

QUEUE LENGTH REGRET BOUNDS FOR CONTEXTUAL QUEUEING BANDITS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We introduce *contextual queueing bandits*, a new context-aware framework for
 012 scheduling while simultaneously learning unknown service rates. Individual jobs
 013 carry heterogeneous contextual features, based on which the agent chooses a job
 014 and matches it with a server to maximize the departure rate. The service/departure
 015 rate is governed by a logistic model of the contextual feature with an unknown
 016 server-specific parameter. To evaluate the performance of a policy, we consider
 017 *queue length regret*, defined as the difference in queue length between the pol-
 018 icy and the optimal policy. The main challenge in the analysis is that the lists of
 019 remaining job features in the queue may differ under our policy versus the opti-
 020 mal policy for a given time step, since they may process jobs in different orders.
 021 To address this, we propose the idea of policy-switching queues equipped with a
 022 sophisticated coupling argument. This leads to a novel queue length regret decom-
 023 position framework, allowing us to understand the short-term effect of choosing
 024 a suboptimal job-server pair and its long-term effect on queue state differences.
 025 We show that our algorithm, CQB- ϵ , achieves a regret upper bound of $\tilde{\mathcal{O}}(T^{-1/4})$.
 026 We also consider the setting of adversarially chosen contexts, for which our sec-
 027 ond algorithm, CQB-Opt, achieves a regret upper bound of $\mathcal{O}(\log^2 T)$. Lastly, we
 028 provide experimental results that validate our theoretical findings.

1 INTRODUCTION

031 Queueing systems play an important role in modern service platforms such as cloud job sched-
 032 ulers, personalized recommendation systems, ride-hailing, delivery marketplaces, call centers, and
 033 large-scale LLM inference (Neely, 2010; Aksin et al., 2007; Yang et al., 2024; Fu et al., 2024;
 034 Mitzenmacher & Shahout, 2025; Lee et al., 2024a). A central difficulty in these platforms is the
 035 necessity to account for individual jobs with diverse features and contexts, such as job sizes, power
 036 usage, user profiles, and compatible devices, when assigning them to processors. Providing such
 037 context-aware service is crucial to improving overall service quality. However, once heterogeneous
 038 contextual features are allowed for different jobs, assuming a priori knowledge of service (departure)
 039 rates for all job-server pairs is unrealistic. This motivates real-time scheduling algorithms that si-
 040 multaneously learn unknown context-dependent service rates from observed queue dynamics while
 041 making job-server assignments in real time.

042 There has been a substantial body of work on scheduling in uncertain environments, where the
 043 scheduler must simultaneously learn unknown system parameters while making job-server alloca-
 044 tion decisions. Among these efforts, approaches that model the problem of learning unknown service
 045 rates using multi-armed bandit formulations have received significant attention (Krishnasamy et al.,
 046 2016; Gaitonde & Tardos, 2020; Choudhury et al., 2021; Stahlbuhk et al., 2021; Sentenac et al.,
 047 2021; Hsu et al., 2022; Freund et al., 2022; Yang et al., 2023; Huang et al., 2024; Krishnakumar
 048 & Sinha, 2025). In particular, frameworks that minimize the notion of *queue length regret* (Krish-
 049 nasamy et al., 2016; Stahlbuhk et al., 2021; Krishnakumar & Sinha, 2025), defined as the difference
 050 in queue length under a given policy versus the optimal policy, provide a useful lens for developing
 051 and analyzing algorithms that ensure stability even when service rates are unknown. However, these
 052 existing works on queue length regret do not take into account individual job contexts.

053 Recently, Kim & Oh (2024) consider a context-aware approach in which each queue is assigned a
 054 fixed contextual vector, and all jobs within the same queue share the same context. Then a job in

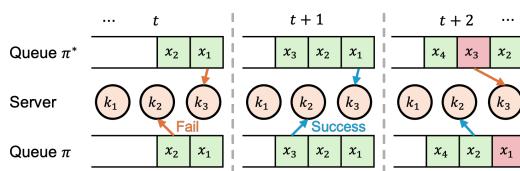


Figure 1: Illustration of the queueing processes under our policy π and the optimal policy π^* in *contextual queueing bandits* with three servers. Due to a suboptimal choice by our policy π in round $t + 1$, the queue states diverge in round $t + 2$, where we call this *queue state misalignment*.

a queue is allocated to a server whose service rate is determined by the contextual vector and the unknown parameter of the server. However, since it is required for their model to fix the number of distinct queues, it does not fully support heterogeneous contexts for different jobs. Another issue is that they define regret to maximize the cumulative weight sum for the MaxWeight algorithm, which is far from capturing queue length regret.

Motivated by these limitations, we propose *contextual queueing bandits*, a new context-aware framework to learn unknown service rates where jobs arrive with heterogeneous contextual features, the agent selects a job-server pair for assignment in each time step, and the service/departure rate is determined by a logistic model with the contextual feature and the unknown server-specific parameter. We present two algorithms, CQB- ϵ and CQB-Opt, and evaluate the policies via the notion of queue length regret. Unlike previous work that assumes a fixed context for each queue, allowing heterogeneous contexts brings about a specific challenge. That is, the context features of the remaining jobs in a queue under our policy may differ from those under the optimal policy, since the two distinct policies may take different job processing orders. We call this phenomenon *queue state misalignment*, illustrated in Figure 1. Addressing this issue is the main challenge in analyzing algorithms designed to minimize queue length regret. Our contributions are summarized below in detail.

- We introduce *contextual queueing bandits*, a novel context-aware framework for scheduling and queueing system control while simultaneously learning unknown service rates. Jobs carry *heterogeneous context* information, based on which the agent selects a job and assigns it to a server so that the departure rate is maximized. The departure rate is given by a feature-based logistic model, whose parameter is unknown to the agent. To evaluate policies, we take *queue length regret*, which is defined as the difference in queue length under a given policy versus the optimal policy. This is the first work to establish a provable decay rate for queue length regret under contextual queueing bandit settings.
- The main challenge in analyzing queue length regret is that, for a given time step, the list of remaining job features in the queue under our policy may differ from the remaining feature list under the optimal policy. This happens because our policy may process jobs in a different order from the optimal policy. We refer to this as *queue state misalignment*, which makes it difficult to compare the queue states under two distinct policies for a given time step. To address this, we take *policy-switching queues* which follow our policy up to a certain round and then switch to the optimal policy thereafter. This lets us decompose queue length regret into a telescoping sum, each of whose terms is the difference in queue length between two policy-switching queues whose moments of switching differ by exactly one round. Under this alignment technique, equipped with a sophisticated coupling argument, we can provide an upper bound on each term given by the product of (i) the difference in departure rates for the round when two consecutive policy-switching queues apply different policies and (ii) the long-term impact of queue state differences at the end of time horizon.
- We show that our algorithm, CQB- ϵ , achieves a queue length regret bound of $\tilde{O}(T^{-1/4})$, which vanishes for large T . To achieve the decaying bound, our algorithm proceeds with two phases; it goes through a *pure-exploration* phase first and switches to an ϵ -*greedy* policy. We can argue that the gap between service rates for the job-server pairs under the algorithm and the optimal policy is nonincreasing. Furthermore, we show that the impact of policy switching in one round on queue state differences at the end of time horizon is nondecreasing. Combining these two via Chebyshev’s sum inequality, we provide the desired queue length regret upper bound.

108 • We also consider the setting where job contexts are chosen by the adversary. For the ad-
 109 versarial setting, our second algorithm, CQB-Opt, achieves a queue length regret upper
 110 bound of $\mathcal{O}(\log^2 T)$. The main difficulty for the analysis is that it is hard to uniformly con-
 111 trol the *uncertainty term*, which is defined to capture the magnitude of the selected feature
 112 vector relative to the previously chosen ones and its directional deviation from them. In
 113 contrast, for the stochastic setting, we observe a smooth transition from a phase where the
 114 uncertainty term is large to another phase where it is small, based on which we develop
 115 the two phase structure of CQB- ε . However, for the adversarial setting, the uncertainty
 116 term can still be large even towards the end of time horizon. To get around this issue, we
 117 instead count the total number of such rounds and analyze the underlying randomness in
 118 their occurrence. This lets us apply the coupling-based queue length regret decomposition
 119 technique, subject to incurring a poly-logarithmic term in the regret upper bound.

120 We again emphasize that our analysis and proof techniques are novel, developed to characterize
 121 queue length regret under queue state misalignment. In particular, our queue length regret decom-
 122 position approach lets us understand the short-term effect of choosing a suboptimal job-server pair
 123 and its long-term effect on queue state differences, which is of independent interest.

2 RELATED WORK

124 **Queueing Bandits.** Krishnasamy et al. (2016) introduce the framework of queueing bandits for
 125 modeling queueing system control problems where learning unknown service rates is required while
 126 scheduling jobs. By leveraging connections with multi-armed bandits and, at the same time, discov-
 127 ering queueing-specific dynamics, they establish a decaying upper bound on queue length regret.
 128 This work has motivated a significant body of follow-up work on designing algorithms for schedul-
 129 ing while learning unknown service rates based on bandit learning, such as learning with dispatching
 130 and MaxWeight-based algorithms (Krishnasamy et al., 2016; Gaitonde & Tardos, 2020; Choudhury
 131 et al., 2021; Stahlbuhk et al., 2021; Sentenac et al., 2021; Hsu et al., 2022; Freund et al., 2022; Yang
 132 et al., 2023; Huang et al., 2024; Krishnakumar & Sinha, 2025). However, these do not consider het-
 133 erogeneous contexts for individual jobs, limiting their applications in modern personalized service
 134 platforms. Recently, Kim & Oh (2024) consider a context-aware queueing bandit problem based
 135 on the multinomial logit model. However, their setting still limits the number of distinct contextual
 136 feature vectors, and they study a proxy notion of regret, missing a queue length regret analysis.

137 **Logistic Bandits.** We assume that the service rate of a server allocated to a job follows a logistic
 138 model of the job’s contextual feature vector and the server-specific unknown parameter. Hence, the
 139 problem of learning unknown server parameters relates to logistic bandits. Starting from the seminal
 140 work of Filippi et al. (2010), there has been a flurry of activities to characterize and improve regret
 141 bounds for logistic bandits (Faury et al., 2020; Li et al., 2017; Jun et al., 2021; Abeille et al., 2021;
 142 Lee et al., 2024b; Bae & Lee, 2025). However, there are fundamental differences between logistic
 143 bandits and our contextual queueing bandits framework, which makes it difficult to directly apply the
 144 regret analyses for logistic bandits to our setting. First, logistic bandits consider exogenous action
 145 sets shared by all policies, but action sets in our setting are endogenous and policy-dependent. To be
 146 more precise, actions taken in previous rounds affect the queue state in the current and future rounds.
 147 This leads to the phenomenon of queue state misalignment under our policy versus the optimal
 148 policy. Moreover, we investigate queue length regret instead of cumulative reward regret, reflecting
 149 the objective tailored to achieve queueing system control. These differences in the dynamics of
 150 action sets and the regret definition require new techniques.

3 PROBLEM SETTING

151 We consider a discrete-time contextual queueing system with a single queue and K servers, given
 152 as follows. In each round $t \in [T]$, the agent observes a queue state $\mathcal{X}_t \in \mathcal{X} \subset \mathbb{R}^d$, given by the set
 153 of contextual feature vectors of remaining jobs, chooses a job (with feature) $x_t \in \mathcal{X}_t$, and matches
 154 it with a server $k_t \in [K]$. Let $Q(t)$ be the queue length at the beginning of round t , i.e. $Q(t) = |\mathcal{X}_t|$.
 155 Let $A(t) \in \{0, 1\}$ indicate the random arrival of a job at time t with mean λ , and let $D(t) \in \{0, 1\}$
 156 denote the random departure at time t with mean $\mu(x_t^\top \theta_{k_t}^*)$ where $\mu(z) := (1 + e^{-z})^{-1}$ is the logistic

162 function and $\theta_{k_t}^* \in \mathbb{R}^d$ is the unknown parameter of server k_t . When $A(t) = 1$, we denote by $x^{(t)}$
 163 the feature of the job arriving at time t . Then

164 $\mathcal{X}_{t+1} = \mathcal{X}_t \setminus \{x_t : D(t) = 1\} \cup \{x^{(t)} : A(t) = 1\}, \quad Q(t+1) = [Q(t) + A(t) - D(t)]^+,$
 165 where $[q]^+ = \max\{0, q\}^+$. For technical convenience, we assume that a dummy job $x_0 \in \mathbb{R}^d$ is
 166 chosen when the queue is empty, while ignoring the feedback of the queueing process to avoid unfair
 167 advantage. We denote by $E(t) \in \{0, 1\}$ the random variable that indicates whether we run random
 168 exploration in round $t+1$, used in Algorithm 1. We define the arrival tuple and the departure tuple as
 169 $\mathbf{A}(t) := (A(t), \tilde{x}^{(t)})$, $\mathbf{D}(t) := (D(t), (x_t, k_t))$, where $\tilde{x}^{(t)}$ is a masked feature defined as $\tilde{x}^{(t)} = \tilde{x}$
 170 if $A(t) = 0$ where $\tilde{x} \in \mathbb{R}^d$ is a fixed symbol for the sign of no arrival, and $\tilde{x}^{(t)} = x^{(t)}$ if $A(t) = 1$.
 171 Then we define the filtration $\mathcal{F}_t := \sigma(\mathcal{X}_1, \mathbf{A}(1), \mathbf{D}(1), \dots, \mathbf{A}(t-1), \mathbf{D}(t-1))$ for $t \in [T]$.
 172

173 Our goal in this paper is to characterize how large the queue length can be under our policy π at
 174 the end of the horizon, compared to the queue length under the optimal policy π^* that runs with
 175 prior knowledge of θ_k^* for all $k \in [K]$. Here, given a set of remaining feature vectors $\mathcal{Y} \subseteq \mathcal{X}$,
 176 π^* chooses a job-server pair that maximizes the departure rate given by $\max_{x \in \mathcal{Y}, k \in [K]} \mu(x^\top \theta_k^*)$. If
 177 there is a tie, we assume that the job entering first is taken. Then *queue length regret* is defined as
 178 $R_T = \mathbb{E}[Q(T) - Q^*(T)]$, where $Q^*(t)$ is the queue length at the beginning of time step t under the
 179 optimal policy. Lastly, we state some standard assumptions for logistic and queueing bandits:

180 **Assumption 3.1.** $\|x\|_2 \leq 1$ for all $x \in \mathcal{X}$, and for some known constant S , $\theta_k^* \in \Theta := \{\theta : \|\theta\|_2 \leq S\}$ for all $k \in [K]$.
 181

182 **Assumption 3.2.** There exist $\kappa, R > 0$ such that $1/\kappa \leq \mu(x^\top \theta) \leq R$ for all $x \in \mathcal{X}$ and $\theta \in \Theta$.

183 **Assumption 3.3.** The features of newly arriving jobs are assumed to be independently and identically distributed (i.i.d.) from an unknown distribution \mathcal{D} . Moreover, there exists $\Sigma \succ 0$ such that
 184 $\mathbb{E}_{x \sim \mathcal{D}}[xx^\top] \succeq \Sigma$ with $\sigma_0^2 := \lambda_{\min}(\Sigma) > 0$.
 185

186 **Assumption 3.4.** There exists some traffic slack $\epsilon > 0$ such that for each $x \in \mathcal{X}$, there exists a
 187 server $k^* \in [K]$ with $\mu(x^\top \theta_{k^*}^*) - \lambda \geq \epsilon$.
 188

189 Assumptions 3.1 and 3.2 are standard in the logistic bandit literature. Here, Assumption 3.2 provides
 190 problem-dependent parameters to control the local behavior of $\mu(\cdot)$. Assumption 3.3 is also standard
 191 in sampling-based approaches for logistic bandits. Algorithm 1 works under Assumption 3.3, but
 192 for the adversarial setting and Algorithm 2, we lift the assumption. Assumption 3.4 applies traffic
 193 slack to guarantee stability, which can also be found in [Kim & Oh \(2024\)](#).
 194

4 CHALLENGES AND NEW TECHNIQUES

196 **Queue State Misalignment.** To describe the challenge of the problem and motivate our approach,
 197 we start with the simplest case where all new jobs share a single fixed context x_1 , which can be
 198 viewed as the setting of previous work due to [Krishnasamy et al. \(2016\); Kim & Oh \(2024\)](#). Note
 199 that in such a case, the queue state \mathcal{X}_t under our policy and the optimal queue state \mathcal{X}_t^* have no
 200 difference in the types of features. Now, a key measure for assessing the performance of a policy is
 201 (the conditional expectation of) the gap between the departure rates $D^*(t)$ for the optimal queue and
 202 ours $D(t)$, given by $\mathbb{E}[D^*(t) - D(t) | \mathcal{F}_t] = \max_{x \in \mathcal{X}_t^*, k \in [K]} \mu(x^\top \theta_k^*) - \mu(x_t^\top \theta_{k_t}^*)$. An optimistic
 203 algorithm for the logistic bandit would choose x_t, k_t maximizing the upper confidence bound (UCB)
 204 based on computing $\arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^\top \hat{\theta}_{t-1, k}) + b_t(x, k)$ where $\hat{\theta}_{t-1, k}$ is the estimated
 205 parameter of server k , and $b_t(x, k)$ is a bonus term. Choosing the bonus term as an upper bound on
 206 the prediction error $|\mu(x^\top \hat{\theta}_{t-1, k}) - \mu(x^\top \theta_k^*)|$ for all $x \in \mathcal{X}$ and $k \in [K]$, the gap can be bounded
 207 from above as

$$\begin{aligned} \max_{x \in \mathcal{X}_t^*, k \in [K]} \mu(x^\top \theta_k^*) - \mu(x_t^\top \theta_{k_t}^*) &\leq \max_{x \in \mathcal{X}_t^*, k \in [K]} (\mu(x^\top \hat{\theta}_{t-1, k}) + b_t(x, k)) - \mu(x_t^\top \theta_{k_t}^*) \\ &= \max_{x \in \mathcal{X}_t, k \in [K]} (\mu(x^\top \hat{\theta}_{t-1, k}) + b_t(x, k)) - \mu(x_t^\top \theta_{k_t}^*) \\ &= \mu(x_t^\top \hat{\theta}_{t-1, k_t}) + b_t(x_t, k_t) - \mu(x_t^\top \theta_{k_t}^*) \leq 2b_t(x_t, k_t) \end{aligned}$$

208 where the first and last inequalities are due to the definition of $b_t(x, k)$, and the first equality holds
 209 because $\mathcal{X}_t^* = \mathcal{X}_t$. Then we may apply results on choosing $b_t(x, k)$ which leads to a sublinear upper
 210 bound on the cumulative sum of gap terms. However, the result is viable only when $\mathcal{X}_t^* = \mathcal{X}_t$ or
 211 $\mathcal{X}_t^* \subseteq \mathcal{X}_t$. The condition does not necessarily hold as soon as we allow two distinct features.
 212

216 **Aligning Queue States via Policy-Switching Queues.** Taking a detour from the issue of queue
 217 state misalignment, we introduce our new approach to analyze queue length regret. It is two-fold;
 218 we consider policy-switching queues, and to compare their queue length at the end of horizon, we
 219 develop a coupling argument.

220 We define $Q(t_1, t_2)$ as the length of the queue at the beginning of time step t_2 under our policy
 221 applied from time steps $t = 1$ to t_1 and the optimal policy applied from $t = t_1 + 1$ to $t_2 - 1$. In other
 222 words, for $Q(t_1, t_2)$, we switch from our policy to the optimal policy at time $t_1 + 1$. By definition,
 223 $Q(t_2 - 1, t_2) = Q(t_2)$ and $Q(0, t_2) = Q^*(t_2)$. Moreover, we may decompose queue length regret
 224 as $R_T = \mathbb{E}[Q(t) - Q^*(t)] = \sum_{t=1}^{T-1} \mathbb{E}[Q(t, T) - Q(t - 1, T)]$. Here, $Q(t, T) - Q(t - 1, T)$ is the
 225 length difference between two consecutive policy-switching queues whose moments of switching
 226 differ by exactly one round.

227 To bound the gap $Q(t, T) - Q(t - 1, T)$ for two consecutive policy-switching queues, we construct
 228 a coupling process for $Q(t, T)$ and $Q(t - 1, T)$ to align them. We denote by $Q^+(t)$ and $Q^-(t)$ the
 229 coupled queue lengths of $Q(t, T)$ and $Q(t - 1, T)$. We use notations $A^+(t), A^-(t)$ for their job
 230 arrivals and $D^+(t), D^-(t)$ for job departures. For job arrival in each round $i \in [T]$, we draw a
 231 shared random variable $U_{i,1} \sim \text{Unif}(0, 1)$. The two queues receive the same new job if $U_{i,1} \leq \lambda$,
 232 i.e., $A^+(i) = A^-(i) = 1$, and if $U_{i,1} > \lambda$, they receive no job, i.e., $A^+(i) = A^-(i) = 0$. Similarly,
 233 for job departure in each round $i \in [T]$, we draw a shared random variable $U_{i,2} \sim \text{Unif}(0, 1)$.
 234 The server k_i^+ assigned to the first queue succeeds, i.e., $D^+(t) = 1$, if $U_{i,2} \leq \mu((x_i^+)^T \theta_{k_i^+}^*)$, and
 235 $D^+(t) = 0$ if $U_{i,2} > \mu((x_i^+)^T \theta_{k_i^+}^*)$. Likewise, we have $D^-(t) = 1$ if $U_{i,2} \leq \mu((x_i^-)^T \theta_{k_i^-}^*)$ and
 236 $D^-(t) = 0$ otherwise, where k_i^- is the server assigned to the second queue. This coupling process
 237 preserves the marginals as $\mathbb{E}[Q(t, T)] = \mathbb{E}[Q^+(t)]$ and $\mathbb{E}[Q(t - 1, T)] = \mathbb{E}[Q^-(t)]$, implying in
 238 turn that $R_T = \sum_{t=1}^{T-1} \mathbb{E}[Q^+(t) - Q^-(t)]$.

239 Therefore, to establish an upper bound on R_T , it suffices to consider

$$\psi(t, T) := Q^+(t) - Q^-(t).$$

240 As the two coupled queues follow the same policy up to round $t - 1$, their queue states at time step
 241 t are identical. With this alignment, we can characterize $\psi(t, T)$ as follows.

242 **Lemma 4.1.** *We have $\psi(t, T) \in \{-1, 0, 1\}$ for all $t \in [T]$.*

243 Moreover, the expected value of $\psi(t, T)$ can be bounded from above as follows.

244 **Lemma 4.2.** *Let $(x_t^*, k_t^*) \in \arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^T \theta_k^*)$, let $\mathcal{F}_t^+ := \sigma(\mathcal{F}_t \cup \{E(t - 1), \mathbf{A}(t)\})$,
 245 and let $\tilde{\psi}(t, T) := \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]$. Then*

$$\mathbb{E}[\psi(t, T)] \leq \underbrace{\sqrt{\mathbb{E} \left[\left(\mu \left((x_t^*)^T \theta_{k_t^*}^* \right) - \mu \left(x_t^T \theta_{k_t}^* \right) \right)^2 \right]}}_{=: m_t} \underbrace{\sqrt{\mathbb{E} \left[\tilde{\psi}(t, T) \right]}}_{=: \delta_t}.$$

246 We prove these lemmas in Appendix B. From the bound in Lemma 4.2, m_t represents the immediate
 247 error incurred when choosing a suboptimal job-server pair, and δ_t captures the long-term effect of
 248 the difference in the queue states at time step $t + 1$ of the two consecutive policy-switching queues.
 249 Note that $R_T \leq \sum_{t=1}^{T-1} m_t \delta_t$, and we may deduce an upper bound on the right-hand side by taking
 250 the Cauchy-Schwarz inequality, applying the elliptical potential lemma (Abbasi-Yadkori et al., 2011,
 251 Lemma 10) on $\sum_{t=1}^{T-1} m_t^2$, and using Lemma 4.1 to get $\sum_{t=1}^{T-1} \delta_t^2 \leq T$. This approach would give
 252 us an upper bound of $\tilde{\mathcal{O}}(\sqrt{T})$ on R_T , which matches typical regret upper bounds for contextual
 253 bandits. However, such a bound is not sufficient, as we hope for a decaying bound.

254 In the following section, we take a more refined analysis and characterize some monotonic behaviors
 255 of the sequences of m_t and δ_t , based on which we prove a decaying upper bound of $\tilde{\mathcal{O}}(T^{-1/4})$ on
 256 queue length regret. This establishes that the queue length difference vanishes as T gets large.

257 5 DECAYING REGRET FOR CONTEXTUAL QUEUEING BANDITS

258 **Idea and Outline.** Recall that m_t represents instantaneous regret, so as we keep updating our es-
 259 timators close to the true parameters, we expect to reduce it as t increases. δ_t captures the long-term

270 **Algorithm 1** CQB- ε

271 **Initialize:** $\varepsilon = T^{-1/2}$, $p = 0$, $V_{0,k} = \kappa\lambda_0\mathbf{I}$, $k = 1, \dots, K$

272 1: **for** $t = 1, \dots, T$ **do**

273 2: **if** $t \in [1, \tau]$ **and** $A(t-1) = 1$ **then** ▷ Pure-exploration

274 3: $x_t \leftarrow x^{(t-1)}$, $k_t \leftarrow p + 1$

275 4: $p \leftarrow p + 1 \pmod K$

276 5: **else if** $t \in [\tau + 1, T]$ **and** $E(t-1) = 1$ **and** $A(t-1) = 1$ **then** ▷ ε -exploration

277 6: $x_t \leftarrow x^{(t-1)}$, $k_t \sim \text{Unif}([K])$

278 7: **else** ▷ Exploitation

279 8: $(x_t, k_t) \leftarrow \arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^\top \hat{\theta}_{t-1,k}) + \beta_{t-1,k} \|x\|_{V_{t-1,k}^{-1}}$

280 9: **end if**

281 10: Match (x_t, k_t) and receive r_t

282 11: **for** $k = 1, \dots, K$ **do**

283 12: **if** $k = k_t$ **then**

284 13: Update $\hat{\theta}_{t,k}$ as in Section 5, and $\beta_{t,k}$ as in Equation (1)

285 14: $V_{t,k} \leftarrow V_{t-1,k} + x_t x_t^\top$

286 15: **else**

287 16: $\hat{\theta}_{t,k} \leftarrow \hat{\theta}_{t-1,k}$, $\beta_{t,k} \leftarrow \beta_{t-1,k}$, $V_{t,k} \leftarrow V_{t-1,k}$

288 17: **end if**

289 18: **end for**

290 19: Sample $E(t) \sim \text{Bern}(\varepsilon)$

291 20: **end for**

293 effect of the disagreement between two consecutive policy-switching queues, so one can anticipate
 294 that δ_t will increase in t since an early disagreement (a small t) will wear off as they follow the same
 295 optimal policy for the remaining $T - t - 1$ rounds. In fact, we will show that our algorithm, described
 296 in Algorithm 1, guarantees that $m_t \leq M_t$ where $\{M_t\}_{t \in [T]}$ is a nonincreasing sequence and that
 297 $\delta_t \leq \Delta_t$ where $\{\Delta_t\}_{t \in [T]}$ is a nondecreasing sequence. Then we apply Chebyshev's sum inequality
 298 to deduce $R_T \leq (\sum_{t=1}^{T-1} M_t)(\sum_{t=1}^{T-1} \Delta_t)/(T-1)$. Lastly, we show that $\sum_{t=1}^{T-1} M_t = \tilde{\mathcal{O}}(T^{3/4})$
 299 and $\sum_{t=1}^{T-1} \Delta_t = \mathcal{O}(\log(T))$, which leads to a decaying upper bound on queue length regret.

301 **Algorithm.** Algorithm 1 consists of two phases. It starts with a *pure-exploration* phase
 302 where, if a new job arrives, we select it while choosing a server in a round-robin manner.
 303 After the pure-exploration phase, we apply the *ε -greedy policy* which, if a new job
 304 arrives, explores it with probability ε and chooses a job-server pair optimistically by
 305 maximizing the UCB term as in Line 8. For both phases, we take an exploration step only
 306 when a new job arrives, in which case the new job has to be chosen for exploration. Af-
 307 ter a job-server matching, we receive binary feedback r_t on whether the server completed the
 308 job. Then we update the estimator $\hat{\theta}_{t,k}$ by maximizing the regularized cross-entropy loss as
 309 $\hat{\theta}_{t,k}^{(1)} = \arg \max_{\theta} \{ \sum_{i=1}^t \mathbf{1}\{k_i = k\} [r_i \log \mu(x_i^\top \theta) + (1 - r_i) \log(1 - \mu(x_i^\top \theta))] - (\lambda/2) \|\theta\|_2^2 \}$ and
 310 then projecting it onto the parameter set as $\hat{\theta}_{t,k} = \arg \min_{\theta \in \Theta} \| \sum_{i=1}^t \mathbf{1}\{k_i = k\} [\mu(x_i^\top \theta) -$
 311 $\mu(x_i^\top \hat{\theta}_{t,k}^{(1)})] x_i \|_{V_{t,k}^{-1}}$. Lastly, we update the confidence radius $\beta_{t,k}$ as

$$\beta_{t,k} = \frac{\kappa}{2} \sqrt{2d \log \left(1 + \frac{1}{\kappa\lambda_0 d} \sum_{i=1}^t \mathbf{1}\{k_i = k\} \right) + \log(K/\delta)} + \frac{\kappa S \sqrt{\lambda_0}}{2} = \mathcal{O} \left(\sqrt{d \log(T)} \right). \quad (1)$$

314 We note that the choice of estimators for the logistic model parameters and the confidence radius is
 315 due to [Faury et al. \(2020\)](#), thus we may obtain the following prediction error bound.

316 **Lemma 5.1.** *It holds with probability at least $1 - \delta$ that $|\mu(x^\top \hat{\theta}_{t-1,k}) - \mu(x^\top \theta_k^*)| \leq \beta_{t-1,k} \|x\|_{V_{t-1,k}^{-1}}$ for all $t \in [T]$, $x \in \mathcal{X}$, and $k \in [K]$.*

317 In fact, we may take more recent parameter estimation frameworks developed for logistic bandits,
 318 such as those that avoid a projection step and guarantee tighter confidence bounds. Nevertheless, we
 319 take the basic estimation method for simpler presentation, letting us focus on the queueing part.

324 **Regret Analysis.** Let $\beta_t := (\kappa/2)\sqrt{2d\log(1+t/(\kappa\lambda_0d)) + \log(K/\delta)} + \kappa S\sqrt{\lambda_0}/2$, and let the
 325 length of pure-exploration τ be given by
 326

$$327 \quad \tau := \frac{2C_3K}{\lambda} \left(\frac{d + \log(K/\delta)}{\sigma_0^4} + \frac{16\beta_T^2}{\sigma_0^2(\epsilon - 2\delta)^2} \right) + \frac{\log(1/\delta)}{2\lambda^2} = \mathcal{O} \left(\frac{d\log(T)}{\sigma_0^4\epsilon^2} \right) \quad (2)$$

329 for some absolute constant $C_3 > 0$. Then we can argue that after the pure-exploration phase, the
 330 *uncertainty term*, defined as $\|x\|_{V_{t-1,k}^{-1}}$, can be uniformly bounded.
 331

332 **Lemma 5.2.** *It holds with probability at least $1 - 2\delta$ that $\|x\|_{V_{t-1,k}^{-1}} \leq \frac{\epsilon - 2\delta}{4\beta_{t-1,k}}$ for all $t \in [\tau + 1, T]$,*
 333 $x \in \mathcal{X}$, and $k \in [K]$.

335 Next, we argue that random exploration steps by the ϵ -greedy policy reduce the uncertainty term
 336 while its optimistic exploitation rounds successfully control instantaneous regret with the uncertainty
 337 term. Combining these, we show that (conditional) *expected instantaneous regret* can be upper
 338 bounded by a nonincreasing function in t . We define the *good event*, denoted \mathcal{E}_g , as the event when
 339 both Lemmas 5.1 and 5.2 hold.

340 **Lemma 5.3.** *Under the ϵ -greedy policy, the expected instantaneous regret conditioned on the good*
 341 *event \mathcal{E}_g is bounded from above as*

$$342 \quad \mathbb{E}[(\mu((x_t^*)^\top \theta_{k_t}^*) - \mu(x_t^\top \theta_{k_t}^*))^2 \mid \mathcal{E}_g] \leq \min \{1, \lambda\epsilon + 4\beta_T^2\nu(t-1)\}$$

344 $\forall t \in [\tau + 1, T]$, where $\nu(t) := (\lambda_0 + \frac{\lambda\epsilon(t-\tau)\sigma_0^2}{4K})^{-1} + \frac{1}{\lambda_0} \exp(-\frac{(t-\tau)\lambda\epsilon}{8K}) + \frac{d}{\lambda_0} \exp(-\frac{(t-\tau)\lambda\epsilon\sigma_0^2}{16K})$.
 345

346 Lastly, the following lemma shows that the expected difference between Q^+ and Q^- is upper-
 347 bounded by a *clipped exponential ramp*, exhibiting an exponential growth until a certain round
 348 (the threshold round) and then clipped to 1, which is nondecreasing in t . We carefully choose the
 349 threshold round based on the length τ of the pure-exploration phase, where the uncertainty term can
 350 be large. Consequently, if the number of remaining rounds $T - t - 1$ is large compared to τ , the
 351 impact of disagreement in D^+ and D^- will disappear with high probability. When $T - t - 1$ is
 352 small, we still have that $\tilde{\psi}(t, T) \leq 1$ by Lemma 4.1.

353 **Lemma 5.4.** *Let $\omega := 4\tau/\epsilon$, and let $C_\rho := 1 + 16/\epsilon^2$.*

$$355 \quad \mathbb{E}[\tilde{\psi}(t, T) \mid \mathcal{E}_g] \leq \begin{cases} \min \{1, 2C_\rho \exp(-\epsilon^2(T-t-1-\omega)/8)\} & \text{if } t \leq T - \omega - 1 \\ 1 & \text{if } t > T - \omega - 1 \end{cases}$$

358 Here, $T - \omega - 1$ is the threshold round. Now we are ready to show an upper bound on queue length
 359 regret under Algorithm 1.

360 **Theorem 5.5.** *Let $\delta \in (0, T^{-2}]$, let τ be given as in Equation (2). For $T \geq \max\{\tau, 4/\epsilon^2\}$, the*
 361 *queue length regret of Algorithm 1 is bounded from above as*

$$363 \quad R_T = \mathcal{O} \left(\frac{d^2 T^{-1} \log^2(T)}{\sigma_0^8 \epsilon^5} + \frac{dT^{-1/4} \log(T)}{\sigma_0^4 \epsilon^3} + \frac{d^{3/2} T^{-1/4} \log^{3/2}(T)}{\sigma_0^5 \epsilon^3} + \frac{d^2 T^{-1/2} \log^{3/2}(T)}{\sigma_0^6 \epsilon^3} \right).$$

366 *Proof sketch.* Let us consider the case where the good event \mathcal{E}_g holds. We know that $m_t \leq 1$
 367 $t \in [1, \tau]$, and for $t \in [\tau + 1, T]$, we apply Lemma 5.3 to deduce

$$369 \quad m_t \leq M_t := \begin{cases} 1 & \text{if } t \leq \tau \\ \min \{1, \sqrt{3\delta} + \sqrt{\lambda\epsilon + 4\beta_T^2\nu(t-1)}\} & \text{if } t > \tau \end{cases}$$

372 Next, by Lemma 5.4,

$$373 \quad \delta_t \leq \Delta_t := \begin{cases} \min \{1, \sqrt{3\delta} + \sqrt{2C_\rho} \exp(-\epsilon^2(T-t-1-\omega)/16)\} & \text{if } t \leq T - \omega - 1 \\ 1 & \text{if } t > T - \omega - 1 \end{cases}$$

376 Since $\{M_t\}_{t \in [T]}$ is nonincreasing in t and $\{\Delta_t\}_{t \in [T]}$ is nondecreasing in t , it follows from Cheby-
 377 shov's sum inequality that $R_T \leq \sum_{t=1}^{T-1} m_t \delta_t \leq \sum_{t=1}^{T-1} M_t \Delta_t \leq (\sum_{t=1}^{T-1} M_t)(\sum_{t=1}^{T-1} \Delta_t)/(T-1)$.

Algorithm 2 CQB-Opt

```

378 Initialize:  $V_{0,k} = \kappa\lambda_0\mathbf{I}$ ,  $k = 1, \dots, K$ 
379 1: for  $t = 1, \dots, T$  do
380 2:    $x_t, k_t \leftarrow \arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^\top \hat{\theta}_{t-1,k}) + \beta_{t-1,k} \|x\|_{V_{t-1,k}^{-1}}$ 
381 3:   Match  $(x_t, k_t)$  and receive  $r_t$ 
382 4:   for  $k = 1, \dots, K$  do
383 5:     if  $k = k_t$  then
384 6:       Update  $\hat{\theta}_{t,k}$  as in Section 5, and  $\beta_{t,k}$  as in Equation (1)
385 7:        $V_{t,k} \leftarrow V_{t-1,k} + x_t x_t^\top$ 
386 8:     else
387 9:        $\hat{\theta}_{t,k} \leftarrow \hat{\theta}_{t-1,k}$ ,  $\beta_{t,k} \leftarrow \beta_{t-1,k}$ ,  $V_{t,k} \leftarrow V_{t-1,k}$ 
388 10:     end if
389 11:   end for
390 12: end for
391
392
393

```

394 For the summation of M_t 's, we split it into two parts. Regret incurred from the first τ rounds is at
 395 most $\tau = \mathcal{O}(d \log(T)/(\sigma_0^4 \epsilon^2))$. For $t > \tau$, we have $M_t = \tilde{\mathcal{O}}(T^{-1} + \sqrt{\epsilon} + 1/\sqrt{\epsilon t})$. Hence, the
 396 sum is bounded from above by $\tilde{\mathcal{O}}(T\sqrt{\epsilon} + \sqrt{T/\epsilon})$, and taking $\epsilon = T^{-1/2}$ yields $\tilde{\mathcal{O}}(T^{3/4})$. For the
 397 summation of Δ_t 's, the first $T - \omega - 1$ terms give rise to a geometric sum, which we show is bounded
 398 by $\mathcal{O}(1/\epsilon^3)$, and for the rest of ω rounds, $\Delta_t \leq 1$. Hence, in total, the sum is bounded above by
 399 $\mathcal{O}(d \log(T)/(\sigma_0^4 \epsilon^3))$. Combining these, we obtain the desired bound on queue length regret, while
 400 the full proof is presented in Appendix E.1. \square

6 POLYLOGARITHMIC REGRET IN ADVERSARIAL CONTEXTS

401 In this section, we present Algorithm 2 for the setting of adversarial contexts, without Assumption
 402 3.3, and show that it achieves a polylogarithmic regret bound.

403 **Bad Rounds.** We say that $t \in [T]$ is a *bad round* if $\|x_t\|_{V_{t-1,k_t}^{-1}} > \epsilon/(4\beta_{t-1,k_t})$ and take \mathcal{B}' as
 404 the collection of bad rounds. We call $[T] \setminus \mathcal{B}'$ *good rounds*. Hence, in a bad round, the uncertainty
 405 term is large. Under Assumption 3.3, Lemma 5.2 shows that the uncertainty term can be uniformly
 406 bounded after τ rounds of pure exploration. However, without the assumption, bad rounds can arise
 407 even toward the end of horizon. As a result, for the adversarial context setting, we have to *count* the
 408 number of bad rounds. For this, we use the counting version of the elliptical potential lemma.

409 **Proposition 6.1.** *We have $|\mathcal{B}'| \leq 32\beta_T^2 K d \log(1 + T/(dK\lambda_0))/\epsilon^2 = \mathcal{O}(d^2 \log^2(T)/\epsilon^2)$*

410 Another issue is to deal with the underlying randomness of whether or not a given round is a bad
 411 round. Under Assumption 3.3, we designed the pure-exploration phase so that after τ rounds, each
 412 time slot is a good round deterministically. The randomness complicates the derivation of a tail
 413 bound for $Q(t)$, while such a bound is crucial to determine how many jobs are backlogged in
 414 the round of policy-switching for $Q(t, T)$. To handle the randomness, we define a \mathcal{G}_t -measurable
 415 weighted process, given by $V(t) = \alpha^{-\mathcal{B}'(t-1)} e^{\eta Q(t)}$ for some constant $\alpha > 1, \eta > 0$, where
 416 $\mathcal{G}_t := \sigma(\mathcal{X}_1, \mathbf{A}(1), \mathbf{D}(1), \dots, \mathbf{A}(t-1), \mathbf{D}(t-1))$ and $\mathcal{B}'(t) = |\{[t] \cap \mathcal{B}'\}|$.

417 **Regret Analysis.** As in the stochastic setting, we take ω' to define the threshold round for studying
 418 the expected difference in the queue lengths of two consecutive policy-switching queues, based on
 419 the number of bad rounds in Proposition 6.1:

$$\omega' := 128\beta_T^2 K d \log(1 + T/(dK\lambda_0))/\epsilon^3 = \mathcal{O}(d^2 \log^2(T)/\epsilon^3) \quad (3)$$

420 Let us define the good event \mathcal{E}'_g for the adversarial setting as the event when Lemma 5.1 holds.

421 **Lemma 6.2.** *Let $\mathcal{G}_t^+ := \sigma(\mathcal{G}_t \cup \{\mathbf{A}(t)\})$, and let $\tilde{\psi}'(t, T) := \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1]$. Then*

$$\mathbb{E}[\tilde{\psi}'(t, T) \mid \mathcal{E}'_g] \leq \begin{cases} \min\{1, 2C_\rho \exp(-\epsilon^2 (T - t - 1 - \omega')/8)\} & \text{if } t \leq T - \omega' - 1 \\ 1 & \text{if } t > T - \omega' - 1 \end{cases}.$$

432 Now we state a polylogarithmic upper bound on queue length regret under Algorithm 2.

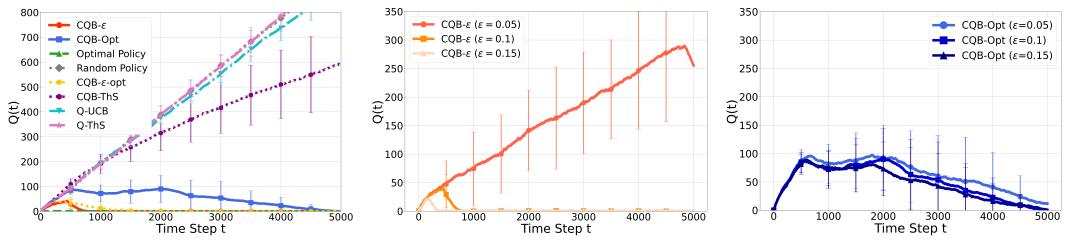
433 **Theorem 6.3.** Set $\delta \in (0, T^{-1}]$. The queue length regret of Algorithm 2 is bounded from above as

435
$$R_T = \mathcal{O} \left(\frac{d^2 \log^2(T)}{\epsilon^{1.5}} + \frac{d \log(T)}{\epsilon^2} \right).$$

437 *Proof sketch.* As in Lemma 4.2, we may deduce a similar upper bound on queue length regret, by
438 replacing $\tilde{\psi}(t, T)$ with $\tilde{\psi}'(t, T)$. For m_t , since we always choose the job-server pair following the
439 optimistic rule, the difference in departure rates can be bounded from above by 2 times the bonus
440 term. Applying the elliptical potential lemma yields $\sum_{t=1}^{T-1} m_t^2 = \mathcal{O}(d \log(T))$. To bound $\sum_{t=1}^{T-1} \delta_t^2$
441 with $\tilde{\psi}'(t, T)$, we apply Lemma 6.2 as before. The full proof can be found in Appendix E.2. \square

444 7 EXPERIMENTS

445 In this section, we empirically evaluate the performance of our algorithms.



446 Figure 2: Average queue length across algorithms and settings. (Left) CQB- ϵ and CQB-Opt versus
447 a random policy, the optimal policy, and additional baselines. (Middle) and (right) performance of
448 CQB- ϵ and CQB-Opt, respectively, for $\epsilon \in \{0.05, 0.1, 0.15\}$

460 We generate random instances with $\lambda = 0.7$, $\epsilon = 0.1$, $K = 5$, $d = 5$, and $\kappa = 10$. Feature vectors $x \in \mathbb{R}^d$ and server-specific parameters $\theta_k^* \in \mathbb{R}^d$ for $k \in [K]$ are sampled from $\text{Unif}(-1, 1)$. For each algorithm, we evaluate $N = 10$ instances over $T = 5000$ rounds and report the average queue length at time T with ± 1 standard deviation across runs. For Algorithm 1, we set $\tau = Cd^3 \log(T)K\lambda^{-1}(\epsilon - 2\epsilon)^{-2}$ with constant factor $C = 3e - 4$. The first plot of Figure 4 compares our algorithms (Algorithms 1 and 2) against (i) a random policy and (ii) the optimal policy (iii) four additional baseline algorithms; further details are provided in Appendix A. The random policy chooses a job-server pair uniformly at random, while the optimal policy selects, in every round, the job-server pair with the maximum departure rate. We observe a linear increase in queue length under the random policy, whereas both of our algorithms decrease toward the optimal level after a certain time. The second and third plots show how the performance of Algorithm 1 and Algorithm 2, respectively, varies with $\epsilon \in \{0.05, 0.1, 0.15\}$. In the second plot, Algorithm 1 exhibits longer pure-exploration rounds for small ϵ , as dictated by τ , followed by a sharp decrease in queue length. Our results in Figure 4 demonstrate that as ϵ increases (i.e., under lower load), our algorithms converge faster toward the optimal queue length, consistent with our theoretical results. Additional experiments varying K and d are provided in Appendix A due to space constraints.

477 8 CONCLUSION

478 We introduced *contextual queueing bandits*, a new context-aware framework for learning-while-
479 scheduling with logistic service models. Using policy-switching queues and a coupling argument,
480 we decompose queue length regret into the short-term effect of choosing a suboptimal job-server
481 pair and its long-term effect on queue state differences. We proved that CQB- ϵ attains $\tilde{\mathcal{O}}(T^{-1/4})$
482 regret under stochastic contexts and CQB-Opt achieves $\mathcal{O}(\log^2 T)$ regret against adversarially cho-
483 sen contexts, corroborated by experiments. Future directions include (i) establishing lower bounds
484 for queue length regret, (ii) extending the framework to multiple queues, and (iii) incorporating
485 operational constraints such as a maximum waiting time (time in queue) constraint.

486 REFERENCES
487

488 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
489 bandits. *Advances in neural information processing systems*, 24, 2011.

490 Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms for
491 logistic bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 3691–
492 3699. PMLR, 2021.

493 Zeynep Aksin, Mor Armony, and Vijay Mehrotra. The modern call center: A multi-disciplinary
494 perspective on operations management research. *Production and operations management*, 16(6):
495 665–688, 2007.

496 Seoungbin Bae and Dabeen Lee. Neural logistic bandits. *arXiv preprint arXiv:2505.02069*, 2025.

497 Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai. Job dispatching policies
498 for queueing systems with unknown service rates. In *Proceedings of the Twenty-second Interna-*
499 *tional Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks*
500 *and Mobile Computing*, pp. 181–190, 2021.

501 502

503 Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
504 rithms for logistic bandits. In *International Conference on Machine Learning*, pp. 3052–3060.
505 PMLR, 2020.

506 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
507 generalized linear case. *Advances in neural information processing systems*, 23, 2010.

508 509

510 Daniel Freund, Thodoris Lykouris, and Wentao Weng. Efficient decentralized multi-agent learning
511 in asymmetric queueing systems. In *Conference on Learning Theory*, pp. 4080–4084. PMLR,
512 2022.

513 Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao Zhang. Efficient lmm scheduling
514 by learning to rank. *Advances in Neural Information Processing Systems*, 37:59006–59029, 2024.

515 Jason Gaitonde and Éva Tardos. Stability and learning in strategic queueing systems. In *Proceedings*
516 *of the 21st ACM Conference on Economics and Computation*, EC ’20, pp. 319–347, New York,
517 NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379755. doi: 10.1145/
518 3391403.3399491. URL <https://doi.org/10.1145/3391403.3399491>.

519 Wei-Kang Hsu, Jiaming Xu, Xiaojun Lin, and Mark R. Bell. Integrated online learning and adaptive
520 control in queueing systems with uncertain payoffs. *Operations Research*, 70(2):1166–1181,
521 2022. doi: 10.1287/opre.2021.2100. URL [https://doi.org/10.1287/opre.2021.
522 2100](https://doi.org/10.1287/opre.2021.2100).

523 Jiatai Huang, Leana Golubchik, and Longbo Huang. When lyapunov drift based queue scheduling
524 meets adversarial bandit learning. *IEEE/ACM Transactions on Networking*, 32(4):3034–3044,
525 2024. doi: 10.1109/TNET.2024.3374755.

526 527

528 Neharika Jali, Guannan Qu, Weina Wang, and Gauri Joshi. Efficient reinforcement learning for rout-
529 ing jobs in heterogeneous queueing systems. In *International Conference on Artificial Intelligence*
530 and *Statistics*, pp. 4177–4185. PMLR, 2024.

531 Kwang-Sung Jun, Lalit Jain, Blake Mason, and Houssam Nassif. Improved confidence bounds for
532 the linear logistic model and applications to bandits. In *International Conference on Machine*
533 *Learning*, pp. 5148–5157. PMLR, 2021.

534 Jung-hun Kim and Min-hwan Oh. Queueing matching bandits with preference feedback. *Advances*
535 *in Neural Information Processing Systems*, 37:64649–64702, 2024.

536 G Krishnakumar and Abhishek Sinha. Minimizing queue length regret for arbitrarily varying chan-
537 nels, 2025. URL <https://arxiv.org/abs/2501.13551>.

538 539

Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. Regret of queueing
bandits. *Advances in Neural Information Processing Systems*, 29, 2016.

540 Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. Learning unknown
 541 service rates in queues: A multiarmed bandit approach. *Operations research*, 69(1):315–330,
 542 2021.

543

544 Jung Lee, Hongseok Namkoong, and Yibo Zeng. Design and scheduling of an ai-based queueing
 545 system. *arXiv preprint arXiv:2406.06855*, 2024a.

546 Junghyun Lee, Se-Young Yun, and Kwang-Sung Jun. A unified confidence sequence for generalized
 547 linear models, with applications to bandits. In *The Thirty-eighth Annual Conference on Neural*
 548 *Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=MDdOQayWTA>.

549

550 Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear context-
 551 tual bandits. In *International Conference on Machine Learning*, pp. 2071–2080. PMLR, 2017.

552

553 Woei Lin and P Kumar. Optimal control of a queueing system with two heterogeneous servers.
 554 *IEEE Transactions on Automatic control*, 29(8):696–703, 1984.

555

556 Michael Mitzenmacher and Rana Shahout. Queueing, predictions, and large language models: Chal-
 557 lenges and open problems. *Stochastic Systems*, 2025.

558

559 Yashaswini Murthy, Isaac Grosof, Siva Theja Maguluri, and R Srikant. Performance of npg in
 560 countable state-space average-cost rl. *arXiv preprint arXiv:2405.20467*, 2024.

561

562 Michael Neely. *Stochastic network optimization with application to communication and queueing*
 563 systems. Morgan & Claypool Publishers, 2010.

564

565 Flore Sentenac, Etienne Boursier, and Vianney Perchet. Decentralized learning in online queueing
 566 systems. *Advances in Neural Information Processing Systems*, 34:18501–18512, 2021.

567

568 Thomas Stahlbuhk, Brooke Shrader, and Eytan Modiano. Learning algorithms for minimizing queue
 569 length regret. *IEEE Transactions on Information Theory*, 67(3):1759–1781, 2021.

570

571 Yuqing Yang, Lei Jiao, and Yuedong Xu. A queueing theoretic perspective on low-latency llm
 572 inference with variable token length. In *2024 22nd International Symposium on Modeling and*
 573 *Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)*, pp. 273–280. IEEE, 2024.

574

575

576 Zixian Yang, R Srikant, and Lei Ying. Learning while scheduling in multi-server systems with
 577 unknown statistics: Maxweight with discounted ucb. In *International Conference on Artificial*
 578 *Intelligence and Statistics*, pp. 4275–4312. PMLR, 2023.

579

580

581

582

583

584

585

586

587

588

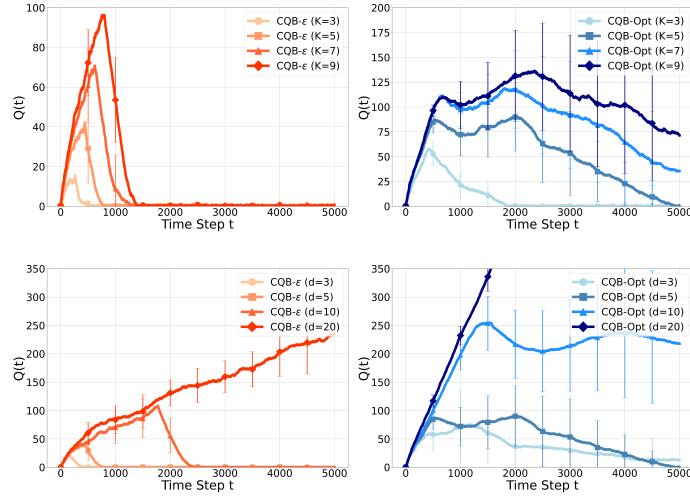
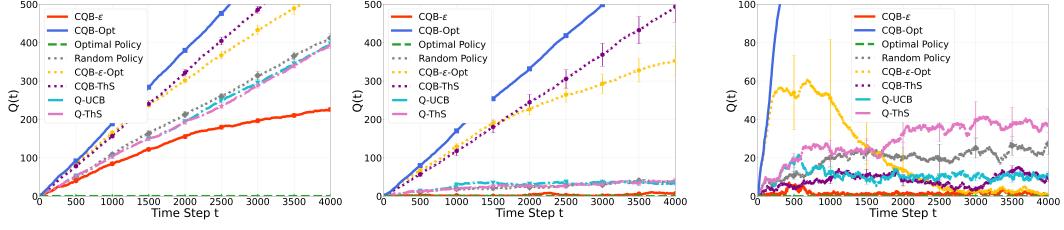
589

590

591

592

593

594 **A ADDITIONAL EXPERIMENTS**614 Figure 3: Average queue length across varying K and d . (Top-left/right) CQB- ε /CQB-Opt for
615 $K \in \{3, 5, 7, 9\}$. (Bottom-left/right) CQB- ε /CQB-Opt for $d \in \{3, 5, 10, 20\}$.616 Figure 4: Average queue length across algorithms and settings. (Left) shows the average queue
617 length for MNIST. (Middle) and (Right) show the performance for Heart Disease and In-Vehicle
618 Coupon Recommendation, respectively.631 **Baseline algorithms.** We introduce four additional baselines as follows:

- 633 • CQB- ε -Opt: We follow the same algorithm as Algorithm 2, while performing random
634 exploration in every round with probability $\varepsilon = T^{-1/2}$.
- 635 • CQB-THS: We follow the same algorithm as Algorithm 2, except that we replace the decision
636 rule by sampling rewards for all $x \in \mathcal{X}_t, k \in [K]$ as

638
$$\tilde{r}_t(x, k) \sim \mathcal{N} \left(x^\top \theta_{t-1, k}, R^{-2} \beta_{t-1, k} \|x\|_{V_{t-1, k}}^2 \right)$$
 639

640 and then choosing the job-server pair as $(x_t, k_t) = \arg \max_{x \in \mathcal{X}_t, k \in [K]} \tilde{r}_t(x, k)$.

- 642 • Q-UCB (Algorithm 1 of Krishnasamy et al. (2021)): In every round t , we explore with
643 probability $\text{Bern}(\min\{1, 3K(\log^2 t)/t\})$. We choose x_t as the first-in job, and then choose

644
$$645 k_t := \arg \max_{k \in [K]} \hat{\mu}_k(t) + \sqrt{\frac{\log^2 t}{2T_k(t-1)}},$$
 646

647 where $\hat{\mu}_k(t) = \sum_{i=1}^{t-1} \mathbf{1}\{k_i = k\} r_i / T_k(t-1)$ and $T_k(t-1) = \sum_{i=1}^{t-1} \mathbf{1}\{k_i = k\}$.

648 • Q-ThS (Algorithm 2 of Krishnasamy et al. (2021)): In every round t , we explore with
 649 probability $\text{Bern}(\min\{1, 3K(\log^2 t)/t\})$. We choose x_t as the first-in job. For every $k \in$
 650 $[K]$, we sample

651 $\tilde{r}_t(x, k) \sim \text{Beta}(\hat{\mu}_k(t)T_k(t-1) + 1, (1 - \hat{\mu}_k(t))T_k(t-1) + 1),$

653 and choose $k_t := \arg \max_{k \in [K]} \tilde{r}_t(x, k)$, where we use the same definitions of $\hat{\mu}_k(t)$ and
 654 $T_k(t-1)$ as above.

656 Notice that Q-UCB and Q-ThS are the algorithms proposed by Krishnasamy et al. (2021), which is
 657 the first work to study the queueing bandit problem and queue length regret in a multi-armed bandit
 658 framework without contextual information.

660 **Varying K and d .** Figure 3 illustrates how varying values of K and d affect the performance of
 661 Algorithms 1 and 2. In Figure 3 (top-left) and (top-right), we vary $K \in \{3, 5, 7, 9\}$ for CQB- ϵ and
 662 CQB-Opt, respectively holding all other parameters fixed. In Figure 3 (bottom-left) and (bottom-
 663 right), we vary $d \in \{3, 5, 10, 20\}$, for CQB- ϵ and CQB-Opt, holding all other parameters fixed.
 664 Consistent with our theoretical expectations, performance deteriorates as K and d increase.

665 **Real-world dataset.** For MNIST, we normalize each 28×28 image by dividing pixel values by
 666 255, downsample by averaging over non-overlapping 4×4 blocks to obtain a 7×7 feature map,
 667 and flatten this map into a 49-dimensional feature vector used as the context X . We set the average
 668 arrival rate to $\lambda = 0.15$. For the Heart Disease dataset (UCI), we start from 297 records, remove
 669 rows with missing values, apply one-hot encoding to categorical features, and standardize numerical
 670 features. The class labels are imbalanced (from 160 samples in Class 0 to 13 in Class 4), so we apply
 671 the synthetic minority oversampling technique (SMOTE) to obtain approximately balanced $K = 5$
 672 classes and then sample 4000 instances with replacement for our simulations. We set $\lambda = 0.2$.
 673 For the In-Vehicle Coupon Recommendation dataset (UCI), we remove rows with missing values,
 674 one-hot encode all categorical features (120 features in total), standardize numerical features, and
 675 convert the target into a binary label (accepted = 1, rejected = 0). We randomly sample 4000
 676 instances from the processed data and set $\lambda = 0.5$. We comfortably used $\tau = T/10$ for Algorithm 1
 677 because real-world datasets typically have high dimensionality, which would cause unnecessarily
 678 large exploration. The results in Figure 4 show that Algorithm 1 achieves the best performance on
 679 all three datasets (MNIST, Heart Disease, and In-Vehicle Coupon Recommendation).

680 B PROOFS FOR SECTION 4

683 In this section, we prove Lemmas 4.1 and 4.2.

685 B.1 PROOF OF LEMMA 4.1

687 In fact, we prove the following lemma, which is a refined version of Lemma 4.1. Note that $D^+(t) \leq$
 688 $D^-(t)$ holds for each $t \in [T]$ by definition of the coupling process, so Lemma 4.1 is a direct
 689 consequence of Lemma B.1.

690 **Lemma B.1.** *If $D^+(t) = D^-(t) = 0$ or $D^+(t) = D^-(t) = 1$, we have $\psi(t, T) \in \{-1, 0\}$, and if
 691 $D^+(t) = 0, D^-(t) = 1$, we have $\psi(t, T) \in \{0, 1\}$ for all $t \in [T]$.*

692 *Proof.* For jobs x_1, x_2 , we say that x_1 has higher priority than x_2 , denoted as $x_1 \succ x_2$, if

694 • $\max_{k \in [K]} \mu(x_1^\top \theta_k^*) > \max_{k \in [K]} \mu(x_2^\top \theta_k^*)$, or

695 • $\max_{k \in [K]} \mu(x_1^\top \theta_k^*) = \max_{k \in [K]} \mu(x_2^\top \theta_k^*)$ but job x_1 enters the queue earlier than job x_2 .

698 In particular, the optimal policy chooses the job with the highest priority with respect to the binary
 699 order \succ .

701 Recall that $Q^+(t)$ and $Q^-(t)$ are what are obtained after coupling the two consecutive policy-
 702 switching queues defined for $Q(t, T)$ and $Q(t-1, T)$. To characterize $\psi(t, T)$, we understand

702 the dynamics of the coupled queues for time steps $i \in [t + 1, T]$. Note that $\mathcal{X}_t^+ = \mathcal{X}_t^-$. For
 703 $i \in [t + 1, T]$, let \mathcal{X}_i^+ and \mathcal{X}_i^- denote the queue states of the two coupled policy-switching queues
 704 for round i . For $i \in [t + 1, T]$, let us consider the following five states.
 705

$$\begin{aligned} S_{i,0} &= \{\mathcal{X}_i^+ = \mathcal{X}_i^-\}, \\ S_{i,1}^+ &= \{\mathcal{X}_i^+ = \mathcal{X}_i^- \cup \{x_i^+\}\}, \\ S_{i,1}^- &= \{\mathcal{X}_i^- = \mathcal{X}_i^+ \cup \{x_i^-\}\}, \\ S_{i,2}^+ &= \{\mathcal{X}_i^+ \setminus \mathcal{X}_i^- = \{x_i^+\}, \mathcal{X}_i^- \setminus \mathcal{X}_i^+ = \{x_i^-\}, x_i^+ \succ x_i^-\}, \\ S_{i,2}^- &= \{\mathcal{X}_i^+ \setminus \mathcal{X}_i^- = \{x_i^+\}, \mathcal{X}_i^- \setminus \mathcal{X}_i^+ = \{x_i^-\}, x_i^+ \prec x_i^-\}. \end{aligned}$$

712 Then we show that for \mathcal{X}_i^+ and \mathcal{X}_i^- , it is sufficient to consider transitions between these five states.
 713

714 For round t , note that $\mathcal{X}_t^+ = \mathcal{X}_t^-$. As $D^+(t) \leq D^-(t)$, we consider two cases: (i) $D^+(t) = D^-(t)$
 715 and (ii) $D^+(t) = 0, D^-(t) = 1$. If $D^+(t) = D^-(t) = 0$, then $\mathcal{X}_{t+1}^+ = \mathcal{X}_t^+ = \mathcal{X}_t^- = \mathcal{X}_{t+1}^-$, in
 716 which case we observe $S_{t+1,0}$ at time $t + 1$. If $D^+(t) = D^-(t) = 1$, the two policy-switching
 717 queues have the same number of jobs at time $t + 1$, and moreover, \mathcal{X}_{t+1}^- is obtained from \mathcal{X}_t^- after
 718 the optimal policy processing a job in \mathcal{X}_t^- . Therefore, when $D^+(t) = D^-(t) = 1$, the two possible
 719 states for round $t + 1$ are $S_{t+1,0}$ and $S_{t+1,2}^+$. If $D^+(t) = 0$ and $D^-(t) = 1$, then round $t + 1$ would
 720 be in state $S_{t+1,1}^+$.
 721

722 Next, we consider round $i \in [t + 1, T]$ for which \mathcal{X}_i^+ and \mathcal{X}_i^- are given. Assume that round i is in
 723 one of the above five states. Then we will argue that so is round $i + 1$. As $i \geq t + 1$, both \mathcal{X}_i^+ and
 724 \mathcal{X}_i^- take the optimal policy.
 725

726 (C1) If round i is in state $S_{i,0}$, then $\mathcal{X}_i^+ = \mathcal{X}_i^-$, so the optimal policy would choose the same
 727 job. As a result, round $i + 1$ would be in state $S_{i+1,0}$.
 728

729 (C2) If round i is in state $S_{i,1}^+$, it falls into the following two cases, based on whether the optimal
 730 policy chooses x_i^+ for \mathcal{X}_i^+ .
 731

732 (C2-1) If the optimal policy selects x_i^+ for \mathcal{X}_i^+ , this means that $D^+(i) \geq D^-(i)$. Therefore,
 733 there are three possibilities. When $D^+(i) = D^-(i) = 0$, as the queues keep the same
 734 sets of jobs for round $i + 1$, we have $S_{i+1,1}^+$ for round $i + 1$. If $D^+(i) = D^-(i) = 1$,
 735 as the optimal policy would choose another job in \mathcal{X}_i^- , we still have state $S_{i+1,1}^+$ for
 736 round $i + 1$. When $D^+(i) = 1$ and $D^-(i) = 0$, round $i + 1$ would be in state $S_{i+1,0}$.
 737 (C2-2) If the optimal policy does not choose x_i^+ from \mathcal{X}_i^+ , then it chooses the same job for
 738 \mathcal{X}_i^+ and \mathcal{X}_i^- , which means that round $i + 1$ would be in state $S_{i+1,1}^+$.
 739

740 To summarize, for case (C2), we have $S_{i+1,0}$ or $S_{i+1,1}^+$ in round $i + 1$.
 741

742 (C3) If round i is in state $S_{i,1}^-$, by the symmetry between $S_{i,1}^+$ and $S_{i,1}^-$, we may argue that we
 743 have $S_{i+1,0}$ or $S_{i+1,1}^-$ in round $i + 1$ with a similar argument as in case (C2).
 744

745 (C4) If round i is in state $S_{i,2}^+$, it falls into the following two cases, based on whether the optimal
 746 policy chooses x_i^+ for \mathcal{X}_i^+ .
 747

748 (C4-1) If the optimal policy selects x_i^+ for \mathcal{X}_i^+ , this means that $D^+(i) \geq D^-(i)$. Therefore,
 749 there are three possibilities. When $D^+(i) = D^-(i) = 0$, as the queues keep the same
 750 sets of jobs for round $i + 1$, we have $S_{i+1,2}^+$ for round $i + 1$. If $D^+(i) = D^-(i) = 1$,
 751 the optimal policy would choose another job in \mathcal{X}_i^- . If the optimal policy chooses x_i^-
 752 from \mathcal{X}_i^- , we have state $S_{i+1,0}$ in round $i + 1$. If not, round $i + 1$ would be in state
 753 $S_{i+1,2}^+$. When $D^+(i) = 1$ and $D^-(i) = 0$, round $i + 1$ would be in state $S_{i+1,1}^-$.
 754

755 (C4-2) If the optimal policy does not choose x_i^+ from \mathcal{X}_i^+ , then it would not choose x_i^- from
 756 \mathcal{X}_i^- either. Hence, the optimal policy chooses the same job for \mathcal{X}_i^+ and \mathcal{X}_i^- , so round
 757 $i + 1$ would be in state $S_{i+1,2}^+$.
 758

756
757

In summary, for case (C4), we have $S_{i+1,0}$ or $S_{i+1,1}^-$ or $S_{i+1,2}^+$ in round $i+1$.

758
759
760

(C5) If round i is in state $S_{i,2}^-$, by the symmetry between $S_{i,2}^+$ and $S_{i,2}^-$, we may argue that we have $S_{i+1,0}$ or $S_{i+1,1}^+$ or $S_{i+1,2}^-$ in round $i+1$ with a similar argument as in case (C4).

761
762
763
764
765
766

Recall that if $D^+(t) = 0$ and $D^-(t) = 1$, then round $t+1$ would be in state $S_{t+1,1}^+$. Due to our case analysis above, we have $S_{t+2,0}$ or $S_{t+2,1}^+$ for round $t+2$. If the state of round $t+2$ is $S_{t+2,0}$, then we have $S_{i,0}$ for each round $i \geq t+2$, in which case $\psi(t, T) = 0$. If we have $S_{t+2,1}^+$ for round $t+2$, we repeat the same argument as for state $t+1$. If we observe $S_{T,1}^+$ for round T , then we have $\psi(t, T) = 1$. Otherwise, round T would be in state $S_{T,0}$, in which case $\psi(t, T) = 0$.

767
768
769
770
771
772
773
774
775
776

Moreover, if $D^+(t) = D^-(t)$, then round $t+1$ would be in state $S_{t+1,0}$ or $S_{t+1,2}^+$. By our case analysis above, we have $S_{t+2,0}$ or $S_{t+2,1}^-$ or $S_{t+2,2}^+$ for round $t+2$. If the state of round $t+2$ is $S_{t+2,0}$, then we have $S_{i,0}$ for each round $i \geq t+2$, in which case $\psi(t, T) = 0$. If we have $S_{t+2,1}^-$ for round $t+2$, we have $S_{t+3,0}$ or $S_{t+3,1}^-$ for round $t+3$. If $S_{t+3,0}$ is the state of round $t+3$, then as before, we deduce $\psi(t, T) = 0$. If the state is $S_{t+3,1}^-$, we repeat the same argument as for state $t+2$. If we observe $S_{T,1}^-$ for round T , then we have $\psi(t, T) = -1$. Otherwise, round T would be in state $S_{T,0}$, in which case $\psi(t, T) = 0$. If we observe $S_{t+2,2}^+$ for round $t+2$, then we again repeat the argument as for round $t+1$ to argue that $\psi(t, T) \in \{0, -1\}$.

777

This finishes the proof of Lemma B.1. \square

778
779

B.2 PROOF OF LEMMA 4.2

780
781
782

Recall the definition of filtration given by $\mathcal{F}_t^+ := \sigma(\mathcal{F}_t, \cup \{E(t-1), A(t)\})$ for $t \in [T]$, and notice that x_t, k_t are \mathcal{F}_t^+ -measurable.

783
784

By the regret decomposition $R_T = \sum_{t=1}^{T-1} \mathbb{E}[\psi(t, T)]$, we deduce that

785
786
787
788
789
790
791
792
793
794
795

$$\begin{aligned} R_T &= \sum_{t=1}^{T-1} \mathbb{E}[\mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+]] \\ &= \sum_{t=1}^{T-1} \mathbb{E}[\mathbb{P}(D^+(t) = 0, D^-(t) = 0 \mid \mathcal{F}_t^+) \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 0]] \\ &\quad + \sum_{t=1}^{T-1} \mathbb{E}[\mathbb{P}(D^+(t) = 1, D^-(t) = 1 \mid \mathcal{F}_t^+) \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 1, D^-(t) = 1]] \\ &\quad + \sum_{t=1}^{T-1} \mathbb{E}[\mathbb{P}(D^+(t) = 0, D^-(t) = 1 \mid \mathcal{F}_t^+) \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]] \end{aligned}$$

796
797
798

where the first equality holds due to the tower rule and the second equality holds since $D^+(t) \leq D^-(t)$ by our coupling process, which prevents the case where $D^+(t) = 1$ and $D^-(t) = 0$. For the first part of the right-hand side, it follows from Lemma B.1 that

799
800
801

$$\begin{aligned} \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 0] &\leq 0, \\ \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 1, D^-(t) = 1] &\leq 0. \end{aligned}$$

802
803

Next, for the second part, notice that the departure disagreement event with $D^+(t) = 0, D^-(t) = 1$ occurs when

804
805

$$\mu((x_t^+)^T \theta_{k_t^+}^*) \leq U_{t,2} \leq \mu((x_t^-)^T \theta_{k_t^-}^*), \quad U_{t,2} \sim \text{Unif}(0, 1).$$

806
807
808

Moreover, as $Q^+(t) = Q(t)$ and $(x_t^*, k_t^*) \in \arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^T \theta_k^*)$, we know that $x_t^+ = x_t$, $k_t^+ = k_t$ and $x_t^- = x_t^*, k_t^- = k_t^*$. Therefore, we have

809

$$\mathbb{P}(D^+(t) = 0, D^-(t) = 1 \mid \mathcal{F}_t^+) = \mu((x_t^*)^T \theta_{k_t^*}^*) - \mu((x_t^T \theta_{k_t}^*)).$$

810 Plugging in these observations to the above decomposition of R_T , we obtain
811

$$\begin{aligned} 812 \quad R_T &\leq \sum_{t=1}^{T-1} \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right) \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \right] \\ 813 \\ 814 \quad &\leq \sum_{t=1}^{T-1} \sqrt{\mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right]} \sqrt{\mathbb{E} \left[\mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]^2 \right]} \end{aligned}$$

815 where the second inequality follows from the Cauchy-Schwarz inequality. For the second square
816 root term,
817

$$\begin{aligned} 818 \quad &\mathbb{E} \left[\mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]^2 \right] \\ 819 \quad &\leq \mathbb{E} \left[\mathbb{E} [(\psi(t, T))^2 \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \right] \quad (\mathbb{E}[X|\mathcal{F}]^2 \leq \mathbb{E}[X^2|\mathcal{F}]) \\ 820 \quad &= \mathbb{E} \left[\mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \right] \quad (\text{Lemma B.1}) \\ 821 \quad &= \mathbb{E} [\tilde{\psi}(t, T)] \end{aligned}$$

822 This finishes the proof.
823

824 **Remark B.2.** Notice that the same proof can be applied for the adversarial setting by replacing the
825 filtration \mathcal{F}_t^+ with \mathcal{G}_t^+ . To be more precise, we may prove that
826

$$\mathbb{E}[\psi(t, T)] \leq \sqrt{\mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right]} \sqrt{\mathbb{E} [\tilde{\psi}'(t, T)]}$$

827 where $\mathcal{G}_t^+ := \sigma(\mathcal{G}_t \cup \{\mathbf{A}(t)\})$, $\tilde{\psi}'(t, T) := \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1]$, and $(x_t^*, k_t^*) \in$
828 $\arg \max_{x \in \mathcal{X}_t, k \in [K]} \mu(x^\top \theta_k^*)$.
829

830 C PROOFS FOR THE LEMMAS IN SECTION 5

831 In this section, we provide our proofs of Lemmas 5.1 to 5.4. The proof of Theorem 5.5 is deferred
832 to Appendix E.1.
833

834 C.1 PROOF OF LEMMA 5.1

835 Recall the definition of $\hat{\theta}_{t-1,k}$ which is the projection of the maximum likelihood estimator $\hat{\theta}_{t-1,k}^{(1)}$
836 following
837

$$\hat{\theta}_{t-1,k} = \arg \min_{\theta \in \Theta} \left\| \sum_{i=1}^{t-1} \left[\mu(x_i^\top \theta) - \mu(x_i^\top \hat{\theta}_{t-1,k}^{(1)}) \right] x_i \right\|_{V_{t-1,k}^{-1}}.$$

838 For all $x \in \mathcal{X}$, $t \in [T]$, we have
839

$$\begin{aligned} 840 \quad &\left| \mu(x^\top \hat{\theta}_{t-1,k}) - \mu(x^\top \theta_k^*) \right| \\ 841 \quad &\leq R \left| x^\top (\hat{\theta}_{t-1,k} - \theta_k^*) \right| \quad (\text{R-Lipschitz}) \\ 842 \quad &\leq R \|x\|_{V_{t-1,k}^{-1}} \cdot \left\| \hat{\theta}_{t-1,k} - \theta_k^* \right\|_{V_{t-1,k}^{-1}} \quad (\text{Cauchy-Schwarz}) \\ 843 \quad &\leq \underbrace{\frac{\kappa}{2} \left(\sqrt{2d \log \left(1 + \frac{1}{\kappa \lambda_0 d} \sum_{i=1}^t \mathbf{1}\{k_i = k\} \right)} + \log(K/\delta) + S\sqrt{\lambda_0} \right)}_{=: \beta_{t-1,k}} \|x\|_{V_{t-1,k}^{-1}} \\ 844 \quad &\quad (\text{Lemma F.3, } R \leq 1/4) \end{aligned}$$

845 where for the last inequality, we replaced t with the actual number of the update for server k , which
846 is $\sum_{i=1}^t \mathbf{1}\{k_i = k\}$, then the last line holds with probability at least $1 - \delta/K$. Taking the union
847 bound for all $k \in [K]$ finishes the proof.
848

864 C.2 PROOF OF LEMMA 5.2
865866 For all $t \in [\tau + 1, T]$, we have

867
868
$$\|x\|_{V_{t-1,k}^{-1}} \leq \frac{\|x\|_2}{\lambda_{\min}^{1/2}(V_{t-1,k})} \leq \frac{\|x\|_2}{\lambda_{\min}^{1/2}(V_{\tau,k})}. \quad (4)$$

869

870 Let $N > 0$ be the number of jobs matched to server $k \in [K]$ during the pure-exploration period
871 $[1, \tau]$. We first show that if N is large enough, the minimum eigenvalue of $V_{\tau,k}$ is reduced enough
872 to show the proof.
873874 Recall that in the pure-exploration phase, we immediately choose the newly arriving job with the
875 server in a round-robin manner. Then, we can see that N features inside $V_{\tau,k}$ are i.i.d. samples from
876 the unknown distribution \mathcal{D} . Here, if

877
878
$$N \geq \left(\frac{C_1 \sqrt{d} + C_2 \sqrt{\log(K/\delta)}}{\sigma_0^2} \right)^2 + \frac{2B}{\sigma_0^2} \quad (5)$$

879

880 for some $B > 0$, it follows from Proposition F.5 that

881
$$\lambda_{\min}(V_{\tau,k}) \geq B$$

882

883 holds with probability at least $1 - \delta/K$. Based on this, set $B = 16\beta_T^2/(\epsilon - 2\epsilon)^2$. Then, if

884
885
$$N \geq C_3 \left(\frac{d + \log(K/\delta)}{\sigma_0^4} + \frac{16\beta_T^2}{\sigma_0^2(\epsilon - 2\epsilon)^2} \right) = \mathcal{O} \left(\frac{d \log(T)}{\sigma_0^4 \epsilon^2} \right) \quad (6)$$

886

887 for some absolute constant $C_3 > 0$, we have

888
$$\lambda_{\min}(V_{\tau,k}) \geq 16\beta_T^2(\epsilon - 2\epsilon)^2$$

889

890 Then, considering Equation (4), with probability at least $1 - \delta/K$ and for all $t \in [\tau + 1, T]$,

891
892
$$\|x\|_{V_{t-1,k}^{-1}} \leq \frac{\|x\|_2}{\lambda_{\min}^{1/2}(V_{\tau,k})} \leq \frac{\epsilon - 2\epsilon}{4\beta_T} \leq \frac{\epsilon - 2\epsilon}{4\beta_{t-1,k_t}} \quad (7)$$

893

894 and the desired result is achieved.
895896 Now, we show that by our definition of τ , each of the K servers is guaranteed to get at least $\hat{\tau} > 0$
897 i.i.d. features ($K\hat{\tau}$ in total) up to round τ with probability at least $1 - \delta$, where
898

899
900
$$\hat{\tau} := C_3 \left(\frac{d + \log(K/\delta)}{\sigma_0^4} + \frac{16\beta_T^2}{\sigma_0^2(\epsilon - 2\epsilon)^2} \right).$$

901

902 Since in a pure exploration round, we always choose the newly arriving job for the random explo-
903 ration. Therefore, the total number of arrivals until round τ becomes the number of the i.i.d. features
904 inside $V_{\tau,k}$. Now, consider the sum of $A(t)$. Since $\sum_{t=1}^{\tau} A(t)$ are the summation of i.i.d. Bernoulli
905 random variables with mean $\lambda\tau$, applying Hoeffding's inequality

906
907
$$\mathbb{P} \left(\sum_{t=1}^{\tau} A(t) - \lambda\tau \leq K\hat{\tau} - \lambda\tau \right) \leq \exp \left(\underbrace{\frac{-2(\lambda\tau - K\hat{\tau})^2}{\tau}}_{B_1} \right)$$

908

909 if $K\hat{\tau} \leq \lambda\tau$ holds. To represent the probability in δ , setting $B_1 \leq \log(\delta)$, we have
910

911
912
$$\lambda^2\tau^2 - \left(2\lambda K\hat{\tau} + \frac{1}{2} \log(1/\delta) \right) \tau + K^2\hat{\tau}^2 \geq 0,$$

913

914 Solving the quadratic inequality for τ , and choosing τ as
915

916
917
$$\tau := \frac{A_1}{\lambda^2} \geq \frac{A_1 + \sqrt{A_1^2 - 4\lambda^2 A_2}}{2\lambda^2} = \mathcal{O} \left(\frac{d \log(T)}{\sigma_0^4 \epsilon^2} \right),$$

918 where

$$919 \quad A_1 = 2\lambda K\hat{\tau} + \frac{1}{2} \log(1/\delta), \quad A_2 = K^2\hat{\tau}^2$$

920 We can also see that τ satisfies the condition since $\lambda\tau \geq \frac{A_1 + \sqrt{A_1^2 - 4\lambda^2 A_2}}{2\lambda} \geq \frac{2\lambda K\hat{\tau}}{2\lambda} = K\hat{\tau}$. Therefore
921 by our choice of τ and $\hat{\tau}$

$$922 \quad \mathbb{P} \left(\sum_{t=1}^{\tau} A(t) \geq K\hat{\tau} \right) \geq 1 - \delta. \quad (8)$$

923 Finally, we gather the results. By Equation (8) we get at least $K\hat{\tau}$ i.i.d. features during the initial
924 τ rounds with probability at least $1 - \delta$. By round-robin assignment during the pure-exploration,
925 each server receives at least $\hat{\tau}$ i.i.d. features. Since $\hat{\tau}$ satisfies the condition in Equation (6), for each
926 server $k \in [K]$, with probability at least $1 - \delta/K$, Equation (7) holds. Lastly, taking the union bound
927 for all servers and for Equation (8) finishes the proof.

928 C.3 PROOF OF LEMMA 5.3

929 Before we prove Lemma 5.3, we need to establish several technical results first. By our ε -greedy
930 policy and Assumption 3.3, we deduce following proposition.

931 **Proposition C.1.** *Under the ε -greedy policy*

$$932 \quad \mathbb{E} [x_t x_t^T] \succeq \lambda \varepsilon \Sigma, \quad \mathbb{E} [\mathbf{1}\{k_t = k\} x_t x_t^T] \succeq \frac{\lambda \varepsilon}{K} \Sigma.$$

933 *Proof.* ε -exploration occurs with probability of ε when the new job $x^{(t-1)}$ arrives and $A(t-1) = 1$.
934 Therefore, by Assumption 3.3,

$$935 \quad \mathbb{E} [x_t x_t^T] \succeq \mathbb{P}(A(t-1) = 1, E(t-1) = 1) \mathbb{E} \left[x^{(t-1)} \left(x^{(t-1)} \right)^T \right] \succeq \lambda \varepsilon \Sigma.$$

936 Also, since we choose the server uniformly,

$$937 \quad \mathbb{E} [\mathbf{1}\{k_t = k\} x_t x_t^T] \succeq (\lambda \varepsilon / K) \Sigma,$$

938 as required. \square

939 Now we provide a high probability lower bound on the minimum eigenvalue of the design matrix.

940 **Lemma C.2.** *For $t \in [\tau + 1, T]$, $k \in [K]$, with probability at least $1 - \exp\left(-\frac{\lambda \varepsilon (t-\tau)}{8K}\right) -$
941 $d \exp\left(-\frac{\lambda \varepsilon (t-\tau) \sigma_0^2}{16K}\right)$,*

$$942 \quad \lambda_{\min}(V_{t,k}) \geq \lambda_0 + \frac{\lambda \varepsilon (t-\tau) \sigma_0^2}{4K}.$$

943 *Proof.* Consider $V_{t,k}$. We will first show a high probability bound that for some $N > 0$, the number
944 of i.i.d. sampled features inside $V_{t,k}$ from $\tau + 1$ to T is larger than $N > 0$. Then we will show that
945 if there are N (or more) i.i.d. sampled features $\{x_i\}_{i=1}^N$, then $\lambda_{\min}(\sum_{i=1}^N x_i x_i^T)$ is larger than M
946 for some $M > 0$ with high probability. Lastly, applying the union bound by considering that both
947 events hold, we obtain the desired result of $\lambda_{\min}(V_{t,k}) \geq M$ with high probability.

948 First, define the total number of random explorations for server k from $\tau + 1$ up to round t inside as

$$949 \quad E_{t,k} = \sum_{i=\tau+1}^t \mathbf{1}\{A(i-1) = 1, E(i-1) = 1, k_i = k\} \sim \text{Bin}(t - \tau, \lambda \varepsilon / K)$$

950 Since $\mathbb{E}[E_{t,k}] = \lambda \varepsilon (t - \tau) / K$, set

$$951 \quad \delta = \frac{1}{2}, \quad \mu = \mathbb{E}[E_{t,k}] = \frac{\lambda \varepsilon (t - \tau)}{K}, \quad N = \delta \mu$$

972 and apply the *Chernoff bound* (Lemma F.6), we have
 973

$$974 \quad \mathbb{P}(E_{t,k} \geq N) = 1 - \mathbb{P}(E_{t,k} \leq N) \geq 1 - \exp\left(-\frac{\lambda\varepsilon(t-\tau)}{8K}\right). \quad (9)$$

976 Next, consider the case where $E_{t,k} \geq N$. Choose those i.i.d. sampled features and define a new
 977 design matrix $\widehat{V}_{t,k}$ which consists of them as
 978

$$979 \quad \widehat{V}_{t,k} = \sum_{i=1}^t \mathbf{1}\{A(i-1) = 1, E(i-1) = 1, k_i = k\} x_i x_i^\top$$

982 Now we apply the *Matrix Chernoff bound* (Lemma F.7), on $\widehat{V}_{t,k}$ with
 983

$$984 \quad \delta' = \frac{1}{2}, \quad n' = N, \quad M = \delta' n' \sigma_0^2$$

985 Then

$$987 \quad \mathbb{P}\left(\lambda_{\min}(\widehat{V}_{t,k}) \geq M \mid E_{t,k} \geq N\right) \geq \mathbb{P}\left(\lambda_{\min}(\widehat{V}_{t,k}) \geq M \mid E_{t,k} = N\right)$$

$$988 \quad = 1 - \mathbb{P}\left(\lambda_{\min}(\widehat{V}_{t,k}) \leq M \mid E_{t,k} = N\right)$$

$$989 \quad \geq 1 - d \exp\left(-\frac{\lambda\varepsilon(t-\tau)\sigma_0^2}{16K}\right). \quad (10)$$

993 Now we consider the case when both Equations (9) and (10) hold. By Equation (9) we have $E_{t,k} \geq$
 994 $\frac{\lambda\varepsilon(t-\tau)}{2K}$ which means that there are at least $\frac{\lambda\varepsilon(t-\tau)}{2K}$ i.i.d. features inside $V_{t,k}$ with high probability.
 995

996 Next, by Equation (10), if the number of i.i.d. features inside $V_{t,k}$ is larger than $\frac{\lambda\varepsilon(t-\tau)}{2K}$, we have
 997

998 $\lambda_{\min}(\sum_{i=1}^t \mathbf{1}\{k_i = k\} x_i x_i^\top) \geq \frac{\lambda\varepsilon(t-\tau)\sigma_0^2}{4K}$ with high probability. Then
 999

$$1000 \quad \lambda_{\min}(V_{t,k}) = \lambda_{\min}\left(\lambda_0 \mathbf{I} + \sum_{i=1}^t \mathbf{1}\{k_i = k\} x_i x_i^\top\right) \geq \lambda_0 + \frac{\lambda\varepsilon(t-\tau)\sigma_0^2}{4K}.$$

1001 Next, considering the probability of both cases holds together,
 1002

$$1003 \quad \mathbb{P}(E_{t,k} \geq N, \lambda_{\min}(\widehat{V}_{t,k}) \geq M)$$

$$1004 \quad = \mathbb{P}(E_{t,k} \geq N) \mathbb{P}(\lambda_{\min}(\widehat{V}_{t,k}) \geq M \mid E_{t,k} \geq N)$$

$$1005 \quad \geq 1 - \exp\left(-\frac{\lambda\varepsilon(t-\tau)}{8K}\right) - d \exp\left(-\frac{\lambda\varepsilon(t-\tau)\sigma_0^2}{16K}\right)$$

1006 finishing the proof.
 1007

□

1012 **Proof of Lemma 5.3.** Now we are ready to start the proof. Define the good event $\mathcal{E}_{t,1}$ when
 1013 Lemma C.2 holds. Then under $\mathcal{E}_{t,1}$, for any $x \in \mathcal{X}$, $t \in [\tau+1, T]$,

$$1015 \quad \|x\|_{V_{t-1,k_t}^{-1}}^2 \leq \frac{\|x\|_2^2}{\lambda_{\min}(V_{t-1,k_t}^{-1})} \leq \left(\lambda_0 + \frac{\lambda\varepsilon(t-\tau-1)\sigma_0^2}{4K}\right)^{-1},$$

1017 If $\mathcal{E}_{t,1}$ does not hold, we have $\|x\|_{V_{t-1,k_t}^{-1}}^2 \leq 1/\lambda_0$. Taking expectation,
 1018

$$1019 \quad \mathbb{E}\left[\|x\|_{V_{t-1,k_t}^{-1}}^2\right] = \mathbb{P}(\mathcal{E}_{t,1}) \mathbb{E}\left[\|x\|_{V_{t-1,k_t}^{-1}}^2 \mid \mathcal{E}_{t,1}\right] + \mathbb{P}(\mathcal{E}_{t,1}^c) \mathbb{E}\left[\|x\|_{V_{t-1,k_t}^{-1}}^2 \mid \mathcal{E}_{t,1}^c\right]$$

$$1020 \quad \leq \left(\lambda_0 + \frac{\lambda\varepsilon(t-\tau-1)\sigma_0^2}{4K}\right)^{-1}$$

$$1021 \quad + \frac{1}{\lambda_0} \left(\exp\left(-\frac{(t-\tau-1)\lambda\varepsilon}{8K}\right) + d \exp\left(-\frac{(t-\tau-1)\lambda\varepsilon\sigma_0^2}{16K}\right)\right) \quad (11)$$

1026 where the inequality follows from Lemma C.2. Recall the definition of $\nu(t-1)$ which is the right-
 1027 hand side of Equation (11). Now we consider the expected value of instantaneous regret under \mathcal{E}_g .
 1028 Let event $\mathcal{E}_{t,2}$ hold when $A(t-1) = 1$ and $E(t-1) = 1$ where ε -exploration is applied in round t .
 1029 Notice that if ε -exploration is not applied, we choose the job and matching server optimistically by
 1030 choosing the maximum UCB value. Therefore,

$$\begin{aligned} & \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t^*}^* \right) \right)^2 \middle| \mathcal{E}_g \right] \\ &= \mathbb{P}(\mathcal{E}_{t,2} | \mathcal{E}_g) + \mathbb{P}(\mathcal{E}_{t,2}^c | \mathcal{E}_g) \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t^*}^* \right) \right)^2 \middle| \mathcal{E}_g, \mathcal{E}_{t,2}^c \right] \\ &\leq \lambda \varepsilon + 1 \times \mathbb{E} \left[4\beta_{t-1,k}^2 \|x_t\|_{V_{t-1,k_t}^{-1}}^2 \middle| \mathcal{E}_g, \mathcal{E}_{t,2}^c \right] \quad (\mathbb{P}(\mathcal{E}_{t,2} | \mathcal{E}_g) = \mathbb{P}(\mathcal{E}_{t,2}), \text{ Equation (20)}) \end{aligned}$$

1031 For the last inequality, $\mathcal{E}_{t,2}$ affects the chosen job-server pair for round $t \in [\tau+1, T]$. However,
 1032 under the event \mathcal{E}_g , since Lemma 5.1 holds for all $x \in \mathcal{X}$, $k \in [K]$, and Lemma 5.2 only considers
 1033 $t' \in [1, \tau]$. Therefore, we can see that \mathcal{E}_g and $\mathcal{E}_{t,2}$ are independent, so we have $\mathbb{P}(\mathcal{E}_{t,2} | \mathcal{E}_g) = \mathbb{P}(\mathcal{E}_{t,2})$.
 1034 Now, for the second term,

$$\begin{aligned} & \mathbb{E} \left[4\beta_{t-1,k}^2 \|x_t\|_{V_{t-1,k_t}^{-1}}^2 \middle| \mathcal{E}_g, \mathcal{E}_{t,2}^c \right] \leq \mathbb{E} \left[\max_{x \in \mathcal{X}} 4\beta_{t-1,k}^2 \|x\|_{V_{t-1,k_t}^{-1}}^2 \right] \\ &\leq 4\beta_T^2 \mathbb{E} \left[\max_{x \in \mathcal{X}} \|x\|_{V_{t-1,k_t}^{-1}}^2 \right] \\ &\leq 4\beta_T^2 \nu(t-1) \end{aligned}$$

1035 where the second inequality holds since x_t is independent of \mathcal{E}_g and we removed the dependence
 1036 of $\mathcal{E}_{t,2}^c$ by taking the maximum of x , the first inequality holds since $\beta_T \geq \beta_{t-1} \geq \beta_{t-1,k}$, and
 1037 the last inequality holds since Equation (11) holds for all $x \in \mathcal{X}$, therefore we can apply the same
 1038 upper-bound for this expectation. Substituting the result and taking $\min\{1, \cdot\}$ on both sides finishes
 1039 the proof.

1040 C.4 PROOF OF LEMMA 5.4

1041 For simplicity, in this section, we assume Lemmas 5.1 and 5.2 always hold (\mathcal{E}_g always holds) and
 1042 skip the conditional notation for it.

1043 Recall the definition of the filtration

$$1044 \mathcal{F}_t := \sigma(\mathcal{X}_1, \mathbf{A}(1), \mathbf{D}(1), E(1), \mathbf{A}(2), \mathbf{D}(2), E(2), \dots, \mathbf{A}(t-1), \mathbf{D}(t-1))$$

1045 Note that \mathcal{F}_t shorts of $E(t-1)$ therefore $Q(t)$ is still \mathcal{F}_t -measurable, while x_t is not.

1046 **Bad rounds.** Now we define \mathcal{F}_t -measurable bad rounds. Let us use notations

$$1047 \text{UCB}(x, k) = \mu \left(x^\top \hat{\theta}_{t-1,k} \right) + \beta_{t-1,k} \|x\|_{V_{t-1,k}^{-1}}$$

1048 and

$$1049 x_t^{(+)}, k_t^{(+)} := \arg \max_{x \in \mathcal{X}, k \in [K]} \text{UCB}(x, k).$$

1050 Then

$$1051 \mathcal{B} := \left\{ t \in [T], x_t^{(+)}, k_t^{(+)} : \|x_t^{(+)}\|_{V_{t-1,k_t^{(+)}}^{-1}} > \frac{\epsilon - 2\varepsilon}{4\beta_{t-1,k_t^{(+)}}} \right\}$$

1052 Under \mathcal{F}_t , note that x_t, k_t can be different from $x_t^{(+)}, k_t^{(+)}$ since the unseen $E(t-1)$ could choose
 1053 random exploration. However, since $Q(t)$ is \mathcal{F}_t -measurable, \mathcal{X}_t , and $x_t^{(+)}, k_t^{(+)}$ also \mathcal{F}_t -measurable.
 1054 We also introduce notation

$$1055 \mathcal{B}(t) := |\{[t] \cap \mathcal{B}\}|.$$

1056 Next, we establish that for good rounds, there is a negative drift as described in the following proposition.

1080 **Proposition C.3.** For all $t \notin \mathcal{B}$,

$$1082 \quad \mathbb{E}[A(t) - D(t) \mid \mathcal{F}_t] \leq -\epsilon/2$$

1083 *Proof.* Consider $Q(t-1, T)$ which corresponds to the policy-switching queue of following our
 1084 policy up to round $t-1$ and switching to the optimal policy at round t . As explained in Section 4,
 1085 we may apply the coupling argument on $Q(t)$ and $Q(t-1, T)$. As they follow the same policy
 1086 up to time step $t-1$, two coupled queues for $Q(t)$ and $Q(t-1, T)$ have the same queue state in
 1087 round t . Let $D(t)$ and $\tilde{D}(t-1, t)$ denote the random job departures of the two coupled queues at
 1088 round t for $Q(t)$ and $Q(t-1, T)$. Note that
 1089

$$\begin{aligned} 1090 \quad & \mathbb{E}[A(t) - D(t) \mid \mathcal{F}_t] \\ 1091 \quad &= \mathbb{E}[A(t) - \tilde{D}(t-1, t) \mid \mathcal{F}_t] + \mathbb{E}[\tilde{D}(t-1, t) - D(t) \mid \mathcal{F}_t] \\ 1092 \quad &\leq -\epsilon + \mathbb{P}(E(t-1) = 1 \mid \mathcal{F}_t) \\ 1093 \quad &\quad + \mathbb{P}(E(t-1) = 0 \mid \mathcal{F}_t) \mathbb{E}[\tilde{D}(t-1, t) - D(t) \mid \mathcal{F}_t, E(t-1) = 0] \\ 1094 \quad &\leq -\epsilon + \epsilon + \mu((x_t^*)^\top \theta_{k_t^*}^*) - \mu((x_t^{(+)})^\top \theta_{k_t^{(+)}}^*) \\ 1095 \quad &\leq -\epsilon + \epsilon + 2\beta_{t-1, k_t^{(+)}} \|x_t^{(+)}\|_{V_{t-1, k_t^{(+)}}^{-1}} \\ 1096 \quad &\leq -\epsilon/2 \end{aligned}$$

1100 where the first inequality holds because $\tilde{D}(t-1, t)$ is due to the optimal policy and Assumption 3.4
 1101 holds, the second inequality holds because our algorithm takes $x_t^{(+)}, k_t^{(+)}$ under $E(t-1) = 0$, the
 1102 third inequality is due to our optimistic choice rule, and the last inequality follows from definition
 1103 of \mathcal{B} . \square

1104 **Proposition C.4.** We have

$$1105 \quad \mathcal{B}(T) \leq \tau = \mathcal{O}\left(\frac{d \log(T)}{\sigma_0^4 \epsilon^2}\right)$$

1106 *Proof.* The result is a direct consequence of Lemma 5.2 and the definition of \mathcal{B} . \square

1107 **Queue length difference under disagreement.** In this paragraph, we give the upper bound for the
 1108 expected queue length difference between two consecutive policy-switching queues. For notational
 1109 convenience, we assume that $Q(t, T)$ for $t \in [T]$ are coupled based on our discussion in Section 4.
 1110 Then we study the expected queue length difference $Q(t, T) - Q(t-1, T)$ given the disagreement
 1111 event where $Q(t, T)$ fails and $Q(t-1, T)$ succeeds in round t . Recall the definition of \mathcal{F}_T^+ ,

$$1112 \quad \mathcal{F}_t^+ := \sigma(\mathcal{F}_t \cup \{E(t-1), \mathbf{A}(t)\})$$

1113 **Lemma C.5.** We have

$$\begin{aligned} 1114 \quad & \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1] \\ 1115 \quad & \leq \exp\left(-\frac{(Q(t+1) - 1 - (T-t-1)\epsilon)^2}{2(T-t-1)}\right). \end{aligned}$$

1116 *Proof.* Consider the conditional expectation

$$1117 \quad \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]$$

1118 By Lemma B.1, if $D^+(t) = 0, D^-(t) = 1$, the value of $\psi(t, T)$ is in $\{0, 1\}$. Now we only consider
 1119 the case for $\psi(t, T) = 1$. $\psi(t, T) = 1$ means there is a disagreement event in round t as $D^+(t) = 0$
 1120 and $D^-(t) = 1$, and the difference of queue length is preserved until round T . Notice that if
 1121 the queue with an extra job Q^+ hits 0 queue length before round T , the queue length difference

1134 between Q^+ and Q^- will always become 0 thereafter by our coupling process. This implies that
 1135 the probability of $Q^+(t)$ or $Q(t, j)$ never hitting length 0 for all $j \in [t+1, T]$ is larger than the
 1136 probability that the queue length difference is preserved until round T . Then, we have,
 1137

$$\begin{aligned} 1138 \quad & \mathbb{P}(\psi(t, T) = 1 \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1) \\ 1139 \quad & \leq \mathbb{P}(Q(t, j) > 0, \forall j \in [t+1, T] \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1) \end{aligned}$$

1140 Next, notice that $Q(t+1)$ is a realized value under $\mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1$. By the queue
 1141 dynamics, the probability of $Q(t, j)$ never hitting length 0 for all $j \in [t+1, T]$ can be upper
 1142 bounded by the probability that the cumulative net service cannot exceed $Q(t) - 1$, which is
 1143

$$\begin{aligned} 1144 \quad & \mathbb{P}(Q(t, j) > 0, \forall j \in [t+1, T] \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1) \\ 1145 \quad & \leq \mathbb{P}\left(q + \sum_{i=t+1}^{T-1} (A(i) - D^+(i)) \geq 1 \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1\right). \end{aligned}$$

1146 Combining results, we have
 1147

$$\begin{aligned} 1148 \quad & \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1] \\ 1149 \quad & \leq \mathbb{P}(Q(t, j) > 0, \forall j \in [t+1, T] \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1) \\ 1150 \quad & \leq \mathbb{P}\left(Q(t+1) + \sum_{i=t+1}^{T-1} (A(i) - D^+(i)) \geq 1 \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1\right) \\ 1151 \quad & = \mathbb{P}\left(\sum_{i=t+1}^{T-1} (D^+(i) - A(i)) - (T-t-1)\epsilon \leq Q(t+1) - 1 - (T-t-1)\epsilon \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1\right) \\ 1152 \quad & \leq \exp\left(-\frac{(Q(t+1) - 1 - (T-t-1)\epsilon)^2}{2(T-t-1)}\right), \quad (\text{Assumption 3.4, Hoeffding inequality}) \\ 1153 \quad & \leq \exp\left(-\frac{(Q(t+1) - 1 - (T-t-1)\epsilon)^2}{2(T-t-1)}\right), \quad (\text{Assumption 3.4, Hoeffding inequality}) \end{aligned}$$

1154 where the condition of Hoeffding inequality $Q(t+1) \leq (T-t-1)\epsilon + 1$ always holds, and the last
 1155 inequality follows since Q^+ follows the optimal algorithm after round t , thereby satisfying traffic
 1156 slackness of Assumption 3.4. \square
 1157

1158 **Tail bound for $Q(t)$.** The result of Lemma C.5 shows that the queue length difference under the
 1159 disagreement event can be upper-bounded by the exponential term of remaining rounds $(T-t-1)$
 1160 (which suits our goal to upper bound the queue length difference with the exponential ramp) and the
 1161 queue length $Q(t+1)$. Therefore, in this paragraph, we control the value of $Q(t+1)$ by giving the
 1162 exponential tail bound for it.
 1163

1164 **Lemma C.6.** Set $\eta \in (0, \epsilon/2]$, $\rho = e^{-\eta\epsilon/4}$, $\beta = e^\eta$. For some $a \geq \frac{1}{\eta} \log\left(\frac{\beta}{\rho}\right)$ and $b \geq 0$, we have
 1165

$$\begin{aligned} 1166 \quad & \mathbb{P}(Q(t) \geq a\beta(t-1) + b) \leq \underbrace{\left(\rho^{t-1} \mathbb{E}[e^{\eta Q(1)}] + \frac{1}{1-\rho}\right) e^{-\eta b}}_{=:C_\rho} \\ 1167 \quad & \end{aligned}$$

1168 **Remark C.7.** For simplicity, assume the queue starts with an empty state $Q(1) = 0$. Set $\eta = \epsilon/2$,
 1169 $\rho = e^{-\epsilon^2/8}$. Since $1 - e^{-x} \geq x/2$ for $x \in [0, 1]$, then we can simplify $C_\rho = 1 + 16/\epsilon^2$.
 1170

1171 *Proof.* We start with the one-step bound for the moment generating function (mgf) of $Q(t)$. For
 1172 some $\eta \in (0, \epsilon/2]$,

$$\begin{aligned} 1173 \quad & \mathbb{E}[e^{\eta Q(t+1)} \mid \mathcal{F}_t] = \mathbb{E}[e^{\eta(Q(t) + A(t) - D(t))^+} \mid \mathcal{F}_t] \\ 1174 \quad & \leq 1 + e^{\eta Q(t)} \mathbb{E}[e^{\eta(A(t) - D(t))} \mid \mathcal{F}_t]. \end{aligned}$$

1188 where the inequality follows by considering both cases, where $Q(t) + A(t) - D(t) < 0$ gives
 1189 $e^{\eta[Q(t)+A(t)-D(t)]^+} = 1$ and $Q(t) + A(t) - D(t) \geq 0$ gives $e^{\eta[Q(t)+A(t)-D(t)]^+} = e^{\eta Q(t)+A(t)-D(t)}$.
 1190 We split into 2 cases for $\mathbb{E} [e^{\eta(A(t)-D(t))} \mid \mathcal{F}_t]$.
 1191

1192 (C1): If $t \notin \mathcal{B}$, by Proposition C.3 we have

1193

$$\mathbb{E} [A(t) - D(t) \mid \mathcal{F}_t] \leq -\epsilon/2,$$

1194

1195 Therefore

1196

$$\begin{aligned} \mathbb{E} [e^{\eta(A(t)-D(t))} \mid \mathcal{F}_t] &= e^{-\eta\epsilon/2} \mathbb{E} [e^{\eta(A(t)-D(t))+\eta\epsilon/2} \mid \mathcal{F}_t] \\ &\leq e^{-\eta\epsilon/2} e^{\eta^2/2} \quad (|A(t) - D(t)| \leq 1, \text{ Hoeffding lemma}) \\ &\leq e^{-\eta\epsilon/4} \quad (\eta \in (0, \epsilon/2]) \\ &= \rho \end{aligned}$$

1203

(C2): If $t \in \mathcal{B}$, we give a naive bound of

1204

$$\mathbb{E} [e^{\eta(A(t)-D(t))} \mid \mathcal{F}_t] \leq e^\eta = \beta. \quad (|A(t) - D(t)| \leq 1)$$

1207

Substituting results for both cases yields

1208

$$\mathbb{E} [e^{\eta Q(t+1)} \mid \mathcal{F}_t] \leq 1 + e^{\eta Q(t)} (\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\}). \quad (12)$$

1211

Remark C.8. By the initial pure-exploration round in Algorithm 1, rounds $\tau + 1$ to T are good (Proposition C.4). However, for rounds 1 to τ , whether a round is good or bad is not deterministic, which means $\mathbf{1}\{t \in \mathcal{B}\}$ is \mathcal{F}_t -measurable. This makes it hard to find a relation between $e^{Q(t+1)}$ and $e^{Q(t)}$ from Equation (12), because $e^{\eta Q(t)}$ and $(\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\})$ on the right-hand side are dependent.

1216

Readers might think of a simple workaround: treat all rounds up to τ as bad. This is viable since $(\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\}) \leq \beta$ and the number of bad rounds is upper bounded by Proposition C.4. Doing so yields a deterministic set of bad rounds. Thus $\mathbf{1}\{t \in \mathcal{B}\}$ is not a random variable. Taking expectations on both sides of Equation (12),

1221

$$\mathbb{E} [\mathbb{E} [e^{\eta Q(t+1)} \mid \mathcal{F}_t]] = \mathbb{E} [e^{\eta Q(t+1)}] \leq 1 + (\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\}) \mathbb{E} [e^{\eta Q(t)}]$$

1223

resulting in a simple relation between $\mathbb{E} [e^{\eta Q(t+1)}]$ and $\mathbb{E} [e^{\eta Q(t)}]$.

1225

However, we do not take this detour. Instead, we provide the proof assuming $\mathbf{1}\{t \in \mathcal{B}\}$ is an \mathcal{F}_t -measurable random variable. The reason is to align with the proof of Algorithm 2, where, in an adversarial context setting, $\mathbf{1}\{t \in \mathcal{B}'\}$ is a \mathcal{G}_t -measurable random variable that cannot be known beforehand.

1229

1230

Assume that $\mathbf{1}\{t \in \mathcal{B}\}$ is a random variable which is \mathcal{F}_t measurable. Therefore, directly applying expectation on both sides of Equation (12) will not separate $e^{\eta Q(t)}$ and $(\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\})$ on the right-hand side, making it hard to apply the recursive relation between $\mathbb{E} [e^{\eta Q(t+1)}]$ on the left side and $\mathbb{E} [e^{\eta Q(t)}]$ on the right side. Therefore, we design a new weighted process $V(t)$ to avoid such problems. Define the weighted process as

1235

1236

1237

1238

$$V(t) = \left(\frac{\beta}{\rho} \right)^{-\mathcal{B}(t-1)} e^{\eta Q(t)}.$$

1239

Lemma C.9. We have

1240

1241

$$\mathbb{E} [V(t)] \leq \rho^{t-1} \mathbb{E} [e^{\eta Q(1)}] + \frac{1}{1-\rho}$$

1242 *Proof.* Recall that $x_t^{(+)}, k_t^{(+)}$, and $\mathbf{1}\{t \in \mathcal{B}\}$ are \mathcal{F}_t -measurable. Therefore,

$$\begin{aligned}
 1244 \quad & \mathbb{E}[V(t+1) \mid \mathcal{F}_t] \\
 1245 \quad &= \mathbb{E}\left[\left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t)} e^{\eta Q(t+1)} \mid \mathcal{F}_t\right] \\
 1246 \quad &= \left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t-1)} \left(\frac{\beta}{\rho}\right)^{-\mathbf{1}\{t \in \mathcal{B}\}} \mathbb{E}\left[e^{\eta Q(t+1)} \mid \mathcal{F}_t\right] \\
 1247 \quad &\leq \left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t-1)} \left(\frac{\beta}{\rho}\right)^{-\mathbf{1}\{t \in \mathcal{B}\}} \left(1 + e^{\eta Q(t)} (\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\})\right) \quad (\text{Equation (12)})
 \end{aligned}$$

1253 Since

$$\begin{aligned}
 1256 \quad & \left(\frac{\beta}{\rho}\right)^{-\mathbf{1}\{t \in \mathcal{B}\}} (\rho \mathbf{1}\{t \notin \mathcal{B}\} + \beta \mathbf{1}\{t \in \mathcal{B}\}) = \rho, \\
 1257 \\
 1258
 \end{aligned}$$

1259 we have

$$\begin{aligned}
 1260 \quad & \mathbb{E}[V(t+1) \mid \mathcal{F}_t] \leq \rho \left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t-1)} e^{\eta Q(t)} + \left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t)} \\
 1261 \quad & \leq \rho V(t) + 1 \quad (\beta/\rho \geq 1)
 \end{aligned}$$

1264 Taking the expectation on both sides and applying the tower rule on the left-hand side gives

$$1266 \quad \mathbb{E}[V(t+1)] \leq \rho \mathbb{E}[V(t)] + 1$$

1267 Solving a linear recursion, we have

$$1269 \quad \mathbb{E}[V(t)] \leq \rho^{t-1} \mathbb{E}[V(1)] + \sum_{i=0}^{t-2} \rho^i \leq \rho^{t-1} \mathbb{E}[e^{\eta Q(1)}] + \sum_{i=0}^{\infty} \rho^i \leq \rho^{t-1} \mathbb{E}[e^{\eta Q(1)}] + \frac{1}{1-\rho},$$

1272 finishing the proof. □

1274 Based on the results, we have

$$\begin{aligned}
 1276 \quad & \mathbb{P}(Q(t) \geq a\mathcal{B}(t-1) + b) = \mathbb{P}\left(e^{\eta Q(t)} \geq e^{\eta(a\mathcal{B}(t-1) + b)}\right) \\
 1277 \quad &= \mathbb{P}\left(V(t) \geq \left(\frac{\beta}{\rho}\right)^{-\mathcal{B}(t-1)} e^{\eta(a\mathcal{B}(t-1) + b)}\right) \\
 1278 \quad &\leq \mathbb{P}(V(t) \geq e^{\eta b})
 \end{aligned}$$

1282 where the last inequality follows from by choosing $a \geq \frac{1}{\eta} \log\left(\frac{\beta}{\rho}\right)$. Under the condition of $b \geq 0$,
1283 applying Markov inequality to the right-hand side yields
1284

$$1286 \quad \mathbb{P}(V(t) \geq e^{\eta b}) \leq \frac{\mathbb{E}[V(t)]}{e^{\eta b}} \leq \left(\rho^{t-1} \mathbb{E}[e^{\eta Q(1)}] + \frac{1}{1-\rho}\right) e^{-\eta b}. \quad (\text{Lemma C.9})$$

1288 Substituting the result back finishes the proof. □

1290 **Proof of Lemma 5.4.** Now we are ready to start the proof. Recall the definition of \mathcal{F}_t^+ , $\tilde{\psi}(t, T)$
1291 and the result of Lemma C.5

$$\begin{aligned}
 1293 \quad & \mathbb{E}[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1] \\
 1294 \quad &\leq \exp\left(-\frac{(Q(t+1) - 1 - (T-t-1)\epsilon)^2}{2(T-t-1)}\right).
 \end{aligned}$$

Our goal is to get an exponential decay of this value in terms of the number of remaining rounds $(T - t - 1)$ and avoid the dependence of q . Therefore, we split into 2 cases where $Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2}$ and $Q(t + 1) > \frac{\epsilon(T - t - 1)}{2}$ which gives

$$\begin{aligned} \tilde{\psi}(t, T) &= \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \\ &= \underbrace{\mathbf{1} \left\{ Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2} \right\} \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1]}_{B_1} \\ &\quad + \mathbf{1} \left\{ Q(t + 1) > \frac{\epsilon(T - t - 1)}{2} \right\} \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \end{aligned}$$

For term B_1 ,

$$\begin{aligned} \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] &= \left(\mathbf{1} \{ Q(t + 1) \leq \epsilon(T - t - 1) + 1 \} \right. \\ &\quad \times \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t + 1) \leq \epsilon(T - t - 1) + 1] \\ &\quad + \mathbf{1} \{ Q(t + 1) > \epsilon(T - t - 1) + 1 \} \\ &\quad \left. \times \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t + 1) > \epsilon(T - t - 1) + 1] \right) \end{aligned}$$

Multiplying this with $\mathbf{1} \left\{ Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2} \right\}$ yields

$$\begin{aligned} \mathbf{1} \left\{ Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2} \right\} \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \\ \leq \mathbb{E} \left[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2} \right] \end{aligned}$$

Substituting a result back gives

$$\begin{aligned} \tilde{\psi}(t, T) &\leq \mathbb{E} \left[\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t + 1) \leq \frac{\epsilon(T - t - 1)}{2} \right] \\ &\quad + \mathbf{1} \left\{ Q(t + 1) > \frac{\epsilon(T - t - 1)}{2} \right\} \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1] \\ &\leq \exp \left(-\frac{(Q(t + 1) - 1 - (T - t - 1)\epsilon)^2}{2(T - t - 1)} \right) + \mathbf{1} \left\{ Q(t + 1) > \frac{\epsilon(T - t - 1)}{2} \right\} \\ &\quad \text{(Lemma C.5, Lemma 4.1)} \end{aligned}$$

where we can see we also meet the condition of $Q(t + 1) \leq (T - t - 1)\epsilon + 1$ while applying Lemma C.5. For the first term on the right-hand side, with $Q(t + 1) \leq \epsilon(T - t - 1)/2$,

$$\begin{aligned} \exp \left(-\frac{(Q(t + 1) - 1 - (T - t - 1)\epsilon)^2}{2(T - t - 1)} \right) &\leq \exp \left(-\frac{(\frac{1}{2}(T - t - 1)\epsilon + 1)^2}{2(T - t - 1)} \right) \\ &\leq \exp \left(-\frac{\epsilon^2(T - t - 1)}{8} \right) \end{aligned} \quad (13)$$

Substituting the result, taking the expectation on both sides, and applying the tower rule yields

$$\mathbb{E} [\tilde{\psi}(t, T)] \leq \exp \left(-\frac{\epsilon^2(T - t - 1)}{8} \right) + \underbrace{\mathbb{P} \left(Q(t + 1) > \frac{\epsilon(T - t - 1)}{2} \right)}_{B_2}. \quad (14)$$

Next, we are going to apply the exponential tail bound of Lemma C.6 to term B_2 . Recall the lemma

$$\mathbb{P} (Q(t) \geq a\mathcal{B}(t - 1) + b) \leq C_\rho e^{-\eta b}$$

1350 and the condition of a, b which are
 1351

$$1352 \quad a \geq \frac{1}{\eta} \log \left(\frac{\beta}{\rho} \right), \quad b \geq 0$$

1354 Set $a = 2$ then
 1355

$$1356 \quad a > 1 + \epsilon/4 = \frac{1}{\eta}(\eta - (-\eta\epsilon/4)) = \frac{1}{\eta} \left(\log(e^\eta) - \log \left(e^{-\frac{\eta\epsilon}{4}} \right) \right) = \frac{1}{\eta} \log \left(\frac{\beta}{\rho} \right).$$

1358 We need the condition of $b \geq 0$. In order to control this, we set a threshold value ω of the remaining
 1359 rounds as

$$1360 \quad \omega := \frac{2a\tau}{\epsilon} \geq \frac{2a\mathcal{B}(T)}{\epsilon}$$

1362 and split into 2 cases.
 1363

1364 (C1): If $(T - t - 1) < \omega$, we do not apply Lemma C.6, since it means that there are not many rounds
 1365 remaining to reduce the queue length difference by emptying the queue with an extra job. Therefore,
 1366 we give a naive bound of

$$1367 \quad \mathbb{E} \left[\tilde{\psi}(t, T) \right] \leq 1.$$

1370 (C2): If $(T - t - 1) \geq \omega$, it means that $(T - t - 1) \geq 2a\mathcal{B}(T)/\epsilon$, then

$$\begin{aligned} 1371 \quad B_1 &= \mathbb{P} \left(Q(t+1) \geq a\mathcal{B}(t) + \left(\frac{\epsilon(T-t-1)}{2} - a\mathcal{B}(t) \right) \right) \\ 1372 &\leq \mathbb{P} \left(Q(t+1) \geq a\mathcal{B}(t) + \left(\frac{\epsilon(T-t-1)}{2} - a\mathcal{B}(T) \right) \right) \\ 1373 &\leq \mathbb{P} \left(Q(t+1) \geq a\mathcal{B}(t) + \underbrace{\left(\frac{\epsilon(T-t-1-\omega)}{2} \right)}_{\geq 0} \right) \\ 1374 &\leq C_\rho e^{-\eta \left(\frac{\epsilon(T-t-1-\omega)}{2} \right)} \end{aligned} \quad (\text{Lemma C.6, } b \geq 0)$$

1382 Substituting this to Equation (14) and taking $\min\{\cdot, 1\}$ on both sides (by Lemma 4.1) gives
 1383

$$\begin{aligned} 1384 \quad \mathbb{E} \left[\tilde{\psi}(t, T) \right] &\leq \min \left\{ 1, \exp \left(-\frac{\epsilon^2(T-t-1)}{8} \right) + C_\rho \exp \left(-\frac{\eta\epsilon(T-t-1-\omega)}{2} \right) \right\} \\ 1385 &\leq \min \left\{ 1, 2C_\rho \exp \left(-\frac{\epsilon^2}{8}(T-t-1-\omega) \right) \right\} \quad (C_\rho \geq 1, \eta = \epsilon/2) \\ 1386 &\leq \min \left\{ 1, 2C_\rho \exp \left(-\frac{\epsilon^2}{8}(T-t-1-\omega) \right) \right\} \end{aligned}$$

1389 Combining the results of both cases yields the desired result.
 1390

1391 D PROOFS FOR THE LEMMAS IN SECTION 6

1393 In this section, we provide our proofs of Proposition 6.1 and lemma 6.2. The proof of Theorem 6.3
 1394 is deferred to Appendix E.2.

1395 For the adversarial setting, we switch the definition of the filtration to exclude $E(t)$ as
 1396

$$1397 \quad \mathcal{G}_t := \sigma(\mathcal{X}_1, \mathbf{A}(1), \mathbf{D}(1), \mathbf{A}(2), \mathbf{D}(2), \dots, \mathbf{A}(t-1), \mathbf{D}(t-1))$$

1398 Note that $Q(t)$ and x_t are \mathcal{G}_t -measurable. Now we define \mathcal{G}_t -measurable bad rounds and the notation
 1399 as
 1400

$$1401 \quad \mathcal{B}' := \left\{ t \in [T] : \|x_t\|_{V_{t-1, k_t}^{-1}} > \frac{\epsilon}{4\beta_{t-1, k_t}} \right\}, \quad \mathcal{B}'(t) := |\{[t] \cap \mathcal{B}'\}|.$$

1403 We first introduce the negative drift for the good rounds

1404 **Proposition D.1.** For all $t \notin \mathcal{B}'$,

$$1405 \quad \mathbb{E} [A(t) - D(t) \mid \mathcal{G}_t] \leq -\epsilon/2 \quad (15)$$

1406 *Proof.* We show there is a negative drift in good rounds $t \notin \mathcal{B}'$: Recall the definition of $D(t)$ and
1407 $\tilde{D}(t-1, t)$ in the proof of Proposition C.3, which are coupled to each other. Then we have

$$\begin{aligned} 1411 \quad \mathbb{E} [A(t) - D(t) \mid \mathcal{G}_t] &= \mathbb{E} \left[A(t) - \tilde{D}(t-1, t) \mid \mathcal{G}_t \right] + \mathbb{E} \left[\tilde{D}(t-1, t) - D(t) \mid \mathcal{G}_t \right] \\ 1412 \quad &\leq -\epsilon + \mu \left((x_t^*)^\top \theta_{k_t^*}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \quad (\text{Assumption 3.4, coupling process}) \\ 1413 \quad &\leq -\epsilon + 2\beta_{t-1, k_t} \|x_t\|_{V_{t-1, k_t}^{-1}} \quad (\text{Equation (20)}) \\ 1414 \quad &\leq -\epsilon/2. \quad (t \notin \mathcal{B}') \end{aligned}$$

□

1419 D.1 PROOF OF PROPOSITION 6.1

1421 We show that there are few bad rounds.

$$\begin{aligned} 1422 \quad |\mathcal{B}'| \left(\frac{\epsilon}{4\beta_T} \right)^2 &\leq \sum_{t \in \mathcal{B}'} \min \left\{ 1, \left(\frac{\epsilon}{4\beta_{t-1, k_t}} \right)^2 \right\} \\ 1423 \quad &\quad (\beta_t \geq \beta_{t, k}, (\beta_t)_t \text{ increasing in } t, 4\beta_T \geq 1, 1 > \epsilon > 0) \\ 1424 \quad &\leq \sum_{t=1}^T \min \left\{ 1, \|x_t\|_{V_{t-1, k_t}^{-1}}^2 \right\} \quad (t \in \mathcal{B}') \\ 1425 \quad &\leq 2Kd \log(1 + T/(dK\kappa\lambda_0)). \quad (\text{Lemma F.1}) \end{aligned}$$

1430 Moving the term on the left-hand side yields the result.

1432 D.2 PROOF OF LEMMA 6.2

1434 The proof follows the same argument as Lemma 5.4. We therefore omit the details when the process
1435 of the proof is identical. We again assume that \mathcal{E}_g holds for this section and skip the conditional
1436 notation of it.

1437 First, define a filtration as

$$1439 \quad \mathcal{G}_t^+ := \sigma(\mathcal{G}_t \cup \{A(t)\})$$

1440 Now, consider the queue length difference under the disagreement (with the condition of $Q(t+1) \leq$
1441 $(T-t-1)\epsilon + 1$), defined as

$$1443 \quad \mathbb{E} [\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1]$$

1444 Recall the previous definition of the filtration and the corresponding queue length difference under
1445 the disagreement for Algorithm 1, which are

$$\begin{aligned} 1447 \quad \mathcal{F}_t^+ &:= \sigma(\mathcal{F}_t \cup \{E(t-1), A(t)\}), \\ 1448 \quad \mathbb{E} [\psi(t, T) \mid \mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1] \end{aligned}$$

1450 The expected value is conditioned on $\mathcal{F}_t^+, D^+(t) = 0, D^-(t) = 1$, and $Q(t+1)$, which means
1451 the value of the conditional expectation is only affected by the situation after round t . Meanwhile,
1452 from round $t+1$ to T , $\psi(t, T)$ follows the optimal policy and is irrelevant to whether we followed
1453 Algorithm 1 or Algorithm 2 until round t . Thereby, we can simply follow the same proof and reuse
1454 the result of Lemma C.5, which is

$$\begin{aligned} 1455 \quad \mathbb{E} [\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1, Q(t+1) \leq (T-t-1)\epsilon + 1] \\ 1456 \quad \leq \exp \left(-\frac{(Q(t+1) - 1 - (T-t-1)\epsilon)^2}{2(T-t-1)} \right). \end{aligned} \quad (16)$$

1458 Next, we consider the tail bound for $Q(t)$. Recall that $Q(t)$ and $\mathcal{B}'(t)$ are \mathcal{G}_t -measurable random
 1459 variables. As noted in Remark C.8, although in Algorithm 1, $\mathbf{1}\{t \in \mathcal{B}\}$ is deterministic by the
 1460 pure-exploration round, we develop the proof as if it is \mathcal{F}_t -measurable random variable. Also in
 1461 Proposition D.1, we show the negative drift in good rounds conditioned on \mathcal{G}_t . Therefore, we can
 1462 exactly follow the proof of Lemma C.6, simply replacing \mathcal{B} with \mathcal{B}' , and \mathcal{F}_t with \mathcal{G}_t and get the
 1463 same result of

$$\mathbb{P}(Q(t) \geq a\mathcal{B}'(t-1) + b) \leq C_\rho e^{-\eta b} \quad (17)$$

1464 Now we are ready to start the proof. For the queue length $Q(t+1)$, we split into 2 cases where
 1465 $Q(t+1) \leq \frac{\epsilon(T-t-1)}{2}$ and $Q(t+1) > \frac{\epsilon(T-t-1)}{2}$ and proceed as
 1466

$$\begin{aligned} & \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1] \\ &= \mathbf{1}\left\{Q(t+1) \leq \frac{\epsilon(T-t-1)}{2}\right\} \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1] \\ &+ \mathbf{1}\left\{Q(t+1) > \frac{\epsilon(T-t-1)}{2}\right\} \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1] \\ &\leq \exp\left(-\frac{\epsilon^2(T-t-1)}{8}\right) + \mathbf{1}\left\{Q(t+1) > \frac{\epsilon(T-t-1)}{2}\right\}. \quad (\text{Equations (13) and (16)}) \end{aligned}$$

1467 Recall the definition of $\tilde{\psi}'(t, T) := \mathbb{E}[\psi(t, T) \mid \mathcal{G}_t^+, D^+(t) = 0, D^-(t) = 1]$. Taking the expectation on both sides
 1468

$$\mathbb{E}[\tilde{\psi}'(t, T)] \leq \exp\left(-\frac{\epsilon^2(T-t-1)}{8}\right) + \mathbb{P}\left(Q(t+1) > \frac{\epsilon(T-t-1)}{2}\right) \quad (18)$$

1469 Set $a = 2$ and a threshold value ω as

$$\omega' := \frac{2a}{\epsilon} \left(2Kd \log(1 + T/(dK\kappa\lambda_0))\left(\frac{4\beta_T}{\epsilon}\right)^2\right) \geq \frac{2a\mathcal{B}'(T)}{\epsilon} \quad (\text{Proposition 6.1})$$

1470 Now for the second term of Equation (18), we split into 2 cases.
 1471

1472 (C1): If $(T-t-1) < \omega'$, we give a naive bound as
 1473

$$\mathbb{E}[\tilde{\psi}'(t, T)] \leq 1.$$

1474 (C2): If $(T-t-1) \geq \omega'$, then
 1475

$$\begin{aligned} \mathbb{P}\left(Q(t+1) > \frac{\epsilon(T-t-1)}{2}\right) &= \mathbb{P}\left(Q(t+1) \geq a\mathcal{B}'(t) + \left(\frac{\epsilon(T-t-1)}{2} - a\mathcal{B}'(t)\right)\right) \\ &\leq \mathbb{P}\left(Q(t+1) \geq a\mathcal{B}'(t) + \left(\frac{\epsilon(T-t-1)}{2} - a\mathcal{B}'(T)\right)\right) \\ &\leq \mathbb{P}\left(Q(t+1) \geq a\mathcal{B}'(t) + \underbrace{\left(\frac{\epsilon(T-t-1-\omega')}{2}\right)}_{\geq 0}\right) \\ &\leq C_\rho e^{-\eta\left(\frac{\epsilon(T-t-1-\omega')}{2}\right)} \quad (\text{Equation (17), } a = 2, b \geq 0) \end{aligned}$$

1476 Substituting the result to Equation (18) and taking $\min\{\cdot, 1\}$ on both sides yields
 1477

$$\begin{aligned} & \mathbb{E}[\tilde{\psi}'(t, T)] \\ &\leq \min\left\{1, \exp\left(-\frac{\epsilon^2(T-t-1)}{8}\right) + C_\rho \exp\left(-\frac{\eta\epsilon(T-t-1-\omega')}{2}\right)\right\} \\ &\leq \min\left\{1, 2C_\rho \exp\left(-\frac{\epsilon^2}{8}(T-t-1-\omega')\right)\right\} \quad ((C_\rho \geq 1, \eta = \epsilon/2)) \end{aligned}$$

1478 finishing the proof.
 1479

1512 **E REGRET ANALYSES**
 1513

1514 **E.1 PROOF OF THEOREM 5.5**
 1515

1516 Recall the definition of the good event \mathcal{E}_g where both Lemmas 5.1 and 5.2 hold. Then, by the union
 1517 bound, $\mathbb{P}(\mathcal{E}_g) \geq 1 - 3\delta$. By the regret decomposition result given in Lemma 4.2,
 1518

$$1519 \quad R_T \leq \sum_{t=1}^{T-1} \underbrace{\sqrt{\mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right]}}_{=: m_t} \underbrace{\sqrt{\mathbb{E} \left[\tilde{\psi}(t, T) \right]}}_{=: \delta_t}.$$

1523 Let us consider m_t . For $t \in [1, \tau]$, we give a naive bound of 1. For $t \in [\tau + 1, T]$,
 1524

$$1525 \quad m_t^2 \leq \mathbb{P}(\mathcal{E}_g^c) + \mathbb{P}(\mathcal{E}_g) \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \mid \mathcal{E}_g \right] \\ 1526 \quad \leq 3\delta + \min\{1, \lambda\epsilon + 4\beta_T^2\nu(t-1)\} \quad (\text{Lemma 5.3})$$

1529 Applying square root and $\min\{1, \cdot\}$ on both sides
 1530

$$1531 \quad m_t \leq \min \left\{ 1, \sqrt{3\delta} + \sqrt{\lambda\epsilon + 4\beta_T^2\nu(t-1)} \right\}$$

1533 Combining these, we obtain
 1534

$$1535 \quad m_t \leq M_t := \begin{cases} 1 & \text{if } t \leq \tau \\ \min \left\{ 1, \sqrt{3\delta} + \sqrt{\lambda\epsilon + 4\beta_T^2\nu(t-1)} \right\} & \text{if } t > \tau, \end{cases}$$

1539 where $\{M_t\}_{t \in [T]}$ gives rise to a nonincreasing sequence.
 1540

1541 Next we consider term δ_t . For $t > T - \omega - 1$, we give a bound of 1. For $t \leq T - \omega - 1$, we have
 1542

$$1542 \quad \delta_t^2 \leq \mathbb{P}(\mathcal{E}_g^c) + \mathbb{P}(\mathcal{E}_g) \mathbb{E} \left[\tilde{\psi}(t, T) \mid \mathcal{E}_g \right] \quad (\text{Lemma 4.1})$$

$$1544 \quad \leq 3\delta + \min \left\{ 1, 2C_\rho \exp \left(-\frac{\epsilon^2}{8} (T - t - 1 - \omega) \right) \right\}. \quad (\text{Lemma 5.4})$$

1546 Applying square root and $\min\{1, \cdot\}$ on both sides
 1547

$$1548 \quad \delta_t \leq \min \left\{ 1, \sqrt{3\delta} + \sqrt{2C_\rho} \exp \left(-\frac{\epsilon^2}{16} (T - t - 1 - \omega) \right) \right\}$$

1551 Then we deduce that
 1552

$$1553 \quad \delta_t \leq \Delta_t := \begin{cases} \min \left\{ 1, \sqrt{3\delta} + \sqrt{2C_\rho} \exp \left(-\frac{\epsilon^2}{16} (T - t - 1 - \omega) \right) \right\} & \text{if } t \leq T - \omega - 1 \\ 1 & \text{if } t > T - \omega - 1, \end{cases}$$

1556 where $\{\Delta_t\}_{t \in [T]}$ gives rise to a nondecreasing sequence. Consequently, we obtain
 1557

$$1558 \quad R_T \leq \sum_{t=1}^{T-1} M_t \Delta_t.$$

1561 Since $\{M_t\}_{t \in [T]}$ is nonincreasing in t and $\{\Delta_t\}_{t \in [T]}$ is nondecreasing in t , applying Chebyshev's
 1562 sum inequality (Lemma F.4) gives
 1563

$$1564 \quad R_T \leq \frac{1}{T-1} \left(\sum_{t=1}^{T-1} M_t \right) \left(\sum_{t=1}^{T-1} \Delta_t \right). \quad (19)$$

1566

For the summation of M_t 's,

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

$$\begin{aligned}
\sum_{t=1}^{T-1} M_t &= \sum_{t=1}^{\tau} M_t + \sum_{t=\tau+1}^{T-1} M_t \\
&\leq \tau + (T - \tau - 1)\mathcal{O}(T^{-1}) + (T - \tau - 1)\sqrt{\lambda\varepsilon} + 2\beta_T \sum_{t=\tau+1}^{T-1} \sqrt{\nu(t-1)} \\
&\leq \mathcal{O}\left(\frac{d \log(T)}{\sigma_0^4 \epsilon^2}\right) + \mathcal{O}(1) + T\sqrt{\lambda\varepsilon} + 2\beta_T \underbrace{\sum_{t=\tau+1}^{T-1} \left(\lambda_0 + \frac{\lambda\varepsilon(t-\tau-1)\sigma_0^2}{4K}\right)^{-1/2}}_{B_1} \\
&\quad + 2\beta_T \underbrace{\sum_{t=\tau+1}^{T-1} \frac{1}{\sqrt{\lambda_0}} \left(\exp\left(-\frac{(t-\tau-1)\lambda\varepsilon}{16K}\right) + \sqrt{d} \exp\left(-\frac{(t-\tau-1)\lambda\varepsilon\sigma_0^2}{32K}\right)\right)}_{B_2}.
\end{aligned}$$

For term B_1 ,

1583

1584

1585

$$B_1 \leq \frac{1}{\sqrt{\lambda_0}} + \int_{t=\tau+1}^{T-1} \left(\lambda_0 + \frac{\lambda\varepsilon(t-\tau-1)\sigma_0^2}{4K}\right)^{-1/2} dt \leq \frac{1}{\sqrt{\lambda_0}} + \frac{4K}{\sigma_0 \sqrt{\lambda\varepsilon}} \sqrt{T}.$$

For term B_2 , by applying the geometric-series formula, we obtain

1586

1587

1588

1589

$$B_2 \leq \frac{1}{\sqrt{\lambda_0}} \left(\frac{1}{1 - e^{-\lambda\varepsilon/(16K)}} + \frac{d}{1 - e^{-\lambda\varepsilon\sigma_0^2/(32K)}} \right) \leq \frac{1}{\sqrt{\lambda_0}} \left(\frac{16K}{\lambda\varepsilon} + \frac{32\sqrt{d}K}{\lambda\varepsilon\sigma_0^2} \right)$$

1590

where the second inequality holds because $1 - e^{-x} \geq x/2$ for $x \in (0, 1]$. Using the bounds on B_1 and B_2 with $\varepsilon = T^{-1/2}$ yields

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

Next, for the summation of Δ_t 's,

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

$$\begin{aligned}
\sum_{t=1}^{T-1} \Delta_t &\leq \omega + (T - \omega - 1)\mathcal{O}(T^{-1}) + \sum_{t=1}^{T-\omega-1} \sqrt{2C_\rho} \exp\left(-\frac{\epsilon^2}{16}(T-t-1-\omega)\right) \\
&\leq \frac{2a\tau}{\epsilon} + \mathcal{O}(1) + \frac{\sqrt{2C_\rho}}{1 - e^{-\epsilon^2/16}} \\
&= \mathcal{O}\left(\frac{d \log(T)}{\sigma_0^4 \epsilon^3} + \frac{1}{\epsilon^3}\right) \quad (1 - e^{-x} \geq x/2, x \in (0, 1]) \\
&= \mathcal{O}\left(\frac{d \log(T)}{\sigma_0^4 \epsilon^3}\right)
\end{aligned}$$

Finally, plugging in the bounds on the summation terms to Equation (19), we have

1613

1614

1615

1616

1617

1618

1619

$$\begin{aligned}
R_T &\leq \frac{1}{T-1} \mathcal{O}\left(\frac{d^2 \log^2(T)}{\sigma_0^8 \epsilon^5} + \frac{dT^{3/4} \log(T)}{\sigma_0^4 \epsilon^3} + \frac{d^{3/2} T^{3/4} \log^{3/2}(T)}{\sigma_0^5 \epsilon^3} + \frac{d^2 T^{1/2} \log^{3/2}(T)}{\sigma_0^6 \epsilon^3}\right) \\
&= \mathcal{O}\left(\frac{d^2 T^{-1} \log^2(T)}{\sigma_0^8 \epsilon^5} + \frac{dT^{-1/4} \log(T)}{\sigma_0^4 \epsilon^3} + \frac{d^{3/2} T^{-1/4} \log^{3/2}(T)}{\sigma_0^5 \epsilon^3} + \frac{d^2 T^{-1/2} \log^{3/2}(T)}{\sigma_0^6 \epsilon^3}\right),
\end{aligned}$$

as required.

1620 E.2 PROOF OF THEOREM 6.3
16211622 Recall the definition of the good event \mathcal{E}'_g where Lemma 5.1 holds. We have $\mathbb{P}(\mathcal{E}'_g) \geq 1 - \delta$. By a
1623 modification of Lemma 4.2 for the adversarial setting explained in Remark B.2, we deduce that
1624

1625
$$R_T \leq \sum_{t=1}^{T-1} \sqrt{\mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right]} \sqrt{\mathbb{E} \left[\tilde{\psi}'(t, T) \right]}
1626 \leq \underbrace{\sqrt{\sum_{t=1}^{T-1} \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right]}}_{B_1} \underbrace{\sqrt{\sum_{t=1}^{T-1} \mathbb{E} \left[\tilde{\psi}'(t, T) \right]}}_{B_2} \quad (\text{Cauchy-Schwarz})
1627$$

1633 For term B_1 ,
1634

1635
$$\mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \right] \leq \mathbb{P}(\mathcal{E}'_g^c) + \mathbb{P}(\mathcal{E}'_g) \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \mid \mathcal{E}'_g \right]
1636 \leq \mathcal{O}(T^{-1}) + \mathbb{E} \left[\left(\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \right)^2 \mid \mathcal{E}'_g \right]
1637$$

1640 as $\mathbb{P}(\mathcal{E}'_g^c) \leq \delta$ and $\delta \in (0, T^{-1}]$. For the second term on the right-hand side, under the event \mathcal{E}'_g ,
1641

1643
$$\begin{aligned} \mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) &\leq \mu \left((x_t^*)^\top \widehat{\theta}_{t-1, k_t} \right) + \beta_{t-1, k_t} \|x_t^*\|_{V_{t-1, k_t}^{-1}} - \mu \left(x_t^\top \theta_{k_t}^* \right) \\ 1644 &\leq \mu \left((x_t)^\top \widehat{\theta}_{t-1, k_t} \right) + \beta_{t-1, k_t} \|x_t\|_{V_{t-1, k_t}^{-1}} - \mu \left(x_t^\top \theta_{k_t}^* \right) \\ 1645 &\leq 2\beta_{t-1, k_t} \|x_t\|_{V_{t-1, k_t}^{-1}} \end{aligned}$$

1649 where the second inequality holds due to our optimistic choice. As the left-hand side is at most 1 as
1650 well, it follows that
1651

1652
$$\mu \left((x_t^*)^\top \theta_{k_t}^* \right) - \mu \left(x_t^\top \theta_{k_t}^* \right) \leq \min \left\{ 1, 2\beta_{t-1, k_t} \|x_t\|_{V_{t-1, k_t}^{-1}} \right\}. \quad (20)$$

1655 Combining the bounds,
1656

1657
$$\begin{aligned} B_1 &\leq \sqrt{\mathcal{O}(1) + \mathbb{E} \left[\sum_{t=1}^{T-1} \min \left\{ 1, 4\beta_{t-1, k_t}^2 \|x_t\|_{V_{t-1, k_t}^{-1}}^2 \right\} \mid \mathcal{E}'_g \right]} \\ 1658 &\leq 2\beta_T \sqrt{\mathcal{O}(1) + \mathbb{E} \left[\sum_{t=1}^{T-1} \min \left\{ 1, \|x_t\|_{V_{t-1, k_t}^{-1}}^2 \right\} \mid \mathcal{E}'_g \right]} \\ 1659 &\leq 2\beta_T \sqrt{\mathcal{O}(1) + 2Kd \log(1 + T/(dK\kappa\lambda_0))} \\ 1660 &= \mathcal{O}(d \log(T)) \end{aligned}$$

1667 where the second inequality follows from the fact that $\beta_t \geq \beta_{t, k}$ and $\{\beta_t\}_{t \in [T]}$ is monotonically
1668 increasing in t , while the third inequality is due to Lemma F.1. Moreover, we have
1669

1670
$$4\beta_T \geq 64R^2\kappa^2 \log(1/\delta) \geq 32 \log(T) \geq 1,$$

1672 for all $\delta \in (0, 1/\sqrt{T}]$ and $T \geq 2$. Therefore we can use $\min\{1, ab\} \leq a \min\{1, b\}$ if $a \geq 1$ to
1673 pull out β_T out of $\min\{1, \cdot\}$.

1674 Next, for term B_2 ,

$$\begin{aligned}
 1676 \quad (B_2)^2 &= \sum_{t=1}^{T-1} \mathbb{E} \left[\tilde{\psi}'(t, T) \right] \\
 1677 \\
 1678 \\
 1679 \quad &= \mathbb{P}(\mathcal{E}_g'^c) \sum_{t=1}^{T-1} \mathbb{E} \left[\tilde{\psi}'(t, T) \mid \mathcal{E}_g'^c \right] \\
 1680 \\
 1681 \quad &+ \sum_{t=1}^{T-\omega-1} \mathbb{E} \left[\tilde{\psi}'(t, T) \mid \mathcal{E}_g' \right] + \sum_{t=T-\omega}^{T-1} \mathbb{E} \left[\tilde{\psi}'(t, T) \mid \mathcal{E}_g' \right] \\
 1682 \\
 1683 \quad &\leq \mathcal{O}(1) + \omega + \sum_{t=1}^{T-\omega-1} 2C_\rho \exp \left(-\frac{\epsilon^2}{8} (T - t - 1 - \omega) \right) \\
 1684 \\
 1685 \quad &\leq \mathcal{O} \left(\frac{d^2 \log^2(T)}{\epsilon^3} \right) + 2C_\rho \frac{1 - e^{-\epsilon^2(T-\omega-1)/8}}{1 - e^{-\epsilon^2/8}} \\
 1686 \\
 1687 \quad &\leq \mathcal{O} \left(\frac{d^2 \log^2(T)}{\epsilon^3} \right) + \frac{32C_\rho}{\epsilon^2} \quad (1 - e^{-x} \geq x/2, x \in (0, 1]) \\
 1688 \\
 1689 \quad &= \mathcal{O} \left(\frac{d^2 \log^2(T)}{\epsilon^3} + \frac{1}{\epsilon^4} \right) \\
 1690 \\
 1691 \\
 1692 \\
 1693 \\
 1694
 \end{aligned}$$

1695 where the first inequality follows from Lemmas 4.1 and 5.4 while the third inequality holds since
 1696 $\epsilon^2/8 \leq 1$. Substituting term B_1 and term B_2 back gives

$$1698 \quad R_T = \mathcal{O} \left(\frac{d^2 \log^2(T)}{\epsilon^{1.5}} + \frac{d \log(T)}{\epsilon^2} \right).$$

1700 F AUXILIARY LEMMAS

1701 **Lemma F.1.** *We have*

$$1705 \quad \sum_{i=1}^t \min \left\{ 1, \|x_i\|_{V_{i-1, k_i}}^2 \right\} \leq 2Kd \log (1 + t/(dK\kappa\lambda_0)).$$

1708 *Proof.* Recall the definition of $V_{t,k} = \kappa\lambda_0\mathbf{I} + \sum_{i=1}^t \mathbf{1}\{k_i = k\}x_i x_i^\top$. Then,

$$\begin{aligned}
 1710 \quad \sum_{i=1}^t \min \left\{ 1, \|x_i\|_{V_{i-1, k_i}}^2 \right\} &= \sum_{k=1}^K \sum_{i=1}^t \mathbf{1}\{k_i = k\} \min \left\{ 1, \|x_i\|_{V_{i-1, k}}^2 \right\} \\
 1711 \\
 1712 \quad &\leq 2 \sum_{k=1}^K \log \frac{\det V_{t,k}}{\det \kappa\lambda_0 \mathbf{I}} \\
 1713 \\
 1714 \quad &\leq 2 \left(K \log \det \left(\frac{1}{K} \sum_{k=1}^K V_{t,k} \right) - K \log \det(\kappa\lambda_0 \mathbf{I}) \right) \\
 1715 \\
 1716 \\
 1717 \quad &= 2K \log \det \left(\sum_{i=1}^t \frac{1}{K\kappa\lambda_0} x_i x_i^\top + \mathbf{I} \right) \\
 1718 \\
 1719 \quad &\leq 2Kd \log (1 + t/(dK\kappa\lambda_0)),
 \end{aligned}$$

1723 where the first inequality follows from the elliptical potential lemma (Lemma F.2), the second
 1724 inequality follows from the concavity of $\log \det(\cdot)$, and the last inequality follows from the
 1725 determinant-trace inequality (Lemma 10 of [Abbasi-Yadkori et al. \(2011\)](#)). \square

1726 **Lemma F.2** (Elliptical potential lemma, Lemma 11 of [Abbasi-Yadkori et al. \(2011\)](#)). *For any $\lambda > 0$
 1727 and sequence $\{x_t\}_{t=1}^T \in \mathbb{R}^d$, define $Z_t = \lambda\mathbf{I} + \sum_{i=1}^t x_i x_i^\top$. Then, provided that $\|x_t\|_2 \leq L$ holds*

1728 for all $t \in [T]$, we have
 1729

$$1730 \quad \sum_{t=1}^T \min \left\{ 1, \|x_t\|_{Z_{t-1}^{-1}}^2 \right\} \leq 2 \log \frac{\det Z_T}{\det \lambda \mathbf{I}} \leq 2d \log \left(1 + \frac{TL^2}{d\lambda} \right)$$

1733 **Lemma F.3** (Lemma 12 of Faury et al. (2020)). *Let the maximum likelihood estimator of the regu-
 1734 larized cross-entropy loss as $\hat{\theta}_t^{(1)}$ and define its projection as*

$$1736 \quad \hat{\theta}_t = \arg \min_{\theta \in \Theta} \left\| \sum_{i=1}^t \left[\mu(x_i^\top \theta) - \mu(x_i^\top \hat{\theta}_t^{(1)}) \right] x_i \right\|_{V_t^{-1}}$$

1739 where $V_t = \lambda_0 \mathbf{I} + \sum_{i=1}^t x_i x_i^\top$. Define a confidence set and β_t as
 1740

$$1741 \quad \mathcal{C}_t = \left\{ \theta \in \Theta : \left\| \theta - \hat{\theta}_t \right\|_{V_t} \leq 2\kappa\beta_t \right\}, \quad \beta_t = \sqrt{2d \log \left(1 + \frac{t}{\kappa\lambda_0 d} \right) + \log(1/\delta)} + S\sqrt{\lambda_0}.$$

1743 Then, with probability at least $1 - \delta$,

$$1745 \quad \forall t \geq 1, \quad \theta^* \in \mathcal{C}_t.$$

1747 **Lemma F.4** (Chebyshev sum inequality). *If $(a_i)_{i=1}^t$ is nondecreasing and $(b_i)_{i=1}^t$ is nonincreasing,
 1748 and $a_i, b_i \geq 0$, we have*

$$1749 \quad \sum_{i=1}^t a_i b_i \leq \frac{1}{t} \left(\sum_{i=1}^t a_i \right) \left(\sum_{i=1}^t b_i \right).$$

1752 **Proposition F.5** (Proposition 1 of Li et al. (2017)). *Define $V_t = \sum_{i=1}^t x_i x_i^\top$, where x_i is drawn i.i.d.
 1753 from some unknown distribution ν with support in the unit ball, \mathbb{B}^d . Furthermore, let $\Sigma := \mathbb{E}[x_i x_i^\top]$
 1754 be the second moment matrix, and B and $\delta > 0$ be two positive constants. Then, there exists absolute
 1755 constants $C_1, C_2 > 0$ such that $\lambda_{\min}(V_t) \geq B$ with probability at least $1 - \delta$, as long as*

$$1757 \quad t \geq \left(\frac{C_1 \sqrt{d} + C_2 \sqrt{\log(1/\delta)}}{\lambda_{\min}(\Sigma)} \right)^2 + \frac{2B}{\lambda_{\min}(\Sigma)}.$$

1760 **Lemma F.6** (Multiplicative Chernoff bound). *Suppose $X_1, \dots, X_n \in \{0, 1\}$ are independent ran-
 1761 dom variables. Let X denote their sum and $\mu = \mathbb{E}[X]$. Then for any $0 \leq \delta \leq 1$,*

$$1762 \quad \mathbb{P}(X \leq (1 - \delta)\mu) \leq \exp(-\delta^2\mu/2).$$

1764 Also, for any $\delta \geq 0$,

$$1765 \quad \mathbb{P}(X \geq (1 + \delta)\mu) \leq \exp(-\delta^2\mu/(2 + \delta)).$$

1767 **Lemma F.7** (Matrix Chernoff bound). *Let $X \in \mathbb{R}^d$ be a random vector with $\|X\|_2 \leq 1$ and
 1768 $\mathbb{E}[XX^\top] \succeq \sigma_0^2 \mathbf{I}$ for some $\sigma_0 > 0$. Suppose X_1, \dots, X_n be i.i.d. sampled vectors and define
 1769 $V_n = \sum_{i=1}^n X_i X_i^\top$. Then for any $0 \leq \delta < 1$,*

$$1771 \quad \mathbb{P}(\lambda_{\min}(V_n) \leq (1 - \delta)n\sigma_0^2) \leq d \left(\frac{e^{-\delta}}{(1 - \delta)^{1-\delta}} \right)^{n\sigma_0^2} \leq d \exp\left(-\frac{\delta^2 n \sigma_0^2}{2}\right)$$

1774 G DISCUSSIONS

1776 **Algorithm design and regret bounds.** We clarify the design of CQB- ε and its relation to classical
 1777 explore-then-commit (ETC) strategies. At first glance, CQB- ε resembles ETC, which is known
 1778 to be suboptimal in instance-independent regret compared to UCB- or Thompson sampling-based
 1779 approaches, but its structure is different.

1780 CQB- ε has two phases: phase 1 is pure exploration and phase 2 is mainly exploitation, yet still
 1781 enforces exploration via uniform exploration steps and UCB-based job-server selection. Unlike

classical ETC, we do not assume a large gap Δ between the best and second-best arms, and phase 1 is tuned to create a negative drift rather than to shrink uncertainty below $\Delta/2$. Without a large-gap assumption, pure exploitation in phase 2 is impossible, which motivates the UCB-based rule.

Now for the regret, our analysis relies on the bound $R_T \leq \sum_{t=1}^T \sqrt{\mathbb{E}[\mu_{\Delta,t}^2]} \sqrt{\mathbb{E}[\tilde{\psi}(t, T)]}$, where $\mu_{\Delta,t}$ is the instantaneous service-rate gap and $\tilde{\psi}(t, T)$ measures how a decision at time t propagates through the queue up to horizon T . The ε -exploration in phase 2 is specifically designed to enforce opposite monotonic behavior in $\mathbb{E}[\mu_{\Delta,t}]$ and $\mathbb{E}[\tilde{\psi}(t, T)]$, which allows us to minimize this weighted sum and apply Chebyshev's sum inequality, yielding the decaying queue length regret of order $O(T^{-1/4})$.

If one were to apply a vanilla ETC or UCB algorithm directly to the queueing bandit problem, this monotonicity structure would not hold and the above decomposition would not give a decaying queue length regret; for UCB, one instead obtains a non-decaying bound of order $O(\log^2 T)$, as in Algorithm 2. This explains why our regret rates are neither $O(T^{-1/3})$ (classical ETC) nor $O(T^{-1/2})$ (standard contextual bandits), but rather $O(T^{-1/4})$ for CQB- ε and $O(\log^2 T)$ for CQB-Opt.

RL with queueing states. We briefly relate our framework to the recent work of Murthy et al. (2024), which studies RL with queueing states in a countable state-space average-cost setting. While their problem is close in spirit to queueing bandits, their formulation does not directly encompass ours for the following reasons.

First, Murthy et al. (2024) assumes a countable state space, whereas contextual queueing bandits naturally lead to an uncountable state space: our framework allows arbitrary context vectors from a continuous domain, and each state is represented by the list of remaining job context features. Second, their regret bound contains an approximation term arising from Q -function estimation via neural networks, of the form $c''T$ where c'' upper-bounds the approximation error. If this black-box error is non-negligible, the resulting regret bound can be large and even grow linearly in T . In contrast, our analysis does not rely on a generic function approximator. Third, their regret notion is defined via the cumulative average queue length, whereas our queue length regret is the instantaneous gap between the queue length under our policy and that under an optimal policy in expectation. It is not clear whether a sublinear bound under their metric would translate into a decaying bound under ours.

Coupling argument in multi-queue setting. This suggests an interesting direction for future work. At a high level, defining a coupling argument for the multi-queue setting is straightforward. However, the real difficulty arises when checking whether the good structural properties for the single-queue case would still continue to hold. Lemma 4.1 states that $\psi(t, T) \in \{-1, 0, 1\}$, i.e., the difference between the queue lengths under two consecutive policy-switching queues is always in $\{-1, 0, 1\}$. However, when we allow multiple queues, it is not as straightforward to control $\psi(t, T)$, making it difficult to directly extend our analysis to the multi-queue setting.

To illustrate this difficulty, let us consider a discrete-time system with two queues and one server. In each time slot, the server can serve one job from a chosen nonempty queue, and service is deterministic. The two coupled systems see identical arrivals. Define the policy π^* as follows: in state $(Q_1(t), Q_2(t))$, if $Q_1(t) < Q_2(t)$ serve queue 1, if $Q_2(t) < Q_1(t)$ serve queue 2, and if $Q_1(t) = Q_2(t) > 0$ serve queue 1. Initially, $Q_1^+(0) = Q_1^-(0) = 2$ and $Q_2^+(0) = Q_2^-(0) = 2$. In time slot $t = 1$, π^* serves queue 1, while our policy makes a mistake and serves queue 2, and there is no job arrival. Thus $(Q_1^-(1), Q_2^-(1)) = (1, 2)$ and $(Q_1^+(1), Q_2^+(1)) = (2, 1)$. For $t \geq 2$ both systems use π^* . The arrivals are $(A_1(2), A_2(2)) = (0, 0)$ and $(A_1(t), A_2(t)) = (1, 1)$ for all $t \geq 3$. One checks by induction that for all $t \geq 2$ we have $(Q_1^-(t), Q_2^-(t)) = (0, t)$ and $(Q_1^+(t), Q_2^+(t)) = (t, 0)$, hence $Q_1^+(t) - Q_1^-(t) = t$.

Define $\psi_i(1, T) := Q_i^+(T) - Q_i^-(T)$ for $i \in \{1, 2\}$. Then for all $T \geq 2$ we get $\psi_1(1, T) = T$, so the per-queue difference grows linearly in T even though the two systems differ only at a single time slot. In this example, we know that $\psi_1(1, T) + \psi_2(1, T) = 0$, but the individual terms $\psi_1(1, T)$ and $\psi_2(1, T)$ are not necessarily bounded. This suggests that we need a more sophisticated analysis for the multi-queue setting. Therefore, it seems difficult to directly carry over our single-queue analysis

1836 to the multi-queue setting and still obtain meaningful bounds. Handling such multi-queue systems
 1837 is a non-trivial but important problem, and we leave it as future work.
 1838

1839 **Dependence on the slackness parameter.** We briefly comment on the role of the slackness pa-
 1840 rameter in our pure-exploration phase. In our analysis it is sufficient to know a *lower bound* on ε in
 1841 order to relax the corresponding condition. We also view it as an interesting direction for future work
 1842 to design algorithms that achieve a decaying queue length regret even when no such lower bound is
 1843 available. Possible approaches include shifting the dependence on ε to an external parameter (e.g.,
 1844 designing algorithms guaranteed to work when T is chosen as a function of $1/\varepsilon$), or developing
 1845 procedures that adaptively estimate ε over time.

1846 **Preemptive policy class and work conservation.** We clarify here which policy class we study
 1847 and how it relates to the non-work-conserving routing policies in Jali et al. (2024); Lin & Kumar
 1848 (1984). Our model follows the queueing bandit framework of Krishnasamy et al. (2016), where in
 1849 each time slot a single job is selected from the central queue and assigned to a server. This is directly
 1850 analogous to a multi-armed bandit problem, and our contribution is to enrich this framework with
 1851 contextual information for individual jobs. In this baseline formulation, one can view the system
 1852 as having a single active server per time slot, so our analysis indeed focuses on work-conserving
 1853 policies that always serve a job whenever the queue is nonempty.

1854 The framework can be extended to multiple servers by selecting, in each time slot, a maximum-
 1855 weight matching between jobs and servers based on their contextual service rates. Since our model
 1856 permits preemption, idling an available server while jobs are waiting does not improve performance,
 1857 so it suffices to focus on work-conserving policies in this preemptive setting.

1858 By contrast, Jali et al. (2024); Lin & Kumar (1984) study non-preemptive scheduling, where once a
 1859 job is assigned to a server it cannot be interrupted. In that setting, non-work-conserving policies can
 1860 indeed be beneficial for queue length and latency: a job may prefer to wait in the central queue for a
 1861 better-matched server rather than being routed immediately to a sub-par one. Thus, the main distinc-
 1862 tion is that our preemptive queueing bandit model justifies focusing on work-conserving policies,
 1863 whereas the non-preemptive models in Jali et al. (2024); Lin & Kumar (1984) naturally motivate
 1864 non-work-conserving routing rules.

H USE OF LARGE LANGUAGE MODELS

1868 This manuscript is reviewed and edited for grammar and clarity using ChatGPT-5.

1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889