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Abstract
The pursuit of faster optimization algorithms remains an active and important research direction in
deep learning. Recently, the MUON optimizer [14] has demonstrated promising empirical perfor-
mance, but its theoretical foundation remains less understood. In this paper, we bridge this gap and
provide a theoretical analysis of MUON by placing it within the LION-K family of optimizers [7].
Specifically, we show that MUON corresponds to LION-K when equipped with the nuclear norm,
and we leverage the theoretical results of LION-K to establish that MUON (with decoupled weight
decay) implicitly solves an optimization problem that enforces a constraint on the spectral norm of
weight matrices. This perspective not only demystifies the implicit regularization effects of MUON
but also leads to natural generalizations through varying the choice of convex map K, allowing for
the exploration of a broader class of implicitly regularized and constrained optimization algorithms.

1. Introduction

Optimization remains an important research direction in deep learning, where the backpropaga-
tion algorithm [18] enables efficient and scalable gradient-based training of neural architectures.
Among gradient-based optimizers, adaptive methods such as ADAGRAD [10], ADAM [15], and
ADAMW [25] have become standard for training large-scale deep neural networks due to their abil-
ity to dynamically adjust learning rates based on first- and second-order moment estimates.

Recent advances in optimization algorithms have shown promising potential to outperform
traditional adaptive gradient methods in training large-scale neural networks [14, 20, 21, 23, 28–
30, 37, 40, 41]. A noteworthy example is the LION optimizer [8], which was discovered through
symbolic search and has demonstrated competitive empirical performance across diverse tasks de-
spite its simple update rule. A theoretical foundation for LION was established through the LION-
K framework [7], which generalizes LION and unifies powerful optimization techniques such as
mirror descent [2, 17], Nesterov momentum [27, 35], Hamiltonian descent [26], Frank–Wolfe algo-
rithms [12, 29], and decoupled weight decay [24, 25].

The recently proposed MUON optimizer [14] is another compelling development among emerg-
ing optimizers. MUON introduces orthogonalized gradient momentum updates via Newton-Schulz
iteration [3], demonstrating promising empirical results and potential for efficient large-scale model
training [24]. However, its theoretical underpinnings and connections to broader optimization tech-
niques remain unclear.

In this paper, we bridge this gap by embedding MUON within the LION-K framework, providing
not only a theoretical explanation for MUON’s empirical success but also a unified perspective that
enables natural generalizations and directions for future work.
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2. Main results

In this paper, we consider the optimization problem

min
X∈X
F(X) with F(X) = Eξ∼D [F(X, ξ)] , (1)

where X := Rn×m is the space of real n×m matrices, F : X→ R is a differentiable loss function,
and the expectation is taken over the data distributionD with independent and identically distributed
samples ξ ∼ D. Given a realization of the function F(X, ξ), the stochastic gradient ∇F(X, ξ) is
defined as the gradient of F(X, ξ) with respect to the variable X. We assume throughout the paper
that F is L-smooth and that the variance of∇F(Xt, ξt) has an (possibly iteration-dependent) upper
bound of

[
σ2

nbatch

]
t
.

The MUON optimizer [14] was recently proposed for solving (1). When equipped with Nesterov
momentum and decoupled weight decay [24], it has the implicit update rule

Mt+1 = β2Mt − (1− β2)Gt

M̃t+1 = β1Mt − (1− β1)Gt

Xt+1 = Xt + ηt

(
msgn(M̃t+1)− λXt+1

)
,

(2)

where Xt represents the parameters, Mt and M̃t represent momentum, Gt is either the determin-
istic gradient ∇F(Xt) or a stochastic gradient ∇F(Xt, ξt), ηt > 0 is the learning rate, β1, β2 ∈
[0, 1) are two momentum coefficients, λ ≥ 0 is the weight decay coefficient, and msgn(X) :=

(XX⊤)−
1
2X is known as the matrix sign function.

LION-K [7] is a family of optimizers originally developed as a generalization and theoretical
foundation for the LION optimizer [8]. It is parameterized by a convex function K : X→ R with a
subgradient∇K and has the implicit update rule

Mt+1 = β2Mt − (1− β2)Gt

M̃t+1 = β1Mt − (1− β1)Gt

Xt+1 = Xt + ηt

(
∇K(M̃t+1)− λXt+1

)
.

(3)

The update rule of MUON bears remarkable similarity to (3), and MUON can in fact be identi-
fied as the special case of LION-K with K(X) = ∥X∥tr and ∇K(X) = msgn(X), where ∥·∥tr
denotes the nuclear norm and msgn is known to be a subgradient of ∥·∥tr. Recall that ∥X∥tr =∑min(n,m)

i=1 σi(X), where σi(X) is the ith largest singular value of X.
Perhaps surprisingly, due to decoupled weight decay, LION-K optimizers do not minimize the

original loss function. Instead, they minimize the regularized objective

F̂(X) := F(X) +
1

λ
K∗(λX), (4)

where K∗ denotes the convex conjugate of K. Leveraging this property of LION-K, we conclude
that MUON is implicitly solving the constrained optimization problem

min
X∈X
F(X) s.t. ∥X∥op ≤

1

λ
, (5)
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where the spectral norm ∥·∥op, defined as ∥X∥op = σ1(X), is known to be the dual norm of ∥·∥tr.
Despite the general LION-K framework, MUON’s use of the nondifferentiable nuclear norm

casts unique challenges in providing convergence guarantees. In this work, we provide an analysis
tailored to MUON and rigorously establish that the iterates of (2) converge to the set of KKT points
of (5).

To give a quick overview of the results, we first note that the KKT points of (5) can be charac-
terized by the KKT score function

S(X) := ∥∇F(X)∥tr + ⟨λX,∇F(X)⟩ . (6)

We can show that a point X is a KKT point if and only if the KKT score is zero, i.e., S(X) = 0,
and the primal constraint ∥X∥op ≤

1
λ is satisfied. We then identify two Lyapunov functions that are

used to verify convergence in terms of these conditions. For the constraint condition ∥X∥op ≤
1
λ ,

we use the Lyapunov function

VB(X) = max

(
∥X∥op −

1

λ
, 0

)
, (7)

which measures the distance from X to the constraint ball B := {X ∈ X | ∥λX∥op ≤ 1}. Following
the update (2), we show that VB(Xt) decays exponentially fast when ηt <

1
λ , i.e.

VB(Xt) ≤

(
t−1∏
s=0

(1− ηsλ)

)
VB(X0).

Hence, VB converges to 0 at a linear rate, which implies that Xt rapidly converges to B and never
leaves it after entering. Inside the ball, we use a second Lyapunov function

VK(X,M) = F(X)−F⋆ +
c

λ
(∥M∥tr − ⟨λX,M⟩),

where c is an appropriately defined scalar. We show that MUON (approximately) monotonically de-
creases VK within the constraint set, which implies that the KKT score vanishes along the trajectory
by a generalization of LaSalle’s invariance principle for discrete-time stochastic processes.

Our main results are summarized by Figure 1 and the following theorems.

Theorem 1 (Informal, see Theorems 3 and 4) When Xt, Mt, and M̃t are updated using (2) with
ηt = η = Θ

(
1√
T

)
and

[
σ2

nbatch

]
t
= σ2

nbatch
,

min
1≤t≤T

E[S(Xt)] = O

(
1√
T

+
σ

√
nbatch

)
.

Theorem 2 (Informal, see Theorems 5 and 6) Assume ηt ≤ 1
λ ,
∑∞

t=0 ηt = ∞, and
∑∞

t=0 η
2
t <

∞. Under certain conditions, when Xt, Mt, and M̃t are updated using (2), we have that Xt

converges to the set of KKT points of (5) a.s., regardless of initialization.

Precise statements and detailed proofs can be found in Appendix E.
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Figure 1: Convergence behavior of MUON. Although the primary objective value F(X) exhibits
nonmonotonic fluctuations, the Lyapnuov functions VB and VK decrease monotonically
within their respective domains — VB when the trajectory is outside B, and VK once the
trajectory enters B.
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Figure 2: Histograms of singular values of the weight matrices from each module of ResNet-18
trained on CIFAR-10 with the MUON optimizer (λ = 2.0). The constraint ∥W∥op ≤

1
λ

(indicated by red vertical lines) is rapidly enforced, with singular values initially out-
side the constraint region quickly moving inside within approximately 400 training steps.
Once inside, singular values remain consistently bounded by the constraint throughout
the remainder of training.

3. Experiments

We empirically verify that MUON rapidly enforces the constraint of ∥X∥op ≤
1
λ with a linear rate,

as predicted by the theory. We train ResNet-18, ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-
300M models using MUON under various values of λ, and our results show that MUON consistently
and rapidly converges towards the constraint region. We furthermore compare the properties of
MUON and ADAMW, demonstrating that spectral regularization is a unique feature of MUON.

3.1. Constraint verification

To verify that MUON enforces a spectral norm constraint, we examine the singular values of param-
eters when training various models. Figure 2 demonstrates the rapid enforcement of singular value
constraints in ResNet-18 trained on CIFAR-10. Singular values initially outside the constraint set
quickly enter within approximately 400 training steps and remain reliably bounded thereafter.
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Figure 3: Verification of the implicit constraint enforced by the MUON optimizer with decoupled
weight decay on ImageNet and language modeling tasks, across architectures including
ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-300M. The red and green curves cor-
respond to the choices λ = 2.0 and λ = 4.0, respectively. The horizontal dashed lines
indicate the theoretical upper bounds 1

λ of the implicit box constraints.
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Figure 4: Singular value distributions of converged weights for the query matrix (WQ), key matrix
(WK), and value matrix (WV) matrices trained with MUON and ADAMW optimizers
on the LLaMA 0.5B model. From left to right, each subfigure compares singular value
distributions obtained by MUON and ADAMW, respectively.

In Figure 3, we extend this verification to larger-scale tasks and architectures, including Ima-
geNet classification and language modeling using ResNet-50, ViT-B/16, Qwen-100M, and LLaMA-
300M models. The results consistently confirm that the singular values remain bounded within
the theoretical upper limit ( 1λ ), indicated by horizontal dashed lines, under different regularization
strengths (λ = 2.0 and λ = 4.0).

3.2. Implicit spectral regularization in large models

We investigate the implicit spectral regularization induced by the MUON optimizer in comparison
to ADAMW. Figure 4 displays the singular value distributions of converged weights for the query
(WQ), key (WK), and value (WV) matrices in the LLaMA 0.5B model trained by both optimizers.
We observe that MUON consistently produces regularized singular value distributions, reflecting
the effect of its implicit spectral norm constraint. In contrast, singular values from ADAMW do not
exhibit any spectral regularization.
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In Appendix F, we verify that MUON solves the constrained optimization problem (5) by pro-
viding toy examples, and we explore natural generalizations of MUON via the LION-K framework.

4. Conclusion

In this paper, we showed that MUON is an instance of the LION-K optimizer when equipped with
the nuclear norm and extended the LION-K analysis of [7] to accommodate matrix-valued updates
in both deterministic and stochastic gradient settings. We tailored our analysis to MUON with
decoupled weight decay, demonstrating that it converges to the set of KKT points of a spectral-
norm-constrained optimization problem, and empirically validated our results. Overall, we present
MUON as a theoretically grounded optimizer for deep learning, with promising directions for future
work.

Limitations. While our theoretical and empirical findings provide substantial insights, several
limitations suggest directions for future research. First, although our analysis focuses on MUON and
the nuclear norm, extending the LION-K framework to a broader class of convex maps may reveal
additional implicit regularization behaviors tailored to specific tasks. Second, extending our results
to practical training conditions (e.g. general learning rates, nonsmooth objectives) warrants further
investigation. Finally, scaling empirical evaluations to larger models and more diverse tasks would
help further validate and refine the practical applicability and robustness of the MUON optimizer
and its LION-K generalizations.
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Appendix A. Related work

Steepest descent under norm constraints. [3] reinterprets popular optimizers such as ADAM

[15], SHAMPOO [11], and MUON [14] as instances of steepest descent under norm constraints. Sim-
ilarly, [29] proposes a stochastic conditional gradient approach from a norm-constraint perspective.
However, these analyses do not account for momentum, a central component in practical implemen-
tations of these optimizers. As a result, when momentum is introduced, these methods no longer
strictly conform to the steepest descent interpretation, highlighting a fundamental limitation of this
perspective. Moreover, this interpretation does not naturally extend to optimizers that incorporate
decoupled weight decay.

Decoupled weight decay. Weight decay is a widely used regularization technique in deep learn-
ing, traditionally implemented as an ℓ2 penalty directly coupled with gradient-based parameter up-
dates [25]. The concept of decoupled weight decay, introduced by ADAMW [25], separates regu-
larization from adaptive gradient computations. Empirical evidence suggests that this decoupling
enhances training stability and improves generalization, making it a standard practice in modern
adaptive optimizers [8, 24]. Recently, [39] demonstrated that ADAMW implicitly solves a con-
strained optimization problem given convergence. [7] proved that optimizers with bounded updates
and decoupled weight decay inherently correspond to constrained optimization formulations, even
without requiring convergence assumptions.

Lyapunov analysis of optimizers. Hamiltonian dynamics provides a rigorous theoretical frame-
work for understanding momentum-based optimization [27, 36]. Unlike standard gradient de-
scent, which ensures a monotonic decrease in the objective function, momentum methods exhibit
nonmonotonic behavior, requiring more advanced analytical tools for convergence analysis [13].
Lyapunov-based techniques [7, 17, 22, 34] have since been developed to analyze the stability and
convergence properties of optimization algorithms [21].

Concurrent work. Although several concurrent works have studied the convergence of MUON

under various smoothness assumptions [1, 16, 19, 33], none of them consider MUON with decou-
pled weight decay, despite it being the variant that has demonstrated the most promising empirical
results [24]. [32] analyzes MUON with decoupled weight decay through a Frank–Wolfe perspec-
tive, whereas our work is the first to use the LION-K framework and to prove convergence with
decreasing step sizes à la Robbins–Monro.

Appendix B. Preliminaries

General notation. We let X := Rn×m denote the space of real n×m matrices, corresponding to
weight matrices in neural networks. We denote matrices in capital boldface and vectors in lowercase
boldface. We let 0 denote the zero matrix of appropriate dimension. We let ⟨X,Y⟩ := Tr(X⊤Y)
denote the Frobenius inner product. For a differentiable function K : X → R ∪ {∞}, we let ∇K
denote the gradient of K. We say K is convex if for all X,Y ∈ X and λ ∈ [0, 1],

K((1− λ)X+ λY) ≤ (1− λ)K(X) + λK(Y).

We say G is a subgradient of K at X if for all Y ∈ X,

K(Y) ≥ K(X) + ⟨G,Y −X⟩ .
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If K is convex and differentiable at X, then ∇K(X) is the unique subgradient of K at X. If K is
convex but nondifferentiable, we let ∂K(X) denote the set of subgradients of K at X and overload
∇K(X) to denote an element of ∂K(X). For a function K, we let K∗ denote the convex conjugate
of K, where

K∗(X) := sup
Y∈X

(⟨X,Y⟩ − K(Y)) .

From this definition, we immediately deduce the Fenchel–Young inequality

K(X) +K∗(Y) ≥ ⟨X,Y⟩ .

We let dom(K) := {X ∈ X | K(X) < ∞} denote the effective domain of K. We say K : X →
R ∪ {∞} is closed if the set {X ∈ dom(K) | K(X) ≤ α} is closed for each α ∈ R. We say
K : X → R ∪ {∞} is proper if dom(K) is nonempty. The celebrated Fenchel–Moreau theorem
states that if K : X → R ∪ {∞} is convex, closed, and proper, then K∗∗ = K. A corollary is that
Y ∈ ∂K(X) if and only if

K(X) +K∗(Y) = ⟨X,Y⟩ ,

i.e. the Fenchel–Young inequality holds with equality, and X ∈ ∂K∗(Y) if ∂K∗(Y) is nonempty.
We let χD denote the characteristic function of a set D ⊆ X, where

χD(X) :=

{
0 if X ∈ D
∞ otherwise

.

For k ∈ {1, 2, . . . ,min(n,m)}, we let σk(X) denote the kth largest singular value of X.

Norms. For a norm ∥·∥ on X, and r > 0, we let B∥·∥(r) := {X ∈ X | ∥X∥ ≤ r} denote the ball
of radius r. When D ⊆ X and the norm is clear from context, we let d(X,D) := infY∈D ∥X−Y∥
denote the distance from X to D. We let ∥·∥∗ denote the dual norm of ∥·∥, where

∥X∥∗ := sup
Y ̸=0

⟨X,Y⟩
∥Y∥

.

It follows directly from this definition that ⟨X,Y⟩ ≤ ∥X∥ ∥Y∥∗ and ∥X∥∗∗ = ∥X∥. We define the
matrix norms

∥X∥p :=

 n∑
i=1

m∑
j=1

|Xij |p
 1

p

, ∥X∥tr :=

min(n,m)∑
i=1

σi(X), ∥X∥F := ∥X∥2 , ∥X∥op := σ1(X),

where p ∈ [1,∞]. ∥·∥p is the entrywise ℓp norm, ∥·∥tr is known as the trace norm or nuclear norm,
∥·∥F is known as the Frobenius norm, and ∥·∥op is known as the spectral norm. The dual norm of
∥·∥p is ∥·∥q, where 1

p + 1
q = 1, the dual norm of ∥·∥tr is ∥·∥op, and ∥·∥F is self-dual.

The following fact will be useful for our analysis.

Fact 1 Let ∥·∥ be a norm on X with dual norm ∥·∥∗. If K(X) = ∥X∥, then

K∗(X) = χB∗(1)(X) =

{
0 if ∥X∥∗ ≤ 1

∞ otherwise
.

11
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We say that a function F : X→ R is L-smooth if it is differentiable and

∥∇F(Y)−∇F(X)∥F ≤ L ∥Y −X∥F for all X,Y ∈ X.

If F is L-smooth, then

F(Y) ≤ F(X) + ⟨∇F(X),Y −X⟩+ L

2
∥Y −X∥2F for all X,Y ∈ X.

For additional background on convex analysis, we refer to [31].

B.1. Assumptions

Assumption 1 F⋆ := infX∈XF(X) is finite, and there exists X⋆ ∈ X such that F(X⋆) = F⋆.

Assumption 1 is necessary for (1) to be well-posed. For our discrete-time analysis, we impose
an additional smoothness assumption on F .

Assumption 2 (L-smoothness) F : X→ R is L-smooth.

We now define the variance of random matrices and introduce an assumption for the analysis of
stochastic settings.

Definition 1 (Variance) The variance of an X-valued random variable X is defined as

Var(X) := E
[
∥X− E[X]∥2F

]
.

Assumption 3 (Bounded variance) The stochastic samples ξt ∼ D are independent and identi-
cally distributed (i.i.d.). Additionally, the stochastic gradient∇F(Xt, ξt) satisfies

Eξt∼D[∇F(Xt, ξt)] = ∇F(Xt) and Var(∇F(Xt, ξt)) ≤
σ2

nbatch
,

where σ2 is a constant and nbatch denotes the batch size.

Assumption 4 (Iteration-wise bounded variance) The stochastic gradient∇F(Xt, ξt) satisfies

Eξt∼D[∇F(Xt, ξt)] = ∇F(Xt) and Var(∇F(Xt, ξt)) ≤
[

σ2

nbatch

]
t

.

We remark that Assumptions 2 and 3 are standard in the literature for the analysis of stochastic
optimization algorithms, e.g. [4, 9, 22, 41].

Since we work within the LION-K framework, our last assumption concerns the choice of K.

Assumption 5 K : X→ R is convex. This implies that K is also closed and proper.

12
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Appendix C. Background on LION-K

LION-K [7] is a family of optimization algorithms developed to provide a theoretical foundation
for the LION optimizer, which was originally discovered via symbolic search [8]. Given a convex
function K : X→ R with subgradient∇K, the update rule for LION-K is given by (3). This update
rule is equivalent to the original one given by [7], where the last update is

Xt+1 = Xt + ηt(∇K(M̃t+1)− λXt), (8)

under the reparameterization ηt ← ηt
1+ηtλ

.
LION-K can be seen as mixing several fundamental design elements in optimization:

• Polyak momentum M, which accumulates the exponential moving average of the gradients,
controlled by the coefficient β2.

• Nesterov momentum M̃, which introduces extra gradient components into the update, con-
trolled by the coefficient β1.

• Nonlinear preconditioning ∇K, which applies a transformation to the momentum before it
is used to update the parameters. This is legitimate since∇K is a monotone map, meaning that
⟨∇K(X)−∇K(Y),X−Y⟩ ≥ 0, which follows from the convexity of K (see Lemma 1).

• Decoupled weight decay λX, which reduces the parameter magnitude in addition to the
update ∇K(M̃). This introduces a regularization effect (see Appendix C.1) and is closely
related to Frank–Wolfe style algorithms.

C.1. Effect of decoupled weight decay

Due to the interplay of decoupled weight decay and the∇Kmapping, LION-K optimizers minimize
the regularized objective (4). To gain a quick heuristic understanding of how the regularization term
arises, we can simply examine a fixed point of the optimizer. Using the original update rule (8),
assume that the algorithm reaches a fixed point, where we have Mt+1 = M̃t+1 = −∇F(Xt)

and ∇K(M̃t+1) − λXt = 0. This yields ∇K(−∇F(Xt)) − λXt = 0. Since ∇K∗ is the inverse
function of∇K by convex conjugacy, we have

∇F̂(Xt) = ∇F(Xt) +∇K∗(λXt) = 0.

This suggests that every fixed point of the algorithm must be a stationary point of the regularized
objective F̂ .

C.2. Lyapunov function for LION-K

The fixed-point analysis alone does not guarantee the convergence of the algorithm. We give a full
analysis using a Lyapunov function method, patterned off [7]. To understand this, it helps to focus
on the limit of small step sizes, where the dynamics of LION-K can be modeled by the ordinary
differential equation (ODE)

Ṁt = −∇F(Xt)−Mt

Ẋt = ∇K (Mt − ϵ (∇F(Xt) +Mt))− λXt.
(9)

13
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Here, the effect of Nesterov momentum is captured by ϵ ∈ [0, 1].
It is not immediately obvious why the LION-K ODE would serve to minimize F̂(X), as the

ODE does not necessarily guarantee a monotonic decrease in F̂(X). However, we show in Ap-
pendix C.4 that the LION-K ODE minimizes the auxiliary function

H(X,M) := F̂(X) +
1− ϵ

1 + ϵλ
(K∗(λX) +K(M)− ⟨M, λX⟩)

in the sense that it is monotonically decreasing along the ODE trajectories, i.e. d
dtH(Xt,Mt) ≤ 0

until a local minimum is achieved. In other words, H(X,M) admits a Lyapunov function of the
LION-K ODE (9). Here, H(X,M) is a joint function of position X and momentum M. It can be
interpreted as a Hamiltonian function in a physical metaphor, where F̂(X) is the potential energy,
and the additional term represents a form of kinetic energy.

Moreover, minimizing H(X,M) is equivalent to minimizing the regularized objective F̂(X).
This can be seen by the Fenchel–Young inequality, which ensures that

K∗(λX) +K(M)− ⟨M, λX⟩ ≥ 0,

with equality when M ∈ ∂K(λX).

C.3. Constrained optimization problem

IfK∗ takes on positive infinite values, LION-K effectively solves the constrained optimization prob-
lem

min
X∈X
F̂(X) s.t. λX ∈ dom(K∗). (10)

If the algorithm is initialized outside the effective domain, [7] shows that in the continuous-time
setting, Xt is rapidly driven into the effective domain and stays inside afterwards. Specifically, this
process is guaranteed to be exponentially fast in time:

d(λXt,dom(K∗)) ≤ exp(−λt)d(λX0,dom(K∗)) for all t ≥ 0. (11)

Consequently, λXt rapidly converges to dom(K∗) and remains within this domain once it arrives,
where the Lyapunov function is finite and decreases monotonically.

C.4. Continuous-time analysis of LION-K

For completeness, we give a straightforward extension of the analysis of [7] to establish the conver-
gence of the LION-K ODE (9) for matrices.

Proposition 1 Under Assumptions 1 and 5, let F , K, and K∗ be continuously differentiable and

Ẋt = ∇K(Mt − ϵ(γMt + α∇F(Xt)))− λXt

Ṁt = −α∇F(Xt)− γMt,
(12)

where α, γ, ϵ, λ > 0 and ϵγ ≤ 1. Define

H(X,M) := α(F(X)−F⋆)+
γ

λ
(K∗(λX)+K(0))+1− ϵγ

1 + ϵλ
(K∗(λX)+K(M)−⟨M, λX⟩). (13)

Then for all t,H(Xt,Mt) ≥ 0 and d
dtH(Xt,Mt) ≤ 0, i.e. H is a Lyapunov function for (12).
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Proof For simplicity, we drop the index t. By assumption, F(X)−F⋆ ≥ 0, by the Fenchel–Young
inequality, K∗(λX) +K(M)− ⟨M, λX⟩ ≥ 0, and by definition,

K∗(λX) +K(0) = sup
Y∈X

(⟨λX,Y⟩ − K(Y)) +K(0) ≥ ⟨λX,0⟩ − K(0) +K(0) = 0.

Combining these inequalities shows thatH(X,M) ≥ 0.
Let M̃ := M− ϵ(γM+ α∇F(X)). By Lemma 1, we have

0 ≥
〈
−M̃+∇K∗(λX),∇K(M̃)− λX

〉
=
〈
ϵα∇F(X)− (1− ϵγ)M+∇K∗(λX),∇K(M̃)− λX

〉
0 ≥

〈
M− M̃,∇K(M̃)−∇K(M)

〉
=
〈
ϵα∇F(X) + ϵγM, (∇K(M̃)− λX)− (∇K(M)− λX)

〉
.

(14)

By straightforward computation,

d
dt
H(X,M) =

〈
∇XH(X,M), Ẋ

〉
+
〈
∇MH(X,M), Ṁ

〉
=

〈
α∇F(X) + γ∇K∗(λX) +

1− ϵγ

1 + ϵλ
(λ∇K∗(λX)− λM),∇K(M̃)− λX

〉
+

1− ϵγ

1 + ϵλ
⟨∇K(M)− λX,−α∇F(X)− γM⟩

=
λ+ γ

1 + ϵλ

〈
ϵα∇F(X)− (1− ϵγ)M+∇K∗(λX),∇K(M̃)− λX

〉
+

1− ϵγ

ϵ(1 + ϵλ)

〈
ϵα∇F(X) + ϵγM, (∇K(M̃)− λX)− (∇K(M)− λX)

〉
≤ 0,

where the last line uses (14).

We recover (9) by setting α = γ = 1 in (12). Although an important result, Proposition 1
cannot be directly applied to MUON due to the nondifferentiability of the nuclear norm.

Appendix D. MUON meets LION-K

We recall the MUON update rule (2) and formally define the matrix sign function.

Definition 2 (Matrix sign) Let UΣV⊤ be a singular value decomposition of X ∈ X. The matrix
sign function, denoted msgn, is given by

msgn(X) := (XX⊤)−
1
2X = U sgn(Σ)V⊤,

where (·)−
1
2 denotes the Moore–Penrose inverse of the matrix square root and sgn denotes the

entrywise signum function.
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The matrix sign of X is also known as the Mahalanobis whitening or zero-phase component
analysis (ZCA) whitening, which stands as the optimal whitening procedure that minimizes the
distortion with the original data. It is also closely related to the polar decomposition of X.

We now illustrate the connection between MUON and LION-K using the following well-known
fact.

Fact 2 ([6, 38]) Let K(X) = ∥X∥tr and X ∈ X with singular value decomposition UΣV⊤. Then

∂K(X) =
{
U sgn(Σ)V⊤ +W |W ∈ X,U⊤W = 0,WV = 0, ∥W∥op ≤ 1

}
.

In particular, msgn(X) ∈ ∂K(X).

Hence, MUON can be interpreted as LION-K with K(X) = ∥X∥tr and ∇K(X) = msgn(X),
corresponding to a matrix generalization of LION, which is LION-K with K(X) = ∥X∥1 and
∇K(X) = sgn(X). Indeed, ∥·∥tr and ∥·∥op are precisely the Schatten 1- and∞-norms, which are
the ℓ1 and ℓ∞ norms on the singular values of a matrix, respectively, and the suggestively named
msgn function can be seen as a matrix analog of sgn.

D.1. Spectral norm constraint

By (10) and Fact 1, we conclude that MUON solves the constrained optimization problem (5). The
bound 1

λ is determined solely by the weight decay coefficient λ. Without weight decay (λ = 0), we
obtain the original unconstrained optimization problem.

In fact, the bound constraint arises from any update of the form

Xt+1 = Xt + ηt(Ot − λXt),

where Ot has bounded norm, regardless of how it is updated, although the solution may not neces-
sarily minimize the objective within the constrained set. Because Ot has bounded norm, the weight
decay term dominates the update whenever the constraint is not satisfied (i.e. ∥λXt∥ > 1), leading
to an exponential decrease in magnitude. This intuition is formalized by the following result, which
is a discrete-time variant of (11).

Proposition 2 For any update of the form Xt+1 = Xt + ηt(Ot − λXt) with ∥Ot∥ ≤ b, ηtλ ≤ 1,
and λ > 0, where ∥·∥ is any norm on X and b is a constant, we have

∥Xt∥ −
b

λ
≤

(
t−1∏
s=0

(1− ηsλ)

)(
∥X0∥ −

b

λ

)
.

Proof We have

∥Xt+1∥ −
b

λ
= ∥Xt + ηt(Ot − λXt)∥ −

b

λ
≤ (1− ηtλ) ∥Xt∥+ ηt ∥Ot∥ −

b

λ

≤ (1− ηtλ) ∥Xt∥+ ηtb−
b

λ
= (1− ηtλ)

(
∥Xt∥ −

b

λ

)
.

Applying this recursively yields the result.
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Table 1: Summary of common convex matrix functions. Note that the nuclear norm is a special
case of the spectral sum with ϕ(·) = | · |.

Function Domain Remarks

Squared Frobenius norm ∥X∥2F All matrices Smooth, strongly convex
Nuclear norm ∥X∥tr All matrices Lipschitz continuous, convex
Spectral norm ∥X∥op All matrices Lipschitz continuous, convex
Quadratic form Tr(X⊤MX) All matrices, M ⪰ 0 Smooth quadratic form, convex
Spectral sum

∑
i ϕ(σi(X)) All matrices, convex ϕ General convex spectral functions

For MUON, we have ∥msgn(M̃t+1)∥op ≤ 1, so Proposition 2 applies.
Although the continuous-time results in Appendix C provide intuition on the dynamics of LION-

K, the nondifferentiability of the trace norm ultimately prevents us from directly applying these
results in establishing the theoretical properties of MUON. Instead, we will resort to our discrete-
time analysis in Appendix E to rigorously prove the convergence and implicit bias of MUON.

D.2. Generalizations of MUON

Generalizing beyond the nuclear norm, we can take K to be a general convex spectral function, i.e.

K(X) =

min(n,m)∑
i=1

ϕ(σi(X)),

where ϕ : [0,∞) → R is a convex scalar function. Because ∂σi(X)
∂X = uiv

⊤
i , where ui and vi are

the singular vectors associated with σi, a subgradient of K above is given by

∇K(X) = Udiag ({∇ϕ(σi)})V⊤,

where X has singular value decomposition UΣV⊤.
Assume∇ϕ is upper bounded by b, i.e. supx≥0∇ϕ(x) = b. Then the update Ot = ∇K(M̃t+1)

satisfies ∥Ot∥op ≤ b, which yields a constraint of ∥X∥op ≤
b
λ by Proposition 2.

In the practical implementation of MUON, ϕ is effectively taken as a high-order polynomial
inspired by Newton–Schulz iteration for calculating the matrix sign.

Table 1 summarizes several common convex matrix functions along with their key properties.
Importantly, the convexity of K ensures the convergence of the associated LION-K optimizers, as
established through both continuous-time and discrete-time analyses (Appendices C.4 and E). Con-
sequently, our framework introduces a large class of provably convergent optimization algorithms
parameterized by a convex function K.

More generally, the constrained optimization problem minX∈XF(X) such that X ∈ D, where
D is a convex set, can be solved using LION-K with K∗(X) = χD(X). As in the cases of LION

and MUON, a particularly important instance is when D is a norm ball B∥·∥(1). In this setting,
∇K(X) corresponds to the solution of a linear minimization oracle problem maxZ∈X ⟨X,Z⟩ such
that ∥Z∥ ≤ 1. Related discussions can be found, for example, in [3] and [29].
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Appendix E. Convergence analysis of MUON

In this section, we generalize the analysis of [7] to handle X-valued updates and leverage this result
to provide convergence rates for the KKT score function (6) and prove the convergence of MUON

to the set of KKT points of (5). Our strategy consists of three components:

• In Appendix E.1, we show that X⋆ is a KKT point of (5) if and only if ∥λX⋆∥op ≤ 1 and the
KKT score function (6) vanishes at X⋆.

• We give a discrete-time analysis of matrix LION-K and show that, as a corollary, the KKT
score function is O

(
1√
T

)
in the deterministic gradient setting (Appendix E.2) and

O

(
1√
T

+
σ

√
nbatch

)
in the stochastic gradient setting (Appendix E.3).

• In Appendix E.4, we put together the previous results and conclude that MUON converges to
the set of KKT points of (5) using LaSalle’s invariance principle.

E.1. KKT points of spectral-norm-constrained problems

We note that (5) is equivalent to

min
X∈X
F(X) s.t. σi(X) ≤ 1

λ
for all i ∈ {1, 2, . . . ,min(n,m)}

and define the KKT points of this constrained optimization problem.

Definition 3 (KKT points) We say that X⋆ ∈ X is a point that satisfies the Karush–Kuhn–Tucker
(KKT) conditions, or is a KKT point, of (5) if there exists µ ∈ Rmin(n,m) such that the following
conditions hold:

• (stationarity) ∇F(X⋆) +
∑min(n,m)

i=1 µiuiv
⊤
i = 0, where ui and vi are singular vectors

corresponding to σi(X
⋆).

• (primal feasibility) σi(X
⋆) ≤ 1

λ for all i ∈ {1, 2, . . . ,min(n,m)}.

• (dual feasibility) µ ≥ 0 entrywise.

• (complementary slackness) µi

(
σi(X

⋆)− 1
λ

)
= 0 for all i ∈ {1, 2, . . . ,min(n,m)}.

At a given point X, it is not immediately clear whether the KKT conditions are satisfied. To ad-
dress this challenge, we work with an equivalent characterization based on the KKT score function
(6).

Proposition 3 X⋆ ∈ X is a KKT point of (5) if and only if ∥λX⋆∥op ≤ 1 and S(X⋆) = 0.
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Proof Suppose ∥λX⋆∥op ≤ 1 and

S(X⋆) = ∥∇F(X⋆)∥tr + ⟨λX
⋆,∇F(X⋆)⟩ = ∥−∇F(X⋆)∥tr − ⟨λX

⋆,−∇F(X⋆)⟩ = 0.

Then λX⋆ is a subgradient of ∥·∥tr at −∇F(X⋆), since for all Y ∈ X,

∥Y∥tr ≥ ∥Y∥tr ∥λX
⋆∥op ≥ ⟨λX

⋆,Y⟩ = ∥−∇F(X⋆)∥tr + ⟨λX
⋆,Y +∇F(X⋆)⟩ .

Let UΣV⊤ be a singular value decomposition of −∇F(X⋆). By Fact 2,

λX⋆ = U sgn(Σ)V⊤ +W, where U⊤W = 0, WV = 0, and ∥W∥op ≤ 1.

Then setting µ to be the singular values of∇F(X⋆) in nonincreasing order shows that X⋆ satisfies
the KKT conditions:

• (stationarity) since U⊤W = 0 and WV = 0, λX⋆ has singular value decomposition

(
u1 · · · ur x1 · · · xn−r

)
diag

(
1, . . . , 1,σ1(W), . . . ,σmin(n,m)−r(W)

)


v⊤
1
...

v⊤
r

y⊤
1
...

y⊤
m−r


with r := rank(∇F(X⋆)). In addition, ∥W∥op ≤ 1 implies that σ1(X

⋆) = · · · = σr(X
⋆) =

1
λ , with corresponding singular vectors u1, . . . ,ur and v1, . . . ,vr. But by construction,
∇F(X⋆) has singular values µ and singular vectors −u1, . . . ,−un and v1, . . . ,vm. Thus

∇F(X⋆) +

min(n,m)∑
i=1

µiuiv
⊤
i =

r∑
i=1

µi(−ui)v
⊤
i +

r∑
i=1

µiuiv
⊤
i = 0.

• (primal feasibility) ∥λX⋆∥op ≤ 1 by assumption.

• (dual feasibility) µ ≥ 0 entrywise by the nonnegativity of singular values.

• (complementary slackness) for i ∈ {1, 2, . . . ,min(n,m)}, if µi = 0, then the condition
holds. Otherwise, µi = σi(∇F(X⋆)) > 0 implies σi(λX

⋆) = 1, so the condition holds.

Suppose the KKT conditions for the original problem (5) are satisfied, i.e. there exist µ ∈ R≥0

and a subgradient G of ∥·∥op at X⋆, where ∥λX⋆∥op ≤ 1, such that

∇F(X⋆) + µG = 0 and µ(∥λX⋆∥op − 1) = 0.

∥λX⋆∥op ≤ 1 is satisfied by primal feasibility. If µ = 0, then ∇F(X⋆) = 0, which implies
S(X⋆) = 0. Otherwise, we have ∥λX⋆∥op = 1 by complementary slackness. Let the multiplicity of
σ1(X

⋆) be t, with corresponding singular vectors U1 and V1. Using [38]’s characterization of the
subgradients of ∥·∥op, we have G = U1HV⊤

1 , where H ∈ St×t
⪰0 and Tr(H) = 1. Thus ∥G∥tr = 1,

and

S(X⋆) = ∥∇F(X⋆)∥tr + ⟨λX
⋆,∇F(X⋆)⟩ = µ ∥G∥tr−µ ⟨λX⋆,G⟩ = µ ∥G∥tr−µ ∥λX⋆∥op = 0,

where the third equality uses Lemma 2.
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E.2. Convergence rate of LION-K with deterministic gradient

Our analysis in this section is an extension of the discrete-time analysis in [7], which is in turn
inspired by the Lyapunov function for continuous-time LION-K dynamics (cf. Appendix C.4).

Proposition 4 Under Assumptions 1, 2, and 5, let 0 ≤ β1 < β2 < 1 and λ > 0, and suppose Xt,
Mt, and M̃t are updated using (3). Let

ct :=
ηtλβ1

ηtλ(1− β1) + (1− β2)

bt :=
β1(1− β2)

(β2 − β1)(ηtλ(1− β1) + (1− β2))

at := ct + 1

Ht := F(Xt)−F⋆ +
1

λ
K∗(λXt) +

ct
λ
(K∗(λXt) +K(Mt)− ⟨λXt,Mt⟩)

Γt :=
〈
∇K(M̃t+1)− λXt+1, M̃t+1 −∇K∗(λXt+1)

〉
∆t :=

〈
∇K(M̃t+1)−∇K(Mt+1), M̃t+1 −Mt+1

〉
.

(15)

Then for all T > 0,

1

T

T−1∑
t=0

ηt(atΓt + bt∆t) ≤
H0 −HT

T
+

L

2T

T−1∑
t=0

η2t

∥∥∥∇K(M̃t+1)− λXt+1

∥∥∥2
F
. (16)

Proof By smoothness, we have

F(Xt+1)−F(Xt) ≤ ⟨∇F(Xt),Xt+1 −Xt⟩+
L

2
∥Xt+1 −Xt∥2F . (17)

By convexity, we have

K∗(λXt+1)−K∗(λXt) ≤ ⟨λ∇K∗(λXt+1),Xt+1 −Xt⟩
K(Mt+1)−K(Mt) ≤ ⟨∇K(Mt+1),Mt+1 −Mt⟩ .

(18)

Finally, we have

⟨Xt+1,Mt+1⟩ − ⟨Xt,Mt⟩ = ⟨Mt,Xt+1 −Xt⟩+ ⟨Xt+1,Mt+1 −Mt⟩ . (19)

Combining (17), (18), and (19) gives

Ht+1 −Ht ≤ ⟨∇XHt,Xt+1 −Xt⟩+ ⟨∇MHt,Mt+1 −Mt⟩+
L

2
∥Xt+1 −Xt∥2F , (20)

where

∇XHt := ∇F(Xt) + (1 + ct)∇K∗(λXt+1)− ctMt and ∇MHt :=
ct
λ
∇K(Mt+1)− ctXt+1.

Recalling (3), we have

Xt+1 −Xt = ηtδt and Mt+1 −Mt =
1− β2
β2 − β1

(
M̃t+1 −Mt+1

)
,
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where δt := ∇K(M̃t+1)− λXt+1. Substituting into (20),

Ht+1 −Ht

≤ ηt ⟨∇XHt, δt⟩+
1− β2
β2 − β1

〈
∇MHt, M̃t+1 −Mt+1

〉
+

L

2
∥Xt+1 −Xt∥2F

= ηt ⟨δt, at∇K∗(λXt+1)− ((at + bt)β1 − btβ2)Mt + (at − (at + bt)β1 + btβ2)∇F(Xt)⟩

+
btηtλ

ct

〈ct
λ
∇K(Mt+1)− ctXt+1, M̃t+1 −Mt+1

〉
+

L

2
∥Xt+1 −Xt∥2F

= −ηt
〈
δt, at(M̃t+1 −∇K∗(λXt+1)) + bt(M̃t+1 −Mt+1)

〉
+ btηt

〈
∇K(Mt+1)− λXt+1, M̃t+1 −Mt+1

〉
+

L

2
∥Xt+1 −Xt∥2F

= −atηtΓt − btηt

(〈
δt, M̃t+1 −Mt+1

〉
−
〈
∇K(Mt+1)− λXt+1, M̃t+1 −Mt+1

〉)
+

L

2
∥Xt+1 −Xt∥2F

= −ηt(atΓt + bt∆t) +
η2tL

2
∥δt∥2F ,

(21)
where the third line uses ct = (at + bt)β1 − btβ2 and ct = at − 1 and the fifth line uses

M̃t+1 −Mt+1 = −(β2 − β1)(Mt +∇F(Xt)).

Rearranging (21), summing over T iterations, and dividing both sides by T gives the result.

Proposition 4 establishes bounds for general LION-K optimizers in the discrete-time setting,
and we will use this result to bound the convergence rate of the KKT score function (6).

To avoid tedium in the analysis, we assume that X0 is initialized so that ∥λX0∥op ≤ 1. Note
that by Proposition 2, this implies ∥λXt∥op ≤ 1 for all t ≥ 0. We remark that in practical im-
plementations of MUON, the weight decay parameter λ is known, so X0 can always be chosen to
satisfy ∥λX0∥op ≤ 1.

We now introduce several helper lemmas.

Lemma 1 Let K,K∗ : X→ R ∪ {∞} be a convex, closed, and proper pair of conjugate functions
with subgradients∇K and∇K∗. Then for all X,Y ∈ X,

⟨∇K(X)−∇K(Y),X−Y⟩ ≥ 0 (22)

⟨∇K(X)−Y,X−∇K∗(Y)⟩ ≥ 0. (23)

Proof By definition of subgradients, we have

K(Y)−K(X) ≥ ⟨∇K(X),Y −X⟩
K(X)−K(Y) ≥ ⟨∇K(Y),X−Y⟩ .

Summing the inequalities gives 0 ≥ ⟨∇K(Y)−∇K(X),X−Y⟩, which shows (22). (23) follows
by setting Y ← ∇K∗(Y) in (22) and using Y ∈ ∂K(∇K∗(Y)).
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Lemma 2 Let K(X) = ∥X∥ for a norm ∥·∥ on X. Then ⟨∇K(X),X⟩ = K(X).

Proof By definition of a subgradient and properties of norms,

0 = K(0) ≥ K(X) + ⟨∇K(X),0−X⟩ = K(X)− ⟨∇K(X),X⟩
2K(X) = K(2X) ≥ K(X) + ⟨∇K(X), 2X−X⟩ = K(X) + ⟨∇K(X),X⟩ .

Combining the inequalities shows that ⟨∇K(X),X⟩ = K(X).

Lemma 3 In the setting of Proposition 4, letK(X) = ∥X∥tr,∇K(X) = msgn(X), ∥λX0∥op ≤ 1,
ηt = η, and CK :=

√
min(n,m). Then for all t > 0,∥∥∥∇F(Xt) + M̃t

∥∥∥
F
≤ 2ηCKL(1 + β1 − β2)

1− β2
+ β1β

t−1
2 ∥∇F(X0) +M0∥F .

Proof By Proposition 2, we have ∥λXt∥op ≤ 1 for all t ≥ 0. Furthermore, for all t > 0,

∥∇F(Xt)−∇F(Xt−1)∥F ≤ L ∥Xt −Xt−1∥F = ηt−1L
∥∥∥msgn(M̃t)− λXt

∥∥∥
F

≤ ηt−1CKL
∥∥∥msgn(M̃t)− λXt

∥∥∥
op
≤ 2ηt−1CKL,

(24)

where the first line uses smoothness. Recalling (3),

∥∇F(Xt) +Mt∥F = ∥∇F(Xt) + β2Mt−1 − (1− β2)∇F(Xt−1)∥F

= ∥∇F(Xt)−∇F(Xt−1) + β2(∇F(Xt−1) +Mt−1)∥F

=

∥∥∥∥∥
t∑

k=1

βt−k
2 (∇F(Xk)−∇F(Xk−1)) + βt

2(∇F(X0) +M0)

∥∥∥∥∥
F

≤
t∑

k=1

βt−k
2 ∥∇F(Xk)−∇F(Xk−1)∥F + βt

2 ∥∇F(X0) +M0∥F

≤ 2CKL

t∑
k=1

βt−k
2 ηk−1 + βt

2 ∥∇F(X0) +M0∥F ,

(25)

where the third line iterates and expands the first two lines, the fourth line uses the triangle inequal-
ity, and the fifth line uses (24). Thus∥∥∥∇F(Xt) + M̃t

∥∥∥
F
= ∥∇F(Xt) + β1Mt−1 − (1− β1)∇F(Xt−1)∥F

= ∥∇F(Xt)−∇F(Xt−1) + β1(∇F(Xt−1) +Mt−1)∥F

≤ ∥∇F(Xt)−∇F(Xt−1)∥F + β1 ∥∇F(Xt−1) +Mt−1∥F

≤ 2ηt−1CKL+ β1

(
2CKL

t−1∑
k=1

βt−k−1
2 ηk−1 + βt−1

2 ∥∇F(X0) +M0∥F

)

= 2ηt−1CKL+ 2β1CKL

t−1∑
k=1

βt−k−1
2 ηk−1 + β1β

t−1
2 ∥∇F(X0) +M0∥F ,

(26)
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where the third line uses the triangle inequality and the fourth line uses (24) and (25). The result
follows upon setting ηt = η and using

∑t−1
k=1 β

t−k−1
2 ≤

∑∞
j=0 β

j
2 = 1

1−β2
.

Proposition 5 In the setting of Lemma 3, for all T > 0,

1

T

T∑
t=1

S(Xt) ≤
H0 −HT

ηT
+2ηC2

KL+
2β1CK ∥∇F(X0) +M0∥F

(1− β2)T
+
4ηC2

KL(1 + β1 − β2)

1− β2
. (27)

Proof Using the notation of Proposition 4, we have

S(Xt) = ⟨msgn(∇F(Xt)) + λXt,∇F(Xt)⟩

=
〈
msgn(M̃t)− λXt, M̃t

〉
−
〈
msgn(M̃t)− λXt,∇F(Xt) + M̃t

〉
+
〈
−msgn(∇F(Xt))−msgn(M̃t), M̃t

〉
−
〈
−msgn(∇F(Xt))−msgn(M̃t),∇F(Xt) + M̃t

〉
≤
〈
msgn(M̃t)− λXt, M̃t

〉
−
〈
msgn(M̃t)− λXt,∇F(Xt) + M̃t

〉
−
〈
−msgn(∇F(Xt))−msgn(M̃t),∇F(Xt) + M̃t

〉
≤ Γt−1 +

〈
msgn(∇F(Xt)) + λXt,∇F(Xt) + M̃t

〉
≤ Γt−1 + ∥msgn(∇F(Xt)) + λXt∥F

∥∥∥∇F(Xt) + M̃t

∥∥∥
F

≤ Γt−1 + 2CK

(
2ηCKL(1 + β1 − β2)

1− β2
+ β1β

t−1
2 ∥∇F(X0) +M0∥F

)
= Γt−1 +

4ηC2
KL(1 + β1 − β2)

1− β2
+ 2β1β

t−1
2 CK ∥∇F(X0) +M0∥F ,

where the first line uses Fact 2 and Lemma 2, the fifth line uses〈
msgn(∇F(Xt)) + msgn(M̃t), M̃t

〉
=
〈
msgn(∇F(Xt)), M̃t

〉
+
∥∥∥M̃t

∥∥∥
tr

≥
∥∥∥M̃t

∥∥∥
tr
−
∥∥∥M̃t

∥∥∥
tr
∥msgn(∇F(Xt))∥op

≥ 0,

the seventh line uses

∂K∗(Y) =

{
{0} if ∥Y∥op < 1

{Z ∈ X | ⟨Z,Y⟩ = ∥Z∥tr} if ∥Y∥op = 1
,
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the eighth line uses Cauchy–Schwarz, and the ninth line uses Lemma 3. It follows that

1

T

T∑
t=1

S(Xt) ≤
1

T

T∑
t=1

(
Γt−1 + 2β1β

t−1
2 CK ∥∇F(X0) +M0∥F

)
+

4ηC2
KL(1 + β1 − β2)

1− β2

≤ 1

T

T−1∑
t=0

(
atΓt + bt∆t + 2β1β

t
2CK ∥∇F(X0) +M0∥F

)
+

4ηC2
KL(1 + β1 − β2)

1− β2

≤ H0 −HT

ηT
+

ηL

2T

T−1∑
t=0

∥∥∥msgn(M̃t+1)− λXt+1

∥∥∥2
F

+
2β1CK ∥∇F(X0) +M0∥F

(1− β2)T
+

4ηC2
KL(1 + β1 − β2)

1− β2

≤ H0 −HT

ηT
+ 2ηC2

KL+
2β1CK ∥∇F(X0) +M0∥F

(1− β2)T
+

4ηC2
KL(1 + β1 − β2)

1− β2
,

where the third line uses Proposition 4 and the fourth line uses

T−1∑
t=0

βt
2 ≤

∞∑
j=0

βj
2 =

1

1− β2
.

Our convergence rates in the deterministic gradient setting follow directly from the previous
results.

Theorem 3 Under Assumptions 1, 2, and 5, let 0 ≤ β1 < β2 < 1, λ > 0, ηt = η = Θ
(

1√
T

)
, and

∥λX0∥op ≤ 1, and suppose Xt, Mt, and M̃t are updated using (3) with deterministic gradients
and that∇K has bounded norm. Then

min
1≤t≤T

〈
∇K(M̃t)− λXt, M̃t −∇K∗(λXt)

〉
= O

(
1√
T

)
min

1≤t≤T

〈
∇K(M̃t)−∇K(Mt), M̃t −Mt

〉
= O

(
1√
T

)
.

Moreover, when Xt, Mt, and M̃t are updated using (2) with deterministic gradients,

min
1≤t≤T

S(Xt) = O

(
1√
T

)
.

Proof In the setting of Proposition 4, note that η = Θ
(

1√
T

)
and both ∇K(M̃) and λX having

bounded norm implies that the right-hand side of (16) is O
(
1
T

)
. The claim follows after dividing

both sides by η and realizing Γt,∆t ≥ 0 by Lemma 1 and at, bt ≥ 0.
Now in the setting of Proposition 5, we have that the right-hand side of (27) is O

(
1√
T

)
. The

claim follows upon realizing

S(Xt) = ∥∇F(Xt)∥tr + ⟨λXt,∇F(Xt)⟩ ≥ ∥∇F(Xt)∥tr − ∥λXt∥op ∥∇F(Xt)∥tr ≥ 0. (28)
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E.3. Convergence rate of LION-K with stochastic gradient

We now show results analogous to the ones in Appendix E.2 when using (3) with stochastic gradi-
ents. The following lemmas will be useful for bounding the noise arising from stochastic gradients.

Lemma 4 Let K(X) = ∥X∥ for a norm ∥·∥ on X. Then for all X ∈ X, K∗(∇K(X)) = 0.

Proof By definition of a subgradient and Lemma 2,

K(Y) ≥ K(X) + ⟨∇K(X),Y −X⟩ = ⟨∇K(X),Y⟩

for all Y ∈ X, which implies that

0 ≤ ∥∇K(X)∥∗ = sup
Y ̸=0

⟨∇K(X),Y⟩
K(Y)

≤ 1

by definition of the dual norm. We conclude that K∗(∇K(X)) = 0 by Fact 1.

Lemma 5 Let X,Y be X-valued random variables satisfying Var(Y) <∞, and letK(X) = ∥X∥
for a norm ∥·∥ on X. Then there exists a constant CK such that

E [⟨E[Y]−Y,∇K(X+ ϵY)⟩] ≤ CK
√

Var(Y).

Proof By the Fenchel–Young inequality and Lemma 4,

⟨E[Y]−Y,∇K(X+ ϵY)⟩ ≤ K(E[Y]−Y) +K∗(∇K(X+ ϵY)) = K(E[Y]−Y).

By the equivalence of norms on finite-dimensional vector spaces, there exists a constant CK such
that K(X) ≤ CK ∥X∥F. Taking expectations,

E [⟨E[Y]−Y,∇K(X+ ϵY)⟩] ≤ E [K(E[Y]−Y)] ≤ CKE [∥E[Y]−Y∥F]

≤ CK

√
E
[
∥E[Y]−Y∥2F

]
= CK

√
Var(Y),

where the second line uses Jensen’s inequality.

For MUON where K(X) = ∥X∥tr and ∇K(X) = msgn(X), we can let CK =
√
min(n,m).

Lemma 6 Let X,Y be X-valued random variables satisfying

Var(X) ≤ σ2, Var(Y) ≤ σ2, and ∥E[X]− E[Y]∥F ≤ R.

Then E[∥X−Y∥F] ≤ 2σ +R.

Proof We have

E[∥X−Y∥F] ≤ E[∥X− E[X]∥F + ∥E[X]− E[Y]∥F + ∥Y − E[Y]∥F]

≤
√

E
[
∥X− E[X]∥2F

]
+R+

√
E
[
∥Y − E[Y]∥2F

]
≤ 2σ +R,

where the first line uses the triangle inequality and the second line uses Jensen’s inequality.
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Lemma 7 Let G, X, and Y be X-valued random variables satisfying E[G | X] = Y. Then

E [∥Y∥tr + ⟨λX,Y⟩] ≤ E[∥G∥tr + ⟨λX,G⟩].

Proof Trivial by Jensen’s.

The following result is a stochastic analog of Theorem 3.

Theorem 4 In the setting of Theorem 3 and under Assumption 3, let K be a norm on X, and
suppose instead that Xt, Mt, and M̃t are updated using (3) with stochastic gradients. Then

min
1≤t≤T

E
[〈
∇K(M̃t)− λXt, M̃t −∇K∗(λXt)

〉]
= O

(
1√
T

+
σ

√
nbatch

)
min

1≤t≤T
E
[〈
∇K(M̃t)−∇K(Mt), M̃t −Mt

〉]
= O

(
1√
T

+
σ

√
nbatch

)
.

Moreover, when Xt, Mt, and M̃t are updated using (2) with stochastic gradients,

min
1≤t≤T

E[S(Xt)] = O

(
1√
T

+
σ

√
nbatch

)
.

Proof Let δt := ∇K(M̃t+1)− λXt+1. Using the notation of Proposition 4, we have

Ht+1 −Ht

≤ ηt ⟨δt, at∇K∗(λXt+1)− ((at + bt)β1 − btβ2)Mt + (at − (at + bt)β1 + btβ2)∇F(Xt)⟩

+ btηt

〈
∇K(Mt+1)− λXt+1, M̃t+1 −Mt+1

〉
+

L

2
∥Xt+1 −Xt∥2F

= −ηt
〈
δt, at(M̃t+1 −∇K∗(λXt+1)) + bt(M̃t+1 −Mt+1)

〉
+ ηt ⟨δt,∇F(Xt)−Gt⟩

+ btηt

〈
∇K(Mt+1)− λXt+1, M̃t+1 −Mt+1

〉
+

L

2
∥Xt+1 −Xt∥2F

= −ηt(atΓt + bt∆t) +
η2tL

2
∥δt∥2F + ηt ⟨δt,∇F(Xt)−Gt⟩ .

(29)
It remains to bound E[⟨δt,∇F(Xt)−Gt⟩]. Recalling (3),

δt =
1

1 + ηtλ
∇K(M̃t+1)−

λ

1 + ηtλ
Xt,

so

E[⟨δt,∇F(Xt)−Gt⟩] = E
[〈

1

1 + ηtλ
∇K(M̃t+1)−

λ

1 + ηtλ
Xt,∇F(Xt)−Gt

〉]
=

1

1 + ηtλ
E
[〈
∇K(M̃t+1),∇F(Xt)−Gt

〉]
− λ

1 + ηtλ
E [⟨Xt,∇F(Xt)−Gt⟩]

=
1

1 + ηtλ
E [⟨∇K(β1Mt − (1− β1)Gt),∇F(Xt)−Gt⟩]

≤ CKσ

(1 + ηtλ)
√
nbatch

,
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where the last line uses Lemma 5 with X ← β1Mt, Y ← Gt, ϵ ← −(1− β1), and some constant
CK. Substituting into (29),

E[Ht+1 −Ht] ≤ E
[
−ηt(atΓt + bt∆t) +

η2tL

2
∥δt∥2F +

ηtCKσ

(1 + ηtλ)
√
nbatch

]
. (30)

Taking ηt = η, rearranging (30), summing over T iterations, and dividing both sides by ηT yields

1

T

T−1∑
t=0

E[atΓt + bt∆t] ≤ E

[
H0 −HT

ηT
+

ηL

2T

T∑
t=1

∥∥∥∇K(M̃t)− λXt

∥∥∥2
F
+

CKσ

(1 + ηλ)
√
nbatch

]
.

(31)
To show the result for MUON, we adapt the proof of Proposition 5. We have

E[∥Gt∥tr + ⟨λXt,Gt⟩]

≤ E[Γt−1] + E
[
∥msgn(Gt) + λXt∥F

∥∥∥Gt + M̃t

∥∥∥
F

]
≤ E[Γt−1] + 2CK(E[∥Gt −Gt−1∥F] + β1E[∥Gt−1 +Mt−1∥F])

≤ E[Γt−1] + 2CK

(
2σ

√
nbatch

+ 2ηCKL

)
+ 2β1CK

t−1∑
k=1

βt−k−1
2 E[∥Gk −Gk−1∥F] + 2β1β

t−1
2 CKE[∥G0 +M0∥F]

≤ E[Γt−1] + 2CK

(
2σ

√
nbatch

+ 2ηCKL

)
+

2β1CK
1− β2

(
2σ

√
nbatch

+ 2ηCKL

)
+ 2β1β

t−1
2 CKE[∥G0 +M0∥F]

= E[Γt−1] +
4CK(1 + β1 − β2)

1− β2

(
σ

√
nbatch

+ ηCKL

)
+ 2β1β

t−1
2 CKE[∥G0 +M0∥F],

where the fourth and seventh lines use Lemma 6. Now, as before,

1

T

T∑
t=1

E[S(Xt)] =
1

T

T∑
t=1

E[∥∇F(Xt)∥tr + ⟨λXt,∇F(Xt)⟩] ≤
1

T

T∑
t=1

E[∥Gt∥tr + ⟨λXt,Gt⟩]

≤ 1

T

T∑
t=1

(
E[Γt−1] + 2β1β

t−1
2 CKE[∥G0 +M0∥F]

)
+

4CK(1 + β1 − β2)

1− β2

(
σ

√
nbatch

+ ηCKL

)

≤ 1

T

T−1∑
t=0

(
E[atΓt + bt∆t] + 2β1β

t
2CKE[∥G0 +M0∥F]

)
+

4CK(1 + β1 − β2)

1− β2

(
σ

√
nbatch

+ ηCKL

)
≤ E

[
H0 −HT

ηT

]
+ 2ηC2

KL+
CKσ

(1 + ηλ)
√
nbatch

+
2β1CKE[∥G0 +M0∥F]

(1− β2)T

+
4CK(1 + β1 − β2)

1− β2

(
σ

√
nbatch

+ ηCKL

)
,

where the first line uses Lemma 7 and the fifth line uses (31).
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E.4. Convergence of MUON to the set of KKT points

In this section, we use LaSalle’s invariance principle, Proposition 3, and Theorem 4 to show that
MUON converges to the set of KKT points of (5).

Definition 4 (ω-limit set) Let {Xt}t∈N be a stochastic process. A set M is called the ω-limit set of
the process if it is the minimal closed set satisfying

Pr
(
lim
t→∞

d(Xt,M) = 0
)
= 1.

In other words, M is the smallest closed set such that the trajectories approach M a.s. as t → ∞.
This is equivalent to M being the support of the union of all limit measures of {Xt}t∈N.

Lemma 8 Let X be a nonnegative random variable such that E[X] = 0. Then X = 0 a.s.

Proof By the layer cake representation,

0 = E[X] =

∫ ∞

0
Pr(X > t)dt,

so Pr(X > t) = 0 for (Lebesgue) almost every t > 0. Since Pr(X > t) is a right-continuous
function of t, we have that Pr(X > t) = 0 for all t > 0. The conclusion follows from

Pr(X > 0) = lim
t↘0

Pr(X > t) = 0.

Lemma 9 (LaSalle’s invariance principle for stochastic dynamical systems) Let {Xt}t∈N be a
stochastic process contained in a bounded set a.s., and suppose there exist a nonnegative function
V and a nonnegative, lower semicontinuous function h such that

E[V(Xt+1) | Ft]− V(Xt) ≤ −αth(Xt+ℓ) + γt a.s.,

where {Ft}t∈N is the natural filtration of {Xt}t∈N, ℓ ∈ N, and the nonnegative sequences {αt}t∈N
and {γt}t∈N satisfy

∞∑
t=0

αt =∞ and
∞∑
t=0

γt <∞.

Let M be the ω-limit set of {Xt}t∈N. Then M is contained in the set {X ∈ X | h(X) = 0}.

Proof Define the auxiliary function

V̂t := V(Xt)− gt, where gt :=

t−1∑
s=0

γs.

Then, we have

E
[
V̂t+1 | Ft

]
− V̂t = E[V(Xt+1) | Ft]− V(Xt)− γt ≤ −αth(Xt+ℓ) ≤ 0 a.s. (32)
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By (32), the nonnegativity of V , and limt→∞ gt <∞, it follows that {V̂t}t∈N is a supermartin-
gale with supt∈N E

[
V̂(Xt)

−
]
< ∞. By Doob’s supermartingale convergence theorem, we con-

clude that {V̂t}t∈N and hence {V(Xt)}t∈N converges almost surely to a random variable with finite
expectation.

Now, taking expectations of (32) and summing from t = 0 to∞, we obtain

∞∑
t=0

E[αth(Xt+ℓ)] =
∞∑
t=ℓ

αt−ℓE[h(Xt)] <∞.

Since
∑∞

t=0 αt =∞, this implies lim inft→∞ E[h(Xt)] = 0. By Fatou’s lemma, we have

0 ≤ E
[
lim inf
t→∞

h(Xt)
]
≤ lim inf

t→∞
E[h(Xt)] = 0

and hence
lim inf
t→∞

h(Xt) = 0 a.s.

by Lemma 8. By the lower semicontinuity and nonnegativity of h and the (almost sure) boundedness
of Xt, the ω-limit set M of {Xt}t∈N must satisfy h(X) = 0 for all X ∈M, i.e.

M ⊆ {X ∈ X | h(X) = 0}.

Theorem 5 Under Assumptions 1, 2, and 4, let 0 ≤ β1 < β2 < 1, λ > 0, ηt ≤ 1
λ , and

∑∞
t=0 ηt =

∞, and suppose Xt, Mt, and M̃t are updated using (2). Then Xt converges to

B := {X ∈ X | ∥λX∥op ≤ 1} a.s.

Proof If Xt enters B within a finite amount of time, then it remains there thenceforth by Proposi-
tion 2. Now suppose Xt does not enter B within any finite amount of time. Let

V(X) = max

(
∥X∥op −

1

λ
, 0

)
, h(X) = max

(
∥X∥op −

1

λ
, 0

)
, αt = ηtλ, and γt = 0.

We verify that Xt is bounded a.s., V is nonnegative, h is nonnegative and lower semicontinuous,∑∞
t=0 αt =∞,

∑∞
t=0 γt <∞, and

E[V(Xt+1) | Xt]− V(Xt) = E
[
∥Xt+1∥op −

1

λ

∣∣∣∣ Xt

]
−
(
∥Xt∥op −

1

λ

)
≤ −αth(Xt) + γt a.s.

by Proposition 2. Thus Xt converges to {X ∈ X | h(X) = 0} = B a.s. by Lemma 9.

Theorem 6 In the setting of Theorem 5, let ∥λX0∥op ≤ 1,
∑∞

t=0 η
2
t <∞, and

∞∑
t=0

ηt

[
σ2

nbatch

] 1
2

t

<∞.

Then Xt converges to the set of KKT points of (5) a.s.
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Proof Let

H(X,M, M̃, η) = F(X)−F⋆ +
ηβ1

ηλ(1− β1) + (1− β2)
(∥M∥tr − ⟨λX,M⟩),

h(X,M, M̃, η) =
∥∥∥M̃∥∥∥

tr
−
〈
λX, M̃

〉
, αt = ηt, and γt = 2η2tC

2
KL+ ηtCK

[
σ2

nbatch

] 1
2

t

,

where CK :=
√

min(n,m). Letting Zt := (Xt,Mt, M̃t, ηt) and using the notation of Proposition 4
with K(X) = ∥X∥tr and∇K(X) = msgn(X), we verify that Zt is bounded a.s.,H is nonnegative,
h is nonnegative and lower semicontinuous,

∑∞
t=0 αt =∞,

∑∞
t=0 γt <∞, and

E[H(Zt+1) | Zt]−H(Zt) ≤ −αt(atΓt + bt∆t) + γt ≤ −αth(Zt+1) + γt a.s.

by (30) and atΓt + bt∆t ≥ Γt = h(Zt+1). Thus by Lemma 9, h(Zt) = 0 a.s. as t→∞, i.e.

lim
t→∞

∥∥∥M̃t

∥∥∥
tr
−
〈
λXt, M̃t

〉
= 0 a.s.

It follows that, with probability 1,

lim
t→∞
S(Xt)

= lim
t→∞

(∥∥∥∇F(Xt) + M̃t − M̃t

∥∥∥
tr
+
〈
λXt,∇F(Xt) + M̃t − M̃t

〉)
≤ lim

t→∞

(∥∥∥∇F(Xt) + M̃t

∥∥∥
tr
+
∥∥∥M̃t

∥∥∥
tr
+
〈
λXt,∇F(Xt) + M̃t

〉
−
〈
λXt, M̃t

〉)
≤ lim

t→∞

(∥∥∥∇F(Xt) + M̃t

∥∥∥
tr
+ ∥λXt∥op

∥∥∥∇F(Xt) + M̃t

∥∥∥
tr

)
≤ lim

t→∞
2
∥∥∥∇F(Xt) + M̃t

∥∥∥
tr

≤ lim
t→∞

(
4ηt−1C

2
KL+ 4β1C

2
KL

t−1∑
k=1

βt−k−1
2 ηk−1 + 2β1β

t−1
2 CK ∥∇F(X0) +M0∥F

+ 2(1− β1) ∥Gt−1 −∇F(Xt−1)∥tr + 2β1(1− β2)

t−2∑
k=0

βt−k−2
2 ∥Gk −∇F(Xk)∥tr

)
= 0,

where the fifth line uses (26), the sixth line vanishes because of the asymptotically deterministic
gradient, and the seventh line uses the Silverman–Toeplitz theorem to show that the sums vanish.
By Proposition 3, we conclude that Xt converges to the set of KKT points of (5) a.s.

Remark 1 The feasible region B has nonempty interior, so Slater’s condition holds. This implies
that the KKT conditions are necessary for optimality, and under the additional assumption that F
is convex, the KKT conditions also become sufficient for optimality. In this case, Theorem 6 shows
that the algorithm converges to the set of optimal solutions of (5).

Remark 2 The
∑∞

t=0 ηt

[
σ2

nbatch

] 1
2

t
< ∞ condition in Theorem 6 can be achieved by using deter-

ministic gradients or sufficiently increasing batch sizes, e.g. [nbatch]t = Θ(t) when ηt = O(t−1).

Remark 3 Theorem 6 does not guarantee convergence to a single point; compare with Frank–
Wolfe, which can fail to converge even in the smooth convex setting [5].
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Figure 5: Trajectories of MUON for the matrix optimization problem minX∈R2×2 f(X), where
f(X) = ∥AX−B∥2F + µ ∥X∥2F, A,B ∈ R2×2, and µ ∈ R>0, evaluated for two dif-
ferent values of λ: 1.5 (blue) and 5.0 (green). The colored boxes illustrate the constraint
sets induced by ∥X∥∞ ≤ 1

λ : the blue box corresponds to λ = 1.5, and the green box
corresponds to λ = 5.0. The red dot indicates the optimal solution.

Figure 6: MUON with λ = 1.25, initialized within the feasible region (upper panel), and λ =
4, initialized outside the feasible region (lower panel). The green region denotes the
constraint region. Both cases illustrate convergence and the monotonic decrease of the
Lyapunov functionH.

Appendix F. Additional experiments

F.1. Toy examples

Figure 5 shows trajectories of singular values under two distinct constraint strengths with β1 =
β2 = 0.95 and η = 0.001. The singular values quickly move into and remain within their respective
constraint regions, clearly demonstrating the enforcement of spectral norm constraints.
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Figure 7: Behavior of the LION-K optimizer under different choices ofK. Using the same objective
function as in Figure 5, varying the choice of K induces distinct implicit constraints and
penalty structures on the objective function. The colored boxes illustrate the constraint
sets induced by K. Here, ∥σi(X)∥p denotes the Schatten p-norm of X.

In the upper panel of Figure 6, we set λ = 1.25 and initialize two trajectories within the fea-
sible region (shaded green): one trajectory starts at X0 = diag (0.01, 0.75) (red) and the other at
X1 = diag (0.7, 0.7) (blue). Both trajectories converge to the feasible optimum, although the ob-
jective function exhibits a nonmonotonic spike near iteration 2000. Despite this, the constructed
Lyapunov function H from Proposition 4 decreases monotonically, verifying the theoretical con-
vergence guarantees. In the lower panel, we increase λ to 4 and initialize trajectories outside the
feasible region at X0 = diag (0.1, 0.95) (red curve) and X1 = diag (0.7, 0.9) (blue curve). Here,
since the optimal solution is infeasible, the trajectories converge to a feasible projection. Although
the objective function plateaus around iteration 500, the Lyapunov function (7) continues to decrease
monotonically.

F.2. Generalizations via different convex functions

We explore the flexibility provided by the LION-K framework by varying the convex map K. Fig-
ure 7 shows results from applying LION-K with alternative convex maps on the previously defined
matrix optimization problem.
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