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Abstract

Reasoning has long been viewed as an001
emergent property of large language models002
(LLMs), appearing at or above a certain scale003
(∼100B parameters). However, recent studies004
challenge this assumption, showing that small005
language models (SLMs) can also achieve com-006
petitive reasoning performance. SLMs are in-007
creasingly favored for their efficiency and de-008
ployability. However, there is a lack of system-009
atic study on the reasoning abilities of diverse010
SLMs, including those trained from scratch011
or derived from LLMs through quantization,012
pruning, and distillation. This raises a critical013
question: Can SLMs achieve reasoning abil-014
ities comparable to LLMs? In this work, we015
systematically survey, benchmark, and ana-016
lyze 72 SLMs from six model families across017
14 reasoning benchmarks. For reliable eval-018
uation, we examine four evaluation methods019
and compare four LLM judges against human020
evaluations on 800 data points. We repeat all021
experiments three times to ensure a robust per-022
formance assessment. Additionally, we ana-023
lyze the impact of different prompting strate-024
gies in small models. Beyond accuracy, we025
also evaluate model robustness under adver-026
sarial conditions and intermediate reason-027
ing steps. Our findings challenge the assump-028
tion that scaling is the only way to achieve029
strong reasoning. Instead, we foresee a future030
where SLMs with strong reasoning capabilities031
can be developed through structured training032
or post-training compression. They can serve033
as efficient alternatives to LLMs for reasoning-034
intensive tasks. 1035

1 Introduction036

For a long time, reasoning in language models was037

considered an emergent property of large language038

models (LLMs), appearing at or above a certain039

scale (∼100B parameters). Early studies (Wei et al.,040

1All model responses, evaluation results, and GPT-based
judgments will be released.

2022b; Chowdhery et al., 2023; Brown et al., 2020) 041

suggested that multi-step reasoning only emerges 042

in models exceeding 100B parameters, as shown by 043

models like GPT-4 (OpenAI et al., 2024) and Gem- 044

ini (Team et al., 2024). However, recent findings 045

challenge this assumption. Phi-3.5-mini (Abdin 046

et al., 2024), with just 3.8B parameters, performs 047

comparably to GPT-3.5, which suggests that rea- 048

soning ability can be achieved in small language 049

models (SLMs) as well. 050

A more recent breakthrough, DeepSeek-R1 051

(DeepSeek-AI et al., 2025), has shown impressive 052

reasoning ability. While DeepSeek-R1 is a large 053

model (671B), its reasoning abilities were distilled 054

into smaller models (1.5B–70B parameters, Qwen 055

Family (Qwen et al., 2025)). This further chal- 056

lenges the assumption that reasoning ability only 057

comes from scaling and raises an important ques- 058

tion: Can SLMs also develop strong reasoning ca- 059

pabilities? Before answering this, we need first 060

to define what qualifies as an SLM. The definition 061

of SLM varies widely, depending on model size, 062

efficiency, and deployment constraints. 063

In this work, we define SLMs as models signifi-
cantly smaller than state-of-the-art LLMs, typi-
cally ranging from a few hundred million to tens
of billions of parameters, or models that achieve
similar computational efficiency through com-
pression (e.g., quantization, pruning).

064

There has been growing interest in SLMs due 065

to their lower inference costs, reduced latency, and 066

local deployment feasibility. Unlike LLMs that 067

rely on cloud APIs for deployment, SLMs can be 068

deployed locally (Wang et al., 2024), mitigating 069

data exposure risks. However, their reasoning capa- 070

bilities remain underexplored, particularly in com- 071

pressed (Zhu et al., 2024b) variants. For example, 072

can a quantized LLaMA-70B outperform an 8B 073

variant? This raises another question: Can SLMs 074
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retain reasoning ability after undergoing compres-075

sion (e.g., Quantization)? And to what extent?076

Prior research has lacked a detailed benchmark-077

ing effort that quantifies how different SLM strate-078

gies impact reasoning. In this work, we aim to fill079

this gap by systematically benchmarking SLMs’080

reasoning ability and providing clear guidance for081

researchers developing or deploying SLMs.082

First, we establish a reliable evaluation metric083

for assessing reasoning performance. Since rea-084

soning is a generative task, defining an objective085

evaluation metric is non-trivial. Different methods086

often produce conflicting results compared to hu-087

man evaluation, which makes it difficult to assess088

the model’s actual reasoning ability. Manual evalu-089

ation is impractical, whereas rule-based evaluation090

expects the model to follow specific instructions091

(Huang et al., 2024). Sometimes, it can be unfair092

since we are testing the model’s "reasoning," not093

"instructions following" ability. Studies (Wei et al.,094

2022a) further show that this instruction follow-095

ing ability appears when scaled to ∼100B parame-096

ters. To determine the best evaluation framework,097

we systematically compare different parsing-based098

methods, LLM-as-a-Judge, and widely used bench-099

marks like lm-eval-harness to our human evalua-100

tion. Our results show that GPT-4-Turbo and GPT-101

4o align most closely with human judgment (98%102

agreement), which we use as the main evaluation103

metric to benchmark SLM reasoning.104

Second, we conduct a comprehensive eval-105

uation of 72 SLMs of six different families106

(such as Llama and Qwen), including their quan-107

tized, pruned, and distilled variants. We evaluate108

across eight widely used reasoning benchmarks:109

GSM8K, MATH, MathQA ARC-C, ARC-E, Com-110

monsenseQA, OpenBookQA, Hellaswag and six111

sorting tasks: 8, 16, 32 numbers with only positive112

and mixed randomly generated numbers to ensure113

that performance reflects the model’s actual reason-114

ing ability rather than memorization. We observed115

that all models do not respond similarly to differ-116

ent prompting strategies. Recent findings (Plaat117

et al., 2024; Qwen et al., 2025; Yang et al., 2024)118

suggest that some language models internally gen-119

erate step-by-step reasoning (Wei et al., 2022c),120

even when prompted directly. So, on GSM8K,121

we tested SLMs prompt sensitivity using 5 differ-122

ent prompting strategies: Direct I/O, COT, 5-Shot,123

COT 5-Shot, and 8-Shot. We conduct all experi-124

ments three times and report the standard deviation125

to ensure a robust evaluation of the model’s perfor-126

mance. 127

Finally, we test the robustness of SLM reason- 128

ing on three specialized benchmarks: MR-Ben, 129

which evaluates the ability to locate and analyze po- 130

tential errors in reasoning steps (Zeng et al., 2024b); 131

MR-GSM8K, which evaluates intermediate rea- 132

soning ability (Zeng et al., 2024a); and GSM-Plus, 133

which measures resilience to adversarial perturba- 134

tions (Li et al., 2024). To evaluate actual reasoning 135

and not memorization, we select these datasets, re- 136

leased after the models’ knowledge cut-off time, 137

to ensure no prior exposure. Our results indicate 138

that certain open-sourced SLMs like Qwen2.5-32B 139

rival proprietary LLMs like GPT-4-Turbo in inter- 140

mediate reasoning. This suggests that reasoning is 141

not solely a function of scale but also structured 142

training and optimization. 143

The remaining sections of this paper are struc- 144

tured as follows: Section 2 reviews the recent work 145

on SLMs’ reasoning and evaluation methodolo- 146

gies. Section 3 discusses our benchmarking setup, 147

evaluation process, and reasoning tasks. Section 148

4 presents experimental results and insights, ana- 149

lyzing reasoning performance and its robustness. 150

Finally, Section 5 concludes with key takeaways 151

and directions for future research. 152

2 Related Work 153

Recent Surveys on SLMs Recent surveys pro- 154

vide insights into SLM advancements. Some focus 155

on reasoning and task-specific improvements (Sub- 156

ramanian et al., 2025; Wang et al., 2024), while 157

others survey SLM performance across various ap- 158

plications (Lu et al., 2024; Nguyen et al., 2024). 159

These efforts highlight the increasing viability of 160

SLMs as efficient alternatives to LLMs, particu- 161

larly in resource-constrained settings. However, 162

existing surveys lack a systematic benchmarking of 163

diverse SLMs to quantify their performance across 164

multiple reasoning benchmarks. 165

SLM Reasoning Recent studies have explored 166

the reasoning abilities of SLMs, such as Hymba- 167

1.5B (Dong et al., 2025) and Llama-3-1B (Fedorov 168

et al., 2024), particularly for mathematical and 169

logical tasks. Some approaches train SLMs di- 170

rectly on reasoning tasks, such as rStar-Math (Guan 171

et al., 2025), which uses Monte Carlo Tree Search 172

(MCTS) and a process preference model. Special- 173

ization through fine-tuning on specific datasets also 174

enhances reasoning (Fu et al., 2023) but may re- 175

duce generalization. 176
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Another line of research uses knowledge distilla-177

tion (Gou et al., 2021; Phuong and Lampert, 2019)178

to transfer reasoning capabilities from LLMs to179

SLMs (Zhu et al., 2024a). Similarly, distillation180

strategies, like feedback-driven (Zhu et al., 2024c)181

and counterfactual distillation (Feng et al., 2024),182

refine reasoning abilities and improve generaliza-183

tion to out-of-distribution tasks. Instruction-tuning-184

CoT (Ranaldi and Freitas, 2024) and fine-tuning on185

CoT-generated outputs (Magister et al., 2023) have186

also shown improvements in multi-step reasoning.187

Furthermore, structural modifications, such as188

equation-only formats (Kim et al., 2024) and syn-189

thetic data training (e.g., Orca-Math (Mitra et al.,190

2024)), have also improved performance. Efficient191

architectures like Phi-3-mini (Abdin et al., 2024)192

match the performance of larger models while be-193

ing deployable on edge devices. Self-correction194

mechanisms like SCORE (Zhang et al., 2024) en-195

hance reasoning reliability, while models like Orca196

2 (Mitra et al., 2023) and OpenELM (Mehta et al.,197

2024) optimize efficiency through improved train-198

ing strategies. In this paper, we evaluate a broad199

spectrum of SLMs, including trained-from-scratch,200

via different methods and their quantized, pruned,201

and distilled variants.202

Reasoning Evaluation Assessing reasoning in203

language models is challenging due to the complex-204

ity of evaluating open-ended, multi-step responses.205

Various evaluation methods have been explored,206

including rule-based parsing, human evaluation,207

and LLM-as-a-Judge frameworks. Parsing-based208

methods provide precise accuracy but struggle with209

models that generate responses in unpredictable210

formats, often penalizing correct answers due to211

formatting inconsistencies. Human evaluation re-212

mains the gold standard but is expensive, time-213

consuming, and prone to subjectivity.214

Recently, LLM-as-a-Judge has gained popularity215

as an alternative, with studies showing that models216

like GPT-4 Turbo and Llama-3.1 70B align closely217

with human judgments, validating their effective-218

ness in evaluation tasks (Thakur et al., 2024). LLM-219

based assessments have been particularly effective220

for structured tasks, where models like InstructGPT221

and ChatGPT produce results comparable to ex-222

pert human raters (Chiang and Lee, 2023). Similar223

trends are observed in summarization and grammat-224

ical error correction, where GPT-4 demonstrates225

strong agreement with human rankings (Sottana226

et al., 2023). Beyond accuracy, studies on NLG227

evaluation (Wang et al., 2023) highlight ChatGPT’s 228

strong correlation with human assessments in cre- 229

ative text generation. Recent surveys (Gu et al., 230

2025; Chang et al., 2024) further validate LLM-as- 231

a-Judge as a reliable benchmarking tool. 232

However, these evaluation methods for assessing 233

reasoning in SLMs have not been systematically 234

compared. It remains unclear which approach best 235

reflects true reasoning capabilities across different 236

models. Our work addresses this gap by assessing 237

multiple evaluation methods, comparing LLM-as- 238

a-Judge against human evaluation, rule-based pars- 239

ing, and widely used open-source frameworks like 240

lm-eval-harness. Then, we systematically bench- 241

mark SLMs across multiple reasoning tasks using 242

a metric that closely aligns with human evaluation. 243

3 Benchmarking Experiment Setup 244

Unless stated otherwise, each experiment was re- 245

peated three times, and we reported the mean and 246

standard deviation of model performance across all 247

datasets to ensure the reliability of the results. Ap- 248

pendix C details all parsing scripts and prompt tem- 249

plates, including those used for different prompting 250

strategies and GPT-based evaluations. 251

3.1 Evaluation Process 252

Our first step was to select a reliable assessment 253

method. Instead of using standard parsing tech- 254

niques to compare model responses with ground 255

truth, we opted for LLM-as-a-Judge, using GPT-4 256

as the primary evaluator for most tasks. 257

Parsing Issues Standard parsing techniques rely 258

on fixed patterns, which can be challenging for 259

generative models to follow consistently. We ob- 260

served that smaller models, in particular, struggle 261

to follow strict output formats. This leads to cases 262

where a model provides a correct answer but is 263

penalized for deviating from the expected struc- 264

ture. Prior work (Wei et al., 2022c) also shows 265

that instruction-following capabilities improve with 266

model scale (∼100B), making parsing an unfair 267

metric for smaller models. 268

To establish a more reliable evaluation metric, 269

we conducted three rounds of human evaluation 270

on 100 randomly sampled data points from the 271

GSM8K, ARC-E, ARC-C, and CommonsenseQA 272

datasets. Table 1 compares evaluation meth- 273

ods, including standard parsing, the widely used 274

lm-evaluation-harness framework, and GPT-based 275

evaluation (LLM-as-a-judge). 276

3



Metric SmolLM2-1.7B-Instruct Llama-3.1-8B-Instruct

(GSM8K) (ARC-E) (ARC-C) (CommonsenseQA) (GSM8K) (ARC-E) (ARC-C) (CommonsenseQA)

Human Evaluation 43 75 56 62 81 93 82 69
lm-eval-harness 18 70 37 50 22 82 51 76
Parsing 37 8 16 9 84 3 6 7
Direct Answer 5 58 49 42 18 93 82 77

LLM-as-a-judge

gpt-3.5-turbo 49 (94) 75 (100) 55 (99) 62 (100) 83 (98) 91 (98) 81 (99) 66 (97)
gpt-4-turbo 42 (99) 75 (100) 56 (100) 61 (99) 81 (100) 93 (100) 82 (100) 69 (100)
gpt-4o 41 (98) 75 (100) 56 (100) 63 (97) 81 (100) 93 (100) 82 (100) 70 (99)
gpt-4o-mini 41 (98) 75 (100) 55 (99) 61 (99) 80 (99) 93 (100) 76 (94) 69 (100)

Table 1: Comparison of Human Evaluation with different evaluation metrics and LLM-as-a-judge on 100 randomly
sampled data points across four datasets with two models. Also, includes a comparison of four different GPTs as
judges. Scores are reported as [<Accuracy Score> (Human Agreement %)]. Closer to Human Evaluation is
better.

Choosing the Best Judge To select the most re-277

liable judge, we evaluated GPT models based on278

two factors: 1) Reliability (Correctness): How279

closely does the judge’s evaluation align with hu-280

man assessments? 2) Human Agreement: How281

often does the judge agree with human evaluators?282

Table 1 shows that GPT-4-Turbo provides the283

closest match to human evaluation, with GPT-4o284

performing nearly as well (only one point lower).285

Given its comparable accuracy and 50% lower286

cost, we selected GPT-4o as our primary evalu-287

ator for ARC-Easy, ARC-Challenge, and Common-288

senseQA. For GSM8K, we opted for GPT-4-Turbo289

due to its slightly higher reliability in mathematical290

reasoning tasks.291

Task-Specific Evaluation Methods For sorting292

tasks, standard LLM-based evaluation was unsuit-293

able due to the need for precise numerical ordering.294

Instead, we used a robust regex-based parsing ap-295

proach, identifying 13 common response patterns296

(more details in Appendix C.3) to extract and vali-297

date the sorted lists against the ground truth. Unlike298

prior work (Besta et al., 2024), we did not apply299

for partial credit. Our evaluation was strictly based300

on whether the model returned the correct final list.301

For MR-Ben (identifying errors in reasoning)302

and MR-GSM8K (intermediate reasoning evalua-303

tion), we used the provided evaluation script with304

GPT-4o as the judge. Appendix D.6 includes more305

details on Judge(s) reliability (TPR and TNR).306

3.2 Reasoning Tasks307

Task 1 - Math Reasoning We evaluated math-308

ematical reasoning using GSM8K (Cobbe et al.,309

2021), an arithmetic and word problems bench-310

mark. We also evaluate on MathQA (Amini et al.,311

2019) and MATH (Hendrycks et al., 2021) dataset 312

using lm-eval-harness (Results in Appendix B). 313

Models were tested under five prompting strate- 314

gies: Direct I/O, Chain-of-Thought (CoT), 5-shot, 315

5-shot CoT, and 8-shot. 316

Task 2 - Science Reasoning We used ARC-Easy 317

and ARC-Challenge (Clark et al., 2018) for science 318

reasoning, which includes multiple-choice ques- 319

tions requiring logical deduction. Unlike GSM8K, 320

where CoT and multi-shot prompting are effec- 321

tive, these tasks rely more on factual knowledge 322

retrieval. Therefore, we used direct I/O prompting 323

for consistency in science reasoning. 324

Task 3 - Commonsense Reasoning We assessed 325

commonsense reasoning using CommonsenseQA 326

(Talmor et al., 2019), which tests everyday knowl- 327

edge and inference. Similar to science reasoning, 328

we use direct I/O prompting for consistency. We 329

also evaluate on OpenBookQA (Mihaylov et al., 330

2018a) and Hellaswag (Zellers et al., 2019) dataset 331

using lm-eval-harness (Results in Appendix B) 332

Task 4 - Sorting Numbers We designed a cus- 333

tom dataset (randomly generated) to evaluate log- 334

ical reasoning in structured numerical tasks. The 335

task was divided into two categories: sorting pos- 336

itive integers and sorting mixed integers (positive 337

and negative). We use positive numbers in the 338

range [1, 100] and mixed numbers in the range 339

[-100, 100], testing lists of length 8, 16, and 32. 340

Ground truth labels were generated using merge 341

sort algorithm. This task measures the models’ 342

logical reasoning abilities and capability to handle 343

sequential numerical data. Unlike datasets such as 344

GSM8K, ARC-E, and ARC-C, which may have 345

been seen during pre-training, the sorting task con- 346
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sists of randomly generated numbers. This en-347

sures that performance reflects a model’s reason-348

ing ability rather than memorization. Direct I/O349

prompts were used, with responses evaluated using350

our regex-based parsing.351

Task 5 - Robustness To test the SLMs’ reasoning352

robustness, we used three benchmarks (as below)353

that were published after June 2024, ensuring that354

models trained earlier had no exposure to them.355

1) MR-Ben evaluates the model’s ability to locate356

and analyze potential errors in reasoning steps. 2)357

MR-GSM8K assesses step-by-step intermediate358

reasoning. 3) GSM-Plus introduces adversarially359

perturbed inputs to test resilience.360

4 Results and Insights361

We evaluated 72 SLMs across six families: (1)362

SLMs trained from scratch, (2) Llama-3.2, (3)363

Llama-3.1, (4) Mistral and Mistral-Nemo, (5)364

Qwen2, and (6) Qwen2.5. Additionally, we re-365

ported computational requirements (GPU and Disk366

Space) to provide a holistic comparison. Complete367

results are detailed in Appendix A. In addition to368

the GPT-based judge for evaluation, we also eval-369

uated all the model performance with the widely370

used framework, lm-eval-harness, on eight bench-371

marks. Complete Results are detailed in Appendix372

B.373

4.1 Overall Performance374

Our analysis show that emergent properties, i.e.,375

performance improvements not observed in smaller376

models are highly model family-dependent (Ta-377

ble 2) rather than a universal trend across fami-378

lies. For example, Qwen2.5 (7B) outperforms Mis-379

tral (7B) by nearly 35 points on GSM8K despite380

having nearly the exact parameter count. This is381

primarily due to Qwen2.5’s extensive pre-training382

data (18T tokens) (Qwen et al., 2025) and a post-383

training recipe using supervised fine-tuning and384

multi-stage reinforcement learning to align output385

better with humans. This suggests that training386

data and recipes are more critical than parameter387

size alone.388

On ARC-E, larger models such as Llama-3.1389

(70B) consistently achieve near-perfect scores,390

where the more straightforward reasoning tasks391

align well with their knowledge recall capabilities.392

In contrast, smaller models like Qwen2.5 (0.5B)393

and SmolLM2 (1.7B) exhibit performance drops,394

especially on ARC-C, which demands more nu-395

anced reasoning. The performance gap between 396

ARC-E and ARC-C suggests that factual recall 397

(ARC-E) strongly depends on model size. In con- 398

trast, reasoning under ambiguity (ARC-C) benefits 399

more from diverse training data and dataset quality 400

than just scale. 401
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Figure 1: Effect of Prompts on SLM Performance on the
GSM8K. The x-axis represents different model (with the
model size in billions of parameters), and the y-axis rep-
resents mean accuracy, and the bar represents variance
(3-folds). Each line corresponds to different prompting
strategies (Direct I/O, Chain-of-Thought (CoT), 5-shot,
5-shot CoT, and 8-shot).

4.2 Effect of Prompting 402

We find that prompt complexity had a minimal 403

impact on performance across recent models. Re- 404

cent models exhibit strong internal reasoning capa- 405

bilities when either direct I/O or COT multi-shot 406

prompts are used. This suggests that recent train- 407

ing methodologies have already embedded reason- 408

ing capabilities, diminishing the effect of explicit 409

reasoning prompts. This calls for more advanced 410

prompting techniques to enhance reasoning further. 411

More analysis on why explicit COT does not work 412

is detailed in Appendix D.1. 413

On GSM8K, Direct I/O prompts consistently out- 414

perform or match closely with complex prompts 415

such as CoT and multi-shot settings. This suggests 416

that excessive instructions can confuse SLMs rather 417

than improve their reasoning. Figure 1 shows that 418

providing too many instructions or few-shot ex- 419

amples does not improve performance. SLMs per- 420

form better with straightforward queries rather than 421

complex prompts. This suggest the need for task- 422

specific prompt engineering rather than relying on 423

general-purpose strategies like CoT. 424
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Models Computational Requirements (GB) GSM8K ARC CommonsenseQA Sorting_Avg

Model Param. Optimization GPU Memory Disk Space Easy Challenge

Qwen2.5 0.5B None 2.02 0.95 46.80±0.77 62.50±0.21 44.28±1.03 46.90±1.49 2.61
Llama-3.2 1B None 4.73 2.4 36.39±0.47 67.23±1.40 47.50±0.22 48.38±0.45 7.83
Qwen2.5 1.5B None 6.68 2.9 70.00±0.53 87.58±0.21 73.81±0.30 71.85±0.48 29.11
SmolLM2 1.7B None 6.55 3.2 46.17±0.41 75.04±0.18 54.21±1.07 53.18±1.27 16.83
Qwen2.5 3B None 12.42 5.8 84.74±0.28 93.49±0.07 83.73±0.38 76.25±0.29 39.89
Phi-3.5 3.8B None 14.6 7.2 85.47±0.47 95.09±0.14 86.89±0.16 76.11±0.04 47.33
Qwen2.5 7B None 30.05 15 91.76±0.20 96.03±0.17 90.53±0.12 82.66±0.14 57.67

Mistralv0.3 7B None 27.67 14 54.84±0.56 88.99±0.34 76.82±0.29 69.83±0.10 23.11
pruned2.4 27.6 14 30.30±0.94 – – – 9.94

Llama3.1 8B None 30.65 15 83.45±0.41 92.07±0.28 79.58±0.26 74.28±0.52 60.11
pruned (2of4) 30.65 15 51.86±0.34 – – – 15.94

MistralNemo 12B None 57.89 23 86.76±0.57 92.79±0.07 83.70±0.32 72.78±0.78 60.89

Llama3.1 70B
None 57.04 28 94.29±0.40 97.87±0.05 93.37±0.22 84.08±0.54 74.61

GPTQ 8-bit 17.24 16 94.49±0.25 97.90±0.12 93.71±0.24 84.22±0.14 74.78
GPTQ 4-bit 10.65 9.4 94.74±0.32 97.57±0.10 93.17±0.21 83.10±0.19 69.56

Qwen2.5 32B
None 125 62 95.40±0.29 98.26±0.10 95.25±0.18 87.11±0.37 87.17

GPTQ 8-bit 33.81 33 95.73±0.19 98.34±0.02 95.16±0.40 86.62±0.10 87.39
GPTQ 4-bit 52.42 19 95.73±0.09 98.09±0.05 95.19±0.11 87.06±0.58 87.28

Llama3.1 70B
None 269.17 132 95.10±0.28 98.34±0.05 94.43±0.28 83.73±0.58 97.33

W8A8 69.34 68 94.72±0.34 98.43±0.22 94.62±0.14 83.92±0.28 96.89
W4A16 107.34 38 95.15±0.33 98.26±0.08 94.51±0.26 82.77±0.19 95.28

Table 2: Performance and computational requirements of models on GSM8K, ARC, CommonsenseQA, and Sorting
Tasks. The table reports the model size (in billions of parameters), optimization type (if any), GPU memory usage
and disk space (in GB), and accuracy scores for each benchmark. The Sorting_Avg column represents the average
accuracy across 6 different sorting tasks (detailed in Section 4.3).

4.3 Sorting Task Results425

For the sorting tasks, Figure 2 demonstrates that426

SLMs perform well on shorter lists but struggle as427

the list length increases. This highlights limitations428

in their ability to handle long-context numerical429

reasoning. Larger models like Llama-70B manage430

long sequences better, but even they show declining431

performance as task complexity increases (intro-432

ducing -ve numbers).433
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Figure 2: Performance of SLMs on Sorting Tasks. The
x-axis represents different models (with parameters in
billions), the y-axis represents the mean accuracy, and
the bar represents variance (3-folds). Each line corre-
sponds to different sorting tasks (8 +ve, 8 mixed, 16
+ve, 16 mixed, 32 +ve, and 32 mixed numbers).

Furthermore, models struggle more when sorting 434

mixed numbers (both +ve and -ve), with accuracy 435

dropping compared to positive-only sorting. For 436

example, Llama-3.1 (70B) achieves near-perfect ac- 437

curacy on positive-only datasets, but performance 438

drops on mixed numbers. This suggests that han- 439

dling negative numbers introduces an additional 440

layer of complexity that current architectures do 441

not adequately address. Also, as the number length 442

increases, performance drops significantly. This 443

indicates a scalability bottleneck in current archi- 444

tectures for algorithmic reasoning. 445

We also observe failures where models introduce 446

numbers not present in the input or simply repeat 447

the entire input as the output. These errors become 448

more frequent as list length increases, particularly 449

for 32-number lists. More details are provided in 450

Appendix D.5. 451

4.4 Quantization Effects 452

We find that quantization has minimal impact 453

on the reasoning performance of larger models, 454

whereas smaller models suffer more from compres- 455

sion. However, quantizing smaller models is often 456

unnecessary since they are already compact and 457

computationally efficient. On the other hand, com- 458

pressing larger models allows them to match the 459

efficiency of smaller models while retaining supe- 460

rior reasoning capabilities. 461

Figure 3 shows that even with aggressive quanti- 462
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Figure 3: Impact of Quantization on Model Performance across Different Benchmarks. The figure shows the
performance of different models on GSM8K (Direct I/O), Average of ARC-E, and CommonsenseQA, and Average
of all sorting tasks with varying quantization levels. All results are from Qwen2.5 Family. The x-axis represents
the parameters size (in billions), and the y-axis represents the mean accuracy and bar represents variance (3-folds).

zation (4-bit), larger models retain their reasoning463

ability with near-identical performance as their un-464

compressed counterparts. For example, Llama-3.1465

(70B) with W8-A8 quantization retains ∼100% of466

its original accuracy while reducing computational467

cost (GPU) by over 75% (Table 2). Notably, a468

GPTQ 4-bit quantized Qwen2.5 (14B) outperforms469

Qwen2.5 (7B) while requiring ∼1/3rd computa-470

tional resources (GPU), which demonstrate that471

quantized versions of larger models are often more472

effective than standalone small models.473

These findings show that quantization can make474

models significantly more efficient without a sub-475

stantial drop in accuracy. This could be a vi-476

able strategy for deploying models in resource-477

constrained environments while preserving strong478

reasoning capabilities.479

4.5 Pruning and Distillation Effects480

Compared to quantization, pruning and distillation481

have a more detrimental impact on reasoning per-482

formance. After pruning, knowledge distillation is483

typically used with a recovery dataset to mitigate484

performance loss. In most cases, GSM8K was used485

as the recovery dataset. We observed that pruned486

models performed reasonably well on GSM8K (Ta-487

ble 2) when evaluated with direct prompting. How-488

ever, on datasets such as ARC-E, ARC-C, and489

CommonsenseQA, pruned models frequently pro-490

duce nonsensical outputs unrelated to the input491

query. Example cases are reported in Appendix492

D.2. Similarly, for sorting tasks, pruned models493

perform worse than their quantized counterparts,494

with frequent errors such as misplaced numbers,495

duplicated inputs, or missing elements in the final496

output. Some models, like Llama-3.1 and Mistral- 497

7B, retain partial reasoning ability but remain far 498

behind quantized models in overall performance. 499

This indicates that pruning disrupts their ability to 500

generalize reasoning across tasks. 501

4.6 Robustness 502

Adversarial Robustness (GSM-Plus) From Ta- 503

ble 3, we observe that models generally experience 504

a drop in accuracy on adversarial data but not dras- 505

tically. Results reveal a clear performance hier- 506

archy: Larger models (Qwen2.5-32B, Llama-3.1- 507

70B) demonstrate higher resilience to adversarial 508

perturbations, with relatively small accuracy drops 509

(12.69 and 11.45 points, respectively). Smaller 510

models (Qwen2.5-3B, Llama-3.1-8B) experience 511

larger drops (16.41 and 16.35 points, respectively), 512

highlighting their fragility in adversarial settings. 513

This shows that larger models are inherently more 514

robust in adversarial settings. 515

We observe that quantization does not signif- 516

icantly impact adversarial robustness. This sug- 517

gests that quantized models retain their original 518

reasoning resilience, further reinforcing their via- 519

bility. Conversely, pruned models struggle signifi- 520

cantly with adversarial robustness. Sparse-Llama- 521

8B-2of4 and OpenHermes-7B, for example, expe- 522

rience drastic accuracy declines. Their inability 523

to generalize under adversarial conditions likely 524

stems from reduced model capacity and insuffi- 525

cient training diversity, making them vulnerable to 526

edge-case scenarios. 527

Intermediate Reasoning (MR-GSM8K) Table 528

3 also reports MR-GSM8K scores, which mea- 529

7



Models GSM-Plus Original
(GSM8K)

∆(↓)
(% drop)

MR-GSM8K
(MR Score)

Mr-Ben (MR-Score)

Bio. Math Phy. Medicine Code. Chem. Logic Avg

Model Param. Optimiza-
tion

Qwen2.5 3B None (B) 60.44 77.91 17.47 8.1 7.8 10.3 9 6.1 0.2 8.5 6.8 6.9
None (Ins) 68.33 84.74 16.41 11 10.1 11.2 10.4 7.8 3.5 10.6 8.4 8.8

Mistral 7B pruned2.4 25.44 30.30 4.89 4 0 1.3 2.3 0 0 1.8 0.3 0.8

Llama-3.1 8B
None 67.10 83.45 16.35 24.2 12.9 10.8 10.9 12.7 6 13.5 10 11

w8a16 66.78 83.95 17.17 23.3 12.7 11.9 11.2 13 6.6 12.8 9.3 11.1
pruned2of4 35.17 51.86 16.69 0 0 0 0 0 0 0 0 0

Qwen2.5 32B None 82.71 95.40 12.69 55.6 23.4 24.7 24.3 19.9 14.3 24.7 18.4 21.4
GPTQ-8 82.78 95.73 12.95 55.6 23.5 24.7 23.9 19.9 14.3 24.3 18.4 21.3

Llama-3.1 70B None 83.65 95.10 11.45 40.6 22 19.8 19.3 19.9 13.3 25 17.8 19.6
w8a16 80.03 92.92 12.89 44.2 20.1 17.4 14.9 15.1 11.6 21.2 14.6 16.4

Table 3: Performance of various SLMs on reasoning robustness, including adversarial robustness (GSM-Plus),
intermediate reasoning (MR-GSM8K), and identifying errors in reasoning (MR-Ben). The metrics reported include
accuracy scores, percentage drop in accuracy (∆), and MR-Scores, covering various models with different parameter
sizes and optimizations. Detailed individual task results for MR-GSM8K is reported in Appendix A.5.

sure models’ ability to generate and refine inter-530

mediate reasoning steps. Quantization has mini-531

mal impact on intermediate reasoning for larger532

models. For example, Qwen2.5-32B and its GPTQ-533

INT8 variant achieve identical MR-Scores, indi-534

cating that precision reduction does not degrade535

logical consistency. In contrast, pruned models fail536

to maintain coherent reasoning, with MR-Scores537

dropping to zero. This suggests that pruned archi-538

tectures are more vulnerable to reasoning degrada-539

tion when architectural integrity is compromised.540

Interestingly, the open-source Qwen2.5-32B (55.6)541

even surpasses closed propriety models like GPT-542

4-Turbo (53.0) and Claude3-Sonnet (20.8) in inter-543

mediate reasoning, based on reported results (Zeng544

et al., 2024a).545

Identifying Errors in Reasoning (MR-Ben) Ta-546

ble 3 also reports MR-Ben scores. The trends ob-547

served are consistent: 1) Qwen-32B and Llama-548

70B outperform other models, 2) Quantization has549

minimal overall impact, and 3) Pruned models per-550

form worse. Models perform best in biology and551

math, while coding and logic remain challenging.552

Findings from these 3 datasets further support553

the argument that SLMs are not just retrieving an-554

swers from pre-training but engaging in structured555

reasoning. These findings also contribute to the de-556

bate on whether neural networks genuinely reason.557

The original CoT paper (Wei et al., 2022c) raised558

concerns that “CoT elicits reasoning but does not559

confirm whether the model is actually reasoning.”560

These three benchmarks also help address this ques-561

tion, as they were released after many of the SLMs562

we tested, ensuring no contamination.563

5 Conclusions and Future Directions 564

In this work, we systematically evaluated the rea- 565

soning ability of 72 SLMs, including their com- 566

pressed variant, across 14 benchmarks. We also ex- 567

amine their robustness under adversarial conditions 568

and intermediate reasoning. Overall, we observed: 569

1) LLMs tend to outperform SLMs in reasoning, 570

but certain SLMs, such as the Qwen2.5 family, 571

perform on par with LLMs. This is primarily at- 572

tributed to their extensive pre-training (18T tokens, 573

more than double that of Qwen2’s 7T) and a robust 574

post-training recipe using supervised fine-tuning 575

and multi-stage reinforcement learning. 2) Among 576

compression techniques, quantization proves to be 577

a safer approach, preserving reasoning capabilities 578

with minimal trade-offs. However, pruning drasti- 579

cally degrades performance, often leading to non- 580

sensical or incomplete outputs. This suggests that 581

compressing pre-trained LLMs is more effective 582

than training SLMs from scratch. 3) LLMs exhibit 583

stronger robustness in adversarial settings and in- 584

termediate reasoning tasks. However, quantization 585

does not significantly impact a model’s resilience 586

in these scenarios, reinforcing its practicality as a 587

compression method. 4) SLMs lag behind LLMs 588

in instruction following, which may limit their ap- 589

plicability in tasks requiring precise adherence to 590

input constraints. We hope these insights provide 591

practical guidance for researchers in selecting an 592

SLM. Future research should focus on improving 593

the instruction-following capabilities of SLMs and 594

exploring compression strategies that maintain rea- 595

soning performance while enhancing efficiency and 596

robustness. 597
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Limitations598

In this work, we tried our best to ensure a rigorous599

and fair evaluation, but we acknowledge that some600

limitations should be considered when interpreting601

the results. First, our reliance on GPT-4 as an eval-602

uator introduces potential biases and errors. While603

GPT-4 is a strong baseline for evaluation, it is not604

100% accurate and may misclassify responses, es-605

pecially in edge cases (shown in D.8). We observed606

instances where models producing many nonsen-607

sical responses were sometimes marked as correct608

by GPT-4, leading to potential overestimations of609

performance. Although we tried to mitigate this610

issue by limiting token generation and applying pre-611

evaluation parsing, it was not feasible to manually612

supervise the entire evaluation process.613

Second, our sorting task evaluations relied on614

regex-based parsing to assess correctness. There615

could be cases where a model’s response was cor-616

rect but misclassified due to parsing errors. Al-617

though we tried to account for most of the varia-618

tions in model outputs, ensuring 100% accuracy in619

automatic parsing remains a challenge. Addition-620

ally, our study focuses primarily on widely used621

benchmarks. However, reasoning abilities could be622

further assessed on more diverse datasets, includ-623

ing real-world problem-solving tasks and domain-624

specific reasoning benchmarks. Exploring these625

additional settings could provide a more compre-626

hensive understanding of how different compres-627

sion techniques impact model performance.628

Potential Risks Our work does not pose direct629

risks, but reliance on LLM-based evaluation may630

introduce biases, and model deployment in critical631

applications should consider robustness issues.632

Ethics Statement633

This study evaluates small language models using634

standardized benchmarks and publicly available635

datasets, ensuring transparency and reproducibil-636

ity. No private or sensitive data was used, and all637

models were assessed under fair conditions. We638

acknowledge potential biases in LLM-based evalua-639

tions and encourage further research for mitigation.640

AI Assistance: We used ChatGPT assistance641

for parts of the Appendix, such as generating La-642

TeX code for tables and refining text written by643

the authors. All AI-generated content was care-644

fully reviewed and revised by the authors to ensure645

accuracy and clarity.646
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A Detailed Results1019

A.1 [Task 1] GSM8K1020

In Table 4, we detail the results of 70 different1021

SLMs with their compressed versions on GSM8K1022

dataset. We report results with 5 different prompts1023

and we also report their computational require-1024

ments: GPU Memory Usage and Disk Space re-1025

quirements.1026

Further Insights: Model size influences per- 1027

formance, with larger models like Llama-3.1 1028

(8B, 70B) outperforming smaller ones such as 1029

SmolLM2 (1.7B), Minitron (4B), and Hymba 1030

(1.5B). However, the performance gap between 1031

Llama-3.2 and Qwen2.5 (3B) suggests that in- 1032

creasing parameters alone does not guarantee pro- 1033

portional improvements—architectural design and 1034

training data are also crucial factors. 1035

Quantization, even with aggressive techniques 1036

like W4-A16, has minimal impact on mathematical 1037

reasoning. This suggests that compact models can 1038

be effectively deployed in resource-constrained en- 1039

vironments without significant performance degra- 1040

dation. Notably, Llama-3.1-8B retains strong accu- 1041

racy even with INT4/INT16 quantization. While 1042

quantization strategies such as FP8 and dynamic 1043

FP8 provide substantial memory savings, they 1044

maintain competitive performance. Figure 4, 5, 1045

6 shows an analysis of model performance across 1046

various tasks and the impact of quantization. 1047

A.2 [Task 2&3] ARC-E, ARC-C, 1048

CommonsenseQA 1049

In Table 5, we detail the results of 71 different 1050

SLMs with their compressed versions on ARC- 1051

Easy, ARC-Challenge, and CommonsenseQA 1052

datasets. We report results with direct prompting 1053

since COT or multi-shots does not help much here. 1054

1055

Further Insights: Findings from ARC-E, ARC- 1056

C, and CommonsenseQA align with GSM8K re- 1057

sults. Larger models, especially from the Qwen 1058

and LLama family, demonstrate superior reason- 1059

ing abilities in both scientific and commonsense 1060

tasks. On ARC-Easy and ARC-Challenge, per- 1061

formance scales predictably with model size, with 1062

Llama-3.1-70B achieving near-optimal scores. FP8 1063

quantization proves highly effective, maintaining 1064

performance parity with full-precision models up 1065

to 8B. 1066

A.3 [Task 4] Sorting Numbers 1067

In Table 5, we detail the results of 71 different 1068

SLMs along with their compressed versions on 6 1069

different sorting datasets. We report results with 1070

direct prompting also here. Sorting tasks (positive- 1071

only, mixed numbers, varying lengths of 8, 16, 1072

32) serve as a strong benchmark for evaluating 1073

algorithmic reasoning, as they are unlikely to have 1074
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been seen in pre-training. Unlike GSM8K and1075

ARC, which may contain learned patterns, sorting1076

purely tests a model’s ability to reason and execute1077

structured tasks.1078

Further Insights: Larger models like Llama-1079

3.1-70B achieve near-perfect accuracy on positive-1080

only sorting and maintain strong performance on1081

mixed datasets. In contrast, smaller models such1082

as SmolLM2 (1.7B) struggle, especially as input1083

length increases, with accuracy dropping to near1084

zero on mixed datasets.1085

Quantization effects vary: Llama-3.2-8B with1086

FP8 quantization closely matches its full-precision1087

counterpart in positive-only sorting but sees per-1088

formance degradation in mixed datasets. More1089

aggressive compression (W4-A16) slightly weak-1090

ens performance. This highlights that fine-grained1091

reasoning tasks are more sensitive to precision re-1092

duction. Smaller models like Qwen2.5-7B and1093

Mistral-7B suffer significant accuracy drops under1094

4-bit quantization.1095

Also, as task complexity increases, even large1096

models struggle with longer sequences in mixed1097

datasets. This reveals a fundamental bottleneck1098

in current architectures for algorithmic reasoning.1099

This suggests the need for specialized training tech-1100

niques or architectural modifications to improve1101

structured problem-solving in SLMs.1102

A.4 [Task 5.1] GSM-PLUS: Perturbation1103

Analysis1104

In section 4.6, we saw the performance of models1105

across adversarial samples. In Table 6, we detail1106

the analysis of SLMs across various perturbations.1107

Mostly, we see that models struggle most with crit-1108

ical thinking variation.1109

Larger models, such as Qwen2.5-32B and1110

Llama-3.1-70B, exhibit strong resilience, achiev-1111

ing over 85% accuracy across most variations, par-1112

ticularly in numerical substitution and digit ex-1113

pansion. However, they show a notable drop in1114

performance for critical thinking, suggesting that1115

sheer scale does not entirely mitigate reasoning1116

challenges introduced by complex perturbations.1117

Smaller models, including Mistral-7B1118

(pruned2.4) and Llama-3.1-8B (2of4), strug-1119

gle significantly, especially in fraction conversions1120

and arithmetic operations, with performance1121

dropping below 40%. Quantized variants (GPTQ-81122

and w8a16) show marginal degradation compared1123

to full-precision instruct models, suggesting 1124

quantization has a limited impact on robustness for 1125

well-trained models. 1126

A.5 [Task 5.2] MR-GSM8K: Intermediate 1127

reasoning test 1128

The MR-GSM8K benchmark evaluates models’ 1129

ability to perform intermediate reasoning, focusing 1130

on logical consistency across multi-step problems. 1131

In Table 7, we detail the results of 10 selected 1132

SLMs with their compressed versions on the MR- 1133

GSM8K dataset. 1134

About Metric: The MR-Score is a composite 1135

metric used to evaluate the meta-reasoning abili- 1136

ties of language models in the MR-GSM8K bench- 1137

mark. It combines the performance of LLMs 1138

across three tasks: determining solution correct- 1139

ness (measured by MCC), identifying the first error 1140

step (ACC_step), and explaining the error reason 1141

(ACC_reason). The final MR-Score is a weighted 1142

combination of these three metrics, with weights 1143

chosen empirically to balance the contribution of 1144

each task. This comprehensive evaluation provides 1145

a holistic assessment of LLMs’ meta-reasoning 1146

capabilities, going beyond simply solving math 1147

problems to assess their ability to reason about the 1148

reasoning process itself. 1149

Below are the different task descriptions, which 1150

are shown in Table 7: 1151

1. Task 1 TPR (k=0): This is the true positive 1152

rate for Task 1 in a zero-shot setting (k=0). 1153

Task 1 determines the correctness of a given 1154

solution to a math problem. The true positive 1155

rate measures the model’s ability to identify 1156

incorrect solutions correctly. 1157

2. Task 1 TNR (k=0): This is the true negative 1158

rate for Task 1 in a zero-shot setting. It mea- 1159

sures the model’s ability to identify correct 1160

solutions correctly. 1161

3. Task 1 MCC Score (k=0): This is the 1162

Matthews Correlation Coefficient (MCC) 1163

score for Task 1 in a zero-shot setting. MCC 1164

assesses the overall performance of a binary 1165

classification model, in this case, classifying 1166

solutions as correct or incorrect. 1167

4. Task 2 Accuracy (k=0): This represents the 1168

model’s accuracy in Task 2 under a zero-shot 1169

setting. Task 2 identifies the first error step in 1170

an incorrect solution. 1171
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

ACCstep =
Ncorrect_first_error_step

Nincorrect_sols

ACCreason =
Ncorrect_error_reason

Nincorrect_sols

MR− Score = w1 ×max(0,MCC) + w2 ×ACCstep + w3 ×ACCreason

5. Task 3 Accuracy (k=0): This is the model’s1172

accuracy in Task 3 under a zero-shot setting.1173

Task 3 requires the model to provide a reason1174

for the error identified in Task 2.1175

6. MR-Score (k=0): This is a composite score1176

that combines the model’s performance across1177

all three tasks in a zero-shot setting. It pro-1178

vides a holistic evaluation of the model’s meta-1179

reasoning abilities.1180

Further Insights: Larger models, such as1181

Qwen2.5-32B and Llama-3.1-70B, consistently1182

outperform smaller counterparts. For example,1183

Qwen2.5-32B achieves an MR-Score of 55.6, sig-1184

nificantly higher than smaller models like Mistral-1185

7B (4.0), which struggle to perform intermedi-1186

ate reasoning steps. Based on reported results,1187

Qwen2.5-32B outperforms GPT-4-turbo (53.0) on1188

intermediate reasoning. Quantization has minimal1189

impact on intermediate reasoning for larger models.1190

For instance, Qwen2.5-32B and its GPTQ-INT81191

variant achieve identical MR-Scores, retaining per-1192

formance despite the precision reduction.1193

Interestingly, intermediate reasoning perfor-1194

mance is not purely scale-dependent but also highly1195

architecture-specific. For example, Llama-3.1-70B1196

slightly underperforms Qwen2.5-32B despite hav-1197

ing more parameters. These findings highlight1198

the critical importance of model design choices1199

in achieving superior intermediate reasoning per-1200

formance.1201

A.6 Pruned/Distilled Models1202

In Table 8 and 9, we detail the results of pruned and1203

distilled variants of SLMs on the GSM8K dataset1204

and sorting tasks. We skipped the evaluation of1205

ARC-E, ARC-C, and CommonsenseQA since the1206

outputs were nonsensical and accuracy was nearly1207

0. CoT prompting significantly improved perfor-1208

mance in these models, boosting scores by 10–201209

points. However, multi-shot prompts were less ef-1210

fective, with some models failing to generate any 1211

output. 1212

These results highlight that pruning dispropor- 1213

tionately affects reasoning-intensive tasks, reduc- 1214

ing both logical consistency and robustness across 1215

diverse datasets. This emphasize the need for im- 1216

proved recovery strategies or alternative compres- 1217

sion techniques when applying pruning to models 1218

used for reasoning tasks. 1219
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Model Param. Quantization GPU
(GB)

Disk
(GB) Direct I/O COT 5-shot 5-shot COT 8-shot

Llama-3.2 Family (evaluator=gpt-4-turbo)

Llama3.2

1B

None 4.73 2.4 36.39±0.47 38.99±0.45 33.69±0.66 32.73±0.41 33.13±0.87
W: INT8 & A: INT8 1.53 1.9 36.87±0.68 39.63±1.03 32.07±0.22 30.58±0.70 32.88±0.87

FP8 2.47 1.9 36.42±1.37 39.63±0.64 31.16±0.63 30.88±1.01 31.87±0.54
FP8-dynamic 2.47 2.0 36.21±0.83 40.86±0.94 32.93±1.59 31.24±0.43 32.83±0.75

3B

None 13.21 6.0 73.54±0.06 75.18±1.14 74.02±0.78 72.73±0.61 72.61±0.40
W: INT8 & A: INT8 3.66 4.2 72.58±0.25 75.23±0.47 73.39±0.94 73.74±0.44 72.68±0.68

FP8 6.44 4.2 74.07±0.43 75.31±0.64 72.91±0.59 73.04±0.36 71.19±0.12
FP8-dynamic 6.44 4.2 73.49±1.22 75.13±0.62 72.71±0.84 73.34±0.77 72.05±0.66

Llama-3.1 Family (evaluator=gpt-4-turbo)

Llama3.1

8B

None 30.65 15 83.45±0.41 85.27±0.61 83.45±0.18 84.51±0.40 83.50±0.25
W: INT8 & A: INT8 8.98 8.5 83.37±0.46 85.27±0.37 83.45±0.09 84.41±0.37 83.32±0.31
W: INT8 & A: INT16 15.94 8.5 83.95±0.42 84.89±0.77 83.78±0.16 83.75±0.63 83.62±0.56
W: INT4 & A: INT16 12.6 5.4 82.21±0.40 83.80±0.31 82.13±1.03 80.74±0.47 81.70±0.36

FP8 14.44 8.5 82.89±0.40 84.63±0.19 83.42±0.75 84.94±0.75 83.83±0.72
FP8-dynamic 21.09 8.5 83.27±0.04 84.86±0.41 82.97±0.04 83.88±0.52 84.69±0.59

70B

None 269.17 132 95.10±0.28 95.27±0.50 94.72±0.62 94.44±0.09 94.64±0.19
W: INT8 & A: INT8 69.34 68 94.72±0.34 95.00±0.06 94.52±0.09 94.62±0.21 94.54±0.28
W: INT8 & A: INT16 138.64 68 92.92±0.13 94.36±0.07 93.96±0.47 94.39±0.51 93.51±0.31
W: INT4 & A: INT16 107.34 38 95.15±0.33 95.20±0.09 94.82±0.18 95.12±0.32 94.90±0.20

FP8 107.32 68 94.87±0.28 95.40±0.44 94.67±0.37 94.52±0.20 94.74±0.44
FP8-dynamic 176.63 68 94.64±0.23 95.38±0.19 95.00±0.55 95.10±0.35 94.52±0.19

Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4-turbo)

Mistralv0.3 7B

None 27.67 14 54.84±0.56 55.98±0.50 54.76±0.29 57.90±0.99 54.23±0.66
W: INT8 & A: INT8 34.84 7.1 52.11±2.11 55.60±1.31 53.88±0.84 55.75±0.79 52.79±1.15
W: INT8 & A: INT16 14.36 7.1 54.26±0.77 55.85±0.56 54.13±0.34 56.86±0.93 52.82±0.53
W: INT4 & A: INT16 11.17 3.9 53.93±0.77 56.03±0.16 51.91±1.05 53.47±1.03 50.87±1.46

FP8 – – 54.13±0.64 54.99±1.09 53.96±0.56 57.67±1.00 53.85±0.32

MistralNemo 12B
None 57.89 23 86.76±0.57 86.08±0.20 85.57±0.13 84.94±0.56 85.34±0.26

W: INT4 & A: INT16 61.98 7.8 84.74±1.05 85.67±0.74 84.61±0.96 83.67±0.72 84.99±0.22
FP8 – – 87.31±0.40 86.58±0.39 85.67±0.49 85.77±0.41 85.29±0.79

Qwen2 Family (evaluator=gpt-4-turbo)

Qwen2

0.5B

None 2.02 0.95 37.25±0.58 38.31±1.53 26.38±1.12 28.46±0.95 26.76±0.63
GPTQ 8-bit 0.71 1.4 38.08±0.60 37.91±0.12 26.33±0.31 27.27±0.77 26.59±0.65
GPTQ 4-bit 1.12 0.71 21.51±1.11 25.32±0.11 14.38±0.40 16.76±0.34 14.23±0.50

W: INT8 & A: INT16 1.38 0.61 37.68±0.34 38.13±1.29 26.43±0.78 26.54±0.22 26.81±0.46
W: INT8 & A: INT8 1.38 0.87 37.60±0.79 37.50±0.70 26.23±1.50 26.99±0.33 25.78±0.11
W: INT4 & A: INT16 1.51 0.71 25.42±0.20 27.32±0.62 18.09±0.56 18.35±0.32 16.40±0.76

FP8 – – 35.20±1.10 35.94±0.67 23.17±0.81 25.25±0.71 22.52±0.43

1.5B

None 7.09 2.9 62.83±0.44 64.85±0.34 56.46±0.66 59.51±0.90 55.88±0.32
GPTQ 8-bit 2.54 3.1 62.85±0.70 63.86±0.92 57.16±0.59 59.79±0.41 57.24±0.19
GPTQ 4-bit 1.81 2.4 56.31±0.62 57.54±0.11 49.41±0.46 52.99±1.61 49.66±0.65

W: INT8 & A: INT16 2.51 1.7 62.98±0.99 64.04±0.92 56.41±0.86 59.72±0.64 57.19±0.34
W: INT8 & A: INT8 2.48 2.2 62.45±0.48 63.00±0.55 54.13±1.67 58.73±1.33 55.75±0.62
W: INT4 & A: INT16 3.14 1.6 57.90±0.84 58.55±0.46 48.40±0.41 53.10±0.70 48.29±0.11

FP8 – – 61.97±0.41 63.38±0.25 53.88±1.18 57.27±1.36 54.28±0.81

7B

None 30.05 15 87.14±0.18 87.34±0.11 86.58±0.57 85.82±0.12 86.40±0.18
GPTQ 8-bit 9.63 8.3 87.16±0.28 87.54±0.36 86.56±0.47 86.50±0.47 86.40±0.64
GPTQ 4-bit 6.48 5.3 85.54±0.46 86.35±0.16 85.92±0.41 84.96±0.29 85.42±0.50

W: INT8 & A: INT8 9.58 8.2 87.11±0.06 87.31±0.74 86.63±0.20 86.58±0.51 86.56±0.29
W: INT8 & A: INT16 9.42 8.2 86.40±0.64 87.06±0.23 86.15±0.14 85.97±0.16 86.38±0.04
W: INT4 & A: INT16 12.96 5.3 84.53±0.65 85.57±0.53 85.32±0.50 84.91±0.33 85.19±0.13

FP8 – – 86.66±0.38 87.14±0.66 86.05±0.63 86.56±0.59 86.13±0.70

Qwen2.5 Family (evaluator=gpt-4-turbo

Qwen2.5

0.5B
None 2.02 0.95 46.80±0.77 46.88±1.57 42.73±0.48 43.19±0.16 42.28±0.46

GPTQ 8-bit 0.71 0.62 46.85±0.37 47.18±0.99 42.20±0.63 44.20±0.34 42.25±0.62
GPTQ 4-bit 1.12 0.45 34.62±0.42 32.85±0.64 28.15±1.11 27.52±1.01 27.80±0.46

1.5B
None 6.68 2.9 70.00±0.53 70.20±0.65 69.72±0.38 68.46±0.54 69.90±0.79

GPTQ 8-bit 2.54 1.7 70.33±0.41 70.33±0.84 70.03±0.31 68.99±0.27 69.52±0.81
GPTQ 4-bit 1.81 1.1 64.92±0.84 64.92±0.50 62.40±0.77 63.28±0.62 62.42±0.68

3B
None 12.42 5.8 84.74±0.28 84.38±0.39 85.44±0.43 84.96±0.63 85.44±0.38

GPTQ 8-bit 4.21 3.3 85.17±0.29 84.99±0.11 84.38±0.11 84.38±0.06 84.71±0.50
GPTQ 4-bit 2.88 2.0 81.78±0.54 81.60±1.20 81.58±0.19 81.91±0.31 81.78±0.25

7B
None 30.05 15 91.76±0.20 92.19±0.11 91.05±0.33 91.89±0.43 91.33±0.31

GPTQ 8-bit 9.63 8.3 91.84±0.22 92.22±0.19 91.81±0.34 91.56±0.13 91.31±0.18
GPTQ 4-bit 6.48 5.3 90.62±0.13 91.23±0.29 90.65±0.26 90.73±0.58 90.85±0.09

14B
None 57.04 28 94.29±0.40 94.57±0.07 94.06±0.14 94.54±0.27 93.86±0.28

GPTQ 8-bit 17.24 16 94.49±0.25 94.95±0.04 93.71±0.27 94.59±0.04 94.11±0.34
GPTQ 4-bit 10.65 9.4 94.74±0.32 94.69±0.34 94.01±0.32 94.31±0.38 93.63±0.51

32B
None 125 62 95.40±0.29 95.78±0.25 95.20±0.07 95.55±0.18 94.92±0.41

GPTQ 8-bit 33.81 33 95.73±0.19 95.86±0.23 95.50±0.25 95.60±0.21 95.25±0.13
GPTQ 4-bit 52.42 19 95.73±0.09 95.73±0.26 94.92±0.16 95.43±0.56 95.12±0.34

Others (evaluator=gpt-4-turbo)

SmolLM2 1.7B None 6.55 3.2 46.17±0.41 43.75±1.40 44.23±0.66 41.47±0.71 44.78±0.44
Minitron 4B None 16.01 7.9 27.95±0.09 28.68±0.19 35.41±0.80 34.80±0.79 34.07±1.01
Hymba 1.5B None – 2.9 53.75±0.51 53.53±1.66 52.87±0.60 52.99±0.37 52.74±0.68

Phi-3.5-mini 3.8B None 14.6 7.2 85.47±0.47 87.14±0.41 82.97±0.07 80.74±0.54 82.89±0.72
Phi-3-small 7B None – 17.95 70.10±0.96 81.73±0.59 83.14±0.62 86.02±0.36 83.62±0.49

Table 4: Performance and Resource Usage of SLMs on GSM8K. The table reports the parameters size, quantization
type (if any), GPU memory and disk space usage (in GB), and accuracy scores for each prompt type.
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Model Param. Quantiza-
tion

ARC-E ARC-C Common-
senseQA

Sort-8
(+ve)

Sort-8
(mixed)

Sort-16
(+ve)

Sort-16
(mixed)

Sort-32
(+ve)

Sort-32
(mixed)

Llama-3.3 Family (evaluator=gpt-4o and parsing for sorting tasks)

Llama3.2

1B

None 67.23±1.40 47.50±0.22 48.38±0.45 44.67±5.64 1.33±1.30 1.00±1.13 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 67.45±0.67 47.90±0.63 48.10±0.76 50.33±5.67 1.67±1.45 1.33±1.30 0.00±0.00 0.00±0.00 0.00±0.00

FP8 67.03±0.26 48.01±0.98 48.48±1.05 42.67±5.61 1.33±1.30 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00
FP8-D 67.02±0.17 48.69±0.59 48.40±0.72 45.67±5.65 2.00±1.59 2.67±1.83 0.00±0.00 0.00±0.00 0.00±0.00

3B

None 87.84±0.27 74.63±0.41 69.72±0.91 96.67±2.03 55.33±5.64 73.33±5.01 17.33±4.29 17.00±4.26 0.00±0.00
W8-A8 87.22±0.21 74.37±0.58 69.31±0.97 95.67±2.31 49.67±5.67 62.67±5.48 17.33±4.29 15.00±4.05 0.00±0.00

FP8 88.03±0.34 74.03±0.91 68.74±1.02 96.00±2.22 41.33±5.58 61.67±5.51 18.00±4.35 19.00±4.45 0.00±0.00
FP8-D 87.53±0.04 73.58±0.40 69.75±0.51 94.00±2.69 52.33±5.66 60.33±5.55 16.00±4.16 18.00±4.35 0.00±0.00

Llama-3.1 Family (evaluator=gpt-4o and parsing for sorting tasks)

Llama3.1

8B

None 92.07±0.28 79.58±0.26 74.28±0.52 86.00±3.93 78.67±4.64 74.67±4.93 56.33±5.62 59.67±5.56 5.33±2.55
W8-A8 92.33±0.14 79.98±0.11 73.63±0.20 82.33±4.32 77.00±4.77 70.67±5.16 58.00±5.59 62.33±5.49 4.67±2.39
W8-A16 92.34±0.23 80.32±0.44 73.87±0.00 86.33±3.89 79.00±4.62 73.67±4.99 56.00±5.63 65.00±5.41 5.67±2.62
W4-A16 90.49±0.36 76.62±0.69 73.57±0.65 82.67±4.29 66.67±5.34 69.67±5.21 52.00±5.66 56.67±5.62 6.67±2.83

FP8 92.17±0.40 79.52±0.61 73.93±0.62 81.00±4.45 81.33±4.42 72.00±5.09 51.67±5.66 61.00±5.53 6.00±2.69
FP8-D 92.33±0.24 81.00±0.59 74.09±0.56 81.67±4.39 74.67±4.93 74.33±4.95 53.00±5.66 65.33±5.39 5.00±2.47

70B

None 98.34±0.05 94.43±0.28 83.73±0.58 100.00±0.00 100.00±0.00 99.00±1.13 97.00±1.93 100.00±0.00 88.00±3.68
W8-A8 98.43±0.22 94.62±0.14 83.92±0.28 100.00±0.00 100.00±0.00 99.33±0.92 96.67±2.03 100.00±0.00 85.33±4.01
W8-A16 97.59±0.19 92.89±0.18 80.04±0.40 100.00±0.00 99.00±1.13 98.00±1.59 95.00±2.47 99.00±1.13 85.33±4.01
W4-A16 98.26±0.08 94.51±0.26 82.77±0.19 100.00±0.00 100.00±0.00 98.67±1.30 97.00±1.93 99.67±0.65 76.33±4.82

FP8 98.36±0.15 94.71±0.07 83.87±0.24 100.00±0.00 100.00±0.00 98.67±1.30 96.33±2.13 100.00±0.00 86.67±3.85
FP8-D 98.46±0.07 94.54±0.18 83.70±0.18 100.00±0.00 100.00±0.00 98.67±1.30 97.67±1.71 100.00±0.00 86.00±3.93

Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4o and parsing for sorting tasks)

Mistralv0.3 7B

None 88.99±0.34 76.82±0.29 69.83±0.10 60.33±5.55 48.33±5.66 21.33±4.64 5.67±2.62 2.00±1.59 1.00±0.00
W8-A8 88.65±0.27 75.97±0.04 70.52±0.37 55.33±5.64 38.67±5.52 14.67±4.01 5.00±2.47 0.67±0.92 1.00±0.00
W8-A16 89.07±0.28 76.68±0.18 70.22±0.04 62.00±5.50 45.00±5.64 24.00±4.84 5.33±2.55 2.00±1.59 0.00±0.00
W4-A16 88.33±0.14 74.97±0.32 69.83±0.15 54.00±5.65 25.00±4.91 16.00±4.16 3.00±1.93 4.00±2.22 0.00±0.00

FP8 88.64±0.38 76.39±0.20 69.48±0.45 58.33±5.59 45.67±5.65 21.00±4.62 5.33±2.55 2.67±1.83 0.00±0.00

MistralNemo 12B
None 92.79±0.07 83.70±0.32 72.78±0.78 95.00±2.47 81.33±4.42 78.33±4.67 54.67±5.64 49.33±5.67 6.67±2.83

W4-A16 91.82±0.29 81.80±0.65 71.33±1.01 97.00±1.93 79.00±4.62 77.33±4.75 42.33±5.60 59.67±5.56 7.33±2.95
FP8 92.19±0.20 83.16±0.31 73.41±0.15 95.00±2.47 78.67±4.64 77.33±4.75 50.33±5.67 48.33±5.66 9.00±3.24

Qwen2 Family (evaluator=gpt-4o and parsing for sorting tasks)

Qwen2

0.5B

None 56.41±0.22 40.44±0.18 48.13±1.33 10.33±3.45 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-8 56.13±0.25 40.30±0.65 47.50±0.29 7.67±3.02 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 52.05±0.42 37.03±0.30 43.11±1.28 2.00±1.59 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W8-A16 56.51±0.88 39.87±0.26 47.23±0.89 11.67±3.64 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 55.36±0.71 40.27±0.62 47.45±0.04 7.33±2.95 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
W4-A16 50.56±0.40 36.63±0.34 42.42±0.44 5.67±2.62 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

FP8 56.61±0.24 40.13±0.60 46.76±0.35 6.33±2.76 0.67±0.92 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

1.5B

None 84.34±0.27 67.29±0.36 69.78±0.18 44.67±5.64 21.33±4.64 7.33±2.95 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-8 84.19±0.07 66.55±0.39 69.97±0.14 46.33±5.65 20.00±4.53 7.33±2.95 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 82.03±0.15 63.99±0.56 68.99±0.51 33.00±5.33 13.00±3.81 3.33±2.03 0.00±0.00 0.00±0.00 0.00±0.00
W8-A16 83.96±0.12 66.84±0.53 70.19±0.57 47.67±5.66 21.33±4.64 5.67±2.62 0.00±0.00 0.00±0.00 0.00±0.00
W8-A8 83.64±0.17 66.84±0.24 69.72±0.25 46.33±5.65 21.33±4.64 5.67±2.62 0.00±0.00 0.00±0.00 0.00±0.00
W4-A16 81.64±0.20 63.51±0.45 66.42±0.64 43.00±5.61 17.67±4.32 6.00±2.69 0.33±0.65 0.00±0.00 0.00±0.00

FP8 83.77±0.21 66.33±0.59 68.93±0.51 42.33±5.60 19.33±4.48 7.00±2.89 0.00±0.00 0.00±0.00 0.00±0.00

7B

None 94.21±0.12 85.52±0.18 80.54±0.15 83.33±4.22 80.33±4.51 45.00±5.64 36.33±5.45 15.00±4.05 2.67±1.83
GPTQ-8 94.28±0.09 85.64±0.11 80.04±0.15 84.33±4.12 82.67±4.29 44.00±5.63 32.33±5.30 14.67±4.01 3.00±1.93
GPTQ-4 93.45±0.10 85.52±0.29 78.92±0.10 80.67±4.48 72.00±5.09 33.33±5.34 23.33±4.79 4.33±2.31 0.33±0.65
W8-A16 93.91±0.12 85.47±0.11 80.13±0.38 84.00±4.16 80.67±4.48 43.67±5.62 35.00±5.41 14.33±3.97 1.67±1.45
W8-A8 94.02±0.06 85.38±0.43 79.66±0.10 79.33±4.59 83.67±4.19 40.33±5.56 31.67±5.27 17.00±4.26 0.67±0.92
W4-A16 94.22±0.10 84.95±0.18 78.98±0.45 79.67±4.56 77.00±4.77 43.00±5.61 26.67±5.01 5.33±2.55 0.00±0.00

FP8 94.26±0.07 85.41±0.28 80.32±0.10 81.00±4.45 83.00±4.26 47.00±5.66 29.00±5.14 13.33±3.85 1.00±1.13

Qwen2.5 Family (evaluator=gpt-4o and parsing for sorting tasks)

Qwen2.5

0.5B
None 62.50±0.21 44.28±1.03 46.90±1.49 11.67±3.64 3.67±2.13 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00

GPTQ-8 61.74±0.84 44.43±0.83 46.19±1.27 12.67±3.77 3.00±1.93 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
GPTQ-4 52.58±0.60 37.63±1.69 36.42±0.50 5.33±2.55 3.33±2.03 0.33±0.65 0.00±0.00 0.00±0.00 0.00±0.00

1.5B
None 87.58±0.21 73.81±0.30 71.85±0.48 66.33±5.36 65.33±5.39 34.33±5.38 7.33±2.95 1.33±1.30 0.00±0.00

GPTQ-8 87.78±0.20 73.72±0.21 72.10±0.27 68.33±5.27 65.33±5.39 36.67±5.46 8.00±3.08 1.33±1.30 0.00±0.00
GPTQ-4 86.25±0.05 70.25±0.16 69.10±0.50 60.00±5.55 46.67±5.65 12.67±3.77 7.33±2.95 0.00±0.00 0.00±0.00

3B
None 93.49±0.07 83.73±0.38 76.25±0.29 78.33±4.67 75.33±4.89 47.67±5.66 34.33±5.38 2.67±1.83 1.00±1.13

GPTQ-8 93.55±0.07 83.53±0.30 76.77±0.20 80.33±4.51 75.00±4.91 47.67±5.66 32.67±5.32 2.00±1.59 1.00±1.13
GPTQ-4 92.12±0.07 80.86±0.52 71.96±0.49 72.67±5.05 65.67±5.38 17.67±4.32 19.67±4.51 0.00±0.00 1.00±1.13

7B
None 96.03±0.17 90.53±0.12 82.66±0.14 94.33±2.62 90.00±3.40 69.67±5.21 47.00±5.66 39.33±5.54 5.67±2.62

GPTQ-8 96.03±0.10 90.64±0.15 82.58±0.32 94.00±2.69 92.00±3.08 71.33±5.13 49.00±5.67 41.33±5.58 5.67±2.62
GPTQ-4 95.62±0.00 89.19±0.21 82.69±0.28 80.67±4.48 15.00±4.05 58.33±5.59 15.67±4.12 31.67±5.27 1.00±1.13

14B
None 97.87±0.05 93.37±0.22 84.08±0.54 96.33±2.13 95.33±2.39 84.00±4.16 72.00±5.09 61.33±5.52 38.67±5.52

GPTQ-8 97.90±0.12 93.71±0.24 84.22±0.14 96.33±2.13 95.00±2.47 84.00±4.16 72.00±5.09 65.00±5.41 36.33±5.45
GPTQ-4 97.57±0.10 93.17±0.21 83.10±0.19 95.00±2.47 95.67±2.31 82.33±4.32 64.00±5.44 54.33±5.65 26.00±4.97

32B
None 98.26±0.10 95.25±0.18 87.11±0.37 99.00±1.13 99.33±0.92 93.33±2.83 92.33±3.02 79.00±4.62 60.00±5.55

GPTQ-8 98.34±0.02 95.16±0.40 86.62±0.10 99.00±1.13 99.00±1.13 93.33±2.83 92.33±3.02 79.67±4.56 61.00±5.53
GPTQ-4 98.09±0.05 95.19±0.11 87.06±0.58 100.00±0.00 100.00±0.00 98.33±1.45 91.67±3.13 77.33±4.75 56.33±5.62

Others (evaluator=gpt-4o and parsing for sorting tasks
SmolLM2 1.7B None 75.04±0.18 54.21±1.07 53.18±1.27 55.33±5.64 28.00±5.09 14.67±4.01 2.67±1.83 0.33±0.65 0.00±0.00
Hymba 1.5B None 84.57±0.02 66.78±0.04 64.73±0.14 34.67±5.39 12.00±3.68 1.00±1.13 0.00±0.00 0.00±0.00 0.00±0.00
Phi3.5m 3.8B None 95.09±0.14 86.89±0.16 76.11±0.04 90.33±3.35 77.33±4.75 68.67±5.26 18.33±4.39 29.00±5.14 0.33±0.65
Phi-3-s 7B None 97.12±0.11 91.38±0.18 79.85±0.35 98.00±1.59 93.33±2.83 69.00±5.24 52.00±5.66 9.33±3.30 0.67±0.92

Table 5: Performance of Various Language Models on ARC-E, ARC-C, CommonsenseQA, and Sorting Tasks. The
table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores for each
benchmark.
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Figure 4: Performance of different models on GSM8K (Direct I/O), ARC, CommonsenseQA, and sorting tasks.
The x-axis represents the parameters size (in billions), and the y-axis represents the mean accuracy, with error bars
indicating the variance (3-folds).

Models
Numerical Variations Arithmetic Variation

Numerical
Substitution

Digit
Expansion

Integer-decimal-
fraction

Conversion

Adding
Operation

Reversing
Operation

Problem
Understanding

Distractor
Insertion

Critical
Thinking

Model Param. Optimiza-
tion

Qwen2.5 3B

None
(Base)

70.11±0.63 74.11±2.31 64.89±0.57 54.67±1.52 60.44±2.04 76.89±1.34 60.78±0.83 21.67±2.16

None
(Instruct)

78.11±1.13 82.44±0.68 75.78±1.66 66.33±1.89 72.00±1.96 84.11±1.66 71.78±2.79 16.11±2.35

Mistral 7B pruned2.4 32.56±1.34 31.44±1.26 20.89±2.18 19.22±0.96 26.00±2.16 40.67±1.19 28.44±0.57 4.33±0.27

Llama-3.1 8B
None 75.67±2.05 75.11±1.85 70.56±2.47 64.89±0.87 68.33±0.54 81.00±1.25 68.33±0.98 32.89±1.23

w8a16 76.11±2.44 74.78±3.25 71.00±0.27 62.11±0.79 66.00±0.94 82.33±0.47 68.33±0.27 33.56±0.96

pruned2of4 44.11±1.55 44.78±2.06 38.11±0.96 30.22±0.42 33.78±1.50 51.22±0.57 36.00±0.98 3.11±1.03

Qwen2.5 32B None 89.00±0.47 90.56±0.16 90.67±0.54 80.67±2.23 87.11±0.42 95.33±0.27 90.89±1.29 37.44±1.03

GPTQ-8 89.67±0.27 90.33±0.82 90.44±0.68 79.78±1.26 86.00±0.98 95.67±0.47 92.11±0.31 38.22±2.69

Llama-3.1 70B None 87.78±0.96 88.22±0.31 88.56±0.42 80.56±0.42 85.00±0.72 94.67±0.27 89.67±1.25 54.78±1.03

w8a16 85.78±0.63 86.56±1.03 84.11±0.16 77.22±0.42 80.89±1.10 93.22±1.13 88.11±0.42 44.33±0.72

Table 6: Performance of SLMs on 8 different Adversarial Perturbations of GSM-Plus dataset. Lower scores indicate
greater vulnerability to the specific perturbation.
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Figure 5: Impact of Quantization on Model Performance across Different Benchmarks.
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Figure 6: Impact of Quantization on Model Performance across Sorting Tasks.
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Models
Task 1
TPR
(k=0)

Task 1
TNR
(k=0)

Task 1
MCC Score

(k=0)

Task 2
Accuracy

(k=0)

Task 3
Accuracy

(k=0)

MR-Score
(k=0)

Model Param. Optimization

Qwen2.5 3B None (Base) 61.5 51 12.6 13.4 3.1 8.1
None (Instruct) 86.8 39.7 29.7 10 4 11

Mistral 7B pruned2.4 59.8 44.8 4.6 8.6 1 4

Llama-3.1 8B
None 16.8 94.8 18.7 34.6 20 24.2

w8a16 16.5 95.2 19.3 33.7 18.8 23.3
pruned2of4 0 0 -100 0 0 0

Qwen2.5 32B None 85.8 84.9 70.6 55.7 49.6 55.6
GPTQ-8 85.5 84.9 70.3 55.9 49.6 55.6

Llama-3.1 70B None 79.3 87.3 66.9 36.5 32.5 40.6
w8a16 86.5 77.4 63.9 42.5 37.3 44.2

Table 7: Detailed results on MR-GSM8K dataset with all the individual task scores as discussed in Section A.5.

Models GPU
(GB)

Disk
(GB) Direct I/O COT 5-shot 5-shot COT 8-shot

Model Param. Pruning type,
Method

No Knowledge Distillation

phi-2 - SparseGPT – – 36.52%±0.73% 40.38%±0.59% 30.22%±0.59% 32.47%±0.99% 22.21%±0.77%

TinyLlama 1.1B SparseGPT 4.2 – 0.48%±0.19% 0.51%±0.07% 1.01%±0.29% 1.09%±0.22% 1.09%±0.38%

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) – – 2.38%±0.25% 4.60%±0.28% 4.14%±0.25% 3.18%±0.12% 4.37%±0.35%

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity,
SparseGPT

30.65 15 51.86%±0.34% 60.27%±0.66% 9.68%±0.31% 1.95%±0.36% 8.77%±0.50%

Fine-tuned on GSM8K

Llama-2 7B
No Pruning – 26 37.78%±0.93% 34.34%±1.21% 10.31%±0.89% 10.84%±0.65% 9.17%±0.45%

SparseGPT (50%) – 13 39.85%±0.07% 36.42%±0.50% 24.01%±0.36% 29.34%±0.90% 24.51%±1.09%

SparseGPT (70%) – 13 38.41%±0.70% 36.34%±0.29% 34.27%±0.65% 33.43%±0.92% 35.03%±0.60%

Sparse-Llama-3.1 8B
pruned-2of4 – 15 37.25%±0.39% 61.97%±0.28% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, INT4
Quant.

– 4.5 39.93%±0.36% 60.58%±0.49% 8.06%±0.46% 8.09%±0.74% 5.64%±0.60%

pruned-2of4, FP8
Quant.

– 8.5 37.45%±0.65% 61.36%±1.21% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Mistral Fine-tuned

OpenHermes-
2.5

7B SparseGPT 27.65 14 30.30%±0.94% 40.79%±0.81% 35.63%±0.94% 36.04%±0.62% 35.71%±1.07%

Table 8: Performance and Resource Usage of Various Pruned and Distilled Models on GSM8K. The table reports
the model size (in billions of parameters), compression type, GPU memory and disk space usage (in GB), and
accuracy scores for each prompt type.
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Models Sorting-8
(+ve)

Sorting-8
(mixed)

Sorting-16
(+ve)

Sorting-16
(mixed)

Sorting-32
(+ve)

Sorting-32
(mixed)

Model Param. Optimization

No Knowledge Distillation

phi-2 - SparseGPT 19.67%±4.51% 6.67%±2.83% 0.67%±0.92% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

TinyLlama 1.1B SparseGPT 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 7.67%±3.02% 0.33%±0.65% 0.33%±0.65% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity,
SparseGPT

47.33%±5.66% 15.33%±4.08% 20.00%±4.53% 9.33%±3.30% 1.67%±1.45% 0.00%±0.00%

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

SparseGPT (50%) 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

SparseGPT (70%) 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Sparse-Llama-3.1 8B
pruned-2of4 28.33%±5.11% 17.67%±4.32% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, INT4
Quant.

50.67%±5.67% 23.33%±4.79% 0.00%±0.00% 1.67%±1.45% 0.00%±0.00% 0.00%±0.00%

pruned-2of4, FP8
Quant.

32.67%±5.32% 16.33%±4.19% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Mistral Fine-tuned

OpenHermes-
2.5

7B SparseGPT 37.00%±5.47% 22.00%±4.70% 0.67%±0.92% 0.00%±0.00% 0.00%±0.00% 0.00%±0.00%

Table 9: Performance of Various Pruned and Distilled Models on ARC-E, ARC-C, CommonsenseQA, and Sorting
Tasks. The table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores
for each benchmark.

B Complete Results with lm-eval-harness1220

Here, we present the evaluations of all models1221

using the open-sourced framework – lm-eval-1222

harness. Table 10 reports the results for GSM8K1223

(5-shot), ARC Easy, and ARC Challenge. Table1224

11 contains the results for CommonsenseQA, Hel-1225

laSwag, MathQA, and OpenBookQA. Similarly,1226

the results for the pruned models across these seven1227

datasets are provided in Table 12 and Table 13.1228

Additionally, we observed that results for small1229

models are generally not reported on hard MATH1230

datasets. So, we also evaluated some SLMs on the1231

MATH dataset (Table 14).1232

Lm-eval-harness is a standardized tool to bench-1233

mark language models across diverse tasks, in-1234

cluding reasoning, common sense, and question-1235

answering. All other tasks were assessed in a zero-1236

shot configuration except for GSM8K, which was1237

evaluated using a 5-shot prompting strategy (the1238

framework’s default setting).1239

A notable discrepancy was observed between the1240

results from lm-eval-harness and our evaluations1241

using GPT-4. While larger models performed well1242

in both, smaller models fared worse under lm-eval-1243

harness. This variation could be from differences1244

in evaluation metrics, task design, or prompt struc- 1245

tures between the two frameworks. 1246
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Models
gsm8k (exact_match) arc_easy arc_challenge

(strict-match) (flexible-extract) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization

HF/SmolLM2 1.7B None (Base) 29.87±1.26 30.02±1.26 77.78±0.85 73.36±0.91 44.11±1.45 47.27±1.46
None (Instruct) 0.30±0.15 0.30±0.15 68.98±0.95 62.92±0.99 38.31±1.42 43.86±1.45

nvidia/Hymba 1.5B None (Base) 17.13±1.04 17.59±1.05 76.60±0.87 77.15±0.86 45.39±1.45 49.91±1.46
None (Instruct) 44.28±1.37 47.31±1.38 76.52±0.87 76.01±0.88 44.62±1.45 49.06±1.46

nvidia/Minitron 4B None (Base) 24.11±1.18 23.58±1.17 75.93±0.88 75.97±0.88 39.76±1.43 44.88±1.45

Qwen2.5 (Base)
0.5B None 34.72±1.31 35.33±1.32 64.65±0.98 58.21±1.01 29.27±1.33 32.34±1.37
1.5B None 62.32±1.33 62.62±1.33 75.38±0.88 71.63±0.92 41.30±1.44 44.97±1.45
3B None 70.74±1.25 76.19±1.17 77.36±0.86 73.15±0.91 44.54±1.45 47.01±1.46

Llama-3.2 (Base) 1B None 6.37±0.67 6.60±0.68 65.32±0.98 60.61±1.00 31.23±1.35 36.01±1.40

Llama-3.2-Instruct

1B

None 33.36±1.30 33.36±1.30 68.48±0.95 63.34±0.99 35.67±1.40 38.05±1.42
w8a8 33.51±1.30 33.59±1.30 68.73±0.95 63.30±0.99 35.49±1.40 37.80±1.42
FP8 31.54±1.28 30.86±1.27 67.80±0.96 62.50±0.99 35.07±1.39 37.88±1.42

FP8-dynamic 33.36±1.30 33.21±1.30 67.63±0.96 62.96±0.99 35.49±1.40 38.23±1.42

3B

None 64.97±1.31 65.73±1.31 73.91±0.90 67.97±0.96 43.77±1.45 45.90±1.46
w8a8 64.06±1.32 64.82±1.32 73.86±0.90 67.80±0.96 43.34±1.45 46.25±1.46
FP8 57.62±1.36 57.54±1.36 68.90±0.95 63.01±0.99 40.96±1.44 43.34±1.45

FP8-dynamic 62.85±1.33 63.46±1.33 73.48±0.91 67.09±0.96 42.49±1.44 45.05±1.45

Llama-3.1

8B

None 74.75±1.20 77.26±1.15 81.78±0.79 79.50±0.83 51.54±1.46 55.46±1.45
w8a8 75.51±1.18 77.94±1.14 81.65±0.79 79.63±0.83 51.96±1.46 55.12±1.45

w8a16 75.51±1.18 77.79±1.14 82.03±0.79 79.88±0.82 51.79±1.46 55.20±1.45
w4a16 70.58±1.26 70.58±1.26 78.70±0.84 75.88±0.88 47.27±1.46 51.71±1.46

FP8 71.57±1.24 73.16±1.22 80.72±0.81 78.49±0.84 51.37±1.46 53.67±1.46
FP8-dynamic 75.21±1.19 77.56±1.15 81.10±0.80 80.13±0.82 52.13±1.46 54.44±1.46

70B

Instruct 88.32±0.88 92.19±0.74 86.78±0.69 83.63±0.76 62.46±1.42 63.57±1.41
w8a8 88.32±0.88 92.34±0.73 86.57±0.70 83.59±0.76 62.37±1.42 63.05±1.41

w8a16 87.49±0.91 88.02±0.89 80.81±0.81 79.92±0.82 52.65±1.46 56.23±1.45
w4a16 89.23±0.85 91.81±0.76 86.49±0.70 83.71±0.76 61.60±1.42 63.82±1.40

FP8 89.31±0.85 90.60±0.80 85.02±0.73 83.21±0.77 59.30±1.44 61.86±1.42
FP8-dynamic 88.17±0.89 92.12±0.74 86.41±0.70 83.50±0.76 62.20±1.42 62.71±1.41

Mistralv0.3 7B

None 49.36±1.38 49.66±1.38 84.22±0.75 82.66±0.78 57.17±1.45 58.36±1.44
w8a8 49.20±1.38 49.43±1.38 84.18±0.75 82.83±0.77 57.00±1.45 58.36±1.44

w8a16 50.42±1.38 50.49±1.38 84.30±0.75 82.70±0.78 57.68±1.44 59.04±1.44
w4a16 44.05±1.37 44.12±1.37 82.53±0.78 81.44±0.80 53.92±1.46 56.91±1.45

MistralNemo 12B None 74.07±1.21 75.82±1.18 82.58±0.78 80.01±0.82 56.23±1.45 58.87±1.44
w4a16 70.81±1.25 72.63±1.23 81.78±0.79 79.00±0.84 54.52±1.46 58.11±1.44

Qwen2

0.5B

None 33.13±1.30 33.74±1.30 58.63±1.01 54.88±1.02 26.62±1.29 29.86±1.34
GPTQ-Int8 32.68±1.29 33.36±1.30 58.25±1.01 54.88±1.02 26.19±1.28 30.12±1.34
GPTQ-Int4 18.12±1.06 21.46±1.13 57.41±1.01 55.18±1.02 26.71±1.29 29.44±1.33

w8a16 37.98±1.34 38.21±1.34 58.46±1.01 54.92±1.02 26.28±1.29 30.29±1.34
w8a8 32.45±1.29 33.28±1.30 58.71±1.01 54.84±1.02 27.30±1.30 30.55±1.35
w4a16 27.75±1.23 28.81±1.25 52.86±1.02 48.86±1.03 26.71±1.29 27.82±1.31

1.5B

None 54.21±1.37 55.19±1.37 69.91±0.94 66.96±0.97 37.20±1.41 40.10±1.43
GPTQ-Int8 54.89±1.37 55.95±1.37 69.74±0.94 66.75±0.97 37.12±1.41 40.02±1.43
GPTQ-Int4 49.73±1.38 50.80±1.38 68.60±0.95 65.11±0.98 35.84±1.40 38.99±1.43

w8a16 57.85±1.36 58.45±1.36 69.65±0.94 66.58±0.97 37.12±1.41 39.85±1.43
w8a8 54.28±1.37 55.04±1.37 69.40±0.95 66.41±0.97 37.20±1.41 39.85±1.43
w4a16 54.66±1.37 54.89±1.37 68.27±0.96 64.98±0.98 34.56±1.39 38.05±1.42

7B

None 63.53±1.33 72.33±1.23 80.22±0.82 76.47±0.87 50.94±1.46 54.01±1.46
GPTQ-Int8 63.46±1.33 73.46±1.22 80.35±0.82 76.35±0.87 51.11±1.46 54.35±1.46
GPTQ-Int4 57.85±1.36 70.05±1.26 80.68±0.81 77.19±0.86 51.62±1.46 54.69±1.45

w8a16 68.39±1.28 75.74±1.18 80.43±0.81 76.18±0.87 51.02±1.46 54.01±1.46
w8a8 64.29±1.32 73.62±1.21 80.18±0.82 76.52±0.87 50.60±1.46 54.27±1.46
w4a16 66.19±1.30 74.75±1.20 79.76±0.82 75.88±0.88 52.05±1.46 54.35±1.46

Qwen2.5

0.5B
None 21.68±1.14 32.75±1.29 65.53±0.98 58.84±1.01 30.29±1.34 33.28±1.38

GPTQ-Int8 19.03±1.08 31.84±1.28 65.91±0.97 59.72±1.01 30.72±1.35 34.22±1.39
GPTQ-Int4 2.27±0.41 17.59±1.05 61.49±1.00 61.70±1.00 28.33±1.32 30.97±1.35

1.5B
None 30.48±1.27 50.87±1.38 76.60±0.87 76.01±0.88 43.86±1.45 46.84±1.46

GPTQ-Int8 31.16±1.28 51.93±1.38 76.81±0.87 75.97±0.88 43.34±1.45 46.16±1.46
GPTQ-Int4 32.75±1.29 49.05±1.38 75.93±0.88 75.67±0.88 42.58±1.44 45.39±1.45

3B
None 10.99±0.86 63.68±1.32 77.06±0.86 72.94±0.91 45.73±1.46 48.04±1.46

GPTQ-Int8 10.08±0.83 64.44±1.32 77.10±0.86 73.15±0.91 46.16±1.46 48.12±1.46
GPTQ-Int4 10.24±0.83 59.44±1.35 78.07±0.85 74.16±0.90 46.25±1.46 49.49±1.46

7B
None 76.04±1.18 81.80±1.06 81.52±0.80 81.40±0.80 52.90±1.46 55.20±1.45

GPTQ-Int8 76.12±1.17 82.71±1.04 81.57±0.80 81.06±0.80 52.30±1.46 54.69±1.45
GPTQ-Int4 71.49±1.24 79.30±1.12 81.44±0.80 80.05±0.82 51.62±1.46 54.35±1.46

14B
None 80.06±1.10 45.56±1.37 85.73±0.72 81.61±0.79 60.41±1.43 62.29±1.42

GPTQ-Int8 79.61±1.11 46.47±1.37 86.15±0.71 81.86±0.79 60.92±1.43 62.37±1.42
GPTQ-Int4 0.61±0.21 1.06±0.28 39.77±1.00 37.29±0.99 21.59±1.20 23.38±1.24

32B
None 75.13±1.19 69.60±1.27 82.24±0.78 77.31±0.86 57.76±1.44 58.79±1.44

GPTQ-Int8 75.21±1.19 69.75±1.27 82.15±0.79 77.19±0.86 58.11±1.44 58.79±1.44
GPTQ-Int4 74.91±1.19 81.27±1.07 81.52±0.80 76.14±0.87 56.74±1.45 57.68±1.44

Table 10: Performance Comparison on GSM8K, ARC-Easy, and ARC-Challenge with lm-eval-harness framework.
GSM8K is evaluated using exact match and flexible-extract string matching. ARC-Easy and ARC-Challenge are
evaluated using accuracy (acc) and normalized accuracy (acc_norm).
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Models commonsense_qa
(acc)

hellaswag mathqa openbookqa

(acc) (acc_norm) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization

HF/SmolLM2 1.7B None (Base) 41.85±1.41 53.36±0.50 71.43±0.45 34.47±0.87 34.07±0.87 32.20±2.09 43.80±2.22

None (Instruct) 50.53±1.43 53.48±0.50 71.80±0.45 31.12±0.85 31.96±0.85 33.80±2.12 45.80±2.23

nvidia/Hymba 1.5B None (Base) 63.31±1.38 53.49±0.50 71.49±0.45 28.94±0.83 27.97±0.82 32.40±2.10 41.60±2.21

None (Instruct) 63.55±1.38 53.57±0.50 71.06±0.45 29.18±0.83 29.25±0.83 31.00±2.07 42.00±2.21

nvidia/Minitron 4B None (Base) 71.01±1.30 53.89±0.50 72.29±0.45 31.49±0.85 31.36±0.85 30.80±2.07 42.60±2.21

Qwen2.5 (Base)
0.5B None 54.79±1.42 40.53±0.49 52.20±0.50 28.88±0.83 29.45±0.83 24.80±1.93 35.40±2.14

1.5B None 74.61±1.25 50.20±0.50 67.86±0.47 34.57±0.87 35.34±0.88 31.80±2.08 40.40±2.20

3B None 77.07±1.20 55.02±0.50 73.68±0.44 37.22±0.88 37.42±0.89 29.40±2.04 42.80±2.21

Llama-3.2 (Base) 1B None 46.93±1.43 47.69±0.50 63.78±0.48 29.11±0.83 29.21±0.83 26.00±1.96 36.80±2.16

Llama-3.2 (Instruct)

1B

None 55.45±1.42 45.15±0.50 60.76±0.49 33.30±0.86 32.86±0.86 24.20±1.92 34.80±2.13

w8a8 55.36±1.42 45.15±0.50 60.61±0.49 33.13±0.86 32.56±0.86 24.20±1.92 34.80±2.13

FP8 54.63±1.43 44.88±0.50 60.07±0.49 32.66±0.86 32.46±0.86 23.60±1.90 33.80±2.12

FP8-dynamic 55.45±1.42 45.00±0.50 60.68±0.49 32.93±0.86 32.63±0.86 24.80±1.93 35.00±2.14

3B

None 67.73±1.34 52.29±0.50 70.55±0.45 34.71±0.87 34.44±0.87 27.60±2.00 36.20±2.15

w8a8 67.49±1.34 52.25±0.50 70.53±0.45 34.81±0.87 34.71±0.87 28.20±2.01 36.40±2.15

FP8 62.16±1.39 50.40±0.50 68.87±0.46 35.28±0.87 34.71±0.87 27.40±2.00 37.20±2.16

FP8-dynamic 67.73±1.34 52.16±0.50 70.25±0.46 34.84±0.87 34.77±0.87 28.60±2.02 37.60±2.17

Llama-3.1 (Instruct)

8B

None 77.40±1.20 59.13±0.49 79.17±0.41 39.43±0.89 39.53±0.90 33.20±2.11 43.20±2.22

w8a8 76.99±1.21 58.98±0.49 79.28±0.40 39.97±0.90 39.97±0.90 33.00±2.10 42.80±2.21

w8a16 76.99±1.21 59.14±0.49 79.21±0.40 39.77±0.90 39.77±0.90 33.20±2.11 43.20±2.22

w4a16 68.39±1.33 58.03±0.49 77.79±0.41 38.02±0.89 37.96±0.89 31.80±2.08 42.40±2.21

FP8 76.58±1.21 58.91±0.49 78.12±0.41 38.86±0.89 39.16±0.89 32.80±2.10 44.40±2.22

FP8-dynamic 77.15±1.20 59.07±0.49 79.10±0.41 39.87±0.90 39.77±0.90 34.40±2.13 43.60±2.22

70B

None 80.92±1.13 65.22±0.48 84.66±0.36 56.05±0.91 54.67±0.91 37.20±2.16 47.40±2.24

w8a8 80.59±1.13 65.10±0.48 84.59±0.36 56.01±0.91 54.67±0.91 36.60±2.16 46.40±2.23

w8a16 69.04±1.32 64.56±0.48 84.06±0.37 44.92±0.91 44.96±0.91 32.20±2.09 44.00±2.22

w4a16 79.93±1.15 64.55±0.48 84.04±0.37 54.97±0.91 54.24±0.91 35.40±2.14 45.40±2.23

FP8 78.79±1.17 63.03±0.48 83.16±0.37 51.89±0.91 50.99±0.92 37.00±2.16 47.40±2.24

FP8-dynamic 80.51±1.13 65.11±0.48 84.54±0.36 55.78±0.91 54.54±0.91 36.00±2.15 47.20±2.23

Mistralv0.3 (Instruct) 7B

69.29±1.32 64.91±0.48 82.86±0.38 37.39±0.89 38.56±0.89 36.00±2.15 47.20±2.23

w8a8 69.62±1.32 64.70±0.48 82.88±0.38 37.62±0.89 38.32±0.89 35.40±2.14 47.00±2.23

w8a16 69.94±1.31 64.78±0.48 83.01±0.37 38.16±0.89 39.26±0.89 35.80±2.15 46.60±2.23

w4a16 62.49±1.39 62.69±0.48 81.46±0.39 37.25±0.89 37.59±0.89 33.60±2.11 43.00±2.22

MistralNemo (Instruct) 12B None 70.52±1.31 63.27±0.48 82.35±0.38 39.36±0.89 39.90±0.90 37.40±2.17 46.40±2.23

w4a16 69.12±1.32 62.00±0.48 81.37±0.39 38.36±0.89 38.76±0.89 36.80±2.16 46.20±2.23

Qwen2 (Instruct)

0.5B

None 52.74±1.43 39.01±0.49 49.79±0.50 25.93±0.80 26.83±0.81 24.00±1.91 33.40±2.11

GPTQ-Int8 52.99±1.43 39.07±0.49 49.92±0.50 25.63±0.80 26.43±0.81 24.00±1.91 33.80±2.12

GPTQ-Int4 47.75±1.43 38.33±0.49 48.05±0.50 25.76±0.80 26.13±0.80 20.60±1.81 33.20±2.11

w8a16 53.24±1.43 39.08±0.49 49.77±0.50 25.70±0.80 26.50±0.81 24.40±1.92 33.60±2.11

w8a8 53.15±1.43 39.19±0.49 49.95±0.50 25.76±0.80 26.67±0.81 24.00±1.91 32.60±2.10

w4a16 46.44±1.43 37.86±0.48 48.14±0.50 25.26±0.80 25.53±0.80 21.00±1.82 32.80±2.10

1.5B

None 70.19±1.31 49.28±0.50 66.03±0.47 32.90±0.86 32.80±0.86 27.80±2.01 37.20±2.16

GPTQ-Int8 70.19±1.31 49.28±0.50 65.89±0.47 33.10±0.86 32.96±0.86 28.00±2.01 37.00±2.16

GPTQ-Int4 69.62±1.32 48.15±0.50 64.83±0.48 31.26±0.85 32.19±0.86 26.80±1.98 36.60±2.16

w8a16 69.78±1.31 49.29±0.50 66.02±0.47 33.00±0.86 33.00±0.86 28.00±2.01 37.00±2.16

w8a8 70.11±1.31 49.39±0.50 66.01±0.47 33.03±0.86 32.83±0.86 27.80±2.01 36.40±2.15

w4a16 68.39±1.33 48.15±0.50 64.46±0.48 32.63±0.86 33.10±0.86 26.40±1.97 38.00±2.17

7B

None 80.75±1.13 61.05±0.49 80.67±0.39 44.15±0.91 41.98±0.90 35.40±2.14 46.20±2.23

GPTQ-Int8 81.00±1.12 61.04±0.49 80.75±0.39 44.29±0.91 42.21±0.90 35.20±2.14 46.60±2.23

GPTQ-Int4 79.03±1.17 60.21±0.49 79.34±0.40 43.48±0.91 42.48±0.90 34.80±2.13 43.60±2.22

w8a16 80.84±1.13 61.04±0.49 80.53±0.40 44.15±0.91 42.28±0.90 34.40±2.13 46.40±2.23

w8a8 80.67±1.13 61.08±0.49 80.55±0.39 43.58±0.91 41.51±0.90 34.80±2.13 46.20±2.23

w4a16 79.44±1.16 59.93±0.49 79.79±0.40 43.32±0.91 42.38±0.90 33.40±2.11 46.40±2.23

Qwen2.5 (Instruct)

0.5B
None 56.92±1.42 40.53±0.49 52.53±0.50 28.98±0.83 29.65±0.84 23.80±1.91 34.40±2.13

GPTQ-Int8 57.08±1.42 40.53±0.49 52.39±0.50 28.78±0.83 29.85±0.84 24.00±1.91 34.60±2.13

GPTQ-Int4 47.26±1.43 38.91±0.49 49.33±0.50 27.91±0.82 28.27±0.82 23.80±1.91 33.20±2.11

1.5B
None 74.53±1.25 50.89±0.50 68.28±0.46 33.63±0.86 34.07±0.87 31.60±2.08 41.00±2.20

GPTQ-Int8 75.51±1.23 50.86±0.50 68.37±0.46 33.23±0.86 33.84±0.87 31.80±2.08 40.20±2.19

GPTQ-Int4 71.42±1.29 49.38±0.50 65.93±0.47 31.26±0.85 32.53±0.86 31.20±2.07 40.60±2.20

3B
None 78.79±1.17 56.35±0.49 74.94±0.43 35.18±0.87 35.28±0.87 32.60±2.10 42.00±2.21

GPTQ-Int8 78.79±1.17 56.34±0.49 75.02±0.43 35.58±0.88 35.78±0.88 32.80±2.10 41.80±2.21

GPTQ-Int4 76.74±1.21 55.24±0.50 73.27±0.44 36.78±0.88 37.39±0.89 29.40±2.04 42.00±2.21

7B
None 82.64±1.08 62.04±0.48 80.50±0.40 40.57±0.90 40.13±0.90 34.60±2.13 48.80±2.24

GPTQ-Int8 82.64±1.08 62.00±0.48 80.52±0.40 40.57±0.90 40.17±0.90 34.60±2.13 48.40±2.24

GPTQ-Int4 81.82±1.10 60.98±0.49 79.73±0.40 40.30±0.90 39.80±0.90 35.40±2.14 47.20±2.23

14B
None 84.03±1.05 65.56±0.47 84.38±0.36 49.78±0.92 48.41±0.91 36.20±2.15 47.80±2.24

GPTQ-Int8 83.87±1.05 65.67±0.47 84.50±0.36 48.94±0.92 47.67±0.91 37.20±2.16 47.20±2.23

GPTQ-Int4 19.41±1.13 31.46±0.46 36.94±0.48 21.98±0.76 22.48±0.76 14.60±1.58 27.60±2.00

32B
None 86.73±0.97 66.88±0.47 85.22±0.35 57.02±0.91 54.67±0.91 35.60±2.14 45.60±2.23

GPTQ-Int8 87.06±0.96 66.77±0.47 85.24±0.35 57.15±0.91 54.91±0.91 35.40±2.14 45.40±2.23

GPTQ-Int4 86.49±0.98 66.40±0.47 84.74±0.36 54.27±0.91 52.76±0.91 36.00±2.15 46.00±2.23

Table 11: Performance Comparison on CommonsenseQA, HellaSwag, MATHQA, and OpenBookQA with lm-eval-
harness framework. CommonsenseQA is evaluated using accuracy (acc). HellaSwag, OpenBookQA, and MATHQA
are evaluated using both accuracy (acc) and normalized accuracy (acc_norm).
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Models
gsm8k (exact_match) arc_easy arc_challenge

(strict-match) (flexible-extract) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Pruning type, Method

No Knowledge Distillation

phi-2 - SparseGPT 43.97±1.37 44.05±1.37 77.31±0.86 75.08±0.89 47.10±1.46 48.63±1.46

TinyLlama 1.1B SparseGPT 0.76±0.24 1.97±0.38 45.66±1.02 42.00±1.01 22.10±1.21 25.60±1.28

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 7.88±0.74 8.19±0.76 72.52±0.92 69.74±0.94 38.57±1.42 41.21±1.44

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity, SparseGPT 61.49±1.34 61.56±1.34 77.23±0.86 66.88±0.97 45.56±1.46 47.95±1.46

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 37.30±1.33 37.53±1.33 74.58±0.89 70.62±0.93 41.47±1.44 43.77±1.45

SparseGPT (50%) 36.54±1.33 36.54±1.33 73.06±0.91 69.15±0.95 36.69±1.41 40.27±1.43

SparseGPT (70%) 34.19±1.31 34.19±1.31 70.71±0.93 66.12±0.97 35.58±1.40 37.71±1.42

Sparse-Llama-3.1 8B pruned-2of4 57.24±1.36 57.24±1.36 81.06±0.80 78.58±0.84 51.19±1.46 53.07±1.46

pruned-2of4, FP8 Quant. 62.55±1.33 62.70±1.33 77.44±0.86 67.09±0.96 45.22±1.45 47.53±1.46

Mistral Fine-tuned

OpenHermes-2.5 7B SparseGPT 19.79±1.10 34.19±1.31 73.86±0.90 73.02±0.91 41.81±1.44 44.28±1.45

Table 12: Performance Comparison of Pruned and Distilled models on GSM8K, ARC-Easy, and ARC-Challenge
with lm-eval-harness framework.

Models commonsense_qa
(acc)

hellaswag mathqa openbookqa

(acc) (acc_norm) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Pruning type, Method

No Knowledge Distillation

phi-2 - SparseGPT 59.21±1.41 48.75±0.50 65.71±0.47 30.79±0.85 30.15±0.84 36.60±2.16 46.20±2.23

TinyLlama 1.1B SparseGPT 18.92±1.12 33.00±0.47 40.43±0.49 23.82±0.78 23.28±0.77 16.60±1.67 29.80±2.05

Retrained by Cerebras with 50B tokens from SlimPajama

Llama-2 7B SparseGPT (70%) 24.24±1.23 53.69±0.50 72.25±0.45 27.74±0.82 27.27±0.82 31.60±2.08 40.20±2.19

Knowledge Distillation for 13B tokens using SquareHead Approach

Llama-3.1 8B 2of4 Sparsity, SparseGPT 74.45±1.25 58.84±0.49 77.60±0.42 38.09±0.89 37.82±0.89 34.80±2.13 45.40±2.23

Fine-tuned on GSM8K

Llama-2 7B
No Pruning 41.44±1.41 57.56±0.49 75.31±0.43 26.06±0.80 25.86±0.80 31.20±2.07 43.60±2.22

SparseGPT (50%) 32.19±1.34 56.07±0.50 71.02±0.45 26.33±0.81 26.03±0.80 29.20±2.04 39.40±2.19

SparseGPT (70%) 30.38±1.32 54.40±0.50 68.47±0.46 24.99±0.79 24.99±0.79 29.00±2.03 40.80±2.20

Sparse-Llama-3.1 8B
pruned-2of4 39.72±1.40 60.24±0.49 78.84±0.41 26.73±0.81 27.87±0.82 36.00±2.15 46.00±2.23

pruned-2of4, FP8 Quant. 40.70±1.41 60.04±0.49 78.63±0.41 26.57±0.81 27.60±0.82 36.20±2.15 45.80±2.23

Mistral Fine-tuned

OpenHermes-2.5 7B SparseGPT 64.54±1.37 46.78±0.50 62.36±0.48 32.13±0.85 32.73±0.86 23.40±1.90 36.00±2.15

Table 13: Performance Comparison of Pruned and Distilled models on CommonsenseQA, HellaSwag, MATHQA,
and OpenBookQA with lm-eval-harness framework.
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Models
MATH Dataset

Pre-
algebra Algebra Number

Theory

Counting
&

Probability
Geometry Intermediate

Algebra
Pre-

calculus Average

Model Param. Optimiza-
tion

SmolLM2 1.7B None (Base) 8.27±0.93 5.31±0.65 4.81±0.92 6.12±1.10 3.13±0.80 4.76±0.71 2.75±0.70 5.26±0.32

None
(Instruct)

1.72±0.44 1.10±0.30 0.74±0.37 0.84±0.42 0.00±0.00 1.77±0.44 0.73±0.37 1.12±0.15

Minitron
(Base)

4B None 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Qwen2.5 (Base) 0.5B None 1.49±0.41 0.84±0.27 0.19±0.19 0.42±0.30 1.04±0.46 0.66±0.27 1.47±0.51 0.90±0.13

3B None 1.95±0.47 1.85±0.39 0.93±0.41 0.84±0.42 1.25±0.51 1.22±0.37 1.28±0.48 1.44±0.17

Llama-3.2

1B
None 0.23±0.16 0.17±0.12 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

w8a8 0.11±0.11 0.00±0.00 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.04±0.03

FP8 0.46±0.23 0.08±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

3B
None 0.23±0.16 0.34±0.17 0.00±0.00 0.21±0.21 0.00±0.00 0.00±0.00 0.00±0.00 0.14±0.05

w8a8 0.23±0.16 0.25±0.15 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

FP8 0.23±0.16 0.17±0.12 0.19±0.19 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.04

Llama-3.1 8B None 0.69±0.28 0.08±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.11±0.11 0.18±0.18 0.18±0.06

FP8 1.15±0.36 0.17±0.12 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.37±0.26 0.28±0.07

Mistral-v0.3 7B
None 3.44±0.62 0.93±0.28 1.11±0.45 0.63±0.36 1.46±0.55 0.55±0.25 0.18±0.18 1.26±0.16

w8a8 3.67±0.64 0.93±0.28 1.11±0.45 0.63±0.36 1.25±0.51 0.44±0.22 0.00±0.00 1.24±0.16

w8a16 3.33±0.61 0.76±0.25 1.30±0.49 0.63±0.36 1.46±0.55 0.55±0.25 0.00±0.00 1.20±0.15

Qwen2

0.5B

None 0.69±0.28 0.67±0.24 0.19±0.19 0.21±0.21 0.21±0.21 0.22±0.16 0.18±0.18 0.40±0.09

GPTQ-8 1.03±0.34 0.76±0.25 0.37±0.26 0.00±0.00 0.63±0.36 0.11±0.11 0.00±0.00 0.48±0.10

GPTQ-4 0.34±0.20 0.42±0.19 0.00±0.00 0.21±0.21 0.00±0.00 0.00±0.00 0.18±0.18 0.20±0.06

w8a16 1.03±0.34 0.84±0.27 0.00±0.00 1.48±0.55 0.21±0.21 0.22±0.16 0.00±0.00 0.58±0.11

w8a8 0.69±0.28 0.84±0.27 0.37±0.26 0.84±0.42 0.63±0.36 0.22±0.16 0.18±0.18 0.56±0.11

w4a16 0.80±0.30 0.17±0.12 0.19±0.19 0.42±0.30 0.00±0.00 0.00±0.00 0.00±0.00 0.24±0.07

1.5B

None 0.92±0.32 0.67±0.24 0.19±0.19 0.21±0.21 0.42±0.29 0.00±0.00 0.18±0.18 0.42±0.09

GPTQ-8 1.03±0.34 0.59±0.22 0.19±0.19 0.21±0.21 0.21±0.21 0.11±0.11 0.18±0.18 0.42±0.09

GPTQ-4 1.03±0.34 0.51±0.21 0.56±0.32 0.21±0.21 0.00±0.00 0.00±0.00 0.18±0.18 0.40±0.09

w8a16 0.69±0.28 0.08±0.08 0.56±0.32 0.21±0.21 0.00±0.00 0.11±0.11 0.18±0.18 0.26±0.07

w8a8 1.15±0.36 0.59±0.22 0.37±0.26 0.00±0.00 0.42±0.29 0.00±0.00 0.00±0.00 0.42±0.09

w4a16 0.57±0.26 0.25±0.15 0.37±0.26 0.42±0.30 0.00±0.00 0.11±0.11 0.55±0.32 0.32±0.08

7B None 1.95±0.47 1.52±0.35 0.56±0.32 1.69±0.59 0.00±0.00 0.00±0.00 0.37±0.26 0.96±0.14

Qwen2.5

0.5B
None 0.80±0.30 0.67±0.24 0.00±0.00 0.84±0.42 0.21±0.21 0.22±0.16 1.65±0.55 0.62±0.11

GPTQ-8 0.69±0.28 0.59±0.22 0.00±0.00 0.63±0.36 0.21±0.21 0.22±0.16 1.10±0.45 0.50±0.10

GPTQ-4 0.57±0.26 0.34±0.17 0.37±0.26 0.00±0.00 0.00±0.00 0.22±0.16 0.37±0.26 0.30±0.08

1.5B
None 1.03±0.34 0.59±0.22 0.56±0.32 0.42±0.30 3.13±0.80 1.44±0.40 2.38±0.65 1.24±0.16

GPTQ-8 0.92±0.32 0.59±0.22 0.37±0.26 0.63±0.36 2.92±0.77 1.44±0.40 1.65±0.55 1.12±0.15

GPTQ-4 0.46±0.23 0.42±0.19 0.19±0.19 1.48±0.55 0.42±0.29 0.55±0.25 1.65±0.55 0.66±0.11

3B None 1.95±0.47 1.43±0.35 0.19±0.19 1.27±0.51 1.46±0.55 0.33±0.19 0.55±0.32 1.08±0.15

7B None 0.23±0.16 0.25±0.15 0.00±0.00 0.63±0.36 0.42±0.29 0.33±0.19 0.37±0.26 0.30±0.08

14B None 2.41±0.52 2.27±0.43 2.59±0.68 3.16±0.80 6.26±1.11 3.88±0.64 7.69±1.14 3.68±0.27

32B None 1.95±0.47 2.61±0.46 2.22±0.63 3.80±0.88 4.38±0.94 2.55±0.52 2.75±0.70 2.74±0.23

Table 14: Performance Comparison on MATH dataset with lm-eval-harness framework. MATH is evaluated using
exact match.
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C Prompts and Scripts1247

In this section we provide all the prompts template1248

we used in this work.1249

C.1 Model Prompts (1-9)1250

Here, we provide the complete prompts to elicit1251

model responses from Prompt 1 to Prompt 9. We1252

used several prompts, including direct I/O, COT,1253

and few-shot, to encourage reasoning responses1254

from the models. These nine carefully designed1255

prompts aimed to elicit diverse reasoning behav-1256

iors, ranging from simple questions to multi-step1257

reasoning tasks. This ensures a thorough evalua-1258

tion of the models’ reasoning capabilities across1259

different datasets.1260

Prompt 1: Direct I/O
Prompt Template
< question >

1261

Prompt 2: Direct I/O + ####
Prompt Template
< question >

Please solve the following question step-by-step
and provide the final numerical answer after
’####’.

1262

Prompt 3: Direct I/O + Final Answer
Prompt Template
< question >

Provide only the final numerical answer to this
question without any explanation.

1263

Prompt 4: Chain-of-thought (COT)

Prompt Template
< question >

Let’s think step by step.
1264

Prompt 5: COT + ####
Prompt Template
< question >

Let’s think step by step. In the end, please pro-
vide the final numerical answer after ’####’.

1265

Prompt 6: 5-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >

Solve the following question using the provided
examples for reference

Question: < question >

Can you solve this question?
1266

Prompt 7: Complex Reasoning

Prompt Template
< question >

To solve this problem, follow these instructions
step by step:
1. Break the problem into smaller parts.
2. Solve each part logically and explain your
reasoning in detail.
3. Combine the results to arrive at the final an-
swer.
4. Double-check your solution to ensure its ac-
curacy.
Please provide your solution with detailed rea-
soning and clarity."

1267
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Prompt 8: COT + 5-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >

Let’s think step by step. Solve the following
question using step-by-step reasoning as
demonstrated in the above examples.

Question: < question >

Can you solve this question?
1268

Prompt 9: 8-Shot
Prompt Template
Question: < question1 >
Answer: < answer1 >
Question: < question2 >
Answer: < answer2 >
Question: < question3 >
Answer: < answer3 >
Question: < question4 >
Answer: < answer4 >
Question: < question5 >
Answer: < answer5 >
Question: < question6 >
Answer: < answer6 >
Question: < question7 >
Answer: < answer7 >
Question: < question8 >
Answer: < answer8 >

Solve the following question using the provided
examples for reference:

Question: < question >

Can you solve this question?
1269

C.2 GPT-4 Evaluation Prompts1270

In this section, we provide the prompt used for1271

our judge (GPT). We used GPT-4 as the LLM-as-a-1272

judge, using carefully designed prompts to guide its1273

evaluation of responses generated by SLMs. These 1274

prompts were chosen to ensure consistency and 1275

minimize potential biases in the evaluation process. 1276

Prompt 10: Evaluation Prompt for GSM8K

Prompt Template
Your role is to compare the student’s answer to
the provided ground truth answer and determine
its correctness. Carefully read both the ground
truth answer and the student’s answer. Provide
your assessment using one of the following
responses:

- ’Correct’: If the student’s final answer matches
the ground truth answer.
- ’Incorrect’: If the student’s final answer
contradicts the ground truth answer.

Focus solely on the final answer or conclusion,
disregarding any reasoning or intermediate
student’s steps. Be aware that the ground truth
and student answers may be preceded by ’####’
symbols. Respond with exactly one word
’Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >

1277
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Prompt 11: Evaluation Prompt for ARC

Prompt Template
Your role is to evaluate the student’s multiple-
choice answer compared to the ground truth
answer and determine its correctness. Carefully
read the question, the answer choices, the
ground truth answer, and the student’s answer.
Provide your assessment using one of the
following responses:

- ’Correct’: If the student’s chosen answer
matches the ground truth answer.
- ’Incorrect’: If the student’s chosen answer does
not match the ground truth answer.

Focus on whether the student’s final answer
aligns with the intent and content of the ground
truth answer. Disregard minor variations
in wording or format and any reasoning or
explanation. Respond with exactly one word:
’Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >

1278

C.3 Sorting Parsing Script: 13 Variations1279

Here’s a list of scenarios that Parsing Script is de-1280

signed to handle, categorized by the parsing strat-1281

egy employed:1282

Bracketed Lists (High Confidence)1283

1. [1, 2, 3, 4]: Standard, comma-separated list1284

within square brackets.1285

2. [ 1, 2, 3,4]: List with extra spaces between1286

elements and brackets.1287

3. [-1, 0, 2, 5]: List containing negative num-1288

bers.1289

4. [1,2,3,4]: List with no spaces between ele-1290

ments.1291

5. [ 1 , 2 , 3 , 4 ]: List with spaces before1292

and after the brackets.1293

Textual Lists (Medium Confidence)1294

6. "The sorted list is: 3, 5, 9, 12":1295

Standard textual list with commas and spaces.1296

7. "The sorted list is: 3,5,9,12": Textual1297

list with commas but no spaces.1298

8. "The Sorted List Is: -1, 0, 4, 7":1299

Case-insensitive matching of the key phrase.1300

9. "The sorted list is:3, 5, 9": Handles1301

missing space immediately after the colon.1302

Numbered Lists (Medium Confidence) 1303

10. 1. 9 1304

2. 13 1305

3. 29: Standard numbered list format. (Note: 1306

Represented with line breaks using \\) 1307

11. 1. 9 1308

2. 13 1309

3. 29: Numbered list with extra spaces after the 1310

numbering. (Note: Represented with line breaks). 1311

12. 1.9 1312

2.13 1313

3.29: Numbered List with no space. (Less robust, 1314

covered by Fallback) (Note: Represented with line 1315

breaks). 1316

Fallback (Lowest Confidence) 1317

13. If none of the above formats are found, the 1318

script extracts all numbers present in the response 1319

after removing potential numbered list prefixes. Ex- 1320

ample: If the response is "The initial list was 1321

5, 1, 4. The sorted version, however, is 1322

1, 4, 5.", this fallback would extract [5, 1, 4, 1323

1, 4, 5]. 1324
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Prompt 12: Parsing Script for Sorting Responses

def parse_sorted_list(response):

try:
# Step 1: Extract bracketed list if present
bracketed_list_match = re.search(r'\[.*?\] ', response)
if bracketed_list_match:

# Extract numbers from the bracketed content
bracket_content = bracketed_list_match.group (0)
numbers = [int(num) for num in re.findall(r' -?\d+', bracket_content)]
return numbers

# Step 2: Clean up numbered list prefixes (e.g., "1. 9", "2. 13")
cleaned_response = re.sub(r'^\s*\d+\.\s*', '', response , flags=re.

MULTILINE)

# Step 3: Extract the textual list (e.g., "9, 13, 29...")
textual_list_match = re.search(r'(?<=\ bThe sorted list is:)[^\n]*',

cleaned_response , re.IGNORECASE)
if textual_list_match:

textual_content = textual_list_match.group (0)
numbers = [int(num) for num in re.findall(r' -?\d+', textual_content)]
return numbers

# Step 4: Fallback - Extract all numbers in order from the cleaned
response

numbers = [int(num) for num in re.findall(r' -?\d+', cleaned_response)]
return numbers

except Exception as e:
print(f"Error parsing response: {response }. Error: {e}")
return []

1325
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D Further Analysis/Insights1326

D.1 Why explicit chain-of-thought does not1327

Elicit Reasoning?1328

We observed that COT prompting does not sig-1329

nificantly improve the reasoning performance of1330

SLMs. Recent models often generate intermediate1331

reasoning steps even when presented with direct1332

questions. For instance, models frequently pref-1333

ace their responses with phrases like, "Let’s break1334

this down into steps" or "Here’s how we solve this1335

step-by-step." This behavior implies that CoT-like1336

reasoning processes are already internalized dur-1337

ing pretraining, reducing the explicit need for CoT1338

prompting.1339

While the original CoT paper demonstrated clear1340

benefits, the marginal gains observed here likely1341

reflect advancements in training corpora and model1342

architectures, which incorporate reasoning capabil-1343

ities intrinsically. These findings suggest that for1344

modern SLMs, CoT prompting may offer diminish-1345

ing returns, as they already employ such techniques1346

implicitly during reasoning tasks. These response1347

demonstrates how CoT-style reasoning emerges or-1348

ganically, even without explicit prompting.1349

1350
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Qwen2.5-7B: Direct I/O

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Ground Truth: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber. So the total amount of fabric
is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric.
#### 3

Model Response: To determine the total number of bolts of fiber needed for the robe, let’s break it
down step by step.
1. **Blue Fiber:** The robe requires 2 bolts of blue fiber.
2. **White Fiber:** The problem states that the robe requires half as much white fiber as blue fiber.
Therefore, we need to calculate half of 2 bolts:

White fiber =
1

2
× 2 = 1 bolt

3. **Total Fiber:** To find the total number of bolts of fiber needed, we add the bolts of blue fiber
and white fiber together:

Total bolts = 2 (blue) + 1 (white) = 3 bolts

So, the total number of bolts of fiber needed for the robe is **3 bolts**.

Figure 7: Example of Direct (I/O) Reasoning with Qwen2.5-7B-Instruct. We can observe model is generating
reasoning step with no explicit chain-of-thought prompting.

1351 1352
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Qwen2.5-7B: COT

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Let’s think step by step.

Ground Truth: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber. So the total amount of fabric
is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric.
#### 3

Model Response: Certainly! Let’s break down the problem step by step.
1. **Identify the amount of blue fiber needed:** - The problem states that the robe takes 2 bolts of
blue fiber.
2. **Determine the amount of white fiber needed:** - The problem also states that the robe takes half
as much white fiber as blue fiber. - Since 2 bolts of blue fiber are needed, half of that amount would
be:

2 bolts
2

= 1 bolt

3. **Calculate the total amount of fiber needed:** - To find the total amount of fiber, we add the bolts
of blue fiber and the bolts of white fiber:

2 bolts (blue) + 1 bolt (white) = 3 bolts

So, in total, it takes 3 bolts of fiber to make the robe.

Figure 8: Example of Chain-of-thought Prompt with Qwen2.5-7B-Instruct.
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D.2 Poor Performance of Pruned Models1353

Pruned models exhibit significant performance1354

degradation on reasoning-intensive datasets like1355

ARC-E, ARC-C, and CommonsenseQA. Their re-1356

sponses often lack coherence and logic, with out-1357

puts like "Let me know in the comments" or "Sure,1358

I can solve this problem." This was mostly evident1359

in multi-shots prompting in Pruned Model. We1360

hypothesize that pruning disrupts the internal rep-1361

resentations responsible for reasoning, particularly1362

in tasks requiring complex thought processes.1363

Additionally, many pruned models are fine-tuned1364

on datasets like GSM8K to recover lost accuracy,1365

which may limit their generalization to other do-1366

mains. This recovery strategy prioritizes mathe-1367

matical reasoning tasks but does not address the1368

broader reasoning challenges posed by datasets like1369

ARC-C and CommonsenseQA. These results un-1370

derscore the importance of using diverse recovery1371

datasets during fine-tuning to preserve performance1372

across varied tasks.1373

1374
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Sparse-Llama-3.1-8B-2of4: 5-shot

Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?

Ground Truth: The second recipe has 2 * 20 instructions = << 2∗20 = 40 >> 40 instructions. The
total for the two dishes is 40 instructions + 20 instructions = << 40 + 20 = 60 >> 60 instructions.
#### 60

Input Prompt: Question: After scoring 14 points, Erin now has three times more points than Sara,
who scored 8. How many points did Erin have before?
Answer: Erin now has three times more points than Sara, which is 3× 8 = 24 more points than Sara.
This means Erin has a total of 8 + 24 = 32 points now. Before, Erin had 32− 14 = 18 points. ####
18
Question: Maggie spent a quarter of her money, while Riza spent one-third of her money. They each
had $60. How much money do the two of them have left?
Answer: Maggie spent $60/4 = $15. So, Maggie is left with $60 − $15 = $45. Riza spent
$60/3 = $20. So, Riza is left with $60 − $20 = $40. Thus, they have a total of $45 + $40 = $85
left. #### 85
Question: Johnny is picking up the toys on the floor of his room. He’d dumped a lego boxed set with
500 pieces on the floor, and another one that had 3 times more pieces than the 500 piece one, and
another one that had 1/4 the number of pieces. How many blocks does Johnny pick up if he picks up
all the legos?
Answer: The first set had 500 pieces, and the second set had 3 times as many as the first set, so the
second set has 500× 3 = 1500 pieces. The third set had one-quarter of the 500 pieces, so that means
it had 500 × 0.25 = 125 pieces. In total, that means Johnny picked up 500 + 1500 + 125 = 2125
blocks. #### 2,125
Question: A DVD can be played 1000 times before it breaks. There are two DVDs in the public
library, one has been played 356 times and the other has been played 135 times. How many total
times can both DVDs be played before they break?
Answer: 1000− 356 = 644 times. 1000− 135 = 865 times. 644 + 865 = 1509 times. #### 1509
Question: On Easter Sunday Cindy went to the city park to participate in the Easter Egg Hunt, and
ended up with a basket full of eggs. She had 5 green ones, twice as many blue ones as green ones,
one fewer pink eggs than blue eggs, and one-third as many yellow eggs as pink eggs. How many eggs
did Cindy have altogether?
Answer: She has twice as many blue eggs as green eggs, so she has 5× 2 = 10 blue eggs. She has
one fewer pink eggs than blue eggs, so she has 10− 1 = 9 pink eggs. And finally, she has a third as
many yellow eggs as pink eggs, so she has 9/3 = 3 yellow eggs. Added all together, she has 5 green
+ 10 blue + 9 pink + 3 yellow = 27 eggs. #### 27

Solve the following question using the provided examples for reference:
Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?
Can you solve this question?

Model Response: "Let me know in the comments below!"

Figure 9: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response when prompted with 5-shots
on GSM8K
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Sparse-Llama-3.1-8B-2of4: 5-shot

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Ground Truth: He sprints 3*3=<< 3 ∗ 3 = 9 >> 9 times So he runs 9*60=<< 9 ∗ 60 = 540 >>
540 meters #### 540

Input Prompt: Question: A 76-star flag has three rows of 8 stars, two rows of 6 stars and the rest are
5-star rows. How many rows of 5 stars are there altogether on the flag?
Answer: The rows of 8 stars have a total of: 3 rows * 8 stars/row = << 3 ∗ 8 = 24 >> 24 stars. The
rows of 6 stars have a total of: 2 rows * 6 stars/row = << 2 ∗ 6 = 12 >> 12 stars. Including the
rows of 8 and 6 stars, we have 24 stars + 12 stars = << 24 + 12 = 36 >> 36 stars. Now we need
to know how many stars are missing, 76 stars - 36 stars = << 76− 36 = 40 >> 40 stars. Now we
need to distribute the missing stars in rows of 5 stars, 40 stars/5 rows = << 40/5 = 8 >> 8 rows of
5 stars. #### 8
Question: A pen costs as much as a pencil and eraser combined. A pencil costs $1.20 and an eraser
costs $0.30. How much will 8 pens cost?
Answer: A pen costs $1.20 + $0.30 = << 1.20 + 0.30 = 1.50 >> 1.50. So, 8 pens cost $1.50 x 8 =
<< 8 ∗ 1.5 = 12 >> 12. #### 12
Question: A farm has 10 2-legged animals and 15 4-legged animals. If all animals are healthy, how
many pairs of animal legs in total are on the farm?
Answer: 2-legged animals have 2 legs. Therefore 10 2-legged animals will have 10*2=<< 10 ∗
2 = 20 >> 20 legs 4-legged animals have 4 legs. Therefore 15 4-legged animals will have
15*4=<< 15 ∗ 4 = 60 >> 60 legs In total there are 20+60= << 20 + 60 = 80 >> 80 legs A pair
of legs equals 2 legs. If there are 80 legs on the farm, there will be 80/2= << 80/2 = 40 >> 40
pairs of legs #### 40
Question: A house and a lot cost $120,000. If the house cost three times as much as the lot, how
much did the house cost?
Answer: Since the house costs 3 times as much as the lot, the ratio of lot price to the house price is 1 : 3.
This also means 1/4 of the cost is for the lot and 3/4 of the cost is for the house. The cost of the house
is 3/4 of the total cost, which is $120,000. 3/4 * $120,000 = << 3/4 ∗ 120000 = 90000 >> 90, 000.
#### 90000
Question: An apple orchard sells apples in bags of 10. The orchard sold a total of 2000 apples one
day. How much did an orchard earn for selling this at $5 per bag?
Answer: There were 2000/10 = << 2000/10 = 200 >> 200 bags of apples sold. Therefore, the
orchard earned 200 x $5 = << 200 ∗ 5 = 1000 >> 1000. #### 1000

Solve the following question using the provided examples for reference:

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Can you solve this question?

Model Response: "Yes, I can solve this question."

Figure 10: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response when prompted with 5-shots
on GSM8K
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D.3 Pruned Models: No response or1375

Nonsensical response1376

A recurring issue with pruned models is their ten-1377

dency to produce nonsensical or empty responses.1378

Even for simple questions like "What is 2+2?"1379

pruned models may respond with irrelevant state-1380

ments or fail to provide an answer altogether. This1381

indicates that pruning can disrupt key reasoning1382

pathways, rendering models unreliable in generat-1383

ing meaningful outputs.1384

The instability of pruned models emphasizes the1385

need for post-pruning fine-tuning strategies that pri-1386

oritize reasoning tasks. By using more diverse and1387

challenging datasets, it may be possible to mitigate1388

these issues and improve the robustness of pruned1389

models.1390

1391
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Sparse-Llama-3.1-8B-2of4: 5-shot
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Ground Truth: Janet sells 16 - 3 - 4 = << 16− 3− 4 = 9 >> 9 duck eggs a day. She makes 9 * 2
= << 9 ∗ 2 = 18 >> 18 every day at the farmer’s market. #### 18

Input Prompt: Question: Carson lives in an old house where the pipes will freeze if the temperature
inside the house falls below 32 degrees. Every log of wood Carson burns heats the house up by 5
degrees. If it was 45 degrees during the day, and it’s 33 degrees colder during the night compared to
the day, how many logs does Carson need to burn to prevent the pipes from freezing?
Answer: First find the night-time temperature: 45 degrees - 33 degrees = << 45− 33 = 12 >> 12
degrees Then find how much Carson needs to heat his house to avoid the pipes freezing: 32 degrees -
12 degrees = << 32− 12 = 20 >> 20 degrees Then divide the amount of heat Carson needs by the
amount of heat each log produces: 20 degrees / 5 degrees/log = << 20/5 = 4 >> 4 logs #### 4
Question: Every hour, Paige can bake 2 banana bread loaves in the oven. Each banana bread loaf is
cut into 8 slices and wrapped individually for sale. Each slice is sold for 50 cents for a fundraiser. If
she baked from 1:00 PM - 6:00 PM straight, and sold all the slices, how much did she raise in dollars?
Answer: From 1pm - 6pm, there are 6 - 1 = << 6 − 1 = 5 >> 5 hours. In 5 hours, Paige baked
5 x 2 = << 5 ∗ 2 = 10 >> 10 banana bread loaves. When they are sliced, there are 10 x 8 =
<< 10 ∗ 8 = 80 >> 80 banana bread slices. By selling all the slices, Paige has raised 80 x 0.50 =
<< 80 ∗ 0.50 = 40 >> 40. #### 40
Question: Dan plants 3 rose bushes. Each rose bush has 25 roses. Each rose has 8 thorns. How many
thorns are there total?
Answer: First find the total number of roses: 3 bushes * 25 roses/bush = << 3 ∗ 25 = 75 >> 75
roses Then multiply the number of roses by the number of thorns per rose: 75 roses * 8 thorns/rose =
<< 75 ∗ 8 = 600 >> 600 thorns #### 600
Question: 48 people are riding a bus. On the first stop, 8 passengers get off, and 5 times as many
people as the number who got off from the bus get into the bus. On the second stop 21, passengers
get off and 3 times fewer passengers get on. How many passengers are riding the bus after the second
stop?
Answer: At the first stop, 5 * 8 = << 5 ∗ 8 = 40 >> 40 passengers get on the bus. After the first
stop the bus has ( 48 - 8 ) + 40 = << 48− 8 + 40 = 80 >> 80 passengers. At the second stop, 21 /
3 = << 21/3 = 7 >> 7 passengers get on the bus. After the second stop there are ( 80 - 21 ) + 7 =
<< 80− 21 + 7 = 66 >> 66 passengers. #### 66
Question: Ben bought a car for $20000 in 2007. The price of the car depreciates at a constant rate of
21% per year. Find the price of the car in the year 2010.
Answer: The price of the car depreciates of 20000 * 21Ben had the car for 2010 - 2007
= << 2010 − 2007 = 3 >> 3 years. The price of the car depreciates 4200 * 3 =
<< 4200 ∗ 3 = 12600 >> 12600 from 2007 to 2010. So the price of the car in the year
2010 is $20000 - $12600 = << 20000− 12600 = 7400 >> 7400. #### 7400

Solve the following question using the provided examples for reference:
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Can you solve this question?

Model Response: ""

Figure 11: Pruned model "Sparse-Llama-3.1" providing No response when prompted with 5-shots on GSM8K
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Sparse-Llama-3.1-8B-2of4: 5-shot

Input Prompt: Question: An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation?
Choices:
A: Planetary density will decrease.
B: Planetary years will become longer.
C: Planetary days will become shorter.
D: Planetary gravity will become stronger.
Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Ground Truth: Planetary days will become shorter.

Model Response:
= input_ids.to_list()
for id in input_ids:
print(id) # Outputs: 0, 1, 2, ...
}
Output:
{
0
1
2
...
}
In this code, we first convert the input_ids variable to a list using the to_list() method. Then,
we iterate over each element in the list using a for loop. Within the loop, we print each element
to the console using the print() function. The output will be a list of all the unique values in the
input_ids variable.

Figure 12: Pruned model "Sparse-Llama-3.1-8B-2of4" providing Nonsensical response on ARC dataset.

39



Llama-3.1 (8B) SmolLM2 (1.7B)

Total Responses 100 100
Correct Answers 18 5
Incorrect Answers 82 95
Instruction Not Followed 54 23
Unable to Follow Instruction
but Correct 17 3

Unable to Follow Instruction
and Incorrect 37 20

Accuracy 18.00% 5.00%

Table 15: Instruction Following Capability of SLMs

D.4 Instructions following capability of SLMs1392

SLMs exhibit variability in their ability to follow1393

instructions, particularly when the instructions are1394

complex or lengthy. When instructions are pre-1395

sented before the question, models often fail to1396

comply, whereas placing the instructions after the1397

question improves adherence in most cases. How-1398

ever, this improvement is inconsistent, especially1399

in smaller models.1400

Interestingly, when models are given an exces-1401

sive number of instructions, they occasionally solve1402

previously unsolved problems, possibly due to trig-1403

gering alternative reasoning pathways. Conversely,1404

this can also lead to more mistakes. These obser-1405

vations highlight the importance of designing clear1406

and concise instruction templates that align with1407

the model’s processing capabilities to improve per-1408

formance and reliability.1409

We did a small experiment to see how good an1410

SLM is in following instructions. As shown in1411

Table 15, we can see that although large models1412

are good at following instructions, sometimes they1413

provide unnecessary extra information than asked1414

for.1415

D.5 Sorting Incorrect Examples1416

In this section, we present cases where the models1417

occasionally include extra numbers, exclude exist-1418

ing numbers, output the exact same list, or produce1419

the correct sorting but with different numbers.1420

1421
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Llama-3.1-8B: 32-Mixed

Generated Numbers: 30, -17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9,
-52, 66, -38, -77, -69, 6, -60, 27, 51, 32, 85, 38, 34, -55

Ground Truth (Merge Sort): 91, -88, -87, -81, -77, -73, -69, -60, -57, -55, -52, -38, -28, -25, -24,
-17, -10, -5, 6, 9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91

Prompt: Sort the following list of numbers in ascending order:
[30, -17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9, -52, 66, -38, -77, -69, 6,
-60, 27, 51, 32, 85, 38, 34, -55]
Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest: 1. -91 2. -88 3. -87 4. -85 5. -81 6. -77 7. -73 8. -69 9. -60 10. -57 11. -55 12. -52 13. -38 14.
-34 15. -28 16. -25 17. -24 18. -17 19. -10 20. -5 21. 6 22. 9 23. 16 24. 27 25. 30 26. 32 27. 34 28.
38 29. 51 30. 66 31. 68 32. 81 33. 85 34. 91
The sorted list in ascending order is:
-91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24, -17, -10, -5, 6, 9, 16, 27,
30, 32, 34, 38, 51, 66, 68, 81, 85, 91
Parsed Sorted List: -91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24,
-17, -10, -5, 6, 9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91,
Accuracy: 0

Figure 13: Incorrect Sorting Example: Model sometimes include extra numbers (-91 and -85 here).

Llama-3.1-8B: 32-Mixed

Generated Numbers: 81, 33, 91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65,
37, 79, -73, -29, -79, -13, 17, -63, 80, 24, 39, 76

Ground Truth (Merge Sort): -79, -73, -63, -47, -41, -38, -33, -29, -26, -18, -16, -13, -12, -4, 0, 3,
11, 17, 24, 33, 37, 38, 39, 59, 65, 70, 76, 79, 80, 81, 91, 94

Prompt: Sort the following list of numbers in ascending order:
[81, 33, 91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65, 37, 79, -73, -29, -79,
-13, 17, -63, 80, 24, 39, 76]
Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest. Here’s the sorted list:
-79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24, 33, 37, 38, 39, 59, 65,
70, 76, 80, 81, 91, 94
Alternatively, you can use a computer algorithm to sort the list, but in this case, it’s easier to do it
manually.

Parsed Sorted List: -79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24,
33, 37, 38, 39, 59, 65, 70, 76, 80, 81, 91, 94
Accuracy: 0

Figure 14: Incorrect Sorting Example: Model exclude existing numbers (repeated -79 two times and skipped -29
and -12)
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Llama-3.1-8B: 32-Mixed

Generated Numbers: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30,
55, 88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48

Ground Truth (Merge Sort): -96, -92, -83, -81, -79, -78, -76, -67, -53, -52, -48, -41, -38, -35, -31,
-25, -23, -11, 8, 11, 30, 46, 51, 55, 70, 79, 82, 84, 88, 90, 93, 99

Prompt: Sort the following list of numbers in ascending order:
[-83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55, 88, -96, -67, 93,
-41, 84, 8, 99, 51, 82, -11, -81, -48]
Provide the sorted list.

Model Response: To sort the given list of numbers in ascending order, we need to first remove the
negative sign from the numbers and then sort them. Here’s the step-by-step process:
1. Remove the negative sign from the numbers:-83 -> 83 -25 -> 25 -53 -> 53 -31 -> 31 -38 -> 38 -78
-> 78 -76 -> 76 -52 -> 52 -92 -> 92 -23 -> 23 -35 -> 35 -79 -> 79 -11 -> 11 -81 -> 81 -48 -> 48 -67 ->
67 -96 -> 96
The list becomes: [83, 25, 53, 31, 38, 78, 76, 52, 92, 23, 35, 79, 11, 81, 48, 67, 96, 90, 70, 46, 30, 55,
8, 99, 84, 51, 82, 93, 88]
2. Sort the numbers in ascending order:
8, 23, 25, 30, 31, 35, 38, 46, 48, 51, 52, 53, 55, 67, 70, 76, 78, 79, 81, 82, 83, 84, 88, 90, 92, 93, 96, 99
The sorted list is: [-83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48]

Parsed Sorted List: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48
Accuracy: 0

Figure 15: Incorrect Sorting Example: Model sometimes outputs exact same list
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D.6 LLM-as-a-judge: TPR and TNR1422

In Table 16, we present the True Positive Rate1423

(TPR) and True Negative Rate (TNR) for our LLM-1424

as-a-judge evaluation. TPR measures the propor-1425

tion of cases where both the GPT model and human1426

judge agree on a correct decision. TNR reflects the1427

cases where both agree on a correct rejection of an1428

incorrect decision. These rates help better evaluate1429

the model’s accuracy in aligning with human judg-1430

ment, considering both when the LLM correctly1431

matches human decisions and when it diverges.1432

1433
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Dataset Model
gpt-3.5-turbo gpt-4-turbo gpt-4o gpt-4o-mini

Agree-
ment

TPR TNR Agree-
ment

TPR TNR Agree-
ment

TPR TNR Agree-
ment

TPR TNR

gsm8k Llama-3.1-
8B

98.00 100.00 89.47 100.00 100.00 100.00 100.00 100.00 100.00 99.00 98.77 100.00

SmolLM2-
1.7B

94.00 100.00 89.47 98.00 95.35 100.00 98.00 95.35 100.00 98.00 95.35 100.00

arc-e Llama-3.1-
8B

98.00 97.85 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SmolLM2-
1.7B

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

arc-c Llama-3.1-
8B

99.00 98.78 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.00 92.68 100.00

SmolLM2-
1.7B

99.00 98.21 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 98.21 100.00

commonsenseqa Llama-3.1-
8B

97.00 95.65 100.00 100.00 100.00 100.00 99.00 100.00 96.77 100.00 100.00 100.00

SmolLM2-
1.7B

100.00 100.00 100.00 99.00 98.39 100.00 97.00 98.39 94.74 99.00 98.39 100.00

Table 16: LLM-as-a-judge Agreement with human as well as True positive rate (TPR) and True Negative Rate
(TNR) for different Models and Datasets

D.7 Sorting Incorrect Evaluations1434

Here, we provide instances where we were unable1435

to accurately parse the sorted lists produced by the1436

models, resulting in incorrect evaluations.1437

1438
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Llama-3.1-8B: 32-Mixed

Generated Numbers: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61,
-69, 97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Ground Truth (Merge Sort): -96, -94, -88, -77, -73, -70, -69, -61, -58, -56, -51, -42, -40, -35, -21,
-19, -18, -16, -10, -2, 5, 24, 25, 26, 36, 47, 50, 80, 91, 95, 97, 98

Prompt:
Sort the following list of numbers in ascending order:
[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]
Provide the sorted list.

Model Response: To sort the list of numbers in ascending order, I’ll use the following steps:
1. Start with the original list:
[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]
2. Arrange the numbers in ascending order:
- First, place the smallest numbers first. The smallest numbers are -96, -94, -88, -77, -73, -70, -69, -71
is not in the list, -69 is, -69 is smaller than -70, -73, -77, -88, -94, and -96, so we place them first.
- Next, we look at the remaining numbers. The next smallest numbers are -58, -56, -51, -42, -40, -35,
-34 is not in the list, -35 is, -35 is smaller than -42, -40, -51, -56, and -58, so we place them next.
- Next, we look at the remaining numbers. The next smallest numbers are -21, -19, -18, -16, -10, -2,
-2 is smaller than -10, -16, -18, -19, and -21, so we place them next.
- Next, we look at the remaining numbers. The next smallest numbers are 5, 24, 25, 26, 36, 47, 50, 80,
95, 97, 98, so we place them next.
- Finally, we look at the remaining number, which is 91.
The sorted list in ascending order is:
-96, -94, -88, -77, -73, -70, -69, -58, -56, -51, -42, -40, -35, -21, -19, -18, -16, -10, -2, 5, 24, 25, 26,
36, 47, 50, 80, 91, 95, 97, 98

Parsed Sorted List: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69,
97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Accuracy: 0

Figure 16: Example of Incorrect parsing/sorting evaluations: Here, although final answer is incorrect (-61 is missing).
But our parsing script did not work properly here.
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D.8 GPT-4 Incorrect Evaluations1439

In this section, we present instances where GPT-4’s1440

evaluations were incorrect. For example, in one1441

case, the ground truth was "stand in line," but the1442

model chose option B, "get in line," and GPT-41443

incorrectly labeled the evaluation as correct instead1444

of incorrect.1445

Additionally, most incorrect evaluations by GPT-1446

4 were observed when model responses were non-1447

sensical or excessively long. In these cases, GPT-41448

sometimes classified incorrect answers as correct,1449

likely due to the presence of partially correct rea-1450

soning in the responses.1451

To mitigate this, we parsed the model’s re-1452

sponses before sending them to GPT-4 for evalua-1453

tion, especially when the responses were lengthy.1454

1455
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Llama-3.1-8B: CQA 33

Prompt:
Question: Where would a person be doing when having to wait their turn?
Choices: A: have patience B: get in line C: sing D: stand in line E: turn left
Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Ground Truth: stand in line

Model Response: B: get in line

Evaluation: Correct

Figure 17: GPT-4o Incorrect Evaluation on CommonsenseQA dataset where it got confused between Model response
("get in line") and ground truth ("stand in line").

E Model Compression Techniques1456

Explained1457

Deep learning models, particularly large-scale lan-1458

guage models, require significant computational1459

resources. To make these models more efficient,1460

various model compression techniques are used,1461

including quantization, pruning, and distillation.1462

These methods reduce model size and computa-1463

tional requirements while attempting to preserve1464

accuracy. This section provides an in-depth expla-1465

nation of these techniques.1466

E.1 Quantization1467

Quantization reduces the precision of model pa-1468

rameters (weights and activations) to lower-bit rep-1469

resentations, thereby reducing memory footprint1470

and accelerating inference. Instead of using full-1471

precision floating-point numbers (e.g., FP32), quan-1472

tization represents values using lower-bit formats1473

such as INT8, INT4, or FP8.1474

Mathematically, given a full-precision weight1475

matrix W ∈ Rm×n, quantization maps each1476

weight w ∈ W to a lower-precision representa-1477

tion ŵ:1478

ŵ = S · round
(w
S

)
, (1)1479

where S is a scaling factor that determines how1480

real-valued weights are mapped to discrete levels.1481

There are various quantization schemes used in1482

our experiments:1483

Here, FP8-Dynamic refers to an adaptive1484

floating-point scheme where scaling factors change1485

dynamically based on tensor statistics. GPTQ1486

(Generalized Post-Training Quantization) applies1487

quantization-aware optimization post-training to 1488

minimize performance loss. 1489

E.2 Pruning 1490

Pruning eliminates less significant parameters from 1491

the model to reduce its size while preserving essen- 1492

tial computations. Formally, given a weight matrix 1493

W, pruning removes elements below a threshold τ , 1494

setting them to zero: 1495

Ŵi,j =

{
Wi,j , if |Wi,j | ≥ τ

0, otherwise
(2) 1496

Different types of pruning exist: 1497

• Unstructured Pruning: Individual weights 1498

below τ are removed. 1499

• Structured Pruning: Entire rows, columns, 1500

or channels are removed, leading to more 1501

hardware-efficient reductions. 1502

• Magnitude Pruning: Weights with the small- 1503

est magnitudes are pruned first. 1504

• Gradient-Based Pruning: Pruning is based 1505

on the impact of removing a weight on the 1506

loss function. 1507

Pruning helps in reducing memory usage and im- 1508

proving inference speed, especially for deployment 1509

on edge devices. However, aggressive pruning can 1510

degrade model accuracy, requiring fine-tuning to 1511

recover performance. 1512

E.3 Distillation 1513

Distillation compresses a large, pre-trained model 1514

(teacher) into a smaller model (student) by transfer- 1515

ring knowledge. The student model learns not only 1516
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Scheme Weight Precision Activation Precision

W8A8 8-bit weights 8-bit activations
W8A16 8-bit weights 16-bit activations
W4A16 4-bit weights 16-bit activations

FP8 8-bit floating point weights 8-bit floating point activations
FP8-Dynamic 8-bit floating point (dynamic scaling) 8-bit floating point activations
GPTQ 8-bit 8-bit quantization using GPTQ (post-training) -
GPTQ 4-bit 4-bit quantization using GPTQ (post-training) -

Table 17: Quantization Schemes referred in this paper.

from ground-truth labels but also from the teacher’s1517

softened output probabilities.1518

Given a teacher model output zT and a student1519

model output zS , distillation minimizes the loss:1520

L = αLCE(z
S , y) + (1− α)LKD(z

S , zT ), (3)1521

where LCE is the standard cross-entropy loss,1522

LKD is the knowledge distillation loss:1523

LKD =
∑
i

pTi log pSi , (4)1524

and pTi , pSi are the softened class probabilities1525

from the teacher and student, respectively. The1526

temperature parameter T controls how much the1527

logits are softened before computing probabilities:1528

pi =
exp(zi/T )∑
j exp(zj/T )

. (5)1529

Distillation enables smaller models to achieve1530

near-state-of-the-art performance with significantly1531

fewer parameters, making them ideal for deploy-1532

ment in resource-constrained environments.1533

F Implementation Details1534

We conducted all model inferences using NVIDIA1535

H100-80GB, A100-80GB, L40-48GB, and A40-1536

48GB GPUs. For efficient inference, we used the1537

vLLM library (Kwon et al., 2023) 2, dynamically1538

allocating the required number of GPUs to load1539

each model. Multi-GPU utilization was enabled us-1540

ing Hugging Face Accelerate 3 for model sharding1541

and speed optimization. We use the default hyper-1542

parameters settings mentioned in the huggingface1543

repo for a fair comparison. We only adjusted the1544

max input tokens (4096 for multi-shot prompts).1545

2https://docs.vllm.ai/en/latest/
3https://github.com/huggingface/accelerate

All the computational requirements (GPU Mem- 1546

ory Usage) reported are on NVIDIA-A100-80GB. 1547

All Quantized and Pruned models used are from 1548

Neural Magic 4 and Qwen 5 Hugging Face reposi- 1549

tory. All models are open-sourced and hosted on 1550

Hugging Face 6. In addition to GPT-4, we also use 1551

open-sourced framework lm-eval-harness 7 for the 1552

evaluation of SLMs. 1553

G Human Evaluation Details 1554

All human evaluations in this study were conducted 1555

by a computer science graduate student who has 1556

worked in the field of NLP and LLMs for more 1557

than three years. The evaluations were performed 1558

independently three times to ensure consistency 1559

and correctness. The authors then verified the re- 1560

sults to minimize errors. No external annotators 1561

or crowdsourcing platforms were involved, and no 1562

compensation was provided. Due to the double- 1563

blind review process, further identifying details 1564

cannot be disclosed. 1565

H Datasets Statistics 1566

We evaluate our approach on seven benchmarks 1567

of different reasoning. In the following we briefly 1568

describe each dataset along with their splits. In this 1569

paper, we use test split to evaluate all SLMs. Table 1570

18 summarizes the splits for each datasets. 1571

GSM8K (Cobbe et al., 2021) is a collection of 1572

high-quality grade school math word problems that 1573

require multi-step reasoning. In the main configura- 1574

tion, the dataset contains a total of 8,790 examples, 1575

4https://huggingface.co/collections/
neuralmagic/

5https://huggingface.co/collections/Qwen/
6https://huggingface.co/models
7https://github.com/EleutherAI/

lm-evaluation-harness
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Dataset Train Validation Test

GSM8K 7,473 – 1,319
ARC-Easy 2,251 570 2,376
ARC-Challenge 1,119 299 1,172
CommonsenseQA 9,741 1,221 1,140
HellaSwag 39,905 10,042 10,003
MathQA 29,837 4,475 2,985
OpenBookQA 4,957 500 500
MATH 10,000 – 5,000

Table 18: Dataset splits and example counts. Note that
GSM8K and MATH are provided with only training and
test splits.

with 7,473 examples in the training split and 1,3191576

examples in the test split.1577

ARC (Clark et al., 2018) comprises two subsets1578

of multiple-choice science questions:1579

• ARC-Easy: Contains 2251 train, 570 valida-1580

tion, and 2376 test splits.1581

• ARC-Challenge: Contains 1119 train, 2991582

validation, and 1172 test splits.1583

CommonsenseQA (Talmor et al., 2019) requires1584

using commonsense reasoning to answer multiple-1585

choice questions. It has 9,741 training examples,1586

1,221 validation examples, and 1,140 test exam-1587

ples.1588

HellaSwag (Zellers et al., 2019) is designed to1589

evaluate commonsense inference by selecting the1590

most plausible continuation of a given context. The1591

default split comprises 39,905 for training, 10,0421592

for validation, and 10,003 for testing.1593

MathQA (Amini et al., 2019) focuses on in-1594

terpretable math word problem solving using1595

operation-based formalism. The default split com-1596

prises 29,837 for training, 4475 for validation, and1597

2985 for testing.1598

OpenBookQA (Mihaylov et al., 2018b) tests the1599

ability to combine a small “open book” of core sci-1600

ence facts with additional commonsense reasoning.1601

The default split comprises 4957 for training, 5001602

for validation, and 500 for testing.1603

MATH (Hendrycks et al., 2021) is a challeng-1604

ing dataset of competition-level math problems de-1605

signed to measure advanced mathematical problem1606

solving. It contains a total of 12,500 examples,1607

split into 10,000 training, 5,000 test problems.1608
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