

MUON Optimizes Under Spectral Norm Constraints

Lizhang Chen

Jonathan Li

Qiang Liu

University of Texas at Austin

LZCHEN@CS.UTEXAS.EDU

JLI@CS.UTEXAS.EDU

LQIANG@CS.UTEXAS.EDU

Abstract

The pursuit of faster optimization algorithms remains an active and important research direction in deep learning. Recently, the MUON optimizer [14] has demonstrated promising empirical performance, but its theoretical foundation remains less understood. In this paper, we bridge this gap and provide a theoretical analysis of MUON by placing it within the LION- \mathcal{K} family of optimizers [7]. Specifically, we show that MUON corresponds to LION- \mathcal{K} when equipped with the nuclear norm, and we leverage the theoretical results of LION- \mathcal{K} to establish that MUON (with decoupled weight decay) implicitly solves an optimization problem that enforces a constraint on the spectral norm of weight matrices. This perspective not only demystifies the implicit regularization effects of MUON but also leads to natural generalizations through varying the choice of convex map \mathcal{K} , allowing for the exploration of a broader class of implicitly regularized and constrained optimization algorithms.

1. Introduction

Optimization remains an important research direction in deep learning, where the backpropagation algorithm [18] enables efficient and scalable gradient-based training of neural architectures. Among gradient-based optimizers, adaptive methods such as ADAGRAD [10], ADAM [15], and ADAMW [25] have become standard for training large-scale deep neural networks due to their ability to dynamically adjust learning rates based on first- and second-order moment estimates.

Recent advances in optimization algorithms have shown promising potential to outperform traditional adaptive gradient methods in training large-scale neural networks [14, 20, 21, 23, 28–30, 37, 40, 41]. A noteworthy example is the LION optimizer [8], which was discovered through symbolic search and has demonstrated competitive empirical performance across diverse tasks despite its simple update rule. A theoretical foundation for LION was established through the LION- \mathcal{K} framework [7], which generalizes LION and unifies powerful optimization techniques such as mirror descent [2, 17], Nesterov momentum [27, 35], Hamiltonian descent [26], Frank–Wolfe algorithms [12, 29], and decoupled weight decay [24, 25].

The recently proposed MUON optimizer [14] is another compelling development among emerging optimizers. MUON introduces orthogonalized gradient momentum updates via Newton–Schulz iteration [3], demonstrating promising empirical results and potential for efficient large-scale model training [24]. However, its theoretical underpinnings and connections to broader optimization techniques remain unclear.

In this paper, we bridge this gap by embedding MUON within the LION- \mathcal{K} framework, providing not only a theoretical explanation for MUON’s empirical success but also a unified perspective that enables natural generalizations and directions for future work.

2. Main results

In this paper, we consider the optimization problem

$$\min_{\mathbf{X} \in \mathbb{X}} \mathcal{F}(\mathbf{X}) \quad \text{with} \quad \mathcal{F}(\mathbf{X}) = \mathbb{E}_{\xi \sim \mathcal{D}} [\mathcal{F}(\mathbf{X}, \xi)], \quad (1)$$

where $\mathbb{X} := \mathbb{R}^{n \times m}$ is the space of real $n \times m$ matrices, $\mathcal{F} : \mathbb{X} \rightarrow \mathbb{R}$ is a differentiable loss function, and the expectation is taken over the data distribution \mathcal{D} with independent and identically distributed samples $\xi \sim \mathcal{D}$. Given a realization of the function $\mathcal{F}(\mathbf{X}, \xi)$, the stochastic gradient $\nabla \mathcal{F}(\mathbf{X}, \xi)$ is defined as the gradient of $\mathcal{F}(\mathbf{X}, \xi)$ with respect to the variable \mathbf{X} . We assume throughout the paper that \mathcal{F} is L -smooth and that the variance of $\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)$ has an (possibly iteration-dependent) upper bound of $\left[\frac{\sigma^2}{n_{\text{batch}}} \right]_t$.

The MUON optimizer [14] was recently proposed for solving (1). When equipped with Nesterov momentum and decoupled weight decay [24], it has the implicit update rule

$$\begin{aligned} \mathbf{M}_{t+1} &= \beta_2 \mathbf{M}_t - (1 - \beta_2) \mathbf{G}_t \\ \widetilde{\mathbf{M}}_{t+1} &= \beta_1 \mathbf{M}_t - (1 - \beta_1) \mathbf{G}_t \\ \mathbf{X}_{t+1} &= \mathbf{X}_t + \eta_t \left(\text{msgn}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1} \right), \end{aligned} \quad (2)$$

where \mathbf{X}_t represents the parameters, \mathbf{M}_t and $\widetilde{\mathbf{M}}_t$ represent momentum, \mathbf{G}_t is either the deterministic gradient $\nabla \mathcal{F}(\mathbf{X}_t)$ or a stochastic gradient $\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)$, $\eta_t > 0$ is the learning rate, $\beta_1, \beta_2 \in [0, 1)$ are two momentum coefficients, $\lambda \geq 0$ is the weight decay coefficient, and $\text{msgn}(\mathbf{X}) := (\mathbf{X} \mathbf{X}^\top)^{-\frac{1}{2}} \mathbf{X}$ is known as the matrix sign function.

LION- \mathcal{K} [7] is a family of optimizers originally developed as a generalization and theoretical foundation for the LION optimizer [8]. It is parameterized by a convex function $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R}$ with a subgradient $\nabla \mathcal{K}$ and has the implicit update rule

$$\begin{aligned} \mathbf{M}_{t+1} &= \beta_2 \mathbf{M}_t - (1 - \beta_2) \mathbf{G}_t \\ \widetilde{\mathbf{M}}_{t+1} &= \beta_1 \mathbf{M}_t - (1 - \beta_1) \mathbf{G}_t \\ \mathbf{X}_{t+1} &= \mathbf{X}_t + \eta_t \left(\nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1} \right). \end{aligned} \quad (3)$$

The update rule of MUON bears remarkable similarity to (3), and MUON can in fact be identified as the special case of LION- \mathcal{K} with $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$ and $\nabla \mathcal{K}(\mathbf{X}) = \text{msgn}(\mathbf{X})$, where $\|\cdot\|_{\text{tr}}$ denotes the nuclear norm and msgn is known to be a subgradient of $\|\cdot\|_{\text{tr}}$. Recall that $\|\mathbf{X}\|_{\text{tr}} = \sum_{i=1}^{\min(n,m)} \sigma_i(\mathbf{X})$, where $\sigma_i(\mathbf{X})$ is the i^{th} largest singular value of \mathbf{X} .

Perhaps surprisingly, due to decoupled weight decay, LION- \mathcal{K} optimizers do not minimize the original loss function. Instead, they minimize the regularized objective

$$\widehat{\mathcal{F}}(\mathbf{X}) := \mathcal{F}(\mathbf{X}) + \frac{1}{\lambda} \mathcal{K}^*(\lambda \mathbf{X}), \quad (4)$$

where \mathcal{K}^* denotes the convex conjugate of \mathcal{K} . Leveraging this property of LION- \mathcal{K} , we conclude that MUON is implicitly solving the constrained optimization problem

$$\min_{\mathbf{X} \in \mathbb{X}} \mathcal{F}(\mathbf{X}) \text{ s.t. } \|\mathbf{X}\|_{\text{op}} \leq \frac{1}{\lambda}, \quad (5)$$

where the spectral norm $\|\cdot\|_{\text{op}}$, defined as $\|\mathbf{X}\|_{\text{op}} = \sigma_1(\mathbf{X})$, is known to be the dual norm of $\|\cdot\|_{\text{tr}}$.

Despite the general LION- \mathcal{K} framework, MUON's use of the nondifferentiable nuclear norm casts unique challenges in providing convergence guarantees. In this work, we provide an analysis tailored to MUON and rigorously establish that the iterates of (2) converge to the set of KKT points of (5).

To give a quick overview of the results, we first note that the KKT points of (5) can be characterized by the KKT score function

$$\mathcal{S}(\mathbf{X}) := \|\nabla \mathcal{F}(\mathbf{X})\|_{\text{tr}} + \langle \lambda \mathbf{X}, \nabla \mathcal{F}(\mathbf{X}) \rangle. \quad (6)$$

We can show that a point \mathbf{X} is a KKT point if and only if the KKT score is zero, i.e., $\mathcal{S}(\mathbf{X}) = 0$, and the primal constraint $\|\mathbf{X}\|_{\text{op}} \leq \frac{1}{\lambda}$ is satisfied. We then identify two Lyapunov functions that are used to verify convergence in terms of these conditions. For the constraint condition $\|\mathbf{X}\|_{\text{op}} \leq \frac{1}{\lambda}$, we use the Lyapunov function

$$\mathcal{V}_{\mathbb{B}}(\mathbf{X}) = \max \left(\|\mathbf{X}\|_{\text{op}} - \frac{1}{\lambda}, 0 \right), \quad (7)$$

which measures the distance from \mathbf{X} to the constraint ball $\mathbb{B} := \{\mathbf{X} \in \mathbb{X} \mid \|\lambda \mathbf{X}\|_{\text{op}} \leq 1\}$. Following the update (2), we show that $\mathcal{V}_{\mathbb{B}}(\mathbf{X}_t)$ decays exponentially fast when $\eta_t < \frac{1}{\lambda}$, i.e.

$$\mathcal{V}_{\mathbb{B}}(\mathbf{X}_t) \leq \left(\prod_{s=0}^{t-1} (1 - \eta_s \lambda) \right) \mathcal{V}_{\mathbb{B}}(\mathbf{X}_0).$$

Hence, $\mathcal{V}_{\mathbb{B}}$ converges to 0 at a linear rate, which implies that \mathbf{X}_t rapidly converges to \mathbb{B} and never leaves it after entering. Inside the ball, we use a second Lyapunov function

$$\mathcal{V}_{\mathcal{K}}(\mathbf{X}, \mathbf{M}) = \mathcal{F}(\mathbf{X}) - \mathcal{F}^* + \frac{c}{\lambda} (\|\mathbf{M}\|_{\text{tr}} - \langle \lambda \mathbf{X}, \mathbf{M} \rangle),$$

where c is an appropriately defined scalar. We show that MUON (approximately) monotonically decreases $\mathcal{V}_{\mathcal{K}}$ within the constraint set, which implies that the KKT score vanishes along the trajectory by a generalization of LaSalle's invariance principle for discrete-time stochastic processes.

Our main results are summarized by Figure 1 and the following theorems.

Theorem 1 (Informal, see Theorems 3 and 4) *When \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (2) with $\eta_t = \eta = \Theta\left(\frac{1}{\sqrt{T}}\right)$ and $\left[\frac{\sigma^2}{n_{\text{batch}}}\right]_t = \frac{\sigma^2}{n_{\text{batch}}}$,*

$$\min_{1 \leq t \leq T} \mathbb{E}[\mathcal{S}(\mathbf{X}_t)] = O\left(\frac{1}{\sqrt{T}} + \frac{\sigma}{\sqrt{n_{\text{batch}}}}\right).$$

Theorem 2 (Informal, see Theorems 5 and 6) *Assume $\eta_t \leq \frac{1}{\lambda}$, $\sum_{t=0}^{\infty} \eta_t = \infty$, and $\sum_{t=0}^{\infty} \eta_t^2 < \infty$. Under certain conditions, when \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (2), we have that \mathbf{X}_t converges to the set of KKT points of (5) a.s., regardless of initialization.*

Precise statements and detailed proofs can be found in Appendix E.

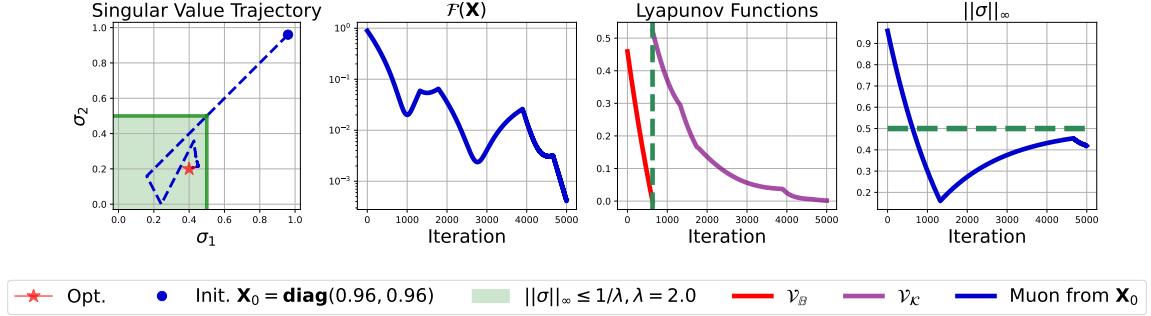


Figure 1: Convergence behavior of MUON. Although the primary objective value $\mathcal{F}(\mathbf{X})$ exhibits nonmonotonic fluctuations, the Lyapnuov functions \mathcal{V}_B and \mathcal{V}_K decrease monotonically within their respective domains — \mathcal{V}_B when the trajectory is outside \mathbb{B} , and \mathcal{V}_K once the trajectory enters \mathbb{B} .

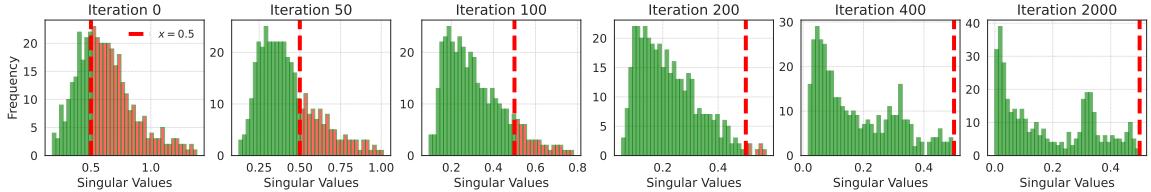


Figure 2: Histograms of singular values of the weight matrices from each module of ResNet-18 trained on CIFAR-10 with the MUON optimizer ($\lambda = 2.0$). The constraint $\|\mathbf{W}\|_{\text{op}} \leq \frac{1}{\lambda}$ (indicated by red vertical lines) is rapidly enforced, with singular values initially outside the constraint region quickly moving inside within approximately 400 training steps. Once inside, singular values remain consistently bounded by the constraint throughout the remainder of training.

3. Experiments

We empirically verify that MUON rapidly enforces the constraint of $\|\mathbf{X}\|_{\text{op}} \leq \frac{1}{\lambda}$ with a linear rate, as predicted by the theory. We train ResNet-18, ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-300M models using MUON under various values of λ , and our results show that MUON consistently and rapidly converges towards the constraint region. We furthermore compare the properties of MUON and ADAMW, demonstrating that spectral regularization is a unique feature of MUON.

3.1. Constraint verification

To verify that MUON enforces a spectral norm constraint, we examine the singular values of parameters when training various models. Figure 2 demonstrates the rapid enforcement of singular value constraints in ResNet-18 trained on CIFAR-10. Singular values initially outside the constraint set quickly enter within approximately 400 training steps and remain reliably bounded thereafter.

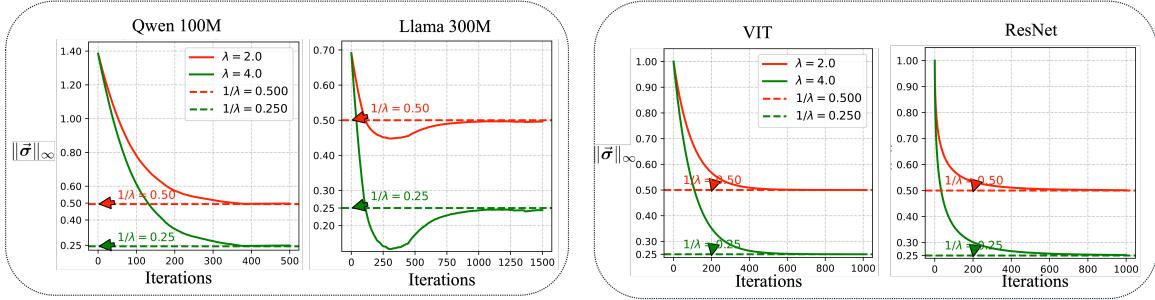


Figure 3: Verification of the implicit constraint enforced by the MUON optimizer with decoupled weight decay on ImageNet and language modeling tasks, across architectures including ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-300M. The red and green curves correspond to the choices $\lambda = 2.0$ and $\lambda = 4.0$, respectively. The horizontal dashed lines indicate the theoretical upper bounds $\frac{1}{\lambda}$ of the implicit box constraints.

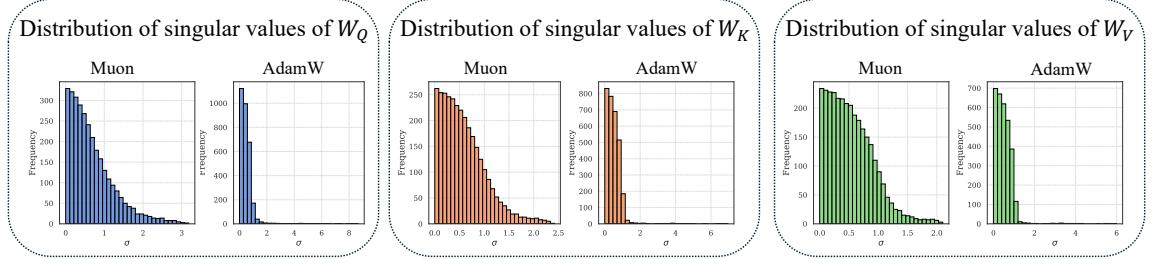


Figure 4: Singular value distributions of converged weights for the query matrix (\mathbf{W}_Q), key matrix (\mathbf{W}_K), and value matrix (\mathbf{W}_V) matrices trained with MUON and ADAMW optimizers on the LLaMA 0.5B model. From left to right, each subfigure compares singular value distributions obtained by MUON and ADAMW, respectively.

In Figure 3, we extend this verification to larger-scale tasks and architectures, including ImageNet classification and language modeling using ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-300M models. The results consistently confirm that the singular values remain bounded within the theoretical upper limit ($\frac{1}{\lambda}$), indicated by horizontal dashed lines, under different regularization strengths ($\lambda = 2.0$ and $\lambda = 4.0$).

3.2. Implicit spectral regularization in large models

We investigate the implicit spectral regularization induced by the MUON optimizer in comparison to ADAMW. Figure 4 displays the singular value distributions of converged weights for the query (\mathbf{W}_Q), key (\mathbf{W}_K), and value (\mathbf{W}_V) matrices in the LLaMA 0.5B model trained by both optimizers. We observe that MUON consistently produces regularized singular value distributions, reflecting the effect of its implicit spectral norm constraint. In contrast, singular values from ADAMW do not exhibit any spectral regularization.

In Appendix F, we verify that MUON solves the constrained optimization problem (5) by providing toy examples, and we explore natural generalizations of MUON via the LION- \mathcal{K} framework.

4. Conclusion

In this paper, we showed that MUON is an instance of the LION- \mathcal{K} optimizer when equipped with the nuclear norm and extended the LION- \mathcal{K} analysis of [7] to accommodate matrix-valued updates in both deterministic and stochastic gradient settings. We tailored our analysis to MUON with decoupled weight decay, demonstrating that it converges to the set of KKT points of a spectral-norm-constrained optimization problem, and empirically validated our results. Overall, we present MUON as a theoretically grounded optimizer for deep learning, with promising directions for future work.

Limitations. While our theoretical and empirical findings provide substantial insights, several limitations suggest directions for future research. First, although our analysis focuses on MUON and the nuclear norm, extending the LION- \mathcal{K} framework to a broader class of convex maps may reveal additional implicit regularization behaviors tailored to specific tasks. Second, extending our results to practical training conditions (e.g. general learning rates, nonsmooth objectives) warrants further investigation. Finally, scaling empirical evaluations to larger models and more diverse tasks would help further validate and refine the practical applicability and robustness of the MUON optimizer and its LION- \mathcal{K} generalizations.

References

- [1] Kang An, Yuxing Lu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive structured gradient optimization. *CoRR*, abs/2503.20762, 2025.
- [2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Oper. Res. Lett.*, 31(3):167–175, 2003.
- [3] Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *CoRR*, abs/2409.20325, 2024.
- [4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. SIGNSGD: compressed optimisation for non-convex problems. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018*, volume 80 of *Proceedings of Machine Learning Research*, pages 559–568, 2018.
- [5] Jérôme Bolte, Cyrille W. Combettes, and Edouard Pauwels. The iterates of the frank-wolfe algorithm may not converge. *Math. Oper. Res.*, 49(4):2565–2578, 2024.
- [6] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. *Found. Comput. Math.*, 9(6):717–772, 2009.
- [7] Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves a constrained optimization: As lyapunov predicts. In *The Twelfth International Conference on Learning Representations, ICLR 2024*, 2024.

- [8] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization algorithms. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023*, 2023.
- [9] Alexandre Défossez, Léon Bottou, Francis R. Bach, and Nicolas Usunier. A simple convergence proof of adam and adagrad. *Trans. Mach. Learn. Res.*, 2022, 2022.
- [10] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *J. Mach. Learn. Res.*, 12:2121–2159, 2011.
- [11] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018*, volume 80 of *Proceedings of Machine Learning Research*, pages 1837–1845. PMLR, 2018.
- [12] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *Proceedings of the 30th International Conference on Machine Learning, ICML 2013*, volume 28 of *JMLR Workshop and Conference Proceedings*, pages 427–435, 2013.
- [13] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle points faster than gradient descent. In *Conference On Learning Theory, COLT 2018*, volume 75 of *Proceedings of Machine Learning Research*, pages 1042–1085. PMLR, 2018.
- [14] Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.
- [15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *3rd International Conference on Learning Representations, ICLR 2015*, 2015.
- [16] Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean trust-region optimization. *CoRR*, abs/2503.12645, 2025.
- [17] Walid Krichene, Alexandre M. Bayen, and Peter L. Bartlett. Accelerated mirror descent in continuous and discrete time. In *Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015*, pages 2845–2853, 2015.
- [18] Yann LeCun. Generalization and network design strategies. *Connectionism in perspective*, 19(18):143–155, 1989.
- [19] Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. *CoRR*, abs/2502.02900, 2025.
- [20] Xilin Li. Black box lie group preconditioners for SGD. *CoRR*, abs/2211.04422, 2022.
- [21] Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient LLM training with online subspace descent. In *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024*, 2024.

- [22] Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krishnamoorthi, and Qiang Liu. Communication efficient distributed training with distributed lion. In *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024*, 2024.
- [23] Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order optimizer for language model pre-training. In *The Twelfth International Conference on Learning Representations, ICLR 2024*, 2024.
- [24] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bo-hong Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is scalable for LLM training. *CoRR*, abs/2502.16982, 2025.
- [25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International Conference on Learning Representations, ICLR 2019*, 2019.
- [26] Chris J. Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet. Hamiltonian descent methods. *CoRR*, abs/1809.05042, 2018.
- [27] Yurii Evgen’evich Nesterov. A method for solving the convex programming problem with convergence rate $O(1/\kappa^2)$. *Dokl. Akad. Nauk SSSR*, 269:543–547, 1983.
- [28] Bowen Peng, Jeffrey Quesnelle, and Diederik P. Kingma. Demo: Decoupled momentum optimization. *CoRR*, abs/2411.19870, 2024.
- [29] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and Volkan Cevher. Training deep learning models with norm-constrained lmos. In *Forty-second International Conference on Machine Learning, ICML 2025*, 2025.
- [30] Omead Pooladzandi and Xilin Li. Curvature-informed SGD via general purpose lie-group preconditioners. *CoRR*, abs/2402.04553, 2024.
- [31] R. Tyrrell Rockafellar. *Convex Analysis*. Princeton Landmarks in Mathematics and Physics. Princeton University Press, 1970.
- [32] Maria-Eleni Sfyraki and Jun-Kun Wang. Lions and muons: Optimization via stochastic frank-wolfe. *CoRR*, abs/2506.04192, 2025.
- [33] Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence analysis of muon. *CoRR*, abs/2505.23737, 2025.
- [34] Daniel W. Shevitz and Brad Paden. Lyapunov stability theory of nonsmooth systems. *IEEE Trans. Autom. Control.*, 39(9):1910–1914, 1994.
- [35] Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of SIGNSGD under weaker assumptions. In *International Conference on Machine Learning, ICML 2023*, volume 202 of *Proceedings of Machine Learning Research*, pages 33077–33099. PMLR, 2023.

- [36] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of initialization and momentum in deep learning. In *Proceedings of the 30th International Conference on Machine Learning, ICML 2013*, volume 28 of *JMLR Workshop and Conference Proceedings*, pages 1139–1147, 2013.
- [37] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and Sham M. Kakade. SOAP: improving and stabilizing shampoo using adam for language modeling. In *The Thirteenth International Conference on Learning Representations, ICLR 2025*, 2025.
- [38] G. A. Watson. Characterization of the subdifferential of some matrix norms. *Linear Algebra and its Applications*, 170:33–45, 1992.
- [39] Shuo Xie and Zhiyuan Li. Implicit bias of adamw: ℓ_∞ -norm constrained optimization. In *Forty-first International Conference on Machine Learning, ICML 2024*, 2024.
- [40] Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov momentum algorithm for faster optimizing deep models. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(12):9508–9520, 2024.
- [41] Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. MARS: unleashing the power of variance reduction for training large models. In *Forty-second International Conference on Machine Learning, ICML 2025*, 2025.

Appendix A. Related work

Steepest descent under norm constraints. [3] reinterprets popular optimizers such as ADAM [15], SHAMPOO [11], and MUON [14] as instances of steepest descent under norm constraints. Similarly, [29] proposes a stochastic conditional gradient approach from a norm-constraint perspective. However, these analyses do not account for momentum, a central component in practical implementations of these optimizers. As a result, when momentum is introduced, these methods no longer strictly conform to the steepest descent interpretation, highlighting a fundamental limitation of this perspective. Moreover, this interpretation does not naturally extend to optimizers that incorporate decoupled weight decay.

Decoupled weight decay. Weight decay is a widely used regularization technique in deep learning, traditionally implemented as an ℓ_2 penalty directly coupled with gradient-based parameter updates [25]. The concept of decoupled weight decay, introduced by ADAMW [25], separates regularization from adaptive gradient computations. Empirical evidence suggests that this decoupling enhances training stability and improves generalization, making it a standard practice in modern adaptive optimizers [8, 24]. Recently, [39] demonstrated that ADAMW implicitly solves a constrained optimization problem given convergence. [7] proved that optimizers with bounded updates and decoupled weight decay inherently correspond to constrained optimization formulations, even without requiring convergence assumptions.

Lyapunov analysis of optimizers. Hamiltonian dynamics provides a rigorous theoretical framework for understanding momentum-based optimization [27, 36]. Unlike standard gradient descent, which ensures a monotonic decrease in the objective function, momentum methods exhibit nonmonotonic behavior, requiring more advanced analytical tools for convergence analysis [13]. Lyapunov-based techniques [7, 17, 22, 34] have since been developed to analyze the stability and convergence properties of optimization algorithms [21].

Concurrent work. Although several concurrent works have studied the convergence of MUON under various smoothness assumptions [1, 16, 19, 33], none of them consider MUON with decoupled weight decay, despite it being the variant that has demonstrated the most promising empirical results [24]. [32] analyzes MUON with decoupled weight decay through a Frank–Wolfe perspective, whereas our work is the first to use the LION- \mathcal{K} framework and to prove convergence with decreasing step sizes à la Robbins–Monro.

Appendix B. Preliminaries

General notation. We let $\mathbb{X} := \mathbb{R}^{n \times m}$ denote the space of real $n \times m$ matrices, corresponding to weight matrices in neural networks. We denote matrices in capital boldface and vectors in lowercase boldface. We let $\mathbf{0}$ denote the zero matrix of appropriate dimension. We let $\langle \mathbf{X}, \mathbf{Y} \rangle := \text{Tr}(\mathbf{X}^\top \mathbf{Y})$ denote the Frobenius inner product. For a differentiable function $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R} \cup \{\infty\}$, we let $\nabla \mathcal{K}$ denote the gradient of \mathcal{K} . We say \mathcal{K} is *convex* if for all $\mathbf{X}, \mathbf{Y} \in \mathbb{X}$ and $\lambda \in [0, 1]$,

$$\mathcal{K}((1 - \lambda)\mathbf{X} + \lambda\mathbf{Y}) \leq (1 - \lambda)\mathcal{K}(\mathbf{X}) + \lambda\mathcal{K}(\mathbf{Y}).$$

We say \mathbf{G} is a *subgradient* of \mathcal{K} at \mathbf{X} if for all $\mathbf{Y} \in \mathbb{X}$,

$$\mathcal{K}(\mathbf{Y}) \geq \mathcal{K}(\mathbf{X}) + \langle \mathbf{G}, \mathbf{Y} - \mathbf{X} \rangle.$$

If \mathcal{K} is convex and differentiable at \mathbf{X} , then $\nabla\mathcal{K}(\mathbf{X})$ is the unique subgradient of \mathcal{K} at \mathbf{X} . If \mathcal{K} is convex but nondifferentiable, we let $\partial\mathcal{K}(\mathbf{X})$ denote the set of subgradients of \mathcal{K} at \mathbf{X} and overload $\nabla\mathcal{K}(\mathbf{X})$ to denote an element of $\partial\mathcal{K}(\mathbf{X})$. For a function \mathcal{K} , we let \mathcal{K}^* denote the convex conjugate of \mathcal{K} , where

$$\mathcal{K}^*(\mathbf{X}) := \sup_{\mathbf{Y} \in \mathbb{X}} (\langle \mathbf{X}, \mathbf{Y} \rangle - \mathcal{K}(\mathbf{Y})).$$

From this definition, we immediately deduce the *Fenchel–Young inequality*

$$\mathcal{K}(\mathbf{X}) + \mathcal{K}^*(\mathbf{Y}) \geq \langle \mathbf{X}, \mathbf{Y} \rangle.$$

We let $\text{dom}(\mathcal{K}) := \{\mathbf{X} \in \mathbb{X} \mid \mathcal{K}(\mathbf{X}) < \infty\}$ denote the effective domain of \mathcal{K} . We say $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R} \cup \{\infty\}$ is *closed* if the set $\{\mathbf{X} \in \text{dom}(\mathcal{K}) \mid \mathcal{K}(\mathbf{X}) \leq \alpha\}$ is closed for each $\alpha \in \mathbb{R}$. We say $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R} \cup \{\infty\}$ is *proper* if $\text{dom}(\mathcal{K})$ is nonempty. The celebrated *Fenchel–Moreau theorem* states that if $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R} \cup \{\infty\}$ is convex, closed, and proper, then $\mathcal{K}^{**} = \mathcal{K}$. A corollary is that $\mathbf{Y} \in \partial\mathcal{K}(\mathbf{X})$ if and only if

$$\mathcal{K}(\mathbf{X}) + \mathcal{K}^*(\mathbf{Y}) = \langle \mathbf{X}, \mathbf{Y} \rangle,$$

i.e. the Fenchel–Young inequality holds with equality, and $\mathbf{X} \in \partial\mathcal{K}^*(\mathbf{Y})$ if $\partial\mathcal{K}^*(\mathbf{Y})$ is nonempty. We let $\chi_{\mathbb{D}}$ denote the characteristic function of a set $\mathbb{D} \subseteq \mathbb{X}$, where

$$\chi_{\mathbb{D}}(\mathbf{X}) := \begin{cases} 0 & \text{if } \mathbf{X} \in \mathbb{D} \\ \infty & \text{otherwise} \end{cases}.$$

For $k \in \{1, 2, \dots, \min(n, m)\}$, we let $\sigma_k(\mathbf{X})$ denote the k^{th} largest singular value of \mathbf{X} .

Norms. For a norm $\|\cdot\|$ on \mathbb{X} , and $r > 0$, we let $\mathbb{B}_{\|\cdot\|}(r) := \{\mathbf{X} \in \mathbb{X} \mid \|\mathbf{X}\| \leq r\}$ denote the ball of radius r . When $\mathbb{D} \subseteq \mathbb{X}$ and the norm is clear from context, we let $d(\mathbf{X}, \mathbb{D}) := \inf_{\mathbf{Y} \in \mathbb{D}} \|\mathbf{X} - \mathbf{Y}\|$ denote the distance from \mathbf{X} to \mathbb{D} . We let $\|\cdot\|_*$ denote the dual norm of $\|\cdot\|$, where

$$\|\mathbf{X}\|_* := \sup_{\mathbf{Y} \neq \mathbf{0}} \frac{\langle \mathbf{X}, \mathbf{Y} \rangle}{\|\mathbf{Y}\|}.$$

It follows directly from this definition that $\langle \mathbf{X}, \mathbf{Y} \rangle \leq \|\mathbf{X}\| \|\mathbf{Y}\|_*$ and $\|\mathbf{X}\|_{**} = \|\mathbf{X}\|$. We define the matrix norms

$$\|\mathbf{X}\|_p := \left(\sum_{i=1}^n \sum_{j=1}^m |\mathbf{X}_{ij}|^p \right)^{\frac{1}{p}}, \quad \|\mathbf{X}\|_{\text{tr}} := \sum_{i=1}^{\min(n, m)} \sigma_i(\mathbf{X}), \quad \|\mathbf{X}\|_{\text{F}} := \|\mathbf{X}\|_2, \quad \|\mathbf{X}\|_{\text{op}} := \sigma_1(\mathbf{X}),$$

where $p \in [1, \infty]$. $\|\cdot\|_p$ is the entrywise ℓ_p norm, $\|\cdot\|_{\text{tr}}$ is known as the *trace norm* or *nuclear norm*, $\|\cdot\|_{\text{F}}$ is known as the *Frobenius norm*, and $\|\cdot\|_{\text{op}}$ is known as the *spectral norm*. The dual norm of $\|\cdot\|_p$ is $\|\cdot\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$, the dual norm of $\|\cdot\|_{\text{tr}}$ is $\|\cdot\|_{\text{op}}$, and $\|\cdot\|_{\text{F}}$ is self-dual.

The following fact will be useful for our analysis.

Fact 1 *Let $\|\cdot\|$ be a norm on \mathbb{X} with dual norm $\|\cdot\|_*$. If $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|$, then*

$$\mathcal{K}^*(\mathbf{X}) = \chi_{\mathbb{B}_*(1)}(\mathbf{X}) = \begin{cases} 0 & \text{if } \|\mathbf{X}\|_* \leq 1 \\ \infty & \text{otherwise} \end{cases}.$$

We say that a function $\mathcal{F} : \mathbb{X} \rightarrow \mathbb{R}$ is *L-smooth* if it is differentiable and

$$\|\nabla \mathcal{F}(\mathbf{Y}) - \nabla \mathcal{F}(\mathbf{X})\|_{\text{F}} \leq L \|\mathbf{Y} - \mathbf{X}\|_{\text{F}} \text{ for all } \mathbf{X}, \mathbf{Y} \in \mathbb{X}.$$

If \mathcal{F} is *L-smooth*, then

$$\mathcal{F}(\mathbf{Y}) \leq \mathcal{F}(\mathbf{X}) + \langle \nabla \mathcal{F}(\mathbf{X}), \mathbf{Y} - \mathbf{X} \rangle + \frac{L}{2} \|\mathbf{Y} - \mathbf{X}\|_{\text{F}}^2 \text{ for all } \mathbf{X}, \mathbf{Y} \in \mathbb{X}.$$

For additional background on convex analysis, we refer to [31].

B.1. Assumptions

Assumption 1 $\mathcal{F}^* := \inf_{\mathbf{X} \in \mathbb{X}} \mathcal{F}(\mathbf{X})$ is finite, and there exists $\mathbf{X}^* \in \mathbb{X}$ such that $\mathcal{F}(\mathbf{X}^*) = \mathcal{F}^*$.

Assumption 1 is necessary for (1) to be well-posed. For our discrete-time analysis, we impose an additional smoothness assumption on \mathcal{F} .

Assumption 2 (L-smoothness) $\mathcal{F} : \mathbb{X} \rightarrow \mathbb{R}$ is *L-smooth*.

We now define the variance of random matrices and introduce an assumption for the analysis of stochastic settings.

Definition 1 (Variance) The variance of an \mathbb{X} -valued random variable \mathbf{X} is defined as

$$\text{Var}(\mathbf{X}) := \mathbb{E} \left[\|\mathbf{X} - \mathbb{E}[\mathbf{X}]\|_{\text{F}}^2 \right].$$

Assumption 3 (Bounded variance) The stochastic samples $\xi_t \sim \mathcal{D}$ are independent and identically distributed (i.i.d.). Additionally, the stochastic gradient $\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)$ satisfies

$$\mathbb{E}_{\xi_t \sim \mathcal{D}} [\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)] = \nabla \mathcal{F}(\mathbf{X}_t) \quad \text{and} \quad \text{Var}(\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)) \leq \frac{\sigma^2}{n_{\text{batch}}},$$

where σ^2 is a constant and n_{batch} denotes the batch size.

Assumption 4 (Iteration-wise bounded variance) The stochastic gradient $\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)$ satisfies

$$\mathbb{E}_{\xi_t \sim \mathcal{D}} [\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)] = \nabla \mathcal{F}(\mathbf{X}_t) \quad \text{and} \quad \text{Var}(\nabla \mathcal{F}(\mathbf{X}_t, \xi_t)) \leq \left[\frac{\sigma^2}{n_{\text{batch}}} \right]_t.$$

We remark that Assumptions 2 and 3 are standard in the literature for the analysis of stochastic optimization algorithms, e.g. [4, 9, 22, 41].

Since we work within the LION- \mathcal{K} framework, our last assumption concerns the choice of \mathcal{K} .

Assumption 5 $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R}$ is convex. This implies that \mathcal{K} is also closed and proper.

Appendix C. Background on LION- \mathcal{K}

LION- \mathcal{K} [7] is a family of optimization algorithms developed to provide a theoretical foundation for the LION optimizer, which was originally discovered via symbolic search [8]. Given a convex function $\mathcal{K} : \mathbb{X} \rightarrow \mathbb{R}$ with subgradient $\nabla \mathcal{K}$, the update rule for LION- \mathcal{K} is given by (3). This update rule is equivalent to the original one given by [7], where the last update is

$$\mathbf{X}_{t+1} = \mathbf{X}_t + \eta_t (\nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_t), \quad (8)$$

under the reparameterization $\eta_t \leftarrow \frac{\eta_t}{1 + \eta_t \lambda}$.

LION- \mathcal{K} can be seen as mixing several fundamental design elements in optimization:

- **Polyak momentum** \mathbf{M} , which accumulates the exponential moving average of the gradients, controlled by the coefficient β_2 .
- **Nesterov momentum** $\widetilde{\mathbf{M}}$, which introduces extra gradient components into the update, controlled by the coefficient β_1 .
- **Nonlinear preconditioning** $\nabla \mathcal{K}$, which applies a transformation to the momentum before it is used to update the parameters. This is legitimate since $\nabla \mathcal{K}$ is a monotone map, meaning that $\langle \nabla \mathcal{K}(\mathbf{X}) - \nabla \mathcal{K}(\mathbf{Y}), \mathbf{X} - \mathbf{Y} \rangle \geq 0$, which follows from the convexity of \mathcal{K} (see Lemma 1).
- **Decoupled weight decay** $\lambda \mathbf{X}$, which reduces the parameter magnitude in addition to the update $\nabla \mathcal{K}(\widetilde{\mathbf{M}})$. This introduces a regularization effect (see Appendix C.1) and is closely related to Frank–Wolfe style algorithms.

C.1. Effect of decoupled weight decay

Due to the interplay of decoupled weight decay and the $\nabla \mathcal{K}$ mapping, LION- \mathcal{K} optimizers minimize the regularized objective (4). To gain a quick heuristic understanding of how the regularization term arises, we can simply examine a fixed point of the optimizer. Using the original update rule (8), assume that the algorithm reaches a fixed point, where we have $\mathbf{M}_{t+1} = \widetilde{\mathbf{M}}_{t+1} = -\nabla \mathcal{F}(\mathbf{X}_t)$ and $\nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_t = \mathbf{0}$. This yields $\nabla \mathcal{K}(-\nabla \mathcal{F}(\mathbf{X}_t)) - \lambda \mathbf{X}_t = \mathbf{0}$. Since $\nabla \mathcal{K}^*$ is the inverse function of $\nabla \mathcal{K}$ by convex conjugacy, we have

$$\nabla \widehat{\mathcal{F}}(\mathbf{X}_t) = \nabla \mathcal{F}(\mathbf{X}_t) + \nabla \mathcal{K}^*(\lambda \mathbf{X}_t) = \mathbf{0}.$$

This suggests that every fixed point of the algorithm must be a stationary point of the regularized objective $\widehat{\mathcal{F}}$.

C.2. Lyapunov function for LION- \mathcal{K}

The fixed-point analysis alone does not guarantee the convergence of the algorithm. We give a full analysis using a Lyapunov function method, patterned off [7]. To understand this, it helps to focus on the limit of small step sizes, where the dynamics of LION- \mathcal{K} can be modeled by the ordinary differential equation (ODE)

$$\begin{aligned} \dot{\mathbf{M}}_t &= -\nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{M}_t \\ \dot{\mathbf{X}}_t &= \nabla \mathcal{K}(\mathbf{M}_t - \epsilon (\nabla \mathcal{F}(\mathbf{X}_t) + \mathbf{M}_t)) - \lambda \mathbf{X}_t. \end{aligned} \quad (9)$$

Here, the effect of Nesterov momentum is captured by $\epsilon \in [0, 1]$.

It is not immediately obvious why the LION- \mathcal{K} ODE would serve to minimize $\widehat{\mathcal{F}}(\mathbf{X})$, as the ODE does not necessarily guarantee a monotonic decrease in $\widehat{\mathcal{F}}(\mathbf{X})$. However, we show in Appendix C.4 that the LION- \mathcal{K} ODE minimizes the auxiliary function

$$\mathcal{H}(\mathbf{X}, \mathbf{M}) := \widehat{\mathcal{F}}(\mathbf{X}) + \frac{1 - \epsilon}{1 + \epsilon \lambda} (\mathcal{K}^*(\lambda \mathbf{X}) + \mathcal{K}(\mathbf{M}) - \langle \mathbf{M}, \lambda \mathbf{X} \rangle)$$

in the sense that it is monotonically decreasing along the ODE trajectories, i.e. $\frac{d}{dt} \mathcal{H}(\mathbf{X}_t, \mathbf{M}_t) \leq 0$ until a local minimum is achieved. In other words, $\mathcal{H}(\mathbf{X}, \mathbf{M})$ admits a Lyapunov function of the LION- \mathcal{K} ODE (9). Here, $\mathcal{H}(\mathbf{X}, \mathbf{M})$ is a joint function of position \mathbf{X} and momentum \mathbf{M} . It can be interpreted as a Hamiltonian function in a physical metaphor, where $\widehat{\mathcal{F}}(\mathbf{X})$ is the potential energy, and the additional term represents a form of kinetic energy.

Moreover, minimizing $\mathcal{H}(\mathbf{X}, \mathbf{M})$ is equivalent to minimizing the regularized objective $\widehat{\mathcal{F}}(\mathbf{X})$. This can be seen by the Fenchel–Young inequality, which ensures that

$$\mathcal{K}^*(\lambda \mathbf{X}) + \mathcal{K}(\mathbf{M}) - \langle \mathbf{M}, \lambda \mathbf{X} \rangle \geq 0,$$

with equality when $\mathbf{M} \in \partial \mathcal{K}(\lambda \mathbf{X})$.

C.3. Constrained optimization problem

If \mathcal{K}^* takes on positive infinite values, LION- \mathcal{K} effectively solves the constrained optimization problem

$$\min_{\mathbf{X} \in \mathbb{X}} \widehat{\mathcal{F}}(\mathbf{X}) \text{ s.t. } \lambda \mathbf{X} \in \text{dom}(\mathcal{K}^*). \quad (10)$$

If the algorithm is initialized outside the effective domain, [7] shows that in the continuous-time setting, \mathbf{X}_t is rapidly driven into the effective domain and stays inside afterwards. Specifically, this process is guaranteed to be exponentially fast in time:

$$d(\lambda \mathbf{X}_t, \text{dom}(\mathcal{K}^*)) \leq \exp(-\lambda t) d(\lambda \mathbf{X}_0, \text{dom}(\mathcal{K}^*)) \text{ for all } t \geq 0. \quad (11)$$

Consequently, $\lambda \mathbf{X}_t$ rapidly converges to $\text{dom}(\mathcal{K}^*)$ and remains within this domain once it arrives, where the Lyapunov function is finite and decreases monotonically.

C.4. Continuous-time analysis of LION- \mathcal{K}

For completeness, we give a straightforward extension of the analysis of [7] to establish the convergence of the LION- \mathcal{K} ODE (9) for matrices.

Proposition 1 *Under Assumptions 1 and 5, let \mathcal{F} , \mathcal{K} , and \mathcal{K}^* be continuously differentiable and*

$$\begin{aligned} \dot{\mathbf{X}}_t &= \nabla \mathcal{K}(\mathbf{M}_t - \epsilon(\gamma \mathbf{M}_t + \alpha \nabla \mathcal{F}(\mathbf{X}_t))) - \lambda \mathbf{X}_t \\ \dot{\mathbf{M}}_t &= -\alpha \nabla \mathcal{F}(\mathbf{X}_t) - \gamma \mathbf{M}_t, \end{aligned} \quad (12)$$

where $\alpha, \gamma, \epsilon, \lambda > 0$ and $\epsilon \gamma \leq 1$. Define

$$\mathcal{H}(\mathbf{X}, \mathbf{M}) := \alpha(\mathcal{F}(\mathbf{X}) - \mathcal{F}^*) + \frac{\gamma}{\lambda} (\mathcal{K}^*(\lambda \mathbf{X}) + \mathcal{K}(\mathbf{M})) + \frac{1 - \epsilon \gamma}{1 + \epsilon \lambda} (\mathcal{K}^*(\lambda \mathbf{X}) + \mathcal{K}(\mathbf{M}) - \langle \mathbf{M}, \lambda \mathbf{X} \rangle). \quad (13)$$

Then for all t , $\mathcal{H}(\mathbf{X}_t, \mathbf{M}_t) \geq 0$ and $\frac{d}{dt} \mathcal{H}(\mathbf{X}_t, \mathbf{M}_t) \leq 0$, i.e. \mathcal{H} is a Lyapunov function for (12).

Proof For simplicity, we drop the index t . By assumption, $\mathcal{F}(\mathbf{X}) - \mathcal{F}^* \geq 0$, by the Fenchel–Young inequality, $\mathcal{K}^*(\lambda\mathbf{X}) + \mathcal{K}(\mathbf{M}) - \langle \mathbf{M}, \lambda\mathbf{X} \rangle \geq 0$, and by definition,

$$\mathcal{K}^*(\lambda\mathbf{X}) + \mathcal{K}(\mathbf{0}) = \sup_{\mathbf{Y} \in \mathbb{X}} (\langle \lambda\mathbf{X}, \mathbf{Y} \rangle - \mathcal{K}(\mathbf{Y})) + \mathcal{K}(\mathbf{0}) \geq \langle \lambda\mathbf{X}, \mathbf{0} \rangle - \mathcal{K}(\mathbf{0}) + \mathcal{K}(\mathbf{0}) = 0.$$

Combining these inequalities shows that $\mathcal{H}(\mathbf{X}, \mathbf{M}) \geq 0$.

Let $\widetilde{\mathbf{M}} := \mathbf{M} - \epsilon(\gamma\mathbf{M} + \alpha\nabla\mathcal{F}(\mathbf{X}))$. By Lemma 1, we have

$$\begin{aligned} 0 &\geq \langle -\widetilde{\mathbf{M}} + \nabla\mathcal{K}^*(\lambda\mathbf{X}), \nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X} \rangle \\ &= \langle \epsilon\alpha\nabla\mathcal{F}(\mathbf{X}) - (1 - \epsilon\gamma)\mathbf{M} + \nabla\mathcal{K}^*(\lambda\mathbf{X}), \nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X} \rangle \\ 0 &\geq \langle \mathbf{M} - \widetilde{\mathbf{M}}, \nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \nabla\mathcal{K}(\mathbf{M}) \rangle \\ &= \langle \epsilon\alpha\nabla\mathcal{F}(\mathbf{X}) + \epsilon\gamma\mathbf{M}, (\nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X}) - (\nabla\mathcal{K}(\mathbf{M}) - \lambda\mathbf{X}) \rangle. \end{aligned} \tag{14}$$

By straightforward computation,

$$\begin{aligned} \frac{d}{dt}\mathcal{H}(\mathbf{X}, \mathbf{M}) &= \langle \nabla_{\mathbf{X}}\mathcal{H}(\mathbf{X}, \mathbf{M}), \dot{\mathbf{X}} \rangle + \langle \nabla_{\mathbf{M}}\mathcal{H}(\mathbf{X}, \mathbf{M}), \dot{\mathbf{M}} \rangle \\ &= \left\langle \alpha\nabla\mathcal{F}(\mathbf{X}) + \gamma\nabla\mathcal{K}^*(\lambda\mathbf{X}) + \frac{1 - \epsilon\gamma}{1 + \epsilon\lambda}(\lambda\nabla\mathcal{K}^*(\lambda\mathbf{X}) - \lambda\mathbf{M}), \nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X} \right\rangle \\ &\quad + \frac{1 - \epsilon\gamma}{1 + \epsilon\lambda} \langle \nabla\mathcal{K}(\mathbf{M}) - \lambda\mathbf{X}, -\alpha\nabla\mathcal{F}(\mathbf{X}) - \gamma\mathbf{M} \rangle \\ &= \frac{\lambda + \gamma}{1 + \epsilon\lambda} \left\langle \epsilon\alpha\nabla\mathcal{F}(\mathbf{X}) - (1 - \epsilon\gamma)\mathbf{M} + \nabla\mathcal{K}^*(\lambda\mathbf{X}), \nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X} \right\rangle \\ &\quad + \frac{1 - \epsilon\gamma}{\epsilon(1 + \epsilon\lambda)} \left\langle \epsilon\alpha\nabla\mathcal{F}(\mathbf{X}) + \epsilon\gamma\mathbf{M}, (\nabla\mathcal{K}(\widetilde{\mathbf{M}}) - \lambda\mathbf{X}) - (\nabla\mathcal{K}(\mathbf{M}) - \lambda\mathbf{X}) \right\rangle \\ &\leq 0, \end{aligned}$$

where the last line uses (14). ■

We recover (9) by setting $\alpha = \gamma = 1$ in (12). Although an important result, Proposition 1 cannot be directly applied to MUON due to the nondifferentiability of the nuclear norm.

Appendix D. MUON meets LION- \mathcal{K}

We recall the MUON update rule (2) and formally define the matrix sign function.

Definition 2 (Matrix sign) *Let $\mathbf{U}\Sigma\mathbf{V}^\top$ be a singular value decomposition of $\mathbf{X} \in \mathbb{X}$. The matrix sign function, denoted msgn , is given by*

$$\text{msgn}(\mathbf{X}) := (\mathbf{X}\mathbf{X}^\top)^{-\frac{1}{2}}\mathbf{X} = \mathbf{U}\text{sgn}(\Sigma)\mathbf{V}^\top,$$

where $(\cdot)^{-\frac{1}{2}}$ denotes the Moore–Penrose inverse of the matrix square root and sgn denotes the entrywise signum function.

The matrix sign of \mathbf{X} is also known as the *Mahalanobis whitening* or *zero-phase component analysis (ZCA) whitening*, which stands as the optimal whitening procedure that minimizes the distortion with the original data. It is also closely related to the polar decomposition of \mathbf{X} .

We now illustrate the connection between MUON and LION- \mathcal{K} using the following well-known fact.

Fact 2 ([6, 38]) *Let $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$ and $\mathbf{X} \in \mathbb{X}$ with singular value decomposition $\mathbf{U}\Sigma\mathbf{V}^\top$. Then*

$$\partial\mathcal{K}(\mathbf{X}) = \left\{ \mathbf{U} \text{sgn}(\Sigma) \mathbf{V}^\top + \mathbf{W} \mid \mathbf{W} \in \mathbb{X}, \mathbf{U}^\top \mathbf{W} = \mathbf{0}, \mathbf{W} \mathbf{V} = \mathbf{0}, \|\mathbf{W}\|_{\text{op}} \leq 1 \right\}.$$

In particular, $\text{msgn}(\mathbf{X}) \in \partial\mathcal{K}(\mathbf{X})$.

Hence, MUON can be interpreted as LION- \mathcal{K} with $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$ and $\nabla\mathcal{K}(\mathbf{X}) = \text{msgn}(\mathbf{X})$, corresponding to a matrix generalization of LION, which is LION- \mathcal{K} with $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_1$ and $\nabla\mathcal{K}(\mathbf{X}) = \text{sgn}(\mathbf{X})$. Indeed, $\|\cdot\|_{\text{tr}}$ and $\|\cdot\|_{\text{op}}$ are precisely the Schatten 1- and ∞ -norms, which are the ℓ_1 and ℓ_∞ norms on the singular values of a matrix, respectively, and the suggestively named msgn function can be seen as a matrix analog of sgn .

D.1. Spectral norm constraint

By (10) and Fact 1, we conclude that MUON solves the constrained optimization problem (5). The bound $\frac{1}{\lambda}$ is determined solely by the weight decay coefficient λ . Without weight decay ($\lambda = 0$), we obtain the original unconstrained optimization problem.

In fact, the bound constraint arises from any update of the form

$$\mathbf{X}_{t+1} = \mathbf{X}_t + \eta_t(\mathbf{O}_t - \lambda\mathbf{X}_t),$$

where \mathbf{O}_t has bounded norm, regardless of how it is updated, although the solution may not necessarily minimize the objective within the constrained set. Because \mathbf{O}_t has bounded norm, the weight decay term dominates the update whenever the constraint is not satisfied (i.e. $\|\lambda\mathbf{X}_t\| > 1$), leading to an exponential decrease in magnitude. This intuition is formalized by the following result, which is a discrete-time variant of (11).

Proposition 2 *For any update of the form $\mathbf{X}_{t+1} = \mathbf{X}_t + \eta_t(\mathbf{O}_t - \lambda\mathbf{X}_t)$ with $\|\mathbf{O}_t\| \leq b$, $\eta_t\lambda \leq 1$, and $\lambda > 0$, where $\|\cdot\|$ is any norm on \mathbb{X} and b is a constant, we have*

$$\|\mathbf{X}_t\| - \frac{b}{\lambda} \leq \left(\prod_{s=0}^{t-1} (1 - \eta_s \lambda) \right) \left(\|\mathbf{X}_0\| - \frac{b}{\lambda} \right).$$

Proof We have

$$\begin{aligned} \|\mathbf{X}_{t+1}\| - \frac{b}{\lambda} &= \|\mathbf{X}_t + \eta_t(\mathbf{O}_t - \lambda\mathbf{X}_t)\| - \frac{b}{\lambda} \leq (1 - \eta_t \lambda) \|\mathbf{X}_t\| + \eta_t \|\mathbf{O}_t\| - \frac{b}{\lambda} \\ &\leq (1 - \eta_t \lambda) \|\mathbf{X}_t\| + \eta_t b - \frac{b}{\lambda} = (1 - \eta_t \lambda) \left(\|\mathbf{X}_t\| - \frac{b}{\lambda} \right). \end{aligned}$$

Applying this recursively yields the result. ■

Table 1: Summary of common convex matrix functions. Note that the nuclear norm is a special case of the spectral sum with $\phi(\cdot) = |\cdot|$.

Function	Domain	Remarks
Squared Frobenius norm $\ \mathbf{X}\ _{\text{F}}^2$	All matrices	Smooth, strongly convex
Nuclear norm $\ \mathbf{X}\ _{\text{tr}}$	All matrices	Lipschitz continuous, convex
Spectral norm $\ \mathbf{X}\ _{\text{op}}$	All matrices	Lipschitz continuous, convex
Quadratic form $\text{Tr}(\mathbf{X}^\top \mathbf{M} \mathbf{X})$	All matrices, $\mathbf{M} \succeq \mathbf{0}$	Smooth quadratic form, convex
Spectral sum $\sum_i \phi(\boldsymbol{\sigma}_i(\mathbf{X}))$	All matrices, convex ϕ	General convex spectral functions

For MUON, we have $\|\text{msgn}(\widetilde{\mathbf{M}}_{t+1})\|_{\text{op}} \leq 1$, so Proposition 2 applies.

Although the continuous-time results in Appendix C provide intuition on the dynamics of LION- \mathcal{K} , the nondifferentiability of the trace norm ultimately prevents us from directly applying these results in establishing the theoretical properties of MUON. Instead, we will resort to our discrete-time analysis in Appendix E to rigorously prove the convergence and implicit bias of MUON.

D.2. Generalizations of MUON

Generalizing beyond the nuclear norm, we can take \mathcal{K} to be a general convex spectral function, i.e.

$$\mathcal{K}(\mathbf{X}) = \sum_{i=1}^{\min(n,m)} \phi(\boldsymbol{\sigma}_i(\mathbf{X})),$$

where $\phi : [0, \infty) \rightarrow \mathbb{R}$ is a convex scalar function. Because $\frac{\partial \boldsymbol{\sigma}_i(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{u}_i \mathbf{v}_i^\top$, where \mathbf{u}_i and \mathbf{v}_i are the singular vectors associated with $\boldsymbol{\sigma}_i$, a subgradient of \mathcal{K} above is given by

$$\nabla \mathcal{K}(\mathbf{X}) = \mathbf{U} \mathbf{diag}(\{\nabla \phi(\boldsymbol{\sigma}_i)\}) \mathbf{V}^\top,$$

where \mathbf{X} has singular value decomposition $\mathbf{U} \Sigma \mathbf{V}^\top$.

Assume $\nabla \phi$ is upper bounded by b , i.e. $\sup_{x \geq 0} \nabla \phi(x) = b$. Then the update $\mathbf{O}_t = \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1})$ satisfies $\|\mathbf{O}_t\|_{\text{op}} \leq b$, which yields a constraint of $\|\mathbf{X}\|_{\text{op}} \leq \frac{b}{\lambda}$ by Proposition 2.

In the practical implementation of MUON, ϕ is effectively taken as a high-order polynomial inspired by Newton–Schulz iteration for calculating the matrix sign.

Table 1 summarizes several common convex matrix functions along with their key properties. Importantly, the convexity of \mathcal{K} ensures the convergence of the associated LION- \mathcal{K} optimizers, as established through both continuous-time and discrete-time analyses (Appendices C.4 and E). Consequently, our framework introduces a large class of provably convergent optimization algorithms parameterized by a convex function \mathcal{K} .

More generally, the constrained optimization problem $\min_{\mathbf{X} \in \mathbb{X}} \mathcal{F}(\mathbf{X})$ such that $\mathbf{X} \in \mathbb{D}$, where \mathbb{D} is a convex set, can be solved using LION- \mathcal{K} with $\mathcal{K}^*(\mathbf{X}) = \chi_{\mathbb{D}}(\mathbf{X})$. As in the cases of LION and MUON, a particularly important instance is when \mathbb{D} is a norm ball $\mathbb{B}_{\|\cdot\|}(1)$. In this setting, $\nabla \mathcal{K}(\mathbf{X})$ corresponds to the solution of a linear minimization oracle problem $\max_{\mathbf{Z} \in \mathbb{X}} \langle \mathbf{X}, \mathbf{Z} \rangle$ such that $\|\mathbf{Z}\| \leq 1$. Related discussions can be found, for example, in [3] and [29].

Appendix E. Convergence analysis of MUON

In this section, we generalize the analysis of [7] to handle \mathbb{X} -valued updates and leverage this result to provide convergence rates for the KKT score function (6) and prove the convergence of MUON to the set of KKT points of (5). Our strategy consists of three components:

- In Appendix E.1, we show that \mathbf{X}^* is a KKT point of (5) if and only if $\|\lambda\mathbf{X}^*\|_{\text{op}} \leq 1$ and the KKT score function (6) vanishes at \mathbf{X}^* .
- We give a discrete-time analysis of matrix LION- \mathcal{K} and show that, as a corollary, the KKT score function is $O\left(\frac{1}{\sqrt{T}}\right)$ in the deterministic gradient setting (Appendix E.2) and

$$O\left(\frac{1}{\sqrt{T}} + \frac{\sigma}{\sqrt{n_{\text{batch}}}}\right)$$

in the stochastic gradient setting (Appendix E.3).

- In Appendix E.4, we put together the previous results and conclude that MUON converges to the set of KKT points of (5) using LaSalle's invariance principle.

E.1. KKT points of spectral-norm-constrained problems

We note that (5) is equivalent to

$$\min_{\mathbf{X} \in \mathbb{X}} \mathcal{F}(\mathbf{X}) \text{ s.t. } \boldsymbol{\sigma}_i(\mathbf{X}) \leq \frac{1}{\lambda} \text{ for all } i \in \{1, 2, \dots, \min(n, m)\}$$

and define the KKT points of this constrained optimization problem.

Definition 3 (KKT points) *We say that $\mathbf{X}^* \in \mathbb{X}$ is a point that satisfies the Karush–Kuhn–Tucker (KKT) conditions, or is a KKT point, of (5) if there exists $\boldsymbol{\mu} \in \mathbb{R}^{\min(n, m)}$ such that the following conditions hold:*

- (stationarity) $\nabla \mathcal{F}(\mathbf{X}^*) + \sum_{i=1}^{\min(n, m)} \boldsymbol{\mu}_i \mathbf{u}_i \mathbf{v}_i^\top = \mathbf{0}$, where \mathbf{u}_i and \mathbf{v}_i are singular vectors corresponding to $\boldsymbol{\sigma}_i(\mathbf{X}^*)$.
- (primal feasibility) $\boldsymbol{\sigma}_i(\mathbf{X}^*) \leq \frac{1}{\lambda}$ for all $i \in \{1, 2, \dots, \min(n, m)\}$.
- (dual feasibility) $\boldsymbol{\mu} \geq \mathbf{0}$ entrywise.
- (complementary slackness) $\boldsymbol{\mu}_i (\boldsymbol{\sigma}_i(\mathbf{X}^*) - \frac{1}{\lambda}) = 0$ for all $i \in \{1, 2, \dots, \min(n, m)\}$.

At a given point \mathbf{X} , it is not immediately clear whether the KKT conditions are satisfied. To address this challenge, we work with an equivalent characterization based on the KKT score function (6).

Proposition 3 $\mathbf{X}^* \in \mathbb{X}$ is a KKT point of (5) if and only if $\|\lambda\mathbf{X}^*\|_{\text{op}} \leq 1$ and $\mathcal{S}(\mathbf{X}^*) = 0$.

Proof Suppose $\|\lambda \mathbf{X}^*\|_{\text{op}} \leq 1$ and

$$\mathcal{S}(\mathbf{X}^*) = \|\nabla \mathcal{F}(\mathbf{X}^*)\|_{\text{tr}} + \langle \lambda \mathbf{X}^*, \nabla \mathcal{F}(\mathbf{X}^*) \rangle = \|\nabla \mathcal{F}(\mathbf{X}^*)\|_{\text{tr}} - \langle \lambda \mathbf{X}^*, -\nabla \mathcal{F}(\mathbf{X}^*) \rangle = 0.$$

Then $\lambda \mathbf{X}^*$ is a subgradient of $\|\cdot\|_{\text{tr}}$ at $-\nabla \mathcal{F}(\mathbf{X}^*)$, since for all $\mathbf{Y} \in \mathbb{X}$,

$$\|\mathbf{Y}\|_{\text{tr}} \geq \|\mathbf{Y}\|_{\text{tr}} \|\lambda \mathbf{X}^*\|_{\text{op}} \geq \langle \lambda \mathbf{X}^*, \mathbf{Y} \rangle = \|\nabla \mathcal{F}(\mathbf{X}^*)\|_{\text{tr}} + \langle \lambda \mathbf{X}^*, \mathbf{Y} + \nabla \mathcal{F}(\mathbf{X}^*) \rangle.$$

Let $\mathbf{U}\Sigma\mathbf{V}^\top$ be a singular value decomposition of $-\nabla \mathcal{F}(\mathbf{X}^*)$. By Fact 2,

$$\lambda \mathbf{X}^* = \mathbf{U} \text{sgn}(\Sigma) \mathbf{V}^\top + \mathbf{W}, \text{ where } \mathbf{U}^\top \mathbf{W} = \mathbf{0}, \mathbf{W} \mathbf{V} = \mathbf{0}, \text{ and } \|\mathbf{W}\|_{\text{op}} \leq 1.$$

Then setting $\boldsymbol{\mu}$ to be the singular values of $\nabla \mathcal{F}(\mathbf{X}^*)$ in nonincreasing order shows that \mathbf{X}^* satisfies the KKT conditions:

- (stationarity) since $\mathbf{U}^\top \mathbf{W} = \mathbf{0}$ and $\mathbf{W} \mathbf{V} = \mathbf{0}$, $\lambda \mathbf{X}^*$ has singular value decomposition

$$(\mathbf{u}_1 \ \cdots \ \mathbf{u}_r \ \mathbf{x}_1 \ \cdots \ \mathbf{x}_{n-r}) \text{diag} (1, \dots, 1, \boldsymbol{\sigma}_1(\mathbf{W}), \dots, \boldsymbol{\sigma}_{\min(n,m)-r}(\mathbf{W})) \begin{pmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_r^\top \\ \mathbf{y}_1^\top \\ \vdots \\ \mathbf{y}_{m-r}^\top \end{pmatrix}$$

with $r := \text{rank}(\nabla \mathcal{F}(\mathbf{X}^*))$. In addition, $\|\mathbf{W}\|_{\text{op}} \leq 1$ implies that $\boldsymbol{\sigma}_1(\mathbf{X}^*) = \dots = \boldsymbol{\sigma}_r(\mathbf{X}^*) = \frac{1}{\lambda}$, with corresponding singular vectors $\mathbf{u}_1, \dots, \mathbf{u}_r$ and $\mathbf{v}_1, \dots, \mathbf{v}_r$. But by construction, $\nabla \mathcal{F}(\mathbf{X}^*)$ has singular values $\boldsymbol{\mu}$ and singular vectors $-\mathbf{u}_1, \dots, -\mathbf{u}_n$ and $\mathbf{v}_1, \dots, \mathbf{v}_m$. Thus

$$\nabla \mathcal{F}(\mathbf{X}^*) + \sum_{i=1}^{\min(n,m)} \boldsymbol{\mu}_i \mathbf{u}_i \mathbf{v}_i^\top = \sum_{i=1}^r \boldsymbol{\mu}_i (-\mathbf{u}_i) \mathbf{v}_i^\top + \sum_{i=1}^r \boldsymbol{\mu}_i \mathbf{u}_i \mathbf{v}_i^\top = \mathbf{0}.$$

- (primal feasibility) $\|\lambda \mathbf{X}^*\|_{\text{op}} \leq 1$ by assumption.
- (dual feasibility) $\boldsymbol{\mu} \geq \mathbf{0}$ entrywise by the nonnegativity of singular values.
- (complementary slackness) for $i \in \{1, 2, \dots, \min(n, m)\}$, if $\boldsymbol{\mu}_i = 0$, then the condition holds. Otherwise, $\boldsymbol{\mu}_i = \boldsymbol{\sigma}_i(\nabla \mathcal{F}(\mathbf{X}^*)) > 0$ implies $\boldsymbol{\sigma}_i(\lambda \mathbf{X}^*) = 1$, so the condition holds.

Suppose the KKT conditions for the original problem (5) are satisfied, i.e. there exist $\mu \in \mathbb{R}_{\geq 0}$ and a subgradient \mathbf{G} of $\|\cdot\|_{\text{op}}$ at \mathbf{X}^* , where $\|\lambda \mathbf{X}^*\|_{\text{op}} \leq 1$, such that

$$\nabla \mathcal{F}(\mathbf{X}^*) + \mu \mathbf{G} = \mathbf{0} \quad \text{and} \quad \mu (\|\lambda \mathbf{X}^*\|_{\text{op}} - 1) = 0.$$

$\|\lambda \mathbf{X}^*\|_{\text{op}} \leq 1$ is satisfied by primal feasibility. If $\mu = 0$, then $\nabla \mathcal{F}(\mathbf{X}^*) = \mathbf{0}$, which implies $\mathcal{S}(\mathbf{X}^*) = 0$. Otherwise, we have $\|\lambda \mathbf{X}^*\|_{\text{op}} = 1$ by complementary slackness. Let the multiplicity of $\boldsymbol{\sigma}_1(\mathbf{X}^*)$ be t , with corresponding singular vectors \mathbf{U}_1 and \mathbf{V}_1 . Using [38]'s characterization of the subgradients of $\|\cdot\|_{\text{op}}$, we have $\mathbf{G} = \mathbf{U}_1 \mathbf{H} \mathbf{V}_1^\top$, where $\mathbf{H} \in \mathbb{S}_{\geq 0}^{t \times t}$ and $\text{Tr}(\mathbf{H}) = 1$. Thus $\|\mathbf{G}\|_{\text{tr}} = 1$, and

$$\mathcal{S}(\mathbf{X}^*) = \|\nabla \mathcal{F}(\mathbf{X}^*)\|_{\text{tr}} + \langle \lambda \mathbf{X}^*, \nabla \mathcal{F}(\mathbf{X}^*) \rangle = \mu \|\mathbf{G}\|_{\text{tr}} - \mu \langle \lambda \mathbf{X}^*, \mathbf{G} \rangle = \mu \|\mathbf{G}\|_{\text{tr}} - \mu \|\lambda \mathbf{X}^*\|_{\text{op}} = 0,$$

where the third equality uses Lemma 2. ■

E.2. Convergence rate of LION- \mathcal{K} with deterministic gradient

Our analysis in this section is an extension of the discrete-time analysis in [7], which is in turn inspired by the Lyapunov function for continuous-time LION- \mathcal{K} dynamics (cf. Appendix C.4).

Proposition 4 *Under Assumptions 1, 2, and 5, let $0 \leq \beta_1 < \beta_2 < 1$ and $\lambda > 0$, and suppose \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (3). Let*

$$\begin{aligned} c_t &:= \frac{\eta_t \lambda \beta_1}{\eta_t \lambda (1 - \beta_1) + (1 - \beta_2)} \\ b_t &:= \frac{\beta_1 (1 - \beta_2)}{(\beta_2 - \beta_1) (\eta_t \lambda (1 - \beta_1) + (1 - \beta_2))} \\ a_t &:= c_t + 1 \\ \mathcal{H}_t &:= \mathcal{F}(\mathbf{X}_t) - \mathcal{F}^* + \frac{1}{\lambda} \mathcal{K}^*(\lambda \mathbf{X}_t) + \frac{c_t}{\lambda} (\mathcal{K}^*(\lambda \mathbf{X}_t) + \mathcal{K}(\mathbf{M}_t) - \langle \lambda \mathbf{X}_t, \mathbf{M}_t \rangle) \\ \Gamma_t &:= \left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1}) \right\rangle \\ \Delta_t &:= \left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \nabla \mathcal{K}(\mathbf{M}_{t+1}), \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle. \end{aligned} \tag{15}$$

Then for all $T > 0$,

$$\frac{1}{T} \sum_{t=0}^{T-1} \eta_t (a_t \Gamma_t + b_t \Delta_t) \leq \frac{\mathcal{H}_0 - \mathcal{H}_T}{T} + \frac{L}{2T} \sum_{t=0}^{T-1} \eta_t^2 \left\| \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1} \right\|_{\mathbf{F}}^2. \tag{16}$$

Proof By smoothness, we have

$$\mathcal{F}(\mathbf{X}_{t+1}) - \mathcal{F}(\mathbf{X}_t) \leq \langle \nabla \mathcal{F}(\mathbf{X}_t), \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \frac{L}{2} \left\| \mathbf{X}_{t+1} - \mathbf{X}_t \right\|_{\mathbf{F}}^2. \tag{17}$$

By convexity, we have

$$\begin{aligned} \mathcal{K}^*(\lambda \mathbf{X}_{t+1}) - \mathcal{K}^*(\lambda \mathbf{X}_t) &\leq \langle \lambda \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1}), \mathbf{X}_{t+1} - \mathbf{X}_t \rangle \\ \mathcal{K}(\mathbf{M}_{t+1}) - \mathcal{K}(\mathbf{M}_t) &\leq \langle \nabla \mathcal{K}(\mathbf{M}_{t+1}), \mathbf{M}_{t+1} - \mathbf{M}_t \rangle. \end{aligned} \tag{18}$$

Finally, we have

$$\langle \mathbf{X}_{t+1}, \mathbf{M}_{t+1} \rangle - \langle \mathbf{X}_t, \mathbf{M}_t \rangle = \langle \mathbf{M}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \langle \mathbf{X}_{t+1}, \mathbf{M}_{t+1} - \mathbf{M}_t \rangle. \tag{19}$$

Combining (17), (18), and (19) gives

$$\mathcal{H}_{t+1} - \mathcal{H}_t \leq \langle \nabla_{\mathbf{X}} \mathcal{H}_t, \mathbf{X}_{t+1} - \mathbf{X}_t \rangle + \langle \nabla_{\mathbf{M}} \mathcal{H}_t, \mathbf{M}_{t+1} - \mathbf{M}_t \rangle + \frac{L}{2} \left\| \mathbf{X}_{t+1} - \mathbf{X}_t \right\|_{\mathbf{F}}^2, \tag{20}$$

where

$$\nabla_{\mathbf{X}} \mathcal{H}_t := \nabla \mathcal{F}(\mathbf{X}_t) + (1 + c_t) \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1}) - c_t \mathbf{M}_t \quad \text{and} \quad \nabla_{\mathbf{M}} \mathcal{H}_t := \frac{c_t}{\lambda} \nabla \mathcal{K}(\mathbf{M}_{t+1}) - c_t \mathbf{X}_{t+1}.$$

Recalling (3), we have

$$\mathbf{X}_{t+1} - \mathbf{X}_t = \eta_t \boldsymbol{\delta}_t \quad \text{and} \quad \mathbf{M}_{t+1} - \mathbf{M}_t = \frac{1 - \beta_2}{\beta_2 - \beta_1} (\widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1}),$$

where $\delta_t := \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1}$. Substituting into (20),

$$\begin{aligned}
 & \mathcal{H}_{t+1} - \mathcal{H}_t \\
 & \leq \eta_t \langle \nabla_{\mathbf{X}} \mathcal{H}_t, \delta_t \rangle + \frac{1 - \beta_2}{\beta_2 - \beta_1} \langle \nabla_{\mathbf{M}} \mathcal{H}_t, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\
 & = \eta_t \langle \delta_t, a_t \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1}) - ((a_t + b_t)\beta_1 - b_t\beta_2)\mathbf{M}_t + (a_t - (a_t + b_t)\beta_1 + b_t\beta_2)\nabla \mathcal{F}(\mathbf{X}_t) \rangle \\
 & \quad + \frac{b_t\eta_t\lambda}{c_t} \left\langle \frac{c_t}{\lambda} \nabla \mathcal{K}(\mathbf{M}_{t+1}) - c_t \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\
 & = -\eta_t \left\langle \delta_t, a_t (\widetilde{\mathbf{M}}_{t+1} - \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1})) + b_t (\widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1}) \right\rangle \\
 & \quad + b_t\eta_t \left\langle \nabla \mathcal{K}(\mathbf{M}_{t+1}) - \lambda \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\
 & = -a_t\eta_t\Gamma_t - b_t\eta_t \left(\left\langle \delta_t, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle - \left\langle \nabla \mathcal{K}(\mathbf{M}_{t+1}) - \lambda \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle \right) \\
 & \quad + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\
 & = -\eta_t(a_t\Gamma_t + b_t\Delta_t) + \frac{\eta_t^2 L}{2} \|\delta_t\|_{\text{F}}^2,
 \end{aligned} \tag{21}$$

where the third line uses $c_t = (a_t + b_t)\beta_1 - b_t\beta_2$ and $c_t = a_t - 1$ and the fifth line uses

$$\widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} = -(\beta_2 - \beta_1)(\mathbf{M}_t + \nabla \mathcal{F}(\mathbf{X}_t)).$$

Rearranging (21), summing over T iterations, and dividing both sides by T gives the result. ■

Proposition 4 establishes bounds for general LION- \mathcal{K} optimizers in the discrete-time setting, and we will use this result to bound the convergence rate of the KKT score function (6).

To avoid tedium in the analysis, we assume that \mathbf{X}_0 is initialized so that $\|\lambda \mathbf{X}_0\|_{\text{op}} \leq 1$. Note that by Proposition 2, this implies $\|\lambda \mathbf{X}_t\|_{\text{op}} \leq 1$ for all $t \geq 0$. We remark that in practical implementations of MUON, the weight decay parameter λ is known, so \mathbf{X}_0 can always be chosen to satisfy $\|\lambda \mathbf{X}_0\|_{\text{op}} \leq 1$.

We now introduce several helper lemmas.

Lemma 1 *Let $\mathcal{K}, \mathcal{K}^* : \mathbb{X} \rightarrow \mathbb{R} \cup \{\infty\}$ be a convex, closed, and proper pair of conjugate functions with subgradients $\nabla \mathcal{K}$ and $\nabla \mathcal{K}^*$. Then for all $\mathbf{X}, \mathbf{Y} \in \mathbb{X}$,*

$$\langle \nabla \mathcal{K}(\mathbf{X}) - \nabla \mathcal{K}(\mathbf{Y}), \mathbf{X} - \mathbf{Y} \rangle \geq 0 \tag{22}$$

$$\langle \nabla \mathcal{K}(\mathbf{X}) - \mathbf{Y}, \mathbf{X} - \nabla \mathcal{K}^*(\mathbf{Y}) \rangle \geq 0. \tag{23}$$

Proof By definition of subgradients, we have

$$\mathcal{K}(\mathbf{Y}) - \mathcal{K}(\mathbf{X}) \geq \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{Y} - \mathbf{X} \rangle$$

$$\mathcal{K}(\mathbf{X}) - \mathcal{K}(\mathbf{Y}) \geq \langle \nabla \mathcal{K}(\mathbf{Y}), \mathbf{X} - \mathbf{Y} \rangle.$$

Summing the inequalities gives $0 \geq \langle \nabla \mathcal{K}(\mathbf{Y}) - \nabla \mathcal{K}(\mathbf{X}), \mathbf{X} - \mathbf{Y} \rangle$, which shows (22). (23) follows by setting $\mathbf{Y} \leftarrow \nabla \mathcal{K}^*(\mathbf{Y})$ in (22) and using $\mathbf{Y} \in \partial \mathcal{K}(\nabla \mathcal{K}^*(\mathbf{Y}))$. ■

Lemma 2 *Let $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|$ for a norm $\|\cdot\|$ on \mathbb{X} . Then $\langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{X} \rangle = \mathcal{K}(\mathbf{X})$.*

Proof By definition of a subgradient and properties of norms,

$$\begin{aligned} 0 &= \mathcal{K}(\mathbf{0}) \geq \mathcal{K}(\mathbf{X}) + \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{0} - \mathbf{X} \rangle = \mathcal{K}(\mathbf{X}) - \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{X} \rangle \\ 2\mathcal{K}(\mathbf{X}) &= \mathcal{K}(2\mathbf{X}) \geq \mathcal{K}(\mathbf{X}) + \langle \nabla \mathcal{K}(\mathbf{X}), 2\mathbf{X} - \mathbf{X} \rangle = \mathcal{K}(\mathbf{X}) + \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{X} \rangle. \end{aligned}$$

Combining the inequalities shows that $\langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{X} \rangle = \mathcal{K}(\mathbf{X})$. \blacksquare

Lemma 3 *In the setting of Proposition 4, let $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$, $\nabla \mathcal{K}(\mathbf{X}) = \text{msgn}(\mathbf{X})$, $\|\lambda \mathbf{X}_0\|_{\text{op}} \leq 1$, $\eta_t = \eta$, and $C_{\mathcal{K}} := \sqrt{\min(n, m)}$. Then for all $t > 0$,*

$$\left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{F}} \leq \frac{2\eta C_{\mathcal{K}} L (1 + \beta_1 - \beta_2)}{1 - \beta_2} + \beta_1 \beta_2^{t-1} \left\| \nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0 \right\|_{\text{F}}.$$

Proof By Proposition 2, we have $\|\lambda \mathbf{X}_t\|_{\text{op}} \leq 1$ for all $t \geq 0$. Furthermore, for all $t > 0$,

$$\begin{aligned} \left\| \nabla \mathcal{F}(\mathbf{X}_t) - \nabla \mathcal{F}(\mathbf{X}_{t-1}) \right\|_{\text{F}} &\leq L \left\| \mathbf{X}_t - \mathbf{X}_{t-1} \right\|_{\text{F}} = \eta_{t-1} L \left\| \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t \right\|_{\text{F}} \\ &\leq \eta_{t-1} C_{\mathcal{K}} L \left\| \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t \right\|_{\text{op}} \leq 2\eta_{t-1} C_{\mathcal{K}} L, \end{aligned} \tag{24}$$

where the first line uses smoothness. Recalling (3),

$$\begin{aligned} \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \mathbf{M}_t \right\|_{\text{F}} &= \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \beta_2 \mathbf{M}_{t-1} - (1 - \beta_2) \nabla \mathcal{F}(\mathbf{X}_{t-1}) \right\|_{\text{F}} \\ &= \left\| \nabla \mathcal{F}(\mathbf{X}_t) - \nabla \mathcal{F}(\mathbf{X}_{t-1}) + \beta_2 (\nabla \mathcal{F}(\mathbf{X}_{t-1}) + \mathbf{M}_{t-1}) \right\|_{\text{F}} \\ &= \left\| \sum_{k=1}^t \beta_2^{t-k} (\nabla \mathcal{F}(\mathbf{X}_k) - \nabla \mathcal{F}(\mathbf{X}_{k-1})) + \beta_2^t (\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0) \right\|_{\text{F}} \\ &\leq \sum_{k=1}^t \beta_2^{t-k} \left\| \nabla \mathcal{F}(\mathbf{X}_k) - \nabla \mathcal{F}(\mathbf{X}_{k-1}) \right\|_{\text{F}} + \beta_2^t \left\| \nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0 \right\|_{\text{F}} \\ &\leq 2C_{\mathcal{K}} L \sum_{k=1}^t \beta_2^{t-k} \eta_{k-1} + \beta_2^t \left\| \nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0 \right\|_{\text{F}}, \end{aligned} \tag{25}$$

where the third line iterates and expands the first two lines, the fourth line uses the triangle inequality, and the fifth line uses (24). Thus

$$\begin{aligned} \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{F}} &= \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \beta_1 \mathbf{M}_{t-1} - (1 - \beta_1) \nabla \mathcal{F}(\mathbf{X}_{t-1}) \right\|_{\text{F}} \\ &= \left\| \nabla \mathcal{F}(\mathbf{X}_t) - \nabla \mathcal{F}(\mathbf{X}_{t-1}) + \beta_1 (\nabla \mathcal{F}(\mathbf{X}_{t-1}) + \mathbf{M}_{t-1}) \right\|_{\text{F}} \\ &\leq \left\| \nabla \mathcal{F}(\mathbf{X}_t) - \nabla \mathcal{F}(\mathbf{X}_{t-1}) \right\|_{\text{F}} + \beta_1 \left\| \nabla \mathcal{F}(\mathbf{X}_{t-1}) + \mathbf{M}_{t-1} \right\|_{\text{F}} \\ &\leq 2\eta_{t-1} C_{\mathcal{K}} L + \beta_1 \left(2C_{\mathcal{K}} L \sum_{k=1}^{t-1} \beta_2^{t-k-1} \eta_{k-1} + \beta_2^{t-1} \left\| \nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0 \right\|_{\text{F}} \right) \\ &= 2\eta_{t-1} C_{\mathcal{K}} L + 2\beta_1 C_{\mathcal{K}} L \sum_{k=1}^{t-1} \beta_2^{t-k-1} \eta_{k-1} + \beta_1 \beta_2^{t-1} \left\| \nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0 \right\|_{\text{F}}, \end{aligned} \tag{26}$$

where the third line uses the triangle inequality and the fourth line uses (24) and (25). The result follows upon setting $\eta_t = \eta$ and using $\sum_{k=1}^{t-1} \beta_2^{t-k-1} \leq \sum_{j=0}^{\infty} \beta_2^j = \frac{1}{1-\beta_2}$. \blacksquare

Proposition 5 *In the setting of Lemma 3, for all $T > 0$,*

$$\frac{1}{T} \sum_{t=1}^T \mathcal{S}(\mathbf{X}_t) \leq \frac{\mathcal{H}_0 - \mathcal{H}_T}{\eta T} + 2\eta C_{\mathcal{K}}^2 L + \frac{2\beta_1 C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}}{(1-\beta_2)T} + \frac{4\eta C_{\mathcal{K}}^2 L(1+\beta_1-\beta_2)}{1-\beta_2}. \quad (27)$$

Proof Using the notation of Proposition 4, we have

$$\begin{aligned} \mathcal{S}(\mathbf{X}_t) &= \langle \text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) + \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) \rangle \\ &= \left\langle \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \widetilde{\mathbf{M}}_t \right\rangle - \left\langle \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle \\ &\quad + \left\langle -\text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) - \text{msgn}(\widetilde{\mathbf{M}}_t), \widetilde{\mathbf{M}}_t \right\rangle \\ &\quad - \left\langle -\text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) - \text{msgn}(\widetilde{\mathbf{M}}_t), \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle \\ &\leq \left\langle \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \widetilde{\mathbf{M}}_t \right\rangle - \left\langle \text{msgn}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle \\ &\quad - \left\langle -\text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) - \text{msgn}(\widetilde{\mathbf{M}}_t), \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle \\ &\leq \Gamma_{t-1} + \left\langle \text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) + \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle \\ &\leq \Gamma_{t-1} + \|\text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) + \lambda \mathbf{X}_t\|_{\text{F}} \|\nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t\|_{\text{F}} \\ &\leq \Gamma_{t-1} + 2C_{\mathcal{K}} \left(\frac{2\eta C_{\mathcal{K}} L(1+\beta_1-\beta_2)}{1-\beta_2} + \beta_1 \beta_2^{t-1} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}} \right) \\ &= \Gamma_{t-1} + \frac{4\eta C_{\mathcal{K}}^2 L(1+\beta_1-\beta_2)}{1-\beta_2} + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}, \end{aligned}$$

where the first line uses Fact 2 and Lemma 2, the fifth line uses

$$\begin{aligned} \left\langle \text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)) + \text{msgn}(\widetilde{\mathbf{M}}_t), \widetilde{\mathbf{M}}_t \right\rangle &= \left\langle \text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t)), \widetilde{\mathbf{M}}_t \right\rangle + \left\| \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} \\ &\geq \left\| \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} - \left\| \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} \|\text{msgn}(\nabla \mathcal{F}(\mathbf{X}_t))\|_{\text{op}} \\ &\geq 0, \end{aligned}$$

the seventh line uses

$$\partial \mathcal{K}^*(\mathbf{Y}) = \begin{cases} \{\mathbf{0}\} & \text{if } \|\mathbf{Y}\|_{\text{op}} < 1 \\ \{\mathbf{Z} \in \mathbb{X} \mid \langle \mathbf{Z}, \mathbf{Y} \rangle = \|\mathbf{Z}\|_{\text{tr}}\} & \text{if } \|\mathbf{Y}\|_{\text{op}} = 1 \end{cases}$$

the eighth line uses Cauchy–Schwarz, and the ninth line uses Lemma 3. It follows that

$$\begin{aligned}
 \frac{1}{T} \sum_{t=1}^T \mathcal{S}(\mathbf{X}_t) &\leq \frac{1}{T} \sum_{t=1}^T (\Gamma_{t-1} + 2\beta_1\beta_2^{t-1}C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}) + \frac{4\eta C_{\mathcal{K}}^2 L(1 + \beta_1 - \beta_2)}{1 - \beta_2} \\
 &\leq \frac{1}{T} \sum_{t=0}^{T-1} (a_t \Gamma_t + b_t \Delta_t + 2\beta_1\beta_2^t C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}) + \frac{4\eta C_{\mathcal{K}}^2 L(1 + \beta_1 - \beta_2)}{1 - \beta_2} \\
 &\leq \frac{\mathcal{H}_0 - \mathcal{H}_T}{\eta T} + \frac{\eta L}{2T} \sum_{t=0}^{T-1} \left\| \text{msgn}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1} \right\|_{\text{F}}^2 \\
 &\quad + \frac{2\beta_1 C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}}{(1 - \beta_2)T} + \frac{4\eta C_{\mathcal{K}}^2 L(1 + \beta_1 - \beta_2)}{1 - \beta_2} \\
 &\leq \frac{\mathcal{H}_0 - \mathcal{H}_T}{\eta T} + 2\eta C_{\mathcal{K}}^2 L + \frac{2\beta_1 C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}}}{(1 - \beta_2)T} + \frac{4\eta C_{\mathcal{K}}^2 L(1 + \beta_1 - \beta_2)}{1 - \beta_2},
 \end{aligned}$$

where the third line uses Proposition 4 and the fourth line uses

$$\sum_{t=0}^{T-1} \beta_2^t \leq \sum_{j=0}^{\infty} \beta_2^j = \frac{1}{1 - \beta_2}.$$

■

Our convergence rates in the deterministic gradient setting follow directly from the previous results.

Theorem 3 *Under Assumptions 1, 2, and 5, let $0 \leq \beta_1 < \beta_2 < 1$, $\lambda > 0$, $\eta_t = \eta = \Theta\left(\frac{1}{\sqrt{T}}\right)$, and $\|\lambda \mathbf{X}_0\|_{\text{op}} \leq 1$, and suppose \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (3) with deterministic gradients and that $\nabla \mathcal{K}$ has bounded norm. Then*

$$\begin{aligned}
 \min_{1 \leq t \leq T} \left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \widetilde{\mathbf{M}}_t - \nabla \mathcal{K}^*(\lambda \mathbf{X}_t) \right\rangle &= O\left(\frac{1}{\sqrt{T}}\right) \\
 \min_{1 \leq t \leq T} \left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_t) - \nabla \mathcal{K}(\mathbf{M}_t), \widetilde{\mathbf{M}}_t - \mathbf{M}_t \right\rangle &= O\left(\frac{1}{\sqrt{T}}\right).
 \end{aligned}$$

Moreover, when \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (2) with deterministic gradients,

$$\min_{1 \leq t \leq T} \mathcal{S}(\mathbf{X}_t) = O\left(\frac{1}{\sqrt{T}}\right).$$

Proof In the setting of Proposition 4, note that $\eta = \Theta\left(\frac{1}{\sqrt{T}}\right)$ and both $\nabla \mathcal{K}(\widetilde{\mathbf{M}})$ and $\lambda \mathbf{X}$ having bounded norm implies that the right-hand side of (16) is $O\left(\frac{1}{T}\right)$. The claim follows after dividing both sides by η and realizing $\Gamma_t, \Delta_t \geq 0$ by Lemma 1 and $a_t, b_t \geq 0$.

Now in the setting of Proposition 5, we have that the right-hand side of (27) is $O\left(\frac{1}{\sqrt{T}}\right)$. The claim follows upon realizing

$$\mathcal{S}(\mathbf{X}_t) = \|\nabla \mathcal{F}(\mathbf{X}_t)\|_{\text{tr}} + \langle \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) \rangle \geq \|\nabla \mathcal{F}(\mathbf{X}_t)\|_{\text{tr}} - \|\lambda \mathbf{X}_t\|_{\text{op}} \|\nabla \mathcal{F}(\mathbf{X}_t)\|_{\text{tr}} \geq 0. \quad (28)$$

■

E.3. Convergence rate of LION- \mathcal{K} with stochastic gradient

We now show results analogous to the ones in Appendix E.2 when using (3) with stochastic gradients. The following lemmas will be useful for bounding the noise arising from stochastic gradients.

Lemma 4 *Let $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|$ for a norm $\|\cdot\|$ on \mathbb{X} . Then for all $\mathbf{X} \in \mathbb{X}$, $\mathcal{K}^*(\nabla \mathcal{K}(\mathbf{X})) = 0$.*

Proof By definition of a subgradient and Lemma 2,

$$\mathcal{K}(\mathbf{Y}) \geq \mathcal{K}(\mathbf{X}) + \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{Y} - \mathbf{X} \rangle = \langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{Y} \rangle$$

for all $\mathbf{Y} \in \mathbb{X}$, which implies that

$$0 \leq \|\nabla \mathcal{K}(\mathbf{X})\|_* = \sup_{\mathbf{Y} \neq \mathbf{0}} \frac{\langle \nabla \mathcal{K}(\mathbf{X}), \mathbf{Y} \rangle}{\mathcal{K}(\mathbf{Y})} \leq 1$$

by definition of the dual norm. We conclude that $\mathcal{K}^*(\nabla \mathcal{K}(\mathbf{X})) = 0$ by Fact 1. ■

Lemma 5 *Let \mathbf{X}, \mathbf{Y} be \mathbb{X} -valued random variables satisfying $\text{Var}(\mathbf{Y}) < \infty$, and let $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|$ for a norm $\|\cdot\|$ on \mathbb{X} . Then there exists a constant $C_{\mathcal{K}}$ such that*

$$\mathbb{E} [\langle \mathbb{E}[\mathbf{Y}] - \mathbf{Y}, \nabla \mathcal{K}(\mathbf{X} + \epsilon \mathbf{Y}) \rangle] \leq C_{\mathcal{K}} \sqrt{\text{Var}(\mathbf{Y})}.$$

Proof By the Fenchel–Young inequality and Lemma 4,

$$\langle \mathbb{E}[\mathbf{Y}] - \mathbf{Y}, \nabla \mathcal{K}(\mathbf{X} + \epsilon \mathbf{Y}) \rangle \leq \mathcal{K}(\mathbb{E}[\mathbf{Y}] - \mathbf{Y}) + \mathcal{K}^*(\nabla \mathcal{K}(\mathbf{X} + \epsilon \mathbf{Y})) = \mathcal{K}(\mathbb{E}[\mathbf{Y}] - \mathbf{Y}).$$

By the equivalence of norms on finite-dimensional vector spaces, there exists a constant $C_{\mathcal{K}}$ such that $\mathcal{K}(\mathbf{X}) \leq C_{\mathcal{K}} \|\mathbf{X}\|_{\text{F}}$. Taking expectations,

$$\begin{aligned} \mathbb{E} [\langle \mathbb{E}[\mathbf{Y}] - \mathbf{Y}, \nabla \mathcal{K}(\mathbf{X} + \epsilon \mathbf{Y}) \rangle] &\leq \mathbb{E} [\mathcal{K}(\mathbb{E}[\mathbf{Y}] - \mathbf{Y})] \leq C_{\mathcal{K}} \mathbb{E} [\|\mathbb{E}[\mathbf{Y}] - \mathbf{Y}\|_{\text{F}}] \\ &\leq C_{\mathcal{K}} \sqrt{\mathbb{E} [\|\mathbb{E}[\mathbf{Y}] - \mathbf{Y}\|_{\text{F}}^2]} = C_{\mathcal{K}} \sqrt{\text{Var}(\mathbf{Y})}, \end{aligned}$$

where the second line uses Jensen's inequality. ■

For MUON where $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$ and $\nabla \mathcal{K}(\mathbf{X}) = \text{msgn}(\mathbf{X})$, we can let $C_{\mathcal{K}} = \sqrt{\min(n, m)}$.

Lemma 6 *Let \mathbf{X}, \mathbf{Y} be \mathbb{X} -valued random variables satisfying*

$$\text{Var}(\mathbf{X}) \leq \sigma^2, \text{Var}(\mathbf{Y}) \leq \sigma^2, \text{and } \|\mathbb{E}[\mathbf{X}] - \mathbb{E}[\mathbf{Y}]\|_{\text{F}} \leq R.$$

Then $\mathbb{E}[\|\mathbf{X} - \mathbf{Y}\|_{\text{F}}] \leq 2\sigma + R$.

Proof We have

$$\begin{aligned} \mathbb{E}[\|\mathbf{X} - \mathbf{Y}\|_{\text{F}}] &\leq \mathbb{E}[\|\mathbf{X} - \mathbb{E}[\mathbf{X}]\|_{\text{F}} + \|\mathbb{E}[\mathbf{X}] - \mathbb{E}[\mathbf{Y}]\|_{\text{F}} + \|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]\|_{\text{F}}] \\ &\leq \sqrt{\mathbb{E} [\|\mathbf{X} - \mathbb{E}[\mathbf{X}]\|_{\text{F}}^2]} + R + \sqrt{\mathbb{E} [\|\mathbf{Y} - \mathbb{E}[\mathbf{Y}]\|_{\text{F}}^2]} \leq 2\sigma + R, \end{aligned}$$

where the first line uses the triangle inequality and the second line uses Jensen's inequality. ■

Lemma 7 *Let \mathbf{G} , \mathbf{X} , and \mathbf{Y} be \mathbb{X} -valued random variables satisfying $\mathbb{E}[\mathbf{G} \mid \mathbf{X}] = \mathbf{Y}$. Then*

$$\mathbb{E}[\|\mathbf{Y}\|_{\text{tr}} + \langle \lambda \mathbf{X}, \mathbf{Y} \rangle] \leq \mathbb{E}[\|\mathbf{G}\|_{\text{tr}} + \langle \lambda \mathbf{X}, \mathbf{G} \rangle].$$

Proof Trivial by Jensen's. ■

The following result is a stochastic analog of Theorem 3.

Theorem 4 *In the setting of Theorem 3 and under Assumption 3, let \mathcal{K} be a norm on \mathbb{X} , and suppose instead that \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (3) with stochastic gradients. Then*

$$\begin{aligned} \min_{1 \leq t \leq T} \mathbb{E} \left[\left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t, \widetilde{\mathbf{M}}_t - \nabla \mathcal{K}^*(\lambda \mathbf{X}_t) \right\rangle \right] &= O \left(\frac{1}{\sqrt{T}} + \frac{\sigma}{\sqrt{n_{\text{batch}}}} \right) \\ \min_{1 \leq t \leq T} \mathbb{E} \left[\left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_t) - \nabla \mathcal{K}(\mathbf{M}_t), \widetilde{\mathbf{M}}_t - \mathbf{M}_t \right\rangle \right] &= O \left(\frac{1}{\sqrt{T}} + \frac{\sigma}{\sqrt{n_{\text{batch}}}} \right). \end{aligned}$$

Moreover, when \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (2) with stochastic gradients,

$$\min_{1 \leq t \leq T} \mathbb{E}[\mathcal{S}(\mathbf{X}_t)] = O \left(\frac{1}{\sqrt{T}} + \frac{\sigma}{\sqrt{n_{\text{batch}}}} \right).$$

Proof Let $\delta_t := \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \lambda \mathbf{X}_{t+1}$. Using the notation of Proposition 4, we have

$$\begin{aligned} \mathcal{H}_{t+1} - \mathcal{H}_t &\leq \eta_t \langle \delta_t, a_t \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1}) - ((a_t + b_t)\beta_1 - b_t\beta_2)\mathbf{M}_t + (a_t - (a_t + b_t)\beta_1 + b_t\beta_2)\nabla \mathcal{F}(\mathbf{X}_t) \rangle \\ &\quad + b_t \eta_t \left\langle \nabla \mathcal{K}(\mathbf{M}_{t+1}) - \lambda \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\ &= -\eta_t \left\langle \delta_t, a_t (\widetilde{\mathbf{M}}_{t+1} - \nabla \mathcal{K}^*(\lambda \mathbf{X}_{t+1})) + b_t (\widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1}) \right\rangle + \eta_t \langle \delta_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle \\ &\quad + b_t \eta_t \left\langle \nabla \mathcal{K}(\mathbf{M}_{t+1}) - \lambda \mathbf{X}_{t+1}, \widetilde{\mathbf{M}}_{t+1} - \mathbf{M}_{t+1} \right\rangle + \frac{L}{2} \|\mathbf{X}_{t+1} - \mathbf{X}_t\|_{\text{F}}^2 \\ &= -\eta_t (a_t \Gamma_t + b_t \Delta_t) + \frac{\eta_t^2 L}{2} \|\delta_t\|_{\text{F}}^2 + \eta_t \langle \delta_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle. \end{aligned} \tag{29}$$

It remains to bound $\mathbb{E}[\langle \delta_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle]$. Recalling (3),

$$\delta_t = \frac{1}{1 + \eta_t \lambda} \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \frac{\lambda}{1 + \eta_t \lambda} \mathbf{X}_t,$$

so

$$\begin{aligned} \mathbb{E}[\langle \delta_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle] &= \mathbb{E} \left[\left\langle \frac{1}{1 + \eta_t \lambda} \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}) - \frac{\lambda}{1 + \eta_t \lambda} \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \right\rangle \right] \\ &= \frac{1}{1 + \eta_t \lambda} \mathbb{E} \left[\left\langle \nabla \mathcal{K}(\widetilde{\mathbf{M}}_{t+1}), \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \right\rangle \right] \\ &\quad - \frac{\lambda}{1 + \eta_t \lambda} \mathbb{E}[\langle \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle] \\ &= \frac{1}{1 + \eta_t \lambda} \mathbb{E}[\langle \nabla \mathcal{K}(\beta_1 \mathbf{M}_t - (1 - \beta_1) \mathbf{G}_t), \nabla \mathcal{F}(\mathbf{X}_t) - \mathbf{G}_t \rangle] \\ &\leq \frac{C_{\mathcal{K}} \sigma}{(1 + \eta_t \lambda) \sqrt{n_{\text{batch}}}}, \end{aligned}$$

where the last line uses Lemma 5 with $\mathbf{X} \leftarrow \beta_1 \mathbf{M}_t$, $\mathbf{Y} \leftarrow \mathbf{G}_t$, $\epsilon \leftarrow -(1 - \beta_1)$, and some constant $C_{\mathcal{K}}$. Substituting into (29),

$$\mathbb{E}[\mathcal{H}_{t+1} - \mathcal{H}_t] \leq \mathbb{E} \left[-\eta_t(a_t \Gamma_t + b_t \Delta_t) + \frac{\eta_t^2 L}{2} \|\delta_t\|_{\text{F}}^2 + \frac{\eta_t C_{\mathcal{K}} \sigma}{(1 + \eta_t \lambda) \sqrt{n_{\text{batch}}}} \right]. \quad (30)$$

Taking $\eta_t = \eta$, rearranging (30), summing over T iterations, and dividing both sides by ηT yields

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[a_t \Gamma_t + b_t \Delta_t] \leq \mathbb{E} \left[\frac{\mathcal{H}_0 - \mathcal{H}_T}{\eta T} + \frac{\eta L}{2T} \sum_{t=1}^T \left\| \nabla \mathcal{K}(\widetilde{\mathbf{M}}_t) - \lambda \mathbf{X}_t \right\|_{\text{F}}^2 + \frac{C_{\mathcal{K}} \sigma}{(1 + \eta \lambda) \sqrt{n_{\text{batch}}}} \right]. \quad (31)$$

To show the result for MUON, we adapt the proof of Proposition 5. We have

$$\begin{aligned} \mathbb{E}[\|\mathbf{G}_t\|_{\text{tr}} + \langle \lambda \mathbf{X}_t, \mathbf{G}_t \rangle] &\leq \mathbb{E}[\Gamma_{t-1}] + \mathbb{E} \left[\|\text{msgn}(\mathbf{G}_t) + \lambda \mathbf{X}_t\|_{\text{F}} \left\| \mathbf{G}_t + \widetilde{\mathbf{M}}_t \right\|_{\text{F}} \right] \\ &\leq \mathbb{E}[\Gamma_{t-1}] + 2C_{\mathcal{K}} (\mathbb{E}[\|\mathbf{G}_t - \mathbf{G}_{t-1}\|_{\text{F}}] + \beta_1 \mathbb{E}[\|\mathbf{G}_{t-1} + \mathbf{M}_{t-1}\|_{\text{F}}]) \\ &\leq \mathbb{E}[\Gamma_{t-1}] + 2C_{\mathcal{K}} \left(\frac{2\sigma}{\sqrt{n_{\text{batch}}}} + 2\eta C_{\mathcal{K}} L \right) \\ &\quad + 2\beta_1 C_{\mathcal{K}} \sum_{k=1}^{t-1} \beta_2^{t-k-1} \mathbb{E}[\|\mathbf{G}_k - \mathbf{G}_{k-1}\|_{\text{F}}] + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}] \\ &\leq \mathbb{E}[\Gamma_{t-1}] + 2C_{\mathcal{K}} \left(\frac{2\sigma}{\sqrt{n_{\text{batch}}}} + 2\eta C_{\mathcal{K}} L \right) \\ &\quad + \frac{2\beta_1 C_{\mathcal{K}}}{1 - \beta_2} \left(\frac{2\sigma}{\sqrt{n_{\text{batch}}}} + 2\eta C_{\mathcal{K}} L \right) + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}] \\ &= \mathbb{E}[\Gamma_{t-1}] + \frac{4C_{\mathcal{K}}(1 + \beta_1 - \beta_2)}{1 - \beta_2} \left(\frac{\sigma}{\sqrt{n_{\text{batch}}}} + \eta C_{\mathcal{K}} L \right) + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}], \end{aligned}$$

where the fourth and seventh lines use Lemma 6. Now, as before,

$$\begin{aligned} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\mathcal{S}(\mathbf{X}_t)] &= \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\nabla \mathcal{F}(\mathbf{X}_t)\|_{\text{tr}} + \langle \lambda \mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) \rangle] \leq \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\mathbf{G}_t\|_{\text{tr}} + \langle \lambda \mathbf{X}_t, \mathbf{G}_t \rangle] \\ &\leq \frac{1}{T} \sum_{t=1}^T (\mathbb{E}[\Gamma_{t-1}] + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}]) + \frac{4C_{\mathcal{K}}(1 + \beta_1 - \beta_2)}{1 - \beta_2} \left(\frac{\sigma}{\sqrt{n_{\text{batch}}}} + \eta C_{\mathcal{K}} L \right) \\ &\leq \frac{1}{T} \sum_{t=0}^{T-1} (\mathbb{E}[a_t \Gamma_t + b_t \Delta_t] + 2\beta_1 \beta_2^t C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}]) \\ &\quad + \frac{4C_{\mathcal{K}}(1 + \beta_1 - \beta_2)}{1 - \beta_2} \left(\frac{\sigma}{\sqrt{n_{\text{batch}}}} + \eta C_{\mathcal{K}} L \right) \\ &\leq \mathbb{E} \left[\frac{\mathcal{H}_0 - \mathcal{H}_T}{\eta T} \right] + 2\eta C_{\mathcal{K}}^2 L + \frac{C_{\mathcal{K}} \sigma}{(1 + \eta \lambda) \sqrt{n_{\text{batch}}}} + \frac{2\beta_1 C_{\mathcal{K}} \mathbb{E}[\|\mathbf{G}_0 + \mathbf{M}_0\|_{\text{F}}]}{(1 - \beta_2) T} \\ &\quad + \frac{4C_{\mathcal{K}}(1 + \beta_1 - \beta_2)}{1 - \beta_2} \left(\frac{\sigma}{\sqrt{n_{\text{batch}}}} + \eta C_{\mathcal{K}} L \right), \end{aligned}$$

where the first line uses Lemma 7 and the fifth line uses (31). ■

E.4. Convergence of MUON to the set of KKT points

In this section, we use LaSalle's invariance principle, Proposition 3, and Theorem 4 to show that MUON converges to the set of KKT points of (5).

Definition 4 (ω -limit set) *Let $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$ be a stochastic process. A set \mathbb{M} is called the ω -limit set of the process if it is the minimal closed set satisfying*

$$\Pr\left(\lim_{t \rightarrow \infty} d(\mathbf{X}_t, \mathbb{M}) = 0\right) = 1.$$

In other words, \mathbb{M} is the smallest closed set such that the trajectories approach \mathbb{M} a.s. as $t \rightarrow \infty$. This is equivalent to \mathbb{M} being the support of the union of all limit measures of $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$.

Lemma 8 *Let X be a nonnegative random variable such that $\mathbb{E}[X] = 0$. Then $X = 0$ a.s.*

Proof By the layer cake representation,

$$0 = \mathbb{E}[X] = \int_0^\infty \Pr(X > t) dt,$$

so $\Pr(X > t) = 0$ for (Lebesgue) almost every $t > 0$. Since $\Pr(X > t)$ is a right-continuous function of t , we have that $\Pr(X > t) = 0$ for all $t > 0$. The conclusion follows from

$$\Pr(X > 0) = \lim_{t \searrow 0} \Pr(X > t) = 0.$$

■

Lemma 9 (LaSalle's invariance principle for stochastic dynamical systems) *Let $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$ be a stochastic process contained in a bounded set a.s., and suppose there exist a nonnegative function \mathcal{V} and a nonnegative, lower semicontinuous function h such that*

$$\mathbb{E}[\mathcal{V}(\mathbf{X}_{t+1}) \mid \mathcal{F}_t] - \mathcal{V}(\mathbf{X}_t) \leq -\alpha_t h(\mathbf{X}_{t+\ell}) + \gamma_t \text{ a.s.},$$

where $\{\mathcal{F}_t\}_{t \in \mathbb{N}}$ is the natural filtration of $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$, $\ell \in \mathbb{N}$, and the nonnegative sequences $\{\alpha_t\}_{t \in \mathbb{N}}$ and $\{\gamma_t\}_{t \in \mathbb{N}}$ satisfy

$$\sum_{t=0}^{\infty} \alpha_t = \infty \quad \text{and} \quad \sum_{t=0}^{\infty} \gamma_t < \infty.$$

Let \mathbb{M} be the ω -limit set of $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$. Then \mathbb{M} is contained in the set $\{\mathbf{X} \in \mathbb{X} \mid h(\mathbf{X}) = 0\}$.

Proof Define the auxiliary function

$$\hat{\mathcal{V}}_t := \mathcal{V}(\mathbf{X}_t) - g_t, \quad \text{where } g_t := \sum_{s=0}^{t-1} \gamma_s.$$

Then, we have

$$\mathbb{E}[\hat{\mathcal{V}}_{t+1} \mid \mathcal{F}_t] - \hat{\mathcal{V}}_t = \mathbb{E}[\mathcal{V}(\mathbf{X}_{t+1}) \mid \mathcal{F}_t] - \mathcal{V}(\mathbf{X}_t) - \gamma_t \leq -\alpha_t h(\mathbf{X}_{t+\ell}) \leq 0 \text{ a.s.} \quad (32)$$

By (32), the nonnegativity of \mathcal{V} , and $\lim_{t \rightarrow \infty} g_t < \infty$, it follows that $\{\widehat{\mathcal{V}}_t\}_{t \in \mathbb{N}}$ is a supermartingale with $\sup_{t \in \mathbb{N}} \mathbb{E} [\widehat{\mathcal{V}}(\mathbf{X}_t)^-] < \infty$. By Doob's supermartingale convergence theorem, we conclude that $\{\widehat{\mathcal{V}}_t\}_{t \in \mathbb{N}}$ and hence $\{\mathcal{V}(\mathbf{X}_t)\}_{t \in \mathbb{N}}$ converges almost surely to a random variable with finite expectation.

Now, taking expectations of (32) and summing from $t = 0$ to ∞ , we obtain

$$\sum_{t=0}^{\infty} \mathbb{E}[\alpha_t h(\mathbf{X}_{t+\ell})] = \sum_{t=\ell}^{\infty} \alpha_{t-\ell} \mathbb{E}[h(\mathbf{X}_t)] < \infty.$$

Since $\sum_{t=0}^{\infty} \alpha_t = \infty$, this implies $\liminf_{t \rightarrow \infty} \mathbb{E}[h(\mathbf{X}_t)] = 0$. By Fatou's lemma, we have

$$0 \leq \mathbb{E} \left[\liminf_{t \rightarrow \infty} h(\mathbf{X}_t) \right] \leq \liminf_{t \rightarrow \infty} \mathbb{E}[h(\mathbf{X}_t)] = 0$$

and hence

$$\liminf_{t \rightarrow \infty} h(\mathbf{X}_t) = 0 \text{ a.s.}$$

by Lemma 8. By the lower semicontinuity and nonnegativity of h and the (almost sure) boundedness of \mathbf{X}_t , the ω -limit set \mathbb{M} of $\{\mathbf{X}_t\}_{t \in \mathbb{N}}$ must satisfy $h(\mathbf{X}) = 0$ for all $\mathbf{X} \in \mathbb{M}$, i.e.

$$\mathbb{M} \subseteq \{\mathbf{X} \in \mathbb{X} \mid h(\mathbf{X}) = 0\}.$$

■

Theorem 5 *Under Assumptions 1, 2, and 4, let $0 \leq \beta_1 < \beta_2 < 1$, $\lambda > 0$, $\eta_t \leq \frac{1}{\lambda}$, and $\sum_{t=0}^{\infty} \eta_t = \infty$, and suppose \mathbf{X}_t , \mathbf{M}_t , and $\widetilde{\mathbf{M}}_t$ are updated using (2). Then \mathbf{X}_t converges to*

$$\mathbb{B} := \{\mathbf{X} \in \mathbb{X} \mid \|\lambda \mathbf{X}\|_{\text{op}} \leq 1\} \text{ a.s.}$$

Proof If \mathbf{X}_t enters \mathbb{B} within a finite amount of time, then it remains there thenceforth by Proposition 2. Now suppose \mathbf{X}_t does not enter \mathbb{B} within any finite amount of time. Let

$$\mathcal{V}(\mathbf{X}) = \max \left(\|\mathbf{X}\|_{\text{op}} - \frac{1}{\lambda}, 0 \right), \quad h(\mathbf{X}) = \max \left(\|\mathbf{X}\|_{\text{op}} - \frac{1}{\lambda}, 0 \right), \quad \alpha_t = \eta_t \lambda, \quad \text{and} \quad \gamma_t = 0.$$

We verify that \mathbf{X}_t is bounded a.s., \mathcal{V} is nonnegative, h is nonnegative and lower semicontinuous, $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \gamma_t < \infty$, and

$$\mathbb{E}[\mathcal{V}(\mathbf{X}_{t+1}) \mid \mathbf{X}_t] - \mathcal{V}(\mathbf{X}_t) = \mathbb{E} \left[\|\mathbf{X}_{t+1}\|_{\text{op}} - \frac{1}{\lambda} \mid \mathbf{X}_t \right] - \left(\|\mathbf{X}_t\|_{\text{op}} - \frac{1}{\lambda} \right) \leq -\alpha_t h(\mathbf{X}_t) + \gamma_t \text{ a.s.}$$

by Proposition 2. Thus \mathbf{X}_t converges to $\{\mathbf{X} \in \mathbb{X} \mid h(\mathbf{X}) = 0\} = \mathbb{B}$ a.s. by Lemma 9. ■

Theorem 6 *In the setting of Theorem 5, let $\|\lambda \mathbf{X}_0\|_{\text{op}} \leq 1$, $\sum_{t=0}^{\infty} \eta_t^2 < \infty$, and*

$$\sum_{t=0}^{\infty} \eta_t \left[\frac{\sigma^2}{n_{\text{batch}}} \right]_t^{\frac{1}{2}} < \infty.$$

Then \mathbf{X}_t converges to the set of KKT points of (5) a.s.

Proof Let

$$\begin{aligned}\mathcal{H}(\mathbf{X}, \mathbf{M}, \widetilde{\mathbf{M}}, \eta) &= \mathcal{F}(\mathbf{X}) - \mathcal{F}^* + \frac{\eta\beta_1}{\eta\lambda(1-\beta_1) + (1-\beta_2)} (\|\mathbf{M}\|_{\text{tr}} - \langle \lambda\mathbf{X}, \mathbf{M} \rangle), \\ h(\mathbf{X}, \mathbf{M}, \widetilde{\mathbf{M}}, \eta) &= \left\| \widetilde{\mathbf{M}} \right\|_{\text{tr}} - \left\langle \lambda\mathbf{X}, \widetilde{\mathbf{M}} \right\rangle, \quad \alpha_t = \eta_t, \quad \text{and} \quad \gamma_t = 2\eta_t^2 C_{\mathcal{K}}^2 L + \eta_t C_{\mathcal{K}} \left[\frac{\sigma^2}{n_{\text{batch}}} \right]_t^{\frac{1}{2}},\end{aligned}$$

where $C_{\mathcal{K}} := \sqrt{\min(n, m)}$. Letting $\mathbf{Z}_t := (\mathbf{X}_t, \mathbf{M}_t, \widetilde{\mathbf{M}}_t, \eta_t)$ and using the notation of Proposition 4 with $\mathcal{K}(\mathbf{X}) = \|\mathbf{X}\|_{\text{tr}}$ and $\nabla \mathcal{K}(\mathbf{X}) = \text{msgn}(\mathbf{X})$, we verify that \mathbf{Z}_t is bounded a.s., \mathcal{H} is nonnegative, h is nonnegative and lower semicontinuous, $\sum_{t=0}^{\infty} \alpha_t = \infty$, $\sum_{t=0}^{\infty} \gamma_t < \infty$, and

$$\mathbb{E}[\mathcal{H}(\mathbf{Z}_{t+1}) \mid \mathbf{Z}_t] - \mathcal{H}(\mathbf{Z}_t) \leq -\alpha_t(a_t \Gamma_t + b_t \Delta_t) + \gamma_t \leq -\alpha_t h(\mathbf{Z}_{t+1}) + \gamma_t \text{ a.s.}$$

by (30) and $a_t \Gamma_t + b_t \Delta_t \geq \Gamma_t = h(\mathbf{Z}_{t+1})$. Thus by Lemma 9, $h(\mathbf{Z}_t) = 0$ a.s. as $t \rightarrow \infty$, i.e.

$$\lim_{t \rightarrow \infty} \left\| \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} - \left\langle \lambda\mathbf{X}_t, \widetilde{\mathbf{M}}_t \right\rangle = 0 \text{ a.s.}$$

It follows that, with probability 1,

$$\begin{aligned}\lim_{t \rightarrow \infty} \mathcal{S}(\mathbf{X}_t) &= \lim_{t \rightarrow \infty} \left(\left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t - \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} + \left\langle \lambda\mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t - \widetilde{\mathbf{M}}_t \right\rangle \right) \\ &\leq \lim_{t \rightarrow \infty} \left(\left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} + \left\| \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} + \left\langle \lambda\mathbf{X}_t, \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\rangle - \left\langle \lambda\mathbf{X}_t, \widetilde{\mathbf{M}}_t \right\rangle \right) \\ &\leq \lim_{t \rightarrow \infty} \left(\left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} + \|\lambda\mathbf{X}_t\|_{\text{op}} \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} \right) \leq \lim_{t \rightarrow \infty} 2 \left\| \nabla \mathcal{F}(\mathbf{X}_t) + \widetilde{\mathbf{M}}_t \right\|_{\text{tr}} \\ &\leq \lim_{t \rightarrow \infty} \left(4\eta_{t-1} C_{\mathcal{K}}^2 L + 4\beta_1 C_{\mathcal{K}}^2 L \sum_{k=1}^{t-1} \beta_2^{t-k-1} \eta_{k-1} + 2\beta_1 \beta_2^{t-1} C_{\mathcal{K}} \|\nabla \mathcal{F}(\mathbf{X}_0) + \mathbf{M}_0\|_{\text{F}} \right. \\ &\quad \left. + 2(1-\beta_1) \|\mathbf{G}_{t-1} - \nabla \mathcal{F}(\mathbf{X}_{t-1})\|_{\text{tr}} + 2\beta_1(1-\beta_2) \sum_{k=0}^{t-2} \beta_2^{t-k-2} \|\mathbf{G}_k - \nabla \mathcal{F}(\mathbf{X}_k)\|_{\text{tr}} \right) \\ &= 0,\end{aligned}$$

where the fifth line uses (26), the sixth line vanishes because of the asymptotically deterministic gradient, and the seventh line uses the Silverman–Toeplitz theorem to show that the sums vanish. By Proposition 3, we conclude that \mathbf{X}_t converges to the set of KKT points of (5) a.s. \blacksquare

Remark 1 The feasible region \mathbb{B} has nonempty interior, so Slater's condition holds. This implies that the KKT conditions are necessary for optimality, and under the additional assumption that \mathcal{F} is convex, the KKT conditions also become sufficient for optimality. In this case, Theorem 6 shows that the algorithm converges to the set of optimal solutions of (5).

Remark 2 The $\sum_{t=0}^{\infty} \eta_t \left[\frac{\sigma^2}{n_{\text{batch}}} \right]_t^{\frac{1}{2}} < \infty$ condition in Theorem 6 can be achieved by using deterministic gradients or sufficiently increasing batch sizes, e.g. $[n_{\text{batch}}]_t = \Theta(t)$ when $\eta_t = O(t^{-1})$.

Remark 3 Theorem 6 does not guarantee convergence to a single point; compare with Frank–Wolfe, which can fail to converge even in the smooth convex setting [5].

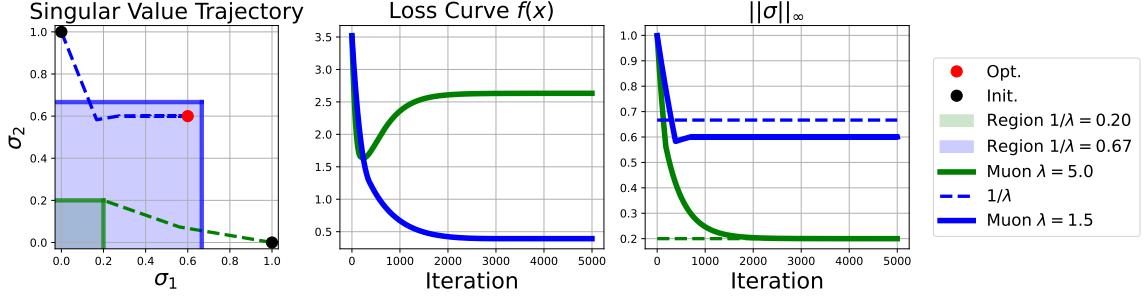


Figure 5: Trajectories of MUON for the matrix optimization problem $\min_{\mathbf{X} \in \mathbb{R}^{2 \times 2}} f(\mathbf{X})$, where $f(\mathbf{X}) = \|\mathbf{AX} - \mathbf{B}\|_F^2 + \mu \|\mathbf{X}\|_F^2$, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2 \times 2}$, and $\mu \in \mathbb{R}_{>0}$, evaluated for two different values of λ : 1.5 (blue) and 5.0 (green). The colored boxes illustrate the constraint sets induced by $\|\mathbf{X}\|_\infty \leq \frac{1}{\lambda}$: the blue box corresponds to $\lambda = 1.5$, and the green box corresponds to $\lambda = 5.0$. The red dot indicates the optimal solution.

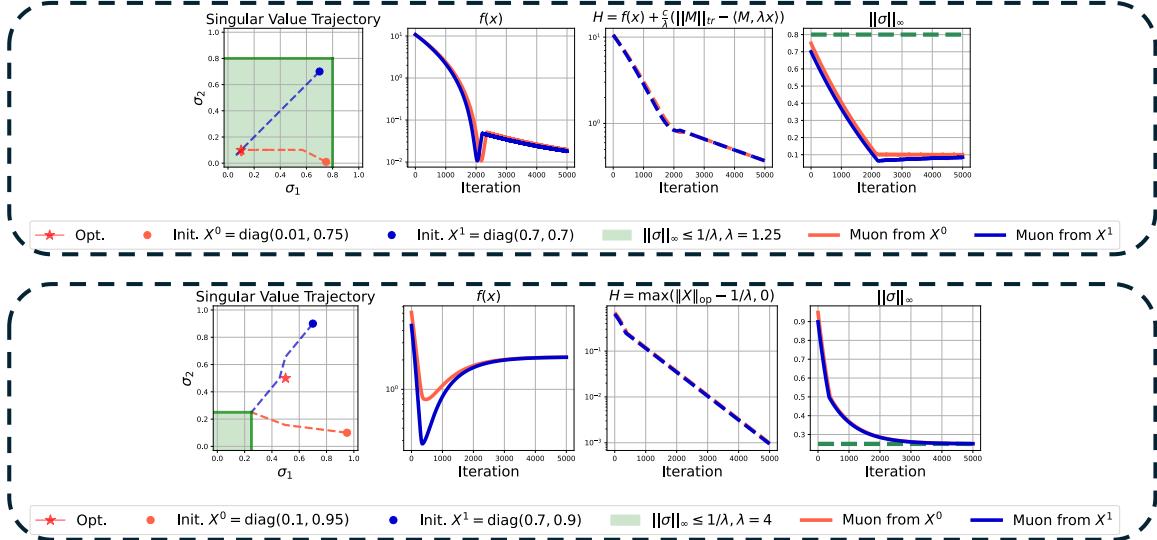


Figure 6: MUON with $\lambda = 1.25$, initialized within the feasible region (upper panel), and $\lambda = 4$, initialized outside the feasible region (lower panel). The green region denotes the constraint region. Both cases illustrate convergence and the monotonic decrease of the Lyapunov function \mathcal{H} .

Appendix F. Additional experiments

F.1. Toy examples

Figure 5 shows trajectories of singular values under two distinct constraint strengths with $\beta_1 = \beta_2 = 0.95$ and $\eta = 0.001$. The singular values quickly move into and remain within their respective constraint regions, clearly demonstrating the enforcement of spectral norm constraints.

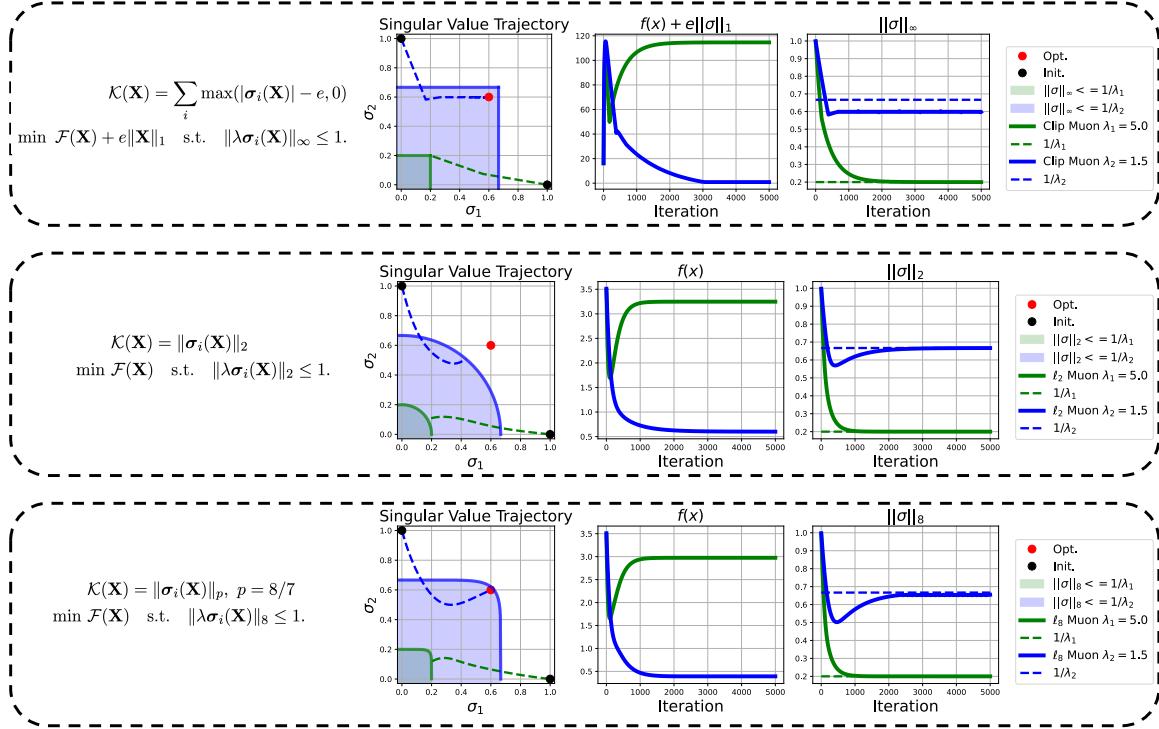


Figure 7: Behavior of the LION- \mathcal{K} optimizer under different choices of \mathcal{K} . Using the same objective function as in Figure 5, varying the choice of \mathcal{K} induces distinct implicit constraints and penalty structures on the objective function. The colored boxes illustrate the constraint sets induced by \mathcal{K} . Here, $\|\sigma_i(\mathbf{X})\|_p$ denotes the Schatten p -norm of \mathbf{X} .

In the upper panel of Figure 6, we set $\lambda = 1.25$ and initialize two trajectories within the feasible region (shaded green): one trajectory starts at $\mathbf{X}^0 = \mathbf{diag}(0.01, 0.75)$ (red) and the other at $\mathbf{X}^1 = \mathbf{diag}(0.7, 0.7)$ (blue). Both trajectories converge to the feasible optimum, although the objective function exhibits a nonmonotonic spike near iteration 2000. Despite this, the constructed Lyapunov function \mathcal{H} from Proposition 4 decreases monotonically, verifying the theoretical convergence guarantees. In the lower panel, we increase λ to 4 and initialize trajectories outside the feasible region at $\mathbf{X}^0 = \mathbf{diag}(0.1, 0.95)$ (red curve) and $\mathbf{X}^1 = \mathbf{diag}(0.7, 0.9)$ (blue curve). Here, since the optimal solution is infeasible, the trajectories converge to a feasible projection. Although the objective function plateaus around iteration 500, the Lyapunov function (7) continues to decrease monotonically.

F.2. Generalizations via different convex functions

We explore the flexibility provided by the LION- \mathcal{K} framework by varying the convex map \mathcal{K} . Figure 7 shows results from applying LION- \mathcal{K} with alternative convex maps on the previously defined matrix optimization problem.