[X2|F ])

= E
[
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]]

(Lemma B.1)

= E
[
ψ̃(t, T )

]
This finishes the proof.
Remark B.2. Notice that the same proof can be applied for the adversarial setting by replacing the
filtration F+

t with G+t . To be more precise, we may prove that

E[ψ(t, T )] ≤

√
E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]√
E
[
ψ̃′(t, T )

]
where G+t := σ(Gt∪{A(t)}), ψ̃′(t, T ) := E[ψ(t, T ) | G+t , D+(t) = 0, D−(t) = 1], and (x∗t , k

∗
t ) ∈

argmaxx∈Xt,k∈[K] µ(x
Tθ∗k).

C PROOFS FOR THE LEMMAS IN SECTION 5

In this section, we provide our proofs of Lemmas 5.1 to 5.4. The proof of Theorem 5.5 is deferred
to Appendix E.1.

C.1 PROOF OF LEMMA 5.1

Recall the definition of θ̂t−1,k which is the projection of the maximum likelihood estimator θ̂(1)t−1,k

following

θ̂t−1,k = argmin
θ∈Θ

∥∥∥∥∥
t−1∑
i=1

[
µ
(
xTi θ

)
− µ

(
xTi θ̂

(1)
t−1,k

)]
xi

∥∥∥∥∥
V −1
t−1,k

.

For all x ∈ X , t ∈ [T ], we have∣∣∣µ(xTθ̂t−1,k

)
− µ

(
xTθ∗k

)∣∣∣
≤ R

∣∣∣xT (θ̂t−1,k − θ∗k
)∣∣∣ (R-Lipschitz)

≤ R ∥x∥V −1
t−1,k

·
∥∥∥θ̂t−1,k − θ∗k

∥∥∥
V −1
t−1,k

(Cauchy-Schwarz)

≤ κ

2


√√√√2d log

(
1 +

1

κλ0d

t∑
i=1

1{ki = k}

)
+ log(K/δ) + S

√
λ0


︸ ︷︷ ︸

=:βt−1,k

∥x∥V −1
t−1,k

(Lemma F.3, R ≤ 1/4)

where for the last inequality, we replaced t with the actual number of the update for server k, which
is
∑t

i=1 1{ki = k}, then the last line holds with probability at least 1 − δ/K. Taking the union
bound for all k ∈ [K] finishes the proof.
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C.2 PROOF OF LEMMA 5.2

For all t ∈ [τ + 1, T ], we have

∥x∥V −1
t−1,k

≤ ∥x∥2
λ
1/2
min (Vt−1,k)

≤ ∥x∥2
λ
1/2
min (Vτ,k)

. (4)

Let N > 0 be the number of jobs matched to server k ∈ [K] during the pure-exploration period
[1, τ ]. We first show that if N is large enough, the minimum eigenvalue of Vτ,k is reduced enough
to show the proof.

Recall that in the pure-exploration phase, we immediately choose the newly arriving job with the
server in a round-robin manner. Then, we can see that N features inside Vτ,k are i.i.d. samples from
the unknown distribution D. Here, if

N ≥

(
C1

√
d+ C2

√
log(K/δ)

σ2
0

)2

+
2B

σ2
0

(5)

for some B > 0, it follows from Proposition F.5 that

λmin(Vτ,k) ≥ B

holds with probability at least 1− δ/K. Based on this, set B = 16β2
T /(ϵ− 2ϵ)2. Then, if

N ≥ C3

(
d+ log(K/δ)

σ4
0

+
16β2

T

σ2
0(ϵ− 2ε)2

)
= O

(
d log(T )

σ4
0ϵ

2

)
(6)

for some absolute constant C3 > 0, we have

λmin(Vτ,k) ≥ 16β2
T (ϵ− 2ε)2

Then, considering Equation (4), with probability at least 1− δ/K and for all t ∈ [τ + 1, T ],

∥x∥V −1
t−1,k

≤ ∥x∥2
λ
1/2
min (Vτ,k)

≤ ϵ− 2ε

4βT
≤ ϵ− 2ε

4βt−1,kt

(7)

and the desired result is achieved.

Now, we show that by our definition of τ , each of the K servers is guaranteed to get at least τ̂ > 0
i.i.d. features (Kτ̂ in total) up to round τ with probability at least 1− δ, where

τ̂ := C3

(
d+ log(K/δ)

σ4
0

+
16β2

T

σ2
0(ϵ− 2ε)2

)
.

Since in a pure exploration round, we always choose the newly arriving job for the random explo-
ration. Therefore, the total number of arrivals until round τ becomes the number of the i.i.d. features
inside Vτ,k. Now, consider the sum of A(t). Since

∑τ
t=1A(t) are the summation of i.i.d. Bernoulli

random variables with mean λτ , applying Hoeffding’s inequality

P

(
τ∑

t=1

A(t)− λτ ≤ Kτ̂ − λτ

)
≤ exp

−2 (λτ −Kτ̂)2τ︸ ︷︷ ︸
B1


if Kτ̂ ≤ λτ holds. To represent the probability in δ, setting B1 ≤ log(δ), we have

λ2τ2 −
(
2λKτ̂ +

1

2
log(1/δ)

)
τ +K2τ̂2 ≥ 0,

Solving the quadratic inequality for τ , and choosing τ as

τ :=
A1

λ2
≥ A1 +

√
A2

1 − 4λ2A2

2λ2
= O

(
d log(T )

σ4
0ϵ

2

)
,
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where

A1 = 2λKτ̂ +
1

2
log(1/δ), A2 = K2τ̂2

We can also see that τ satisfies the condition since λτ ≥ A1+
√

A2
1−4λ2A2

2λ ≥ 2λKτ̂
2λ = Kτ̂ . Therefore

by our choice of τ and τ̂

P

(
τ∑

t=1

A(t) ≥ Kτ̂

)
≥ 1− δ. (8)

Finally, we gather the results. By Equation (8) we get at least Kτ̂ i.i.d. features during the initial
τ rounds with probability at least 1 − δ. By round-robin assignment during the pure-exploration,
each server receives at least τ̂ i.i.d. features. Since τ̂ satisfies the condition in Equation (6), for each
server k ∈ [K], with probability at lest 1− δ/K, Equation (7) holds. Lastly, taking the union bound
for all servers and for Equation (8) finishes the proof.

C.3 PROOF OF LEMMA 5.3

Before we prove Lemma 5.3, we need to establish several technical results first. By our ε-greedy
policy and Assumption 3.3, we deduce following proposition.
Proposition C.1. Under the ε-greedy policy

E
[
xtx

T
t

]
⪰ λεΣ, E

[
1{kt = k}xtxTt

]
⪰ λε

K
Σ.

Proof. ε-exploration occurs with probability of ε when the new job x(t−1) arrives andA(t−1) = 1.
Therefore, by Assumption 3.3,

E
[
xtx

T
t

]
⪰ P(A(t− 1) = 1, E(t− 1) = 1)E

[
x(t−1)

(
x(t−1)

)T]
⪰ λεΣ.

Also, since we choose the server uniformly,

E
[
1{kt = k}xtxTt

]
⪰ (λε/K)Σ,

as required.

Now we provide a high probability lower bound on the minimum eigenvalue of the design matrix.

Lemma C.2. For t ∈ [τ + 1, T ], k ∈ [K], with probability at least 1 − exp
(
−λε(t−τ)

8K

)
−

d exp
(
−λε(t−τ)σ2

0

16K

)
,

λmin(Vt,k) ≥ λ0 +
λε(t− τ)σ2

0

4K
.

Proof. Consider Vt,k. We will first show a high probability bound that for some N > 0, the number
of i.i.d. sampled features inside Vt,k from τ + 1 to T is larger than N > 0. Then we will show that
if there are N (or more) i.i.d. sampled features {xi}Ni=1, then λmin(

∑N
i=1 xix

T
i ) is larger than M

for some M > 0 with high probability. Lastly, applying the union bound by considering that both
events hold, we obtain the desired result of λmin(Vt,k) ≥M with high probability.

First, define the total number of random explorations for server k from τ + 1 up to round t inside as

Et,k =

t∑
i=τ+1

1{A(i− 1) = 1, E(i− 1) = 1, ki = k} ∼ Bin(t− τ, λϵ/K)

Since E[Et,k] = λε(t− τ)/K, set

δ =
1

2
, µ = E[Et,k] =

λε(t− τ)
K

, N = δµ
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and apply the Chernoff bound (Lemma F.6), we have

P (Et,k ≥ N) = 1− P (Et,k ≤ N) ≥ 1− exp

(
−λε(t− τ)

8K

)
. (9)

Next, consider the case where Et,k ≥ N . Choose those i.i.d. sampled features and define a new
design matrix V̂t,k which consists of them as

V̂t,k =

t∑
i=1

1{A(i− 1) = 1, E(i− 1) = 1, ki = k}xixTi

Now we apply the Matrix Chernoff bound (Lemma F.7), on V̂t,k with

δ′ =
1

2
, n′ = N, M = δ′n′σ2

0

Then

P
(
λmin(V̂t,k) ≥M

∣∣∣ Et,k ≥ N
)
≥ P

(
λmin(V̂t,k) ≥M

∣∣∣ Et,k = N
)

= 1− P
(
λmin(V̂t,k) ≤M

∣∣∣ Et,k = N
)

≥ 1− d exp
(
−λε(t− τ)σ

2
0

16K

)
. (10)

Now we consider the case when both Equations (9) and (10) hold. By Equation (9) we have Et,k ≥
λε(t−τ)

2K which means that there are at least λε(t−τ)
2K i.i.d. features inside Vt,k with high probability.

Next, by Equation (10), if the number of i.i.d. features inside Vt,k is larger than λε(t−τ)
2K , we have

λmin(
∑t

i=1 1{ki = k}xixTi ) ≥
λε(t−τ)σ2

0

4K with high probability. Then

λmin(Vt,k) = λmin

(
λ0I+

t∑
i=1

1{ki = k}xixTi )

)
≥ λ0 +

λε(t− τ)σ2
0

4K
.

Next, considering the probability of both cases holds together,

P
(
Et,k ≥ N, λmin(V̂t,k) ≥M

)
= P (Et,k ≥ N)P

(
λmin(V̂t,k) ≥M

∣∣∣ Et,k ≥ N
)

≥ 1− exp

(
−λε(t− τ)

8K

)
− d exp

(
−λε(t− τ)σ

2
0

16K

)
finishing the proof.

Proof of Lemma 5.3. Now we are ready to start the proof. Define the good event Et,1 when
Lemma C.2 holds. Then under Et,1, for any x ∈ X , t ∈ [τ + 1, T ],

∥x∥2
V −1
t−1,kt

≤ ∥x∥22
λmin (Vt−1,kt)

≤
(
λ0 +

λε(t− τ − 1)σ2
0

4K

)−1

,

If Et,1 does not hold, we have ∥x∥2
V −1
t−1,kt

≤ 1/λ0. Taking expectation,

E
[
∥x∥2

V −1
t−1,kt

]
= P(Et,1)E

[
∥x∥2

V −1
t−1,kt

∣∣∣∣ Et,1]+ P(Ect,1)E
[
∥x∥2

V −1
t−1,kt

∣∣∣∣ Ect,1]
≤
(
λ0 +

λε(t− τ − 1)σ2
0

4K

)−1

+
1

λ0

(
exp

(
− (t− τ − 1)λε

8K

)
+ d exp

(
− (t− τ − 1)λεσ2

0

16K

))
(11)
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where the inequality follows from Lemma C.2. Recall the definition of ν(t− 1) which is the right-
hand side of Equation (11). Now we consider the expected value of instantaneous regret under Eg .
Let event Et,2 hold when A(t− 1) = 1 and E(t− 1) = 1 where ε-exploration is applied in round t.
Notice that if ε-exploration is not applied, we choose the job and matching server optimistically by
choosing the maximum UCB value. Therefore,

E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2 ∣∣∣∣ Eg]
= P(Et,2|Eg) + P(Ect,2|Eg)E

[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2 ∣∣∣∣ Eg, Ect,2]
≤ λε+ 1× E

[
4β2

t−1,k∥xt∥2V −1
t−1,kt

∣∣∣∣ Eg, Ect,2] (P(Et,2|Eg) = P(Et,2), Equation (20))

For the last inequality, Et,2 affects the chosen job-server pair for round t ∈ [τ + 1, T ]. However,
under the event Eg , since Lemma 5.1 holds for all x ∈ X , k ∈ [K], and Lemma 5.2 only considers
t′ ∈ [1, τ ]. Therefore, we can see that Eg and Et,2 are independent, so we have P(Et,2|Eg) = P(Et,2).
Now, for the second term,

E
[
4β2

t−1,k∥xt∥2V −1
t−1,kt

∣∣∣∣ Eg, Ect,2] ≤ E
[
max
x∈X

4β2
t−1,k∥x∥2V −1

t−1,kt

]
≤ 4β2

TE
[
max
x∈X
∥x∥2

V −1
t−1,kt

]
≤ 4β2

T ν(t− 1)

where the second inequality holds since xt is independent of Eg and we removed the dependence
of Ect,2 by taking the maximum of x, the first inequality holds since βT ≥ βt−1 ≥ βt−1,k, and
the last inequality holds since Equation (11) holds for all x ∈ X , therefore we can apply the same
upper-bound for this expectation. Substituting the result and taking min{1, ·} on both sides finishes
the proof.

C.4 PROOF OF LEMMA 5.4

For simplicity, in this section, we assume Lemmas 5.1 and 5.2 always hold (Eg always holds) and
skip the conditional notation for it.

Recall the definition of the filtration

Ft := σ(X1,A(1),D(1), E(1),A(2),D(2), E(2), . . . ,A(t− 1),D(t− 1))

Note that Ft shorts of E(t− 1) therefore Q(t) is still Ft-measurable, while xt is not.

Bad rounds. Now we define Ft-measurable bad rounds. Let us use notations

UCB(x, k) = µ
(
xTθ̂t−1,k

)
+ βt−1,k∥x∥V −1

t−1,k

and

x
(+)
t , k

(+)
t := argmax

x∈Xt,k∈[K]

UCB(x, k).

Then

B :=

t ∈ [T ], x
(+)
t , k

(+)
t :

∥∥∥x(+)
t

∥∥∥
V −1

t−1,k
(+)
t

>
ϵ− 2ε

4β
t−1,k

(+)
t


Under Ft, note that xt, kt can be different from x

(+)
t , k

(+)
t since the unseen E(t− 1) could choose

random exploration. However, sinceQ(t) is Ft-measurable, Xt, and x(+)
t , k

(+)
t also Ft-measurable.

We also introduce notation

B(t) := |{[t] ∩ B}| .
Next, we establish that for good rounds, there is a negative drift as described in the following propo-
sition.
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Proposition C.3. For all t /∈ B,

E [A(t)−D(t) | Ft] ≤ −ϵ/2

Proof. Consider Q(t − 1, T ) which corresponds to the policy-switching queue of following our
policy up to round t − 1 and switching to the optimal policy at round t. As explained in Section 4,
we may applying the coupling argument on Q(t) and Q(t − 1, T ). As they follow the same policy
up to time step t − 1, two coupled queues for Q(t) and Q(t − 1, T ) have the same queue state in
round t. Let D(t) and D̃(t − 1, t) denote the random job departures of the two coupled queues at
round t for Q(t) and Q(t− 1, T ). Note that

E [A(t)−D(t) | Ft]

= E
[
A(t)− D̃(t− 1, t)

∣∣∣ Ft

]
+ E

[
D̃(t− 1, t)−D(t)

∣∣∣ Ft

]
≤ −ϵ+ P (E(t− 1) = 1 | Ft)

+ P (E(t− 1) = 0 | Ft)E
[
D̃(t− 1, t)−D(t)

∣∣∣ Ft, E(t− 1) = 0
]

≤ −ϵ+ ε+ µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

((
x
(+)
t

)T
θ∗
k
(+)
t

)
≤ −ϵ+ ε+ 2β

t−1,k
(+)
t

∥∥∥x(+)
t

∥∥∥
V −1

t−1,k
(+)
t

≤ −ϵ/2

where the first inequality holds because D̃(t− 1, t) is due to the optimal policy and Assumption 3.4
holds, the second inequality holds because our algorithm takes x(+)

t , k
(+)
t under E(t − 1) = 0, the

third inequality is due to our optimistic choice rule, and the last inequality follows from definition
of B.

Proposition C.4. We have

B(T ) ≤ τ = O
(
d log(T )

σ4
0ϵ

2

)
Proof. The result is a direct consequence of Lemma 5.2 and the definition of B.

Queue length difference under disagreement. In this paragraph, we give the upper bound for the
expected queue length difference between two consecutive policy-switching queues. For notational
convenience, we assume that Q(t, T ) for t ∈ [T ] are coupled based on our discussion in Section 4.
Then we study the expected queue length difference Q(t, T )−Q(t− 1, T ) given the disagreement
event where Q(t, T ) fails and Q(t− 1, T ) succeeds in round t. Recall the definition of F+

T ,

F+
t := σ (Ft ∪ {E(t− 1),A(t)})

Lemma C.5. We have

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

≤ exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
.

Proof. Consider the conditional expectation

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

By Lemma B.1, if D+(t) = 0, D−(t) = 1, the value of ψ(t, T ) is in {0, 1}. Now we only consider
the case for ψ(t, T ) = 1. ψ(t, T ) = 1 means there is a disagreement event in round t as D+(t) = 0
and D−(t) = 1, and the difference of queue length is preserved until round T . Notice that if
the queue with an extra job Q+ hits 0 queue length before round T , the queue length difference
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between Q+ and Q− will always become 0 thereafter by our coupling process. This implies that
the probability of Q+(t) or Q(t, j) never hitting length 0 for all j ∈ [t + 1, T ] is larger than the
probability that the queue length difference is preserved until round T . Then, we have,

P
(
ψ(t, T ) = 1

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
)

≤ P
(
Q(t, j) > 0,∀j ∈ [t+ 1, T ]

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
)

Next, notice that Q(t + 1) is a realized value under F+
t , D

+(t) = 0, D−(t) = 1. By the queue
dynamics, the probability of Q(t, j) never hitting length 0 for all j ∈ [t + 1, T ] can be upper
bounded by the probability that the cumulative net service cannot exceed Q(t)− 1, which is

P
(
Q(t, j) > 0,∀j ∈ [t+ 1, T ]

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
)

≤ P

(
q +

T−1∑
i=t+1

(
A(i)−D+(i)

)
≥ 1

∣∣∣∣∣ F+
t , D

+(t) = 0, D−(t) = 1

)
.

Combining results, we have

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

≤ P
(
Q(t, j) > 0,∀j ∈ [t+ 1, T ]

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
)

≤ P

(
Q(t+ 1) +

T−1∑
i=t+1

(
A(i)−D+(i)

)
≥ 1

∣∣∣∣∣F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1

)

= P

(
T−1∑
i=t+1

(
D+(i)−A(i)

)
− (T − t− 1)ϵ

≤ Q(t+ 1)− 1− (T − t− 1)ϵ

∣∣∣∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1

)

≤ exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
, (Assumption 3.4, Hoeffding inequality)

where the condition of Hoeffding inequality Q(t+1) ≤ (T − t− 1)ϵ+1 always holds, and the last
inequality follows since Q+ follows the optimal algorithm after round t, thereby satisfying traffic
slackness of Assumption 3.4.

Tail bound for Q(t). The result of Lemma C.5 shows that the queue length difference under the
disagreement event can be upper-bounded by the exponential term of remaining rounds (T − t− 1)
(which suits our goal to upper bound the queue length difference with the exponential ramp) and the
queue length Q(t+ 1). Therefore, in this paragraph, we control the value of Q(t+ 1) by giving the
exponential tail bound for it.

Lemma C.6. Set η ∈ (0, ϵ/2], ρ = e−ηϵ/4, β = eη . For some a ≥ 1
η log

(
β
ρ

)
and b ≥ 0, we have

P (Q(t) ≥ aB(t− 1) + b) ≤
(
ρt−1E

[
eηQ(1)

]
+

1

1− ρ

)
︸ ︷︷ ︸

=:Cρ

e−ηb

Remark C.7. For simplicity, assume the queue starts with an empty state Q(1) = 0. Set η = ϵ/2,
ρ = e−ϵ2/8. Since 1− e−x ≥ x/2 for x ∈ [0, 1], then we can simplify Cρ = 1 + 16/ϵ2.

Proof. We start with the one-step bound for the moment generating function (mgf) of Q(t). For
some η ∈ (0, ϵ/2],

E
[
eηQ(t+1)

∣∣∣ Ft

]
= E

[
eη[Q(t)+A(t)−D(t)]+

∣∣∣ Ft

]
≤ 1 + eηQ(t)E

[
eη(A(t)−D(t))

∣∣∣ Ft

]
.
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where the inequality follows by considering both cases, where Q(t) + A(t) − D(t) < 0 gives
eη[Q(t)+A(t)−D(t)]+ = 1 andQ(t)+A(t)−D(t) ≥ 0 gives eη[Q(t)+A(t)−D(t)]+ = eηQ(t)+A(t)−D(t).
We split into 2 cases for E

[
eη(A(t)−D(t))

∣∣ Ft

]
.

(C1): If t /∈ B, by Proposition C.3 we have

E [A(t)−D(t)|Ft] ≤ −ϵ/2,

Therefore

E
[
eη(A(t)−D(t))

∣∣∣ Ft

]
= e−ηϵ/2E

[
eη(A(t)−D(t))+ηϵ/2

∣∣∣ Ft

]
≤ e−ηϵ/2eη

2/2 (|A(t)−D(t))| ≤ 1, Hoeffding lemma)

≤ e−ηϵ/4 (η ∈ (0, ϵ/2])
= ρ

(C2): If t ∈ B, we give a naive bound of

E
[
eη(A(t)−D(t))

∣∣∣ Ft

]
≤ eη = β. (|A(t)−D(t))| ≤ 1)

Substituting results for both cases yields

E
[
eηQ(t+1)

∣∣∣ Ft

]
≤ 1 + eηQ(t) (ρ1{t /∈ B}+ β1{t ∈ B}) . (12)

Remark C.8. By the initial pure-exploration round in Algorithm 1, rounds τ + 1 to T are good
(Proposition C.4). However, for rounds 1 to τ , whether a round is good or bad is not deterministic,
which means 1{t ∈ B} is Ft-measurable. This makes it hard to find a relation between eQ(t+1) and
eQ(t) from Equation (12), because eηQ(t) and (ρ1{t /∈ B}+ β1{t ∈ B}) on the right-hand side are
dependent.

Readers might think of a simple workaround: treat all rounds up to τ as bad. This is viable since
(ρ1{t /∈ B}+ β1{t ∈ B}) ≤ β and the number of bad rounds is upper bounded by Proposition C.4.
Doing so yields a deterministic set of bad rounds. Thus 1{t ∈ B} is not a random variable. Taking
expectations on both sides of Equation (12),

E
[
E
[
eηQ(t+1)

∣∣∣ Ft

]]
= E

[
eηQ(t+1)

]
≤ 1 + (ρ1{t /∈ B}+ β1{t ∈ B})E

[
eηQ(t)

]
resulting in a simple relation between E

[
eηQ(t+1)

]
and E

[
eηQ(t)

]
.

However, we do not take this detour. Instead, we provide the proof assuming 1{t ∈ B} is an Ft-
measurable random variable. The reason is to align with the proof of Algorithm 2, where, in an
adversarial context setting, 1{t ∈ B′} is a Gt-measurable random variable that cannot be known
beforehand.

Assume that 1{t ∈ B} is a random variable which is Ft measurable. Therefore, directly applying
expectation on both sides of Equation (12) will not separate eηQ(t) and (ρ1{t /∈ B}+ β1{t ∈ B})
on the right-hand side, making it hard to apply the recursive relation between E

[
eηQ(t+1)

]
on the

left side and E
[
eηQ(t)

]
on the right side. Therefore, we design a new weighted process V (t) to

avoid such problems. Define the weighted process as

V (t) =

(
β

ρ

)−B(t−1)

eηQ(t).

Lemma C.9. We have

E [V (t)] ≤ ρt−1E
[
eηQ(1)

]
+

1

1− ρ
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Proof. Recall that x(+)
t , k(+)

t , and 1{t ∈ B} are Ft-measurable. Therefore,

E [V (t+ 1) | Ft]

= E

[(
β

ρ

)−B(t)

eηQ(t+1)

∣∣∣∣∣ Ft

]

=

(
β

ρ

)−B(t−1)(
β

ρ

)−1{t∈B}

E
[
eηQ(t+1)

∣∣∣ Ft

]
≤
(
β

ρ

)−B(t−1)(
β

ρ

)−1{t∈B} (
1 + eηQ(t) (ρ1{t /∈ B}+ β1{t ∈ B})

)
(Equation (12))

Since (
β

ρ

)−1{t∈B}

(ρ1{t /∈ B}+ β1{t ∈ B}) = ρ,

we have

E [V (t+ 1) | Ft] ≤ ρ
(
β

ρ

)−B(t−1)

eηQ(t) +

(
β

ρ

)−B(t)

≤ ρV (t) + 1 (β/ρ ≥ 1)

Taking the expectation on both sides and applying the tower rule on the left-hand side gives

E [V (t+ 1)] ≤ ρE [V (t)] + 1

Solving a linear recursion, we have

E [V (t)] ≤ ρt−1E [V (1)] +

t−2∑
i=0

ρi ≤ ρt−1E
[
eηQ(1)

]
+

∞∑
i=0

ρi ≤ ρt−1E
[
eηQ(1)

]
+

1

1− ρ
,

finishing the proof.

Based on the results, we have

P (Q(t) ≥ aB(t− 1) + b) = P
(
eηQ(t) ≥ eη(aB(t−1)+b)

)
= P

(
V (t) ≥

(
β

ρ

)−B(t−1)

eη(aB(t−1)+b)

)
≤ P

(
V (t) ≥ eηb

)
where the last inequality follows from by choosing a ≥ 1

η log
(

β
ρ

)
. Under the condition of b ≥ 0,

applying Markov inequality to the right-hand side yields

P
(
V (t) ≥ eηb

)
≤ E[V (t)]

eηb
≤
(
ρt−1E

[
eηQ(1)

]
+

1

1− ρ

)
e−ηb. (Lemma C.9)

Substituting the result back finishes the proof.

Proof of Lemma 5.4. Now we are ready to start the proof. Recall the definition of F+
t , ψ̃(t, T )

and the result of Lemma C.5

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

≤ exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
.
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Our goal is to get an exponential decay of this value in terms of the number of remaining rounds
(T − t − 1) and avoid the dependence of q. Therefore, we split into 2 cases where Q(t + 1) ≤
ϵ(T−t−1)

2 and Q(t+ 1) > ϵ(T−t−1)
2 which gives

ψ̃(t, T ) = E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

= 1

{
Q(t+ 1) ≤ ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

︸ ︷︷ ︸
B1

+ 1

{
Q(t+ 1) >

ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

For term B1,

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

=

(
1{Q(t+ 1) ≤ ϵ(T − t− 1) + 1}

× E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ ϵ(T − t− 1) + 1
]

+ 1{Q(t+ 1) > ϵ(T − t− 1) + 1}

× E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) > ϵ(T − t− 1) + 1
])

Multiplying this with 1
{
Q(t+ 1) ≤ ϵ(T−t−1)

2

}
yields

1

{
Q(t+ 1) ≤ ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

≤ E
[
ψ(t, T )

∣∣∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ ϵ(T − t− 1)

2

]
Substituting a result back gives

ψ̃(t, T ) ≤ E
[
ψ(t, T )

∣∣∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ ϵ(T − t− 1)

2

]
+ 1

{
Q(t+ 1) >

ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1
]

≤ exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
+ 1

{
Q(t+ 1) >

ϵ(T − t− 1)

2

}
(Lemma C.5. Lemma 4.1)

where we can see we also meet the condition of Q(t + 1) ≤ (T − t − 1)ϵ + 1 while applying
Lemma C.5. For the first term on the right-hand side, with Q(t+ 1) ≤ ϵ(T − t− 1)/2,

exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
≤ exp

(
−
( 12 (T − t− 1)ϵ+ 1)2

2(T − t− 1)

)
≤ exp

(
−ϵ

2(T − t− 1)

8

)
(13)

Substituting the result, taking the expectation on both sides, and applying the tower rule yields

E
[
ψ̃(t, T )

]
≤ exp

(
−ϵ

2(T − t− 1)

8

)
+ P

(
Q(t+ 1) >

ϵ(T − t− 1)

2

)
︸ ︷︷ ︸

B2

. (14)

Next, we are going to apply the exponential tail bound of Lemma C.6 to term B2. Recall the lemma

P (Q(t) ≥ aB(t− 1) + b) ≤ Cρe
−ηb
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and the condition of a, b which are

a ≥ 1

η
log

(
β

ρ

)
, b ≥ 0

Set a = 2 then

a > 1 + ϵ/4 =
1

η
(η − (−ηϵ/4)) = 1

η

(
log (eη)− log

(
e−

ηϵ
4

))
=

1

η
log

(
β

ρ

)
.

We need the condition of b ≥ 0. In order to control this, we set a threshold value ω of the remaining
rounds as

ω :=
2aτ

ϵ
≥ 2aB(T )

ϵ

and split into 2 cases.

(C1): If (T − t−1) < ω, we do not apply Lemma C.6, since it means that there are not many rounds
remaining to reduce the queue length difference by emptying the queue with an extra job. Therefore,
we give a naive bound of

E
[
ψ̃(t, T )

]
≤ 1.

(C2): If (T − t− 1) ≥ ω, it means that (T − t− 1) ≥ 2aB(T )/ϵ, then

B1 = P
(
Q(t+ 1) ≥ aB(t) +

(
ϵ(T − t− 1)

2
− aB(t)

))
≤ P

(
Q(t+ 1) ≥ aB(t) +

(
ϵ(T − t− 1)

2
− aB(T )

))

≤ P

Q(t+ 1) ≥ aB(t) +
(
ϵ(T − t− 1− ω)

2

)
︸ ︷︷ ︸

≥0


≤ Cρe

−η( ϵ(T−t−1−ω)
2 ) (Lemma C.6, b ≥ 0)

Substituting this to Equation (14) and taking min{·, 1} on both sides (by Lemma 4.1) gives

E
[
ψ̃(t, T )

]
≤ min

{
1, exp

(
−ϵ

2(T − t− 1)

8

)
+ Cρ exp

(
−ηϵ(T − t− 1− ω)

2

)}
≤ min

{
1, 2Cρ exp

(
−ϵ

2

8
(T − t− 1− ω)

)}
(Cρ ≥ 1, η = ϵ/2)

Combining the results of both cases yields the desired result.

D PROOFS FOR THE LEMMAS IN SECTION 6

In this section, we provide our proofs of Proposition 6.1 and lemma 6.2. The proof of Theorem 6.3
is deferred to Appendix E.2.

For the adversarial setting, we switch the definition of the filtration to exclude E(t) as

Gt := σ(X1,A(1),D(1),A(2),D(2), . . . ,A(t− 1),D(t− 1))

Note thatQ(t) and xt are Gt-measurable. Now we define Gt-measurable bad rounds and the notation
as

B′ :=
{
t ∈ [T ] : ∥xt∥V −1

t−1,kt

>
ϵ

4βt−1,kt

}
, B′(t) := |{[t] ∩ B′}| .

We first introduce the negative drift for the good rounds
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Proposition D.1. For all t /∈ B′,

E [A(t)−D(t) | Gt] ≤ −ϵ/2 (15)

Proof. We show there is a negative drift in good rounds t /∈ B′: Recall the definition of D(t) and
D̃(t− 1, t) in the proof of Proposition C.3, which are coupled to each other. Then we have

E [A(t)−D(t) | Gt] = E
[
A(t)− D̃(t− 1, t)

∣∣∣ Gt]+ E
[
D̃(t− 1, t)−D(t)

∣∣∣ Gt]
≤ −ϵ+ µ

(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

)
(Assumption 3.4, coupling process)

≤ −ϵ+ 2βt−1,kt∥xt∥V −1
t−1,kt

(Equation (20))

≤ −ϵ/2. (t /∈ B′)

D.1 PROOF OF PROPOSITION 6.1

We show that there are few bad rounds.

|B′|
(

ϵ

4βT

)2

≤
∑
t∈B′

min

{
1,

(
ϵ

4βt−1,kt

)2
}

(βt ≥ βt,k, (βt)t increasing in t, 4βT ≥ 1, 1 > ϵ > 0)

≤
T∑

t=1

min

{
1, ∥xt∥2V −1

t−1,kt

}
(t ∈ B′)

≤ 2Kd log(1 + T/(dKκλ0)). (Lemma F.1)

Moving the term on the left-hand side yields the result.

D.2 PROOF OF LEMMA 6.2

The proof follows the same argument as Lemma 5.4. We therefore omit the details when the process
of the proof is identical. We again assume that Eg holds for this section and skip the conditional
notation of it.

First, define a filtration as

G+t := σ (Gt ∪ {A(t)})

Now, consider the queue length difference under the disagreement (with the condition ofQ(t+1) ≤
(T − t− 1)ϵ+ 1), defined as

E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

Recall the previous definition of the filtration and the corresponding queue length difference under
the disagreement for Algorithm 1, which are

F+
t := σ (Ft ∪ {E(t− 1),A(t)}) ,

E
[
ψ(t, T )

∣∣ F+
t , D

+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

The expected value is conditioned on F+
t , D+(t) = 0, D−(t) = 1, and Q(t + 1), which means

the value of the conditional expectation is only affected by the situation after round t. Meanwhile,
from round t + 1 to T , ψ(t, T ) follows the optimal policy and is irrelevant to whether we followed
Algorithm 1 or Algorithm 2 until round t. Thereby, we can simply follow the same proof and reuse
the result of Lemma C.5, which is

E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1, Q(t+ 1) ≤ (T − t− 1)ϵ+ 1
]

≤ exp

(
− (Q(t+ 1)− 1− (T − t− 1)ϵ)2

2(T − t− 1)

)
. (16)
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Next, we consider the tail bound for Q(t). Recall that Q(t) and B′(t) are Gt-measurable random
variables. As noted in Remark C.8, although in Algorithm 1, 1{t ∈ B} is deterministic by the
pure-exploration round, we develop the proof as if it is Ft-measurable random variable. Also in
Proposition D.1, we show the negative drift in good rounds conditioned on Gt. Therefore, we can
exactly follow the proof of Lemma C.6, simply replacing B with B′, and Ft with Gt and get the
same result of

P (Q(t) ≥ aB′(t− 1)) + b) ≤ Cρe
−ηb (17)

Now we are ready to start the proof. For the queue length Q(t + 1), we split into 2 cases where
Q(t+ 1) ≤ ϵ(T−t−1)

2 and Q(t+ 1) > ϵ(T−t−1)
2 and proceed as

E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1
]

= 1

{
Q(t+ 1) ≤ ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1
]

+ 1

{
Q(t+ 1) >

ϵ(T − t− 1)

2

}
E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1
]

≤ exp

(
−ϵ

2(T − t− 1)

8

)
+ 1

{
Q(t+ 1) >

ϵ(T − t− 1)

2

}
. (Equations (13) and (16))

Recall the definition of ψ̃′(t, T ) := E
[
ψ(t, T )

∣∣ G+t , D+(t) = 0, D−(t) = 1
]
. Taking the expecta-

tion on both sides

E
[
ψ̃′(t, T )

]
≤ exp

(
−ϵ

2(T − t− 1)

8

)
+ P

(
Q(t+ 1) >

ϵ(T − t− 1)

2

)
(18)

Set a = 2 and a threshold value ω as

ω′ :=
2a

ϵ

(
2Kd log(1 + T/(dKκλ0))

(
4βT
ϵ

)2
)
≥ 2aB′(T )

ϵ
(Proposition 6.1)

Now for the second term of Equation (18), we split into 2 cases.

(C1): If (T − t− 1) < ω′, we give a naive bound as

E
[
ψ̃′(t, T )

]
≤ 1.

(C2): If (T − t− 1) ≥ ω′, then

P
(
Q(t+ 1) >

ϵ(T − t− 1)

2

)
= P

(
Q(t+ 1) ≥ aB′(t) +

(
ϵ(T − t− 1)

2
− aB′(t)

))
≤ P

(
Q(t+ 1) ≥ aB′(t) +

(
ϵ(T − t− 1)

2
− aB′(T )

))

≤ P

Q(t+ 1) ≥ aB′(t) +
(
ϵ(T − t− 1− ω′)

2

)
︸ ︷︷ ︸

≥0


≤ Cρe

−η
(

ϵ(T−t−1−ω′)
2

)
(Equation (17), a = 2, b ≥ 0)

Substituting the result to Equation (18) and taking min{·, 1} on both sides yields

E
[
ψ̃′(t, T )

]
≤ min

{
1, exp

(
−ϵ

2(T − t− 1)

8

)
+ Cρ exp

(
−ηϵ(T − t− 1− ω′)

2

)}
≤ min

{
1, 2Cρ exp

(
−ϵ

2

8
(T − t− 1− ω′)

)}
((Cρ ≥ 1, η = ϵ/2)

finishing the proof.
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E REGRET ANALYSES

E.1 PROOF OF THEOREM 5.5

Recall the definition of the good event Eg where both Lemmas 5.1 and 5.2 hold. Then, by the union
bound, P(Eg) ≥ 1− 3δ. By the regret decomposition result given in Lemma 4.2,

RT ≤
T−1∑
t=1

√
E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]
︸ ︷︷ ︸

=:mt

√
E
[
ψ̃(t, T )

]
︸ ︷︷ ︸

=:δt

.

Let us consider mt. For t ∈ [1, τ ], we give a naive bound of 1. For t ∈ [τ + 1, T ],

m2
t ≤ P(Ecg) + P(Eg)E

[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2 ∣∣∣∣ Eg]
≤ 3δ +min{1, λϵ+ 4β2

T ν(t− 1)} (Lemma 5.3)

Applying square root and min{1, ·} on both sides

mt ≤ min

{
1,
√
3δ +

√
λε+ 4β2

T ν(t− 1)

}
Combining these, we obtain

mt ≤Mt :=

{
1 if t ≤ τ
min

{
1,
√
3δ +

√
λε+ 4β2

T ν(t− 1)
}

if t > τ,

where {Mt}t∈[T ] gives rise to a nonincreasing sequence.

Next we consider term δt. For t > T − ω − 1, we give a bound of 1. For t ≤ T − ω − 1, we have

δ2t ≤ P(Ecg) + P(Eg)E
[
ψ̃(t, T ) | Eg

]
(Lemma 4.1)

≤ 3δ +min

{
1, 2Cρ exp

(
−ϵ

2

8
(T − t− 1− ω)

)}
. (Lemma 5.4)

Applying square root and min{1, ·} on both sides

δt ≤ min

{
1,
√
3δ +

√
2Cρ exp

(
− ϵ

2

16
(T − t− 1− ω)

)}
Then we deduce that

δt ≤ ∆t :=

{
min

{
1,
√
3δ +

√
2Cρ exp

(
− ϵ2

16 (T − t− 1− ω)
)}

if t ≤ T − ω − 1

1 if t > T − ω − 1,

where {∆t}t∈[T ] gives rise to a nondecreasing sequence. Consequently, we obtain

RT ≤
T−1∑
t=1

Mt∆t.

Since {Mt}t∈[T ] is nonincreasing in t and {∆t}t∈[T ] is nondecreasing in t, applying Chebyshev’s
sum inequality (Lemma F.4) gives

RT ≤
1

T − 1

(
T−1∑
t=1

Mt

)(
T−1∑
t=1

∆t

)
. (19)
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For the summation of Mt’s,
T−1∑
t=1

Mt =

τ∑
t=1

Mt +

T−1∑
t=τ+1

Mt

≤ τ + (T − τ − 1)O
(
T−1

)
+ (T − τ − 1)

√
λε+ 2βT

T−1∑
t=τ+1

√
ν(t− 1)

≤ O
(
d log(T )

σ4
0ϵ

2

)
+O (1) + T

√
λε+ 2βT

T−1∑
t=τ+1

(
λ0 +

λε(t− τ − 1)σ2
0

4K

)−1/2

︸ ︷︷ ︸
B1

+ 2βT

T−1∑
t=τ+1

1√
λ0

(
exp

(
− (t− τ − 1)λε

16K

)
+
√
d exp

(
− (t− τ − 1)λεσ2

0

32K

))
︸ ︷︷ ︸

B2

.

For term B1,

B1 ≤
1√
λ0

+

∫ T−1

t=τ+1

(
λ0 +

λε(t− τ − 1)σ2
0

4K

)−1/2

dt ≤ 1√
λ0

+
4K

σ0
√
λε

√
T .

For term B2, by applying the geometric-series formula, we obtain

B2 ≤
1√
λ0

(
1

1− e−λε/(16K)
+

d

1− e−λεσ2
0/(32K)

)
≤ 1√

λ0

(
16K

λε
+

32
√
dK

λεσ2
0

)
where the second inequality holds because 1 − e−x ≥ x/2 for x ∈ (0, 1]. Using the bouns on B1

and B2 with ε = T−1/2 yields
T−1∑
t=1

Mt ≤ O
(
d log(T )

σ4
0ϵ

2

)
+O (1) + T

√
λε

+ 2βT

(
1√
λ0

+
4K

σ0
√
λε

√
T

)
+

2βT√
λ0

(
16K

λε
+

32
√
dK

λεσ2
0

)

= O

(
d log(T )

σ4
0ϵ

2
+ T 3/4 +

d1/2T 3/4 log1/2(T )

σ0
+
dT 1/2 log1/2(T )

σ2
0

)
Next, for the summation of ∆t’s,

T−1∑
t=1

∆t ≤ ω + (T − ω − 1)O
(
T−1

)
+

T−ω−1∑
t=1

√
2Cρ exp

(
− ϵ

2

16
(T − t− 1− ω)

)

≤ 2aτ

ϵ
+O (1) +

√
2Cρ

1− e−ϵ2/16

= O
(
d log(T )

σ4
0ϵ

3
+

1

ϵ3

)
(1− e−x ≥ x/2, x ∈ (0, 1])

= O
(
d log(T )

σ4
0ϵ

3

)
Finally, plugging in the bounds on the summation terms to Equation (19), we have

RT ≤
1

T − 1
O

(
d2 log2(T )

σ8
0ϵ

5
+
dT 3/4 log(T )

σ4
0ϵ

3
+
d3/2T 3/4 log3/2(T )

σ5
0ϵ

3
+
d2T 1/2 log3/2(T )

σ6
0ϵ

3

)

= O

(
d2T−1 log2(T )

σ8
0ϵ

5
+
dT−1/4 log(T )

σ4
0ϵ

3
+
d3/2T−1/4 log3/2(T )

σ5
0ϵ

3
+
d2T−1/2 log3/2(T )

σ6
0ϵ

3

)
,

as required.
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E.2 PROOF OF THEOREM 6.3

Recall the definition of the good event E ′g where Lemma 5.1 holds. We have P(E ′g) ≥ 1 − δ. By a
modification of Lemma 4.2 for the adversarial setting explained in Remark B.2, we deduce that

RT ≤
T−1∑
t=1

√
E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]√
E
[
ψ̃′(t, T )

]

≤

√√√√T−1∑
t=1

E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]
︸ ︷︷ ︸

B1

√√√√T−1∑
t=1

E
[
ψ̃′(t, T )

]
︸ ︷︷ ︸

B2

(Cauchy-Schwarz)

For term B1,

E
[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2]
≤ P(E ′cg ) + P(E ′g)E

[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2 ∣∣∣∣ E ′g]
≤ O

(
T−1

)
+ E

[(
µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

))2 ∣∣∣∣ E ′g]
as P(E ′cg ) ≤ δ and δ ∈ (0, T−1]. For the second term on the right-hand side, under the event E ′g ,

µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

)
≤ µ

(
(x∗t )

Tθ̂t−1,k∗
t

)
+ βt−1,k∗

t
∥x∗t ∥V −1

t−1,k∗
t

− µ
(
xTt θ

∗
kt

)
≤ µ

(
(xt)

Tθ̂t−1,kt

)
+ βt−1,kt∥xt∥V −1

t−1,kt

− µ
(
xTt θ

∗
kt

)
≤ 2βt−1,kt

∥xt∥V −1
t−1,kt

where the second inequality holds due to our optimistic choice. As the left-hand side is at most 1 as
well, it follows that

µ
(
(x∗t )

Tθ∗k∗
t

)
− µ

(
xTt θ

∗
kt

)
≤ min

{
1, 2βt−1,kt∥xt∥V −1

t−1,kt

}
. (20)

Combining the bounds,

B1 ≤

√√√√O (1) + E

[
T−1∑
t=1

min

{
1, 4β2

t−1,kt
∥xt∥2V −1

t−1,kt

} ∣∣∣∣∣ E ′g
]

≤ 2βT

√√√√O (1) + E

[
T−1∑
t=1

min

{
1, ∥xt∥2V −1

t−1,kt

} ∣∣∣∣∣ E ′g
]

≤ 2βT
√
O (1) + 2Kd log(1 + T/(dKκλ0))

= O (d log(T ))

where the second inequality follows from the fact that βt ≥ βt,k and {βt}t∈[T ] is monotonically
increasing in t, while the third inequality is due to Lemma F.1. Moreover, we have

4βT ≥ 64R2κ2 log(1/δ) ≥ 32 log(T ) ≥ 1,

for all δ ∈ (0, 1/
√
T ] and T ≥ 2. Thereforem we can use min{1, ab} ≤ amin{1, b} if a ≥ 1 to

pull out βT out of min{1, ·}.
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Next, for term B2,

(B2)
2 =

T−1∑
t=1

E
[
ψ̃′(t, T )

]
= P(E ′cg )

T−1∑
t=1

E
[
ψ̃′(t, T ) | E ′cg

]
+

T−ω−1∑
t=1

E
[
ψ̃′(t, T ) | E ′g

]
+

T−1∑
t=T−ω

E
[
ψ̃′(t, T ) | E ′g

]

≤ O (1) + ω +

T−ω−1∑
t=1

2Cρ exp

(
−ϵ

2

8
(T − t− 1− ω)

)

≤ O
(
d2 log2(T )

ϵ3

)
+ 2Cρ

1− e−ϵ2(T−ω−1)/8

1− e−ϵ2/8

≤ O
(
d2 log2(T )

ϵ3

)
+

32Cρ

ϵ2
(1− e−x ≥ x/2, x ∈ (0, 1])

= O
(
d2 log2(T )

ϵ3
+

1

ϵ4

)
where the first inequality follows from Lemmas 4.1 and 5.4 while the third inequality holds since
ϵ2/8 ≤ 1. Substituting term B1 and term B2 back gives

RT = O
(
d2 log2(T )

ϵ1.5
+
d log(T )

ϵ2

)
.

F AUXILIARY LEMMAS

Lemma F.1. We have
t∑

i=1

min

{
1, ∥xi∥2V −1

i−1,ki

}
≤ 2Kd log (1 + t/(dKκλ0)) .

Proof. Recall the definition of Vt,k = κλ0I+
∑t

i=1 1{ki = k}xixTi . Then,

t∑
i=1

min

{
1, ∥xi∥2V −1

i−1,ki

}
=

K∑
k=1

t∑
i=1

1{ki = k}min
{
1, ∥xi∥2V −1

i−1,k

}
≤ 2

K∑
k=1

log
detVt,k
detκλ0I

≤ 2

(
K log det

(
1

K

K∑
k=1

Vt,k

)
−K log det(κλ0I)

)

= 2K log det

(
t∑

i=1

1

Kκλ0
xix

T
i + I

)
≤ 2Kd log (1 + t/(dKκλ0)) ,

where the first inequality follows from the elliptical potential lemma (Lemma F.2), the second
inequality follows from the concavity of log det(·), and the last inequality follows from the
determinant-trace inequality (Lemma 10 of Abbasi-Yadkori et al. (2011)).

Lemma F.2 (Elliptical potential lemma, Lemma 11 of Abbasi-Yadkori et al. (2011)). For any λ > 0

and sequence {xt}Tt=1 ∈ Rd, define Zt = λI +
∑t

i=1 xix
⊤
i . Then, provided that ∥xt∥2 ≤ L holds

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

for all t ∈ [T ], we have

T∑
t=1

min
{
1, ∥xt∥2Z−1

t−1

}
≤ 2 log

detZT

detλI
≤ 2d log

(
1 +

TL2

dλ

)
Lemma F.3 (Lemma 12 of Faury et al. (2020)). Let the maximum likelihood estimator of the regu-
larized cross-entropy loss as θ̂(1)t and define its projection as

θ̂t = argmin
θ∈Θ

∥∥∥∥∥
t∑

i=1

[
µ
(
xTi θ

)
− µ

(
xTi θ̂

(1)
t

)]
xi

∥∥∥∥∥
V −1
t

where Vt = λ0I+
∑t

i=1 xix
T
i . Define a confidence set and βt as

Ct =
{
θ ∈ Θ :

∥∥∥θ − θ̂t∥∥∥
Vt

≤ 2κβt

}
, βt =

√
2d log

(
1 +

t

κλ0d

)
+ log(1/δ) + S

√
λ0.

Then, with probability at least 1− δ,

∀t ≥ 1, θ∗ ∈ Ct.

Lemma F.4 (Chebyshev sum inequality). If (ai)ti=1 is nondecreasing and (bi)
t
i=1 is nonincreasing,

and ai, bi ≥ 0, we have
t∑

i=1

aibi ≤
1

t

(
t∑

i=1

ai

)(
t∑

i=1

bi

)
.

Proposition F.5 (Proposition 1 of Li et al. (2017)). Define Vt =
∑t

i=1 xix
T
i , where xi is drawn i.i.d.

from some unknown distribution ν with support in the unit ball, Bd. Furthermore, let Σ := E[xixTi ]
be the second moment matrix, andB and δ > 0 be two positive constants. Then, there exists absolute
constants C1, C2 > 0 such that λmin(Vt) ≥ B with probability at least 1− δ, as long as

t ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

Lemma F.6 (Multiplicative Chernoff bound). Suppose X1, . . . , Xn ∈ {0, 1} are independent ran-
dom variables. Let X denote their sum and µ = E[X]. Then for any 0 ≤ δ ≤ 1,

P(X ≤ (1− δ)µ) ≤ exp
(
−δ2µ/2

)
.

Also, for any δ ≥ 0,

P(X ≥ (1 + δ)µ) ≤ exp
(
−δ2µ/(2 + δ)

)
.

Lemma F.7 (Matrix Chernoff bound). Let X ∈ Rd be a random vector with ∥X∥2 ≤ 1 and
E[XXT] ⪰ σ2

0I for some σ0 > 0. Suppose X1, . . . , Xn be i.i.d. sampled vectors and define
Vn =

∑n
i=1XiX

T
i . Then for any 0 ≤ δ < 1,

P
(
λmin(Vn) ≤ (1− δ)nσ2

0

)
≤ d

(
e−δ

(1− δ)1−δ

)nσ2
0

≤ d exp
(
−δ

2nσ2
0

2

)

G DISCUSSIONS

Algorithm design and regret bounds. We clarify the design of CQB-ε and its relation to classical
explore–then–commit (ETC) strategies. At first glance, CQB-ε resembles ETC, which is known
to be suboptimal in instance-independent regret compared to UCB- or Thompson sampling–based
approaches, but its structure is different.

CQB-ε has two phases: phase 1 is pure exploration and phase 2 is mainly exploitation, yet still
enforces exploration via uniform exploration steps and UCB-based job–server selection. Unlike
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classical ETC, we do not assume a large gap ∆ between the best and second-best arms, and phase 1
is tuned to create a negative drift rather than to shrink uncertainty below ∆/2. Without a large-gap
assumption, pure exploitation in phase 2 is impossible, which motivates the UCB-based rule.

Now for the regret, our analysis relies on the bound RT ≤
∑T

t=1

√
E[µ2

∆,t]

√
E[ψ̃(t, T )], where

µ∆,t is the instantaneous service-rate gap and ψ̃(t, T ) measures how a decision at time t propagates
through the queue up to horizon T . The ε-exploration in phase 2 is specifically designed to enforce
opposite monotonic behavior in E[µ∆,t] and E[ψ̃(t, T )], which allows us to minimize this weighted
sum and apply Chebyshev’s sum inequality, yielding the decaying queue length regret of order
O(T−1/4).

If one were to apply a vanilla ETC or UCB algorithm directly to the queueing bandit problem,
this monotonicity structure would not hold and the above decomposition would not give a decaying
queue length regret; for UCB, one instead obtains a non-decaying bound of order O(log2 T ), as in
Algorithm 2. This explains why our regret rates are neitherO(T−1/3) (classical ETC) norO(T−1/2)
(standard contextual bandits), but rather O(T−1/4) for CQB-ε and O(log2 T ) for CQB −Opt.

RL with queueing states. We briefly relate our framework to the recent work of Murthy et al.
(2024), which studies RL with queueing states in a countable state-space average-cost setting. While
their problem is close in spirit to queueing bandits, their formulation does not directly encompass
ours for the following reasons.

First, Murthy et al. (2024) assumes a countable state space, whereas contextual queueing bandits
naturally lead to an uncountable state space: our framework allows arbitrary context vectors from
a continuous domain, and each state is represented by the list of remaining job context features.
Second, their regret bound contains an approximation term arising from Q-function estimation via
neural networks, of the form c′′T where c′′ upper-bounds the approximation error. If this black-
box error is non-negligible, the resulting regret bound can be large and even grow linearly in T . In
contrast, our analysis does not rely on a generic function approximator. Third, their regret notion
is defined via the cumulative average queue length, whereas our queue length regret is the instanta-
neous gap between the queue length under our policy and that under an optimal policy in expectation.
It is not clear whether a sublinear bound under their metric would translate into a decaying bound
under ours.

Coupling argument in multi-queue setting. This suggests an interesting direction for future
work. At a high level, defining a coupling argument for the multi-queue setting is straightforward.
However, the real difficulty arises when checking whether the good structural properties for the
single-queue case would still continue to hold. Lemma 4.1 states that ψ(t, T ) ∈ {−1, 0, 1}, i.e., the
difference between the queue lengths under two consecutive policy-switching queues is always in
{−1, 0, 1}. However, when we allow multiple queues, it is not as straightforward to control ψ(t, T ),
making it difficult to directly extend our analysis to the multi-queue setting.

To illustrate this difficulty, let us consider a discrete-time system with two queues and one server.
In each time slot, the server can serve one job from a chosen nonempty queue, and service is de-
terministic. The two coupled systems see identical arrivals. Define the policy π∗ as follows: in
state (Q1(t), Q2(t)), if Q1(t) < Q2(t) serve queue 1, if Q2(t) < Q1(t) serve queue 2, and if
Q1(t) = Q2(t) > 0 serve queue 1. Initially, Q+

1 (0) = Q−
1 (0) = 2 and Q+

2 (0) = Q−
2 (0) = 2.

In time slot t = 1, π∗ serves queue 1, while our policy makes a mistake and serves queue 2, and
there is no job arrival. Thus (Q−

1 (1), Q
−
2 (1)) = (1, 2) and (Q+

1 (1), Q
+
2 (1)) = (2, 1). For t ≥ 2

both systems use π∗. The arrivals are (A1(2), A2(2)) = (0, 0) and (A1(t), A2(t)) = (1, 1) for
all t ≥ 3. One checks by induction that for all t ≥ 2 we have (Q−

1 (t), Q
−
2 (t)) = (0, t) and

(Q+
1 (t), Q

+
2 (t)) = (t, 0), hence Q+

1 (t)−Q
−
1 (t) = t.

Define ψi(1, T ) := Q+
i (T ) − Q

−
i (T ) for i ∈ {1, 2}. Then for all T ≥ 2 we get ψ1(1, T ) = T , so

the per-queue difference grows linearly in T even though the two systems differ only at a single time
slot. In this example, we know that ψ1(1, T ) +ψ2(1, T ) = 0, but the individual terms ψ1(1, T ) and
ψ2(1, T ) are not necessarily bounded. This suggests that we need a more sophisticated analysis for
the multi-queue setting. Therefore, it seems difficult to directly carry over our single-queue analysis
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to the multi-queue setting and still obtain meaningful bounds. Handling such multi-queue systems
is a non-trivial but important problem, and we leave it as future work.

Dependence on the slackness parameter. We briefly comment on the role of the slackness pa-
rameter in our pure-exploration phase. In our analysis it is sufficient to know a lower bound on ε in
order to relax the corresponding condition. We also view it as an interesting direction for future work
to design algorithms that achieve a decaying queue length regret even when no such lower bound is
available. Possible approaches include shifting the dependence on ε to an external parameter (e.g.,
designing algorithms guaranteed to work when T is chosen as a function of 1/ε), or developing
procedures that adaptively estimate ε over time.

Preemptive policy class and work conservation. We clarify here which policy class we study
and how it relates to the non-work-conserving routing policies in Jali et al. (2024); Lin & Kumar
(1984). Our model follows the queueing bandit framework of Krishnasamy et al. (2016), where in
each time slot a single job is selected from the central queue and assigned to a server. This is directly
analogous to a multi-armed bandit problem, and our contribution is to enrich this framework with
contextual information for individual jobs. In this baseline formulation, one can view the system
as having a single active server per time slot, so our analysis indeed focuses on work-conserving
policies that always serve a job whenever the queue is nonempty.

The framework can be extended to multiple servers by selecting, in each time slot, a maximum-
weight matching between jobs and servers based on their contextual service rates. Since our model
permits preemption, idling an available server while jobs are waiting does not improve performance,
so it suffices to focus on work-conserving policies in this preemptive setting.

By contrast, Jali et al. (2024); Lin & Kumar (1984) study non-preemptive scheduling, where once a
job is assigned to a server it cannot be interrupted. In that setting, non-work-conserving policies can
indeed be beneficial for queue length and latency: a job may prefer to wait in the central queue for a
better-matched server rather than being routed immediately to a sub-par one. Thus, the main distinc-
tion is that our preemptive queueing bandit model justifies focusing on work-conserving policies,
whereas the non-preemptive models in Jali et al. (2024); Lin & Kumar (1984) naturally motivate
non-work-conserving routing rules.

H USE OF LARGE LANGUAGE MODELS

This manuscript is reviewed and edited for grammar and clarity using ChatGPT-5.
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