
In-Context Learning Strategies Emerge Rationally

Daniel Wurgaft1,2,3∗ Ekdeep Singh Lubana2,3∗ Core Francisco Park2

Hidenori Tanaka2,3 Gautam Reddy4 Noah D. Goodman1,5

1Department of Psychology, Stanford University
2CBS-NTT Program in Physics of Intelligence, Harvard University

3Physics of Artificial Intelligence Group, NTT Research, Inc., Sunnyvale, CA, USA
4Joseph Henry Laboratories of Physics, Princeton University

5Department of Computer Science, Stanford University

Abstract

Recent work analyzing in-context learning (ICL) has identified a broad set of
strategies that describe model behavior in different experimental conditions. We
aim to unify these findings by asking why a model learns these disparate strategies in
the first place. Specifically, we start with the observation that when trained to learn a
mixture of tasks, as is popular in the literature, the strategies learned by a model for
performing ICL can be captured by a family of Bayesian predictors: a memorizing
predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing
predictor, where the prior matches the underlying task distribution. Adopting the
normative lens of rational analysis, where a learner’s behavior is explained as
an optimal adaptation to data given computational constraints, we develop a
hierarchical Bayesian framework that almost perfectly predicts Transformer next-
token predictions throughout training—without assuming access to its weights.
Under this framework, pretraining is viewed as a process of updating the posterior
probability of different strategies, and inference-time behavior as a posterior-
weighted average over these strategies’ predictions. Our framework draws on
common assumptions about neural network learning dynamics, which make explicit
a tradeoff between loss and complexity among candidate strategies: beyond how
well it explains the data, a model’s preference towards implementing a strategy
is dictated by its complexity. This helps explain well-known ICL phenomena,
while offering novel predictions: e.g., we show a superlinear trend in the timescale
for transitioning from generalization to memorization as task diversity increases.
Overall, our work advances an explanatory and predictive account of ICL grounded
in tradeoffs between strategy loss and complexity.

1 Introduction

In-Context Learning (ICL) has significantly expanded the open-ended nature of large language models
(LLMs) [1–5], allowing them to learn novel behaviors from merely the provided context [6–12].
This has motivated a large body of work that analyzes controlled experimental settings to better
understand ICL [13–17], leading to (i) behavioral accounts of what strategies are followed by a model
to learn from its context [18–23], e.g., the ridge estimator in linear regression tasks [14, 17]; (ii)
developmental accounts identifying when, i.e., under what training [24] and data [25] conditions, a
particular strategy is used by the model [24–30]; or (iii) mechanistic accounts characterizing how
such strategies get implemented [31–33], e.g., the use of induction heads [34]. While some have
attempted characterizing ICL as a single procedure [22, 35, 36], more recent work has argued that
the broader phenomenology of ICL stems from a model learning different strategies under varying
experimental conditions [26, 30, 37].

∗Equal contribution. Email: wurgaft@stanford.edu, ekdeeplubana@fas.harvard.edu.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��
�

�
�

�
�

�
�

�
�

�
�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

Transformer

B
al

ls
 &

U

rn
s

Li
ne

ar

R
eg

re
ss

io
n

C
la

ss
ifi

ca
tio

n

Task Diversity Effects

MAIN: INTRO FIGURE (UNIFICATION)

M
SE

K
L

22 24 26 28 210

Task Diversity

Transience

0 20K 40K 60K 80K

C
ro

ss
-E

nt
ro

p
y

22 24 26 28 210

Ta
sk

 D
iv

er
si

ty

G

Eventually, the likelihood
floods the prior

Likelihood favors
memorization

Transience

M G M
G

M

Dive
rs

ity

Th
re

sh
ol

d

Prior favors
simplicity

OODID OOD

(a) (b)

G M

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

Training steps

Ta
sk

 D
iv

er
si

ty

Training steps

GGeneralizing Predictor () Memorizing Predictor ()M

Training steps

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

Figure 1: Why Does a Model Learn Different Strategies for Performing ICL? To answer this
question, we analyze three distinct settings where a model is trained to learn a mixture of tasks. (a)
Model Behavior Transitions Between Memorizing and Generalizing Predictors. We first make the
observation that across settings, as diversity of data distribution and amount of training are increased,
model behavior transitions between two Bayesian predictors: a memorizing predictor, M , which
assumes a discrete prior over seen tasks, and a generalizing predictor, G, which assumes a continuous
prior over the true distribution. This recapitulates prior results on task-diversity thresholds [25] and
transient generalization [24] in a unifying language. (b) A Hierarchical Bayesian Framework
Provides an Explanatory and Predictive Account of ICL. The consistency of these transitions
motivates a hierarchical Bayesian model of ICL, where a model’s inference-time behavior is framed
as a posterior-weighted interpolation in the Bayesian predictors M and G, while pretraining is seen as
a process of updating the preference (posterior probability) toward different predictors. We find that
under reasonable assumptions regarding neural network learning dynamics, our framework is highly
predictive of model behavior throughout training, without access to model weights (bottom panel).
Additionally, our framework provides an explanatory account of ICL phenomena via a tradeoff
between the loss and the complexity of learned solutions (top panel).

These results suggest that a remaining hurdle for developing a unified account of ICL is understanding
why, in the first place, models learn different strategies with disparate generalization abilities. Indeed,
given that memorizing the training distribution almost always leads to better performance, why does
the model learn an ‘underfitting’, out-of-distribution generalizing solution at all [24, 25]? Moreover,
if capacity limitations prevent memorization, why does the model, among all underfitting solutions,
learn the one that captures the true generative process [25, 26]? Finally, why does it first learn such a
solution, only to eventually give way to one that does not generalize to novel tasks [24, 27]?
This work. To address the questions above, we first make the observation that in popularly studied
ICL settings, where a model is trained to learn a mixture of tasks, identified strategies can be unified
in the language of Bayesian inference: across three distinct settings, we show models learn solutions
that behaviorally match Bayes-optimal strategies towards generalizing to the distribution of tasks
seen during training vs. the true distribution from which said tasks are sampled (see Fig. 1(a)). These
solutions respectively assume a discrete prior over the seen tasks (a memorizing predictor) or a
continuous prior over the true distribution (a generalizing predictor), capturing previously studied
setting-specific solutions (e.g., those described by Raventós et al. [25] in in-context linear regression).
This observation then motivates our core contribution: we propose to understand ICL by invoking
the approach of rational analysis from cognitive science [38–42], where a learner’s behavior is
explained as an optimal adaptation to data, given its objective and computational constraints. In
our case, building on the finding that Transformers transition between memorizing and generalizing
predictors, we examine how a Bayes-optimal learner would trade off between these solutions across
training and data conditions, given a simplicity bias [43–48] and power-law scaling of loss with
dataset size [49, 50]. This yields a hierarchical Bayesian framework that casts pretraining as a
process of weighing preference (posterior probability) toward different solutions based on their loss
and complexity. At inference, model behavior is framed as a posterior-weighted average of these
solutions (which themselves are Bayesian—hence the term “hierarchical”). Deriving a closed-form
expression for next-token predictions based on this framework, we are able to almost perfectly explain
model behavior throughout training without assuming access to the weights. This allows us to both

2

f(w1)

Mixture of
Tasks

Next-token prediction
over samples from task(s)

SETTINGS FIGURE

˜
x1 ?x2 x3 x4

Balls & Urns

w˜ Dirichlet(1)

?

Linear Regression Classification

w˜𝒩(0, Im)
(𝚡,)? ?

˜ 𝒩(0, Im

m
)

{0,1}l
˜

w

(a) (b)

…

f(w1)
f(w2)

f(wD)

Figure 2: Experimental Settings: Learning a Finite Mixture of Tasks. (a) General Formulation.
Popularly studied experimental settings in the literature on ICL can be seen as training a model to
learn a distribution defined using a mixture of tasks (denoted Ttrain), where each task is a parameterized
latent function whose parameters are sampled from a distribution Ttrue. (b) Considered Settings. We
analyze three distinct instantiations of this general formulation: Balls & Urns, which captures the
belief update interpretation of ICL and is a simplification of the Markov modeling setting from prior
work [26, 52], and two popularly studied settings from the literature that capture the few-shot learning
interpretation of ICL, i.e., in-context linear regression [14, 25] and Classification [20, 24, 28, 29].

explain several known ICL phenomena and draw novel predictions. Overall, we make the following
contributions in this work.
• Model Behavior Transitions Between Memorizing and Generalizing Predictors. Analyzing

three distinct settings, we replicate well-known phenomena of ICL [24, 25] and show that as
task diversity and training steps are varied, models primarily transition between two ICL phases,
determined by two types of predictors dominating model behavior: 1) a Bayesian predictor with a
discrete prior over seen tasks, called the memorizing predictor, and 2) a Bayesian predictor with a
continuous prior over the true data-generating distribution, called the generalizing predictor.

• A Hierarchical Bayesian Model of ICL Grounded in Rational Analysis. Adopting the lens of
rational analysis from cognitive science [38] motivates a hierarchical Bayesian framework that
models ICL as a posterior-weighted average over the memorizing and generalizing predictors.
This is in contrast to several previous Bayesian accounts of ICL [35, 51], which frame ICL as
implementing a single predictor. Under reasonable assumptions about neural network learning
dynamics (power-law scaling and simplicity bias), we derive a closed-form expression for our
model, which almost perfectly predicts Transformer next-token predictions without assuming access
to weights, as well as captures dynamical ICL phenomena of task diversity effects and transience.

• A Loss-Complexity Tradeoff Underlies ICL Phenomena and Yields Novel Predictions. Our
framework makes explicit a tradeoff driving model preference towards a predictor as a function of
its loss and complexity. This tradeoff helps explain transitions in model behavior due to changes in
data-diversity [25] or training time [24] as artifacts implicitly induced by changes in a predictor’s
complexity or loss, relative to other predictors. This interpretation further helps us identify several
novel predictions, e.g., a superlinear relationship between task diversity and time to transience.

Overall, we argue our work advances a unifying explanatory and predictive account of ICL. More
broadly, our results suggest the value of taking a normative perspective towards explaining neural
networks, viewing learning behavior (both in-context and throughout training) as a rational adaptation
to data properties and computational constraints.

2 Preliminaries: Learning a Finite Mixture of Tasks

To capture both few-shot learning [2, 14, 20, 25, 53] and belief update formulations [26, 34, 54, 55]
of ICL, we analyze three distinct experimental settings in this paper. To this end, we first provide
a general formulation of the learning setup, which allows us to formalize a unified language for
examining model strategies for ICL in the next section.

General Formulation. We cast prior settings used for studying ICL [20, 25, 26] as learning a finite
mixture of tasks. Specifically, settings analyzed in this work involve learning a mixture distribution
Ttrain defined over D parametrized functions {f(w1, ·), . . . , f(wD, ·)}, or ‘tasks’. For each function
f(w), the parameters w ∈ Rm are sampled from a predefined distribution Ttrue (see Fig. 2). We
call D the task diversity of the mixture. Every training iteration, we randomly select a function
f(w, ·) ∈ Ttrain, and use it to generate a sequence of length C (details vary by setting, see below).
Batches consist of independently generated sequences. We autoregressively train Transformers
(GPT-NeoX architecture [56, 57]) for a predefined number of iterations N . Model performance is

3

SETTINGS FIGURE

Memorizing

…

f(w1)
f(w2)

f(wD)
?xi-1

Generalizing

∑

∫

w ∼

Balls & Urns Linear Regression Classification

Compute
count

∑
?

M

G

… …

Posterior predictive
over tau

Posterior predictive
over tau

f(w1)
Ridge

regression

?

∑

…

M

G

…

∑

…

M

G

?

…
…

∑

Noisy
retrieval

Noisy
copy

…

(a) (b)

Figure 3: Predictors in Different Experimental Settings. (a) Memorizing and Generalizing
Predictors. We compare model behavior to two idealized Bayesian predictors: (i) Memorizing
predictor (M), which assumes a discrete prior over the mixture distribution Ttrain, and (ii) Generalizing
predictor (G), which assumes a prior over Ttrue, the distribution from which tasks are sampled. (b)
Task-Specific Instantiations. These predictors yield closed-form solutions (App. G); e.g., in Balls &
Urns, the memorizing predictor computes a posterior-weighted average over urns seen in training,
whereas the generalizing predictor uses empirical unigram statistics with pseudo-counts.

evaluated either on in-distribution (ID) sequences drawn from Ttrain, or on out-of-distribution (OOD)
sequences drawn from the underlying distribution Ttrue (see App. F for further details on architecture
and method). We analyze three specific instantiations of this general formulation, detailed next.

Balls & Urns. Related to the belief update formulation of ICL, this setting is inspired by the classic
‘Urn Problem’ from the probability literature [58]. Specifically, one draws (with replacement) balls
from an urn containing balls of m types, and the goal is to estimate the distribution of ball types. Since
solving this task only requires inferring unigram statistics of the input (a histogram), this setting simpli-
fies the Markov modeling setup proposed by Park et al. [26]. A task f(w) = Categorical(w) denotes
a stochastic map (‘urn’) from which states (‘balls’) are sampled, with w ∼ Ttrue = Dirichlet(1).
Thus, the distribution Ttrain consists of D ‘urns’ {Categorical(w1), . . . ,Categorical(wD)}. To
generate data, we sample C states from a randomly selected function f(w), yielding a sequence
s := [x1 . . .xC], where x ∼ Categorical(w).

Linear Regression. A standard problem setting in literature on understanding the few-shot learning
formulation of ICL [14, 25, 53]. Here, the goal is to learn to in-context solve linear regression
problems. A task f(w) = w⊺x+ϵ denotes a noisy linear map that transforms a continuous input via a
linear map x ∼ N (0, Im) and introduces additive noise ϵ ∼ N (0, σ2), where w ∼ Ttrue = N (0, Im)
and Im denotes the m×m identity matrix. Thus, the training distribution Ttrain consists of D linear
mappings {f(w1, ·), . . . , f(wD, ·)}. To generate data, we sample C inputs and transform them with a
randomly selected function f(w,x), yielding a sequence s := [x1,w

⊺x1+ϵ1, . . . ,xC ,w
⊺xC+ϵC].

Binary Classification. Another popularly studied setting in literature on understanding the few-shot
formulation of ICL [20, 28]. Our parameterization is inspired by Nguyen and Reddy [29], who define
a task f(w, l) = w ⊕ l to denote an item-label pair, with w ∼ N (0, Im/m), l ∈ {0, 1} defining
Ttrue. Thus, the training task distribution Ttrain consists of D item-label pairs {w1⊕ l1, . . . ,wD⊕ lD}.
Unlike other settings, multiple functions f(w, l) are used to generate data: first, C − 1 item-label
pairs w ⊕ l are randomly sampled (with replacement) from Ttrain. A pair is chosen from the
sequence at random to be the query pair—it is appended to the end of the sequence, and its label is
corrupted to be −1. We noise these items via w̃ = w+σϵ√

1+σ2
, with σ ∈ R acting as the within-class

variance, and ϵ ∈ N (0, Im/m). This process yields a sequence s := [x1, . . . ,xC−1,xquery] =
[w̃1 ⊕ l1, . . . , w̃C−1 ⊕ lC−1, w̃query ⊕−1]. Models are only trained to predict the label of w̃query.

3 What Strategies: Memorizing and Generalizing Predictors

Our goal in this work is to understand why a model learns different strategies for performing ICL.
We must thus first establish what these strategies are, allowing us to then characterize the dynamics
driving changes in a model’s preferred strategy. To this end, we build on the idea that autoregressive
training with the next-token prediction objective corresponds to maximizing the likelihood of the data
and learning the distribution underlying it [59]. We thus consider the two distributions forming the
basis of our general formulation—i.e., Ttrain and Ttrue—and consider optimal strategies a learner can
be expected to implement if it learns these distributions. This generalizes the approach of Raventós
et al. [25], and yields the following two Bayesian predictors.

4

• Memorizing Predictor (M). The memorizing predictor assumes a discrete prior over the distribu-
tion of seen tasks (Ttrain) and implements a posterior predictive of the form:

M(si|s1:i−1) =
∑

w∼Ttrain

p(w|s1:i−1)fw(si|s1:i−1) = Ew∼Ttrain [fw(si|s1:i−1)]. (1)

• Generalizing Predictor (G). The generalizing predictor assumes a continuous prior over the
distribution from which tasks are sampled (Ttrue), implementing a posterior predictive of the form:

G(si|s1:i−1) =

∫
w∼Ttrue

p(w|s1:i−1)fw(si|s1:i−1) = Ew∼Ttrue [fw(si|s1:i−1)]. (2)

For all tasks we analyze, the predictors above can be defined in a closed-form manner (see App. G),
mapping onto task-specific strategies defined in prior work: e.g., what has been called ‘dMMSE’
vs. ridge estimator in linear regression [25], ‘in-weights learning’ vs. ‘in-context learning’ in
classification [20], and ‘retrieval’ vs. ‘inference’ in sequence modeling [26].

3.1 Validating the Memorizing and Generalizing Predictors

�� ��
�

��
�

��
�

��
�

��
�

��
�

��	��������
����

�
�

�
�

�
�

�
�

�
�

�

�	
��
��
��

�
��
��
��

��

�

��

��

���

���

���

���
������
������

��� ���

������
������

��

���

���

���

�
�

���

���

	�

�
��
��

��
��
��

��

�����������

	
��������������

����������
�

��
���

��
�

��

�
��

��
�

��

�
��

�� ��
�

��
�

��
�

�

�

��
�

��
�

	�
�������������

�
�

�
�

�
�

�
�

�
�

�

	

��
��
��
��
��
��
��

��

��

��

��

���

���

��

���

��

���

��� ��

���

�� ��
�

��
�

��
�

�

�

��
�

��
�

	�
�������������

�
�

�
�

�
�

�
�

�
�

�

	

��
��
��
��
��
��
��

��

��

��

��

���

���

��

���

��

���

��� ��

���

�� ��
�

��
�

��
�

�

�

��
�

��
�

	�
�������������

�
�

�
�

�
�

�
�

�
�

�

	

��
��
��
��
��
��
��

��

��

��

��

���

���

��

���

��

���

��� ��

���

(c) Classification

�� ��
�

��
�

��
�

�

�

��
�

��
�

	�
�������������

�
�

�
�

�
�

�
�

�
�

�

	

��
��
��
��
��
��
��

��

��

��

��

���

���

��

���

��

���

��� ��

���

��

���

���

���

�
�

���

���
	�

�
��
��

��
��
��

��

�����������

	
��������������

����������
�

��
���

��
�

��

�
��

��
�

��

�
��

��
�� �� ��
�

��
�

��
�

�
�

��
�

��
�

��	��������
����

�
�

�
�

�
�

�
�

�
�

�

�	
��
��
��

�
��
��
��

��

�

��

��

���

���

����

���

����
��

���� ����

��

MAIN: RELATIVE DISTANCE FIGURE

(a) Balls & Urns (b) Linear Regression

G M
Relative Dist.

0 1

Absolute Dist.

G
M

KL

KL

Figure 4: Relative Distance Captures Transi-
tions in Model Behavior. We show the relative
distance between model outputs and the two predic-
tors. Marginals report the absolute distance values
(e.g., symmetrized KL between model and predic-
tor outputs for the Balls & Urns setting), holding
N constant (for the right plot), or D constant (for
the top plot), and varying the other variable (de-
noted with the dotted line). Across all settings, we
see model behavior decomposes into two phases,
explained by either the memorizing or generaliz-
ing predictor. In this figure, we use context length
of 128, task dimensionality of 8, and MLP width
of 256 for balls and urns. Linear regression has
similar parameters except context length of 32,
and classification has similar parameters other than
MLP width of 512.

We next demonstrate the validity of the memo-
rizing and generalizing predictors for the pur-
pose of our analysis. Specifically, we show
that as experimental conditions are varied, a
model’s behavior primarily transitions between
these predictors. To this end, we consider two
core phenomena associated with ICL—an in-
crease in models’ OOD performance with in-
creasing task diversity D [25, 60, 61], and the
‘forgetting’ of this ability with increasing train-
ing steps N—a phenomenon known as transient
generalization [24, 30, 62]. We first replicate
these results behaviorally in Fig. 1(a), finding
that, across settings, Transformers transition
between performing like the memorizing pre-
dictor vs. like the generalizing predictor (see
App. H for full results). Then, we make a di-
rect comparison by computing the distance be-
tween our trained model’s next-token predic-
tions and the predictions of the memorizing and
generalizing predictors. Specifically, let d(., .)
denote a distance measure (symmetrized KL-
divergence or Euclidean distance), and denote
the Transformer model trained from scratch via
h(.). Then, as a function of D and N , we can
plot a heatmap of the relative distance between
the trained model and the memorizing and gen-
eralizing predictors, defined as drel = (r+1)/2,
where r := d(h,G)−d(h,M)

d(G,M) . This metric evaluates to 0 vs. 1 if the model is closer to the generalizing
vs. the memorizing predictor. Results are shown in Fig. 4; see App. H.3 for absolute distances. We
clearly see that increasing D for fixed N , the model first behaves like a memorizing predictor (in
red), only to eventually transition to behaving like a generalizing predictor (in blue)—illustrating
task-diversity effects [25]. Meanwhile, when increasing N for middle values of D, the model starts
closer to a generalizing predictor, only to eventually give way to a memorizing predictor—illustrating
transient generalization [24]. More broadly, across all tasks, we see there is a clear delineation of the
model behavior into two phases of (N,D), such that model behavior is best explained by either the
memorizing or the generalizing predictor in a given phase. Given the optimality of these predictors
on the distribution of seen tasks (Ttrain) or the underlying distribution (Ttrue), our analysis provides
an explanation for why these predictors were observed in prior work. However, several questions
remain, including why a generalizing strategy is learned even when it leads to worse ID performance,
and why does varying experimental conditions change which strategy, among the memorizing and
generalizing predictors, is implemented by a model. We address these questions next.

5

#�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*��

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
��

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

� ��.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1
2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
��

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

(a) Balls & Urns (b) Linear Regression (c) Classification

MAIN: FITTED MAPS FIGURE

G M

0 1

Figure 5: Our Bayesian Model Captures Transitions Between Strategies Explaining Model
Behavior. We plot the posterior probability of the memorizing predictor given by our theoretical
model (Eq. 4). Across three broad experimental settings—(a) Balls & Urns, (b) Linear Regression,
and (c) Classification—we find our model identifies the phases best explained by a given predictor and
the boundary between them, hence capturing the transition between solutions seen in a Transformer’s
training (as shown by the relative distance maps). Importantly, we find our model is highly predictive
of the pretrained Transformer’s behavior (next-token predictions) across conditions used for fitting
the three free parameters of our model and unseen ones. Max color bar value for Balls & Urns and
Classification is determined by the performance of a baseline predictor that always outputs the mean
of the distribution Ttrue. In this figure, we use context length of 256, task dimensionality of 8 and
MLP width of 256 for balls and urns. Linear regression and classification have similar parameters
except context length of 64 and 384, respectively.

4 Answering the Why: A Hierarchical Bayesian Account of ICL

Our analysis above shows that, except for intermediate values of N and D, model behavior is
primarily explained by Bayes-optimal predictors capturing the distributions Ttrain and Ttrue. Motivated
by these findings, we adopt the lens of rational analysis [38–42], a framework in cognitive science
that aims to explain a learner’s behavior as optimal, under computational constraints. What might
be considered optimal in our case? Recall the fact that ICL is an inductive problem, i.e., a problem
of predicting the next observation given past ones. Specifically, a predictor hpred performing ICL
predicts the ith token si given previous elements in the sequence s1:i−1, using mechanisms it may
have learned for this purpose based on sequences STtrain(N,D) seen in training (denoted STtrain from
hereon for brevity). Then, given a hypothesis space of possible solutions the model has learned,
Bayesian inference prescribes an optimal way to solve this problem via the posterior predictive
distribution: compute a weighted average of predictions from each solution, with weights defined by
a solution’s posterior probability (i.e., a posterior-weighted average). Relying on the results of Sec. 3,
we can assume our hypothesis space simply consists of the memorizing and generalizing predictors2.
Thus, in our case, each solution itself corresponds to a Bayesian predictor—specifically, predictors
M and G—hence resulting in the following hierarchical Bayesian model.

hpred(si|s1:i−1, STtrain) = p(M |STtrain) M(si|s1:i−1) + p(G|STtrain) G(si|s1:i−1). (3)

The mathematical form of the predictor above frames in-context behavior as a linear interpolation in
M and G, with posterior probabilities p(M |STtrain), p(G|STtrain), estimated from training, determining
the interpolation weights. Then, in order to use this model to explain how a neural network performs
ICL, we must estimate how posterior probabilities vary across training and data conditions.

Modeling the Posterior Probabilities. The posterior probability for a predictor Q, i.e.,
p(Q|STtrain) ∝ p(STtrain |Q)p(Q), is comprised of a likelihood term and a prior term—thus, these
are the two terms we need to estimate. In line with the perspective of rational analysis, in modeling
these terms, we consider the following two well-known computational constraints of neural networks.

2While in principle it is possible that other predictors offer reasonable hypotheses for explaining model
behavior, in the settings we analyze, we find that very quickly into training, other predictors (e.g., an optimal
constant solution which always predicts the mean in linear regression [63, 64]) start to perform poorly compared
to M and G in predicting model behavior. We thus focus our analysis on the regime where M and G are the
primary hypotheses explaining model behavior (see App. E for further discussion).

6

• A1: Loss scales in a power-law manner with dataset-size N , i.e., L(N) ≈ L(∞) + A/Nα, where
L(N) denotes the average loss on a dataset at time N and A is a constant that depends on model
loss at initialization and training hyperparameters.

• A2: Neural networks exhibit a bias toward simpler solutions. Specifically, using K(Q) to denote the
Kolmogorov complexity for predictor Q, we accommodate the Transformer-specific implementation
cost by defining KT(Q) = K(Q)β . Then, taking the form of a universal prior, the prior probability
of learning a predictor Q is p(Q) ∝ 2−KT(Q) = 2−K(Q)β .

A1 is merely a paraphrased version of well-known power-law scaling behaviors seen in neural network
training [49, 50] and dictates how quickly observed data updates model behavior. That is, it offers
a functional form for the rate at which likelihood in a posterior calculation grows, i.e., the rate of
evidence accumulation. Meanwhile, A2 is a well-known inductive bias of neural networks [43–48].
Our specific functional form for the prior is grounded in algorithmic information theory: Kolmogorov
complexity K(Q) is the length of the shortest program on a universal Turing machine that implements
Q, and the coding theorem relates it to probability via p(Q) ∝ 2−K(Q) [65–67]. Following common
practice [44, 45, 68–71], we estimate Kolmogorov complexity (which is uncomputable) as K̃ via
lossless compression: we apply several lossless compressors to the code and data for Q, and take the
smallest resulting size (App. F.2). For brevity, we write K̃ as K below.

Returning to our goal, we now consider a model trained for N iterations on a task-mixture Ttrain of
diversity D. The log-posterior odds of the two predictors can be defined as follows.

η(N,D) := log
P (M |STtrain)

P (G|STtrain)︸ ︷︷ ︸
Posterior odds

= log
P (STtrain |M)

P (STtrain |G)︸ ︷︷ ︸
Bayes factor

+ log
P (M)

P (G)︸ ︷︷ ︸
Prior odds

.

Under constraints A1, A2, this simplifies as follows (see App. D.1).

η(N,D) = γN1−α∆L(D)︸ ︷︷ ︸
Loss term

− ∆K(D)β︸ ︷︷ ︸
Complexity term

, (4)

where ∆K(D)β := K(MD)β −K(G)β is the difference between the exponentiated Kolmogorov
complexity of the two predictors (with MD denoting the memorizing solution defined for D tasks);
∆L(D) := LG(STtrain(D))− LMD

(STtrain(D)) is the difference between the average loss of the two
predictors on a dataset of sequences sampled from Ttrain; and γ is a constant related to the term A
from constraint A1. To get the posterior probabilities for M and G, we simply convert η via the
sigmoid function, denoted σ(·), yielding:

hpred(si|s1:i−1, STtrain) = σ (η(N,D))M(si|s1:i−1) + (1− σ (η(N,D)))G(si|s1:i−1). (5)

Note that the free parameters of this Bayesian model, i.e., (α, β, γ), depend on the problem setting
and the Transformer’s learning dynamics on it. To identify their values, we simply fit the Bayesian
model’s predictions to the pretrained Transformer h(.)’s next-token predictions on inputs retrieved
from a subset of values (N,D). We emphasize that we only fit three free parameters across model
checkpoints in 11 different training runs to get our results.

Validating the Model. We now check whether our model accurately captures the behavior of the
pretrained Transformer and reproduces ICL’s phenomenology. As shown in Fig. 5, our Bayesian
model yields an almost perfect prediction of Transformer next-token predictions for both seen /
unseen settings. Moreover, without fitting to the relative distance maps, we find an almost perfect
match between the posterior probabilities of the memorizing predictor given by our model and relative
distance values. These results are replicated across 72 different maps in App. H.4 with varying MLP
width (see Fig. 6(a)), context length, and task dimensionality, yielding robust support for our model.
Across all maps, we find our model is highly predictive of Transformer next-token predictions, with
a mean R2 of 0.97 in Linear Regression, a mean agreement of 0.92 in Classification, and a mean
Spearman rank correlation of 0.97 in Balls & Urns. Additionally, we find very strong correlations of
0.99, 0.98, 0.99 between our model’s posterior probabilities and the relative distance values given
by the Transformer in the Linear Regression, Classification, and Balls & Urns settings, respectively.
Finally, we also examine ablations of our functional form in App. I, showing the computational
constraints we assume are necessary for the success of our framework.

7

MAIN: PREDICTIONS FIGURE 2

(a) Increased Memorization with MLP Width (b) Multiple Strategies (c) In-Context Strategy Selection

& �&& �&&& ��&& "&&&
����
�� �

&����

&���&

&����

&�"&&

&�"&�

&�"�&

&�"��

&�""&

&�""�

�
��

��

$

� %
��

�
��

 %
��

"! "� "� "� "��

	������#
��� %��

"�"

"��

"&

"�

""

"!

"�

�
�
��
��

����
��������� ����
���������� ����
�����������

��
�� ��
�

��
�

��
�

	����������
����

��
�� ��
�

��
�

��
�

	����������
����
��
�� ��
�

��
�

��
�

	����������
����
! �!! �!!! ��!! �!!!

����
����

!���!

!����

!��!!

!����

!���!

!����

!��!!

!����

��
�

���
��

��
�

��
�

��
��
�
�

�!� �!� �!�

	����������
����

�!!�
�
��
�

1

+� !1
�

,1
�

+�
�

)1
�

��
�

'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

�
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

'��(� '��'
#��'0���*'��������*($

�(���� '���**���

��(���

� ��.�*��
�/*�
 �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

��� ��� ��
 ���

�����������
����

���

���

���

��
��

�
��
���

��
	�

	�
���
�

��������
����������

�

�

�

��� ��� ��
 ���

�����������
����

��������
�����������

��� ��� ��
 ���

�����������
����

��������
�������������

1

+� !1
�

,1
�

+�
�

)1
�

��
�

'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

�
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

'��(� '��'
#��'0���*'��������*($

�(���� '���**���

��(���

� ��.�*��
�/*�
 �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

1

+� !1
�

,1
�

+�
�

)1
�

��
�

'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

�
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

'��(� '��'
#��'0���*'��������*($

�(���� '���**���

��(���

� ��.�*��
�/*�
 �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

#�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*��

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
��

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

� ��.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
��

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

(a) Balls & Urns (b) Linear Regression (c) Classification

MAIN: FITTED MAPS FIGURE

G M

0 1 #�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*��

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
��

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

� ��.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
��

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

(a) Balls & Urns (b) Linear Regression (c) Classification

MAIN: FITTED MAPS FIGURE

G M

0 1

ID OOD

#�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*��

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
��

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

� ��.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
��

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

(a) Balls & Urns (b) Linear Regression (c) Classification

MAIN: FITTED MAPS FIGURE

G M

0 1 #�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*��

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
��

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
��

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

� ��.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
��

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

(a) Balls & Urns (b) Linear Regression (c) Classification

MAIN: FITTED MAPS FIGURE

G M

0 1

C
o

nt
ex

t
Le

ng
th

=
12

8
C

o
nt

ex
t

Le
ng

th
=

32
0

����
����
��������������
����
��������
�����
����
����������

��
�� ��
�

��
�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

����
����
��������������
����
��������
�����
����
����������

��
�� ��
�

��
�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

����
����
��������������
����
��������
�����
����
����������

��
�� ��
�

��
�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

����
����
��������������
����
��������
�����
����
����������

��
�� ��
�

��
�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

��
�� ��
�

�

�

��
�

��	��������
����

Figure 6: Our framework captures diverse ICL phenomenology. (a) Scaling MLP width raises the
transition boundary between memorization and generalization, and our model captures this effect via
decreasing complexity penalty and increasing sample efficiency. (b) Incorporating a mean-predictor
solution for linear regression in our model allows capturing complex transition dynamics. (c) When
evaluated in OOD settings, models increase their resemblance to the generalizing solution, exhibiting
in-context strategy selection, which we model via an added term (see App. D.4).

Extending the model. We additionally examined two simple extensions of our model: (1) We
incorporate a mean-predictor solution for linear regression, which allows us to capture complex and
rapid transition dynamics that occur early in training (also known as the "rapid emergence of ICL",
see Fig. 6(b), App. D.3 for details). (2) We find that models exhibit in-context strategy selection, and
accommodate this via an added term in our log-posterior odds that enables belief updating throughout
the context, without additional free parameters (see Fig. 6(c), App. D.4 for details).

4.1 Predictions
We next analyze our base theoretical model to make informative qualitative predictions about
Transformer behavior. Unless stated otherwise, we use the Balls & Urns setting with a context
length of 128, task dimensionality of 8, and MLP width of 256.

• Sub-linear sigmoidal growth from generalizing to memorizing predictor. We examine whether
relative distance takes the functional form predicted by the model: sublinear growth with respect
to N , and sigmoidal growth with respect to N1−α (holding D constant). This arises from Eq. 4,
5, where evidence accumulates sub-linearly with the number of samples N . As can be seen in
Fig. 7(a), the relative distance clearly exhibits a sub-linear trend with N and sigmoidal growth
with respect to N1−α. Note also that the bottom left panel of Fig. 7(a) clearly shows that even at
high task diversity values, relative distance slowly increases towards the memorizing predictor in
a sigmoidal manner, contrasting Raventós et al. [25]’s claim that at high D the Transformer only
becomes closer to the generalizing predictor with increasing N (see App. J).

• Rapid behavior change near crossover. At the point where the two hypotheses have equal
log-posterior odds, our model predicts there will be a crossover in which predictor dominates the
posterior and explains model behavior. Given our sigmoidal functional form for η(N,D), we can
expect this change to be rapid—small variations in experimental conditions (e.g., task diversity)
will yield large changes in model behavior. To confirm this, we plot the second derivative of the
relative distance in Fig. 7(b), finding its magnitude is indeed greatest at the boundary η(N,D) = 0.

• Scaling of time to Transience with Task-Diversity. For a given value of D, we can predict
the critical training time at which transience, i.e., the crossover from generalizing to memorizing
predictor, occurs by solving for N∗ in η(N∗, D) = 0 (i.e., relative distance drel = 0.5). Specifically,

we have: N∗(D) =
[
∆K(D)β

γ∆L(D)

] 1
1−α

. We thus plot the predicted time to transience as a function of D
in Fig. 7(c). As can be seen, beyond the two-hypotheses threshold (which determines the minimum
N value in which our model holds, see App. E), our predictions hold well with the empirically
observed data. These results indicate super-linear growth of time to transience with task diversity.
Importantly, we note that if this prediction derived from our model holds beyond our tested settings,
it suggests that if the denominator in the expression becomes very small, e.g., when there are
enough tasks in the mixture such that the memorizing and generalizing predictors produce similar
outputs, the time to transience can approach infinity. In such a condition, generalization will persist
regardless of how long a model is trained. Interestingly, we find that using a learning rate annealing

8

MAIN: PREDICTIONS FIGURE

%$ %� %! %� %��

�	 ����'
� �#)��

�*�

�*$

�*�

�*!

�*�

��
	�

 �

�

��
�	
��
��
��

�#

�

�	
� 	 ���� �

�
�
����

������

�
�

���

�(���)��#�

 �#��
 ����

��
��
#
��	 �

+
#&	����
����� #��
��
 #�#��*�����	��
�*���*�"�

%� %! %�*

%��

%*

%�

%%

%$

�

��
��

%� %! %�*

�	 ����'
� �#)��

�%

��

�"

�
�
�
��
�

��
�� �� ��
�

��
�

��
�

��
�

��
�

�
�

��
��

�������
���	����

��

��

��

�

���

���

��
��
��
��
	�
��
��
��

�����

����

����

����� �

���� ����

����� �

��
�� �� ��
�

��
�

��
�

��
�

��
�

�
�

��
��

�������
���	����

��

��

��

�

���

���

��
��
��
��
	�
��
��
��

�����

����

����

����� �

���� ����

����� �

(c) Super-linear Scaling of
Transience with task diversity

(b) Rapid behavior change
near crossover boundary

� ��� ��� ��� ����
��	�������������

���

���

���

���

���

���

��
�	
���

��
�
��
�	
�

�

�
�

�
��

�
���

�
����

� �� ��
� ���

���

���

���

���

���

���

��
�	
���

��
�
��
�	
�

�

�
�

�
��

�
���

�
����

(a) Sub-linear sigmoidal
transition

Figure 7: Predictions from our framework. (a) Our framework predicts that the posterior probability
of the memorized predictor (and hence the relative distance, which can be thought of as an empirical
estimate of this quantity) will show sub-linear scaling with respect to N , and sigmoidal growth with
respect to N1−α (holding D constant). This is clearly shown in the figure, with dark lines representing
parameterized logistic fits in N1−α space. (b) We predict a rapid change in model behavior for
intermediate values of N and D, yielding a crossover-like boundary between the predictor that best
explains model outputs. This can be seen via the magnitude of the second derivative of the relative
distance near the boundary. Marginal plots show the second derivative of the relative distance with
respect to N or D, with the data shown in these plots denoted on the vector map by the dotted lines.
(c) Finally, our analysis predicts super-linear scaling of the time of transience N∗ (the time at which
relative distance drel = 0.5) as diversity D increases.

schedule enhances the Transformer’s adherence to Bayes-optimal trajectories from generalization
to memorization, and so we use it in this experiment. However, the effect of annealing appears to
decay throughout training, yielding a slower rate of advancing toward memorization, which can be
seen by the last two observed transience points veering from our model’s predictions (see App. K).

4.2 The Loss-Complexity Tradeoff

�#� �#� �#�

�����������
����

#�#

#��

��#

��
�	

�	
���
�"
��

�$

��
��
���

� �������!
����"�������

�

�

�#� �#� �#�

�����������
����

�������!
����"������ �

�#� �#� �#�

�����������
����

�������!
����"�������

%�
"� �� �%
�

"�
�

�%
�

 �
�

�%
�

��
�������!�����

�
�

�
�

�
�

�
�

�
�

�

�

��
��
�#
��
��
!$
��

""
"�
"
"�
"�%
"�"

����
�����	���

%�
"� �� �%
�

"�
�

�%
�

 �
�

�%
�

��
�������!�����

�����
$����
�!��

%�
"� �� �%
�

"�
�

�%
�

 �
�

�%
�

��
�������!�����

����
��!������	���

��

�

��

�"

%

%

"

�

�

��

%

�

MAIN: INTUITIONS FIGURE

G M G
M

G M

G M

×Prior Odds Bayes Factor = Posterior Odds
Accumulates toward minimal-

loss solution
Penalize complexity

Ta
sk

 D
iv

er
si

ty
 (D

)

(a)

(b) + =

Ta
sk

 D
iv

er
si

ty
 (D

)

Training Steps (N)

Training Steps (N)

(c)

�#� �#� �#�

�����������
����

#�#

#��

��#

��
�	

�	
���
�"
��

�$

��
��
���

� �������!
����"�������

�

�

�#� �#� �#�

�����������
����

�������!
����"������ �

�#� �#� �#�

�����������
����

�������!
����"�������

�#� �#� �#�

�����������
����

#�#

#��

��#

��
�	

�	
���
�"
��

�$

��
��
���

� �������!
����"�������

�

�

�#� �#� �#�

�����������
����

�������!
����"������ �

�#� �#� �#�

�����������
����

�������!
����"�������

Figure 8: Intuition Elicited by The Bayesian
Model. (a) Our framework suggests Transform-
ers have a prior preference for learning simpler
solutions, which often generalize better. However,
throughout training, preference is updated towards
solutions that better explain the data (i.e., have
greater likelihood). This happens even at the ex-
pense of higher complexity, which in our case,
yields a transition toward a memorizing predictor.
(b, c) Our framework captures the tradeoff between
solutions, showing that the boundary between the
two phases corresponds to equal posterior proba-
bilities of the two predictors.

Having formalized and demonstrated the empir-
ical validity of our hierarchical Bayesian frame-
work, we now discuss the intuitive interpretation
it offers us. Specifically, Eq. 4 suggests that the
tradeoff between posterior-odds corresponding
to different predictors is driven by the loss a pre-
dictor achieves on the training data and its com-
plexity (see Fig. 8): early in training, the prior
dominates, therefore a less complex solution—
the generalizing predictor in our case—will be
strongly favored as per the posterior calcula-
tion. However, the memorizing predictor will
almost always have a lower loss than the gen-
eralizing predictor on training data. Thus, in
low-to-medium task diversity settings, as train-
ing proceeds and N increases, the loss term in
Eq. 4 will overtake the complexity term, i.e., the
likelihood eventually dominates the posterior
and ‘floods’ the prior. This will lead to the mem-
orizing predictor becoming favored—explaining
the transient generalization phenomenon from
prior work [24]. In contrast, in high task di-
versity settings, the prior strongly disfavors the
memorizing predictor due to its complexity, and
given the sub-linear accumulation of likelihood
(i.e., the N1−α term), the time for transience to
occur grows superlinearly—giving rise to the
phenomenon of task diversity threshold seen in
prior work [25]. The importance of a loss-complexity tradeoff for ICL was also arrived at by two
recent papers [30, 72], which we discuss further in Sec. 5.

9

5 Discussion

In this work, we aim to unify findings from the ICL literature by asking why Transformers learn
disparate strategies for performing ICL across varying training conditions. To do so, we take a nor-
mative perspective [38] which aims to explain Transformer learning as optimal under computational
constraints. This lens yields a hierarchical Bayesian framework, which, assuming simplicity bias
and scaling laws as computational constraints, offers a highly predictive account of model behavior:
by fitting merely three variables to Transformer next-token predictions, we can almost perfectly
predict model behavior across a spectrum of experimental settings without access to its weights. Our
account also implies a fundamental trade-off that occurs throughout training between the loss and
complexity of potential solutions learned by a model, with simpler, generalizing solutions learned
early in training, while more complex, better-fitting solutions eventually becoming preferred. This
tradeoff helps explain prior findings in the ICL literature, and provides novel predictions regarding
training dynamics. Thus, we argue for our hierarchical Bayesian framework as an explanatory and
predictive account of ICL, and a step towards a unified understanding of its phenomenology.

Relation to previous Bayesian models of ICL. Here, we discuss the relation between our work
and other Bayesian or normative accounts of ICL. We provide an extended review of additional
related works in App. B. Several prior works framed ICL as Bayesian at inference-time, meaning
models implement a single Bayesian predictor in context [25, 35, 51, 62, 73, 74]. The focus on a
single predictor in these works often led them to view ICL as a single strategy, with some focusing
solely on a memorizing solution [35], while others refer mainly to a generalizing solution as ICL
[25]. While there are cases in which in-context behavior is well approximated by a single predictor
(e.g., the memorizing solution for low N,D), our results robustly show that several predictors
are required to fully capture model behavior, and that the extent to which a particular predictor
explains model behavior varies across training. Thus, a posterior-weighted average over different
predictors, which considers a bias towards different predictors coming from training, rather than
only inference-time, is required to fully capture model behavior across conditions. In contrast with
studies focusing on inference-time, two recent works, Carroll et al. [30] and Elmoznino et al. [72],
offer Bayesian or normative views of pretraining to perform ICL. Importantly, while these
papers take different theoretical perspectives from ours, they arrive at a similar conclusion as us:
the existence of a tradeoff between loss and solution complexity in pretraining. Elmoznino et al.
[72] offer a normative theoretical analysis of training to perform ICL via next-token prediction loss,
showing it yields an Occam’s razor objective which minimizes both loss and solution complexity.
Carroll et al. [30] study task diversity effects and transient generalization in the linear regression
setting of Raventós et al. [25]. Their Bayesian account of pretraining, which is rooted in theory of
singular models [75] and makes different assumptions from ours, interestingly yields a relatively
similar functional form for the posterior odds (though their form does not take into account neural
scaling laws). However, their measure of complexity is architecture-dependent [76], thus they only
provide a qualitative analysis as they cannot directly estimate the complexity of Bayesian predictors.
In contrast, our hierarchical Bayesian framework provides a quantitative, predictive account of
pretraining phenomena, in addition to capturing inference-time behavior as a posterior-weighted
average of solutions, which is not addressed by Carroll et al. [30] or Elmoznino et al. [72]. Despite
that, we view these works as valuable contributions with complementary insights to ours, in particular
regarding potential explanations for the source of neural networks’ simplicity bias.

Limitations. While we rely on a specific theoretical abstraction to arrive at our results, i.e., a
hierarchical Bayesian model, we believe the predictive power of this abstraction corroborates its
faithfulness. However, one limitation of our analysis is use of toy settings where model behavior
is largely explained by only two predictors (with the addition of the optimal constant solution in
linear regression). Accommodating more complex settings that LLMs encounter in pretraining or
inference-time will be an important future test for the framework. Finally, a crucial limitation of our
analysis comes from the simple relation we assume between algorithmic complexity and complexity
of implementation by a Transformer—while the assumption of simplicity bias is well-backed by
theoretical and empirical claims [43, 44, 46], we believe our assumed relation could be improved
by building on recent advances defining architecture-dependent measures of how many effective
parameters are used by a model to implement a solution [76, 77].

10

Acknowledgments

We thank the Computation and Cognition Lab, in particular Ben Prystawski and Michael Li; Jay
McClelland, Satchel Grant, Jerome Han and the PDP Lab; the Physics of Intelligence group at
Harvard, especially Eric Bigelow and Sonia Murthy; the CRISP Lab at Harvard; Jesse Hoogland
and Matthew Farrugia-Roberts; Surya Ganguli and the Neural Dynamics and Computation Lab; and
Navin Goyal and the theory group at Microsoft Research India for useful discussions.

References
[1] OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[3] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An
embodied multimodal language model, 2023. URL https://arxiv.org/abs/2303.03378.

[4] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

[5] OpenAI. Openai o3 and o4-mini system card, 2025. URL https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf.

[6] Gemini Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[7] AnthropicAI. Claude 3.7 sonnet system card, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

[8] Keunwoo Peter Yu, Zheyuan Zhang, Fengyuan Hu, Shane Storks, and Joyce Chai. Eliciting
in-context learning in vision-language models for videos through curated data distributional
properties. arXiv preprint arXiv:2311.17041, 2023.

[9] Yida Yin, Zekai Wang, Yuvan Sharma, Dantong Niu, Trevor Darrell, and Roei Herzig. In-
context learning enables robot action prediction in llms. arXiv preprint arXiv:2410.12782,
2024.

[10] Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento
Nishi, Martin Wattenberg, and Hidenori Tanaka. Iclr: In-context learning of representations.
In The Thirteenth International Conference on Learning Representations, 2025.

[11] Can Demircan, Tankred Saanum, Akshay K Jagadish, Marcel Binz, and Eric Schulz. Sparse
autoencoders reveal temporal difference learning in large language models. arXiv preprint
arXiv:2410.01280, 2024.

[12] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[13] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads, 2022. URL
https://arxiv.org/abs/2209.11895.

11

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.03378
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2209.11895

[14] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[15] Suraj Anand, Michael A Lepori, Jack Merullo, and Ellie Pavlick. Dual process learning:
Controlling use of in-context vs. in-weights strategies with weight forgetting. arXiv preprint
arXiv:2406.00053, 2024.

[16] Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning:
Architectures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

[17] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisti-
cians: Provable in-context learning with in-context algorithm selection. Advances in neural
information processing systems, 36, 2024.

[18] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

[19] Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao
Liu, Da Huang, Denny Zhou, and Tengyu Ma. Larger language models do in-context learning
differently, 2023. URL https://arxiv.org/abs/2303.03846.

[20] Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive emergent
in-context learning in transformers. Advances in Neural Information Processing Systems, 35:
18878–18891, 2022.

[21] Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning, 2024. URL
https://arxiv.org/abs/2402.18819.

[22] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151–35174.
PMLR, 2023.

[23] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In International
conference on machine learning, pages 19565–19594. PMLR, 2023.

[24] Aaditya K. Singh, Stephanie C. Y. Chan, Ted Moskovitz, Erin Grant, Andrew M. Saxe, and
Felix Hill. The transient nature of emergent in-context learning in transformers, 2023. URL
https://arxiv.org/abs/2311.08360.

[25] Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity
and the emergence of non-bayesian in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

[26] Core Francisco Park, Ekdeep Singh Lubana, Itamar Pres, and Hidenori Tanaka. Competition
dynamics shape algorithmic phases of in-context learning, 2024. URL https://arxiv.org/
abs/2412.01003.

[27] Bryan Chan, Xinyi Chen, András György, and Dale Schuurmans. Toward understanding
in-context vs. in-weight learning. arXiv preprint arXiv:2410.23042, 2024.

[28] Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023. URL https://arxiv.org/abs/2312.03002.

[29] Alex Nguyen and Gautam Reddy. Differential learning kinetics govern the transition from
memorization to generalization during in-context learning, 2024. URL https://arxiv.org/
abs/2412.00104.

[30] Liam Carroll, Jesse Hoogland, Matthew Farrugia-Roberts, and Daniel Murfet. Dynam-
ics of transient structure in in-context linear regression transformers. arXiv preprint
arXiv:2501.17745, 2025.

12

https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/2311.08360
https://arxiv.org/abs/2412.01003
https://arxiv.org/abs/2412.01003
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2412.00104
https://arxiv.org/abs/2412.00104

[31] Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? arXiv
preprint arXiv:2502.14010, 2025.

[32] Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe.
What needs to go right for an induction head? a mechanistic study of in-context learning
circuits and their formation, 2024. URL https://arxiv.org/abs/2404.07129.

[33] Aaditya K Singh, Ted Moskovitz, Sara Dragutinovic, Felix Hill, Stephanie CY Chan, and
Andrew M Saxe. Strategy coopetition explains the emergence and transience of in-context
learning. arXiv preprint arXiv:2503.05631, 2025.

[34] Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis.
The evolution of statistical induction heads: In-context learning markov chains, 2024. URL
https://arxiv.org/abs/2402.11004.

[35] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[36] Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers.
arXiv preprint arXiv:2212.10559, 2022.

[37] Andrew Kyle Lampinen, Stephanie CY Chan, Aaditya K Singh, and Murray Shanahan. The
broader spectrum of in-context learning. arXiv preprint arXiv:2412.03782, 2024.

[38] John R Anderson. The adaptive character of thought. Psychology Press, 2013.

[39] Nick Chater, Mike Oaksford, Nick Chater, and Mike Oaksford. Ten years of the rational
analysis of cognition. Trends in cognitive sciences, 3(2):57–65, 1999.

[40] Thomas L Griffiths, Falk Lieder, and Noah D Goodman. Rational use of cognitive resources:
Levels of analysis between the computational and the algorithmic. Topics in cognitive science,
7(2):217–229, 2015.

[41] Noah D Goodman, Joshua B Tenenbaum, Jacob Feldman, and Thomas L Griffiths. A rational
analysis of rule-based concept learning. Cognitive science, 32(1):108–154, 2008.

[42] Falk Lieder and Thomas L Griffiths. Resource-rational analysis: Understanding human
cognition as the optimal use of limited computational resources. Behavioral and brain
sciences, 43:e1, 2020.

[43] Preetum Nakkiran, Dimitris Kalimeris, Gal Kaplun, Benjamin Edelman, Tristan Yang, Boaz
Barak, and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity.
Adv. in Neural Information Processing Systems (NeurIPS), 2019.

[44] Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes
because the parameter-function map is biased towards simple functions. arXiv preprint.
arXiv:1805.08522, 2018.

[45] Chris Mingard, Henry Rees, Guillermo Valle-Pérez, and Ard A Louis. Deep neural networks
have an inbuilt occam’s razor. Nature Communications, 16(1):220, 2025.

[46] Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How
gradient noise attracts sgd dynamics towards simpler subnetworks. Advances in Neural
Information Processing Systems, 36:35027–35063, 2023.

[47] Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the
early-time learning dynamics of neural networks. Adv. in Neural Information Processing
Systems (NeurIPS), 2020.

[48] Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in trans-
formers and their ability to learn sparse boolean functions. arXiv preprint arXiv:2211.12316,
2022.

13

https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2402.11004

[49] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

[50] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[51] Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does
in-context learning learn? bayesian model averaging, parameterization, and generalization.
arXiv preprint arXiv:2305.19420, 2023.

[52] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine
Learning, pages 5793–5831. PMLR, 2022.

[53] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

[54] Eric J Bigelow, Ekdeep Singh Lubana, Robert P Dick, Hidenori Tanaka, and Tomer D Ullman.
In-context learning dynamics with random binary sequences. arXiv preprint arXiv:2310.17639,
2023.

[55] Johannes A Schubert, Akshay K Jagadish, Marcel Binz, and Eric Schulz. In-context learning
agents are asymmetric belief updaters. arXiv preprint arXiv:2402.03969, 2024.

[56] GPT-NeoX. Gpt-neox, huggingface., 2025. URL https://huggingface.co/docs/
transformers/en/model_doc/gpt_neox.

[57] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Gold-
ing, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai
Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel
Weinbach. Gpt-neox-20b: An open-source autoregressive language model, 2022. URL
https://arxiv.org/abs/2204.06745.

[58] Urn problem. In Wikipedia, December 2024. URL https://en.wikipedia.org/wiki/
Urn_problem.

[59] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein,
Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent
Orseau, et al. Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

[60] Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

[61] Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose
in-context learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

[62] Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian
prism, 2024. URL https://arxiv.org/abs/2306.04891.

[63] Jirko Rubruck, Jan P. Bauer, Andrew Saxe, and Christopher Summerfield. Early learning of
the optimal constant solution in neural networks and humans, 2024. URL https://arxiv.
org/abs/2406.17467.

[64] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and
Daniel Murfet. Loss landscape degeneracy drives stagewise development in transformers,
2025. URL https://arxiv.org/abs/2402.02364.

[65] Ray Solomonoff. Complexity-based induction systems: comparisons and convergence theo-
rems. IEEE transactions on Information Theory, 24(4):422–432, 1978.

14

https://huggingface.co/docs/transformers/en/model_doc/gpt_neox
https://huggingface.co/docs/transformers/en/model_doc/gpt_neox
https://arxiv.org/abs/2204.06745
https://en.wikipedia.org/wiki/Urn_problem
https://en.wikipedia.org/wiki/Urn_problem
https://arxiv.org/abs/2306.04891
https://arxiv.org/abs/2406.17467
https://arxiv.org/abs/2406.17467
https://arxiv.org/abs/2402.02364

[66] Leonid Anatolevich Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Problemy Peredachi Informatsii, 10(3):30–35, 1974.

[67] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications,
volume 3. Springer, 2008.

[68] Hector Zenil. A review of methods for estimating algorithmic complexity: Options, challenges,
and new directions. Entropy, 22(6):612, 2020.

[69] Peter Grunwald and Paul Vitányi. Shannon information and kolmogorov complexity. arXiv
preprint cs/0410002, 2004.

[70] Stephen Fenner and Lance Fortnow. Compression complexity. arXiv preprint
arXiv:1702.04779, 2017.

[71] Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly
biased towards simple outputs. Nature communications, 9(1):761, 2018.

[72] Eric Elmoznino, Tom Marty, Tejas Kasetty, Leo Gagnon, Sarthak Mittal, Mahan Fathi, Dhanya
Sridhar, and Guillaume Lajoie. In-context learning and occam’s razor, 2025. URL https:
//arxiv.org/abs/2410.14086.

[73] Aryaman Arora, Dan Jurafsky, Christopher Potts, and Noah D Goodman. Bayesian scaling
laws for in-context learning. arXiv preprint arXiv:2410.16531, 2024.

[74] Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. Explaining emergent in-context learning as
kernel regression. arXiv preprint arXiv:2305.12766, 2023.

[75] Sumio Watanabe. A widely applicable bayesian information criterion. The Journal of Machine
Learning Research, 14(1):867–897, 2013.

[76] Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The local learning
coefficient: A singularity-aware complexity measure. arXiv preprint arXiv:2308.12108, 2023.

[77] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and
Daniel Murfet. The developmental landscape of in-context learning, 2024. URL https:
//arxiv.org/abs/2402.02364.

[78] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and
induction heads. arXiv preprint arXiv:2209.11895, 2022.

[79] Samuel J Gershman. The rational analysis of memory. Oxford handbook of human memory.,
2021.

[80] Rahul Bhui, Lucy Lai, and Samuel J Gershman. Resource-rational decision making. Current
Opinion in Behavioral Sciences, 41:15–21, 2021.

[81] Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan.
Asymptotic theory of in-context learning by linear attention. arXiv preprint arXiv:2405.11751,
2024.

[82] Charles Kemp, Noah D Goodman, and Joshua B Tenenbaum. Learning to learn causal models.
Cognitive science, 34(7):1185–1243, 2010.

[83] Michael Y Li, Fred Callaway, William D Thompson, Ryan P Adams, and Thomas L Griffiths.
Learning to learn functions. Cognitive science, 47(4):e13262, 2023.

[84] Christopher G Lucas and Thomas L Griffiths. Learning the form of causal relationships using
hierarchical bayesian models. Cognitive Science, 34(1):113–147, 2010.

[85] Joseph L Austerweil, Sophia Sanborn, and Thomas L Griffiths. Learning how to generalize.
Cognitive science, 43(8):e12777, 2019.

15

https://arxiv.org/abs/2410.14086
https://arxiv.org/abs/2410.14086
https://arxiv.org/abs/2402.02364
https://arxiv.org/abs/2402.02364

[86] Charles Kemp, Andrew Perfors, and Joshua B Tenenbaum. Learning overhypotheses with
hierarchical bayesian models. Developmental science, 10(3):307–321, 2007.

[87] Amy Perfors and Joshua Tenenbaum. Learning to learn categories. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 31, 2009.

[88] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

[89] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks, 2017. URL https://arxiv.org/abs/1703.03400.

[90] Marcel Binz, Ishita Dasgupta, Akshay K Jagadish, Matthew Botvinick, Jane X Wang, and Eric
Schulz. Meta-learned models of cognition. Behavioral and Brain Sciences, 47:e147, 2024.

[91] Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis
of in-context learning. arXiv preprint arXiv:2401.15530, 2024.

[92] Rahul Ramesh, Mikail Khona, Robert P Dick, Hidenori Tanaka, and Ekdeep Singh Lubana.
How capable can a transformer become? a study on synthetic, interpretable tasks. arXiv
preprint arXiv:2311.12997, 2023.

[93] Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David
Bau. Function vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

[94] Tian Qin, Naomi Saphra, and David Alvarez-Melis. Sometimes i am a tree: Data drives
unstable hierarchical generalization. arXiv preprint arXiv:2412.04619, 2024.

[95] Fabian Falck, Ziyu Wang, and Chris Holmes. Is in-context learning in large language models
bayesian? a martingale perspective. arXiv preprint arXiv:2406.00793, 2024.

[96] Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to
implement preconditioned gradient descent for in-context learning. Advances in Neural
Information Processing Systems, 36:45614–45650, 2023.

[97] Cem Anil, Esin Durmus, Nina Panickssery, Mrinank Sharma, Joe Benton, Sandipan Kundu,
Joshua Batson, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. Advances in
Neural Information Processing Systems, 37:129696–129742, 2024.

[98] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. CRC Press,
2018.

[99] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisti-
cians: Provable in-context learning with in-context algorithm selection. Advances in neural
information processing systems, 36:57125–57211, 2023.

[100] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence,
PAMI-6(6):721–741, 1984.

16

https://arxiv.org/abs/1703.03400

Appendix

Table of Contents
A Glossary of Useful Terms 18

B Related Work 19
B.1 Prior Work Studying Task-Diversity Effects and Transience 19
B.2 Hierarchical Bayesian Models of Learning to Learn 19
B.3 Broader Work on Understanding ICL . 20
B.4 A Note Regarding Complexity . 20

C Takeaways and Future Work 20

D Derivations 21
D.1 Log-Posterior Odds . 22
D.2 Converting from Posterior-Odds to a Predictive Model 23
D.3 Extending the Framework to Multiple Predictors 24
D.4 Extending the Framework to Accommodate In-Context Strategy Selection 24

E Two-Hypotheses Threshold: Minimum amount of training to enable the Hierarchical
Bayesian Model 26

F Experimental Details 27
F.1 Training and Model Details . 27
F.2 Analysis Details . 27

G Additional Details Regarding Settings and Predictors 29
G.1 Balls and urns . 29
G.2 Linear regression . 30
G.3 Classification . 31

H Main Results Across All Settings 32
H.1 Task Diversity Effects . 32
H.2 Transience . 35
H.3 Absolute Distance from Predictors . 38
H.4 Model Predictions . 41

I Functional Form Ablations 46

J Memorization Continues to Increase After Task Diversity Threshold – Refutation of
Raventós et al. [25]’s Claim 47

K Learning Rate Annealing Can Improve Adherence to Bayes-Optimal Trajectories 48

L Code Availability 49

M NeurIPS Paper Checklist 50

17

A Glossary of Useful Terms

In-Context Learning (ICL). In this paper, we use a broad construal of ICL advanced by Lampinen
et al. [37] and Olsson et al. [78]: any way in which models use their context to adapt their predictions
and reduce loss can be considered as ICL. This notion of ICL encapsulates many forms of sequence
modeling and instruction following, as well as the more traditional view of ICL as few-shot learning
[2]. Hence, in this work, we use tasks that capture both sequence modeling [26] and few-shot
learning [25, 28] notions of ICL.

Generalizing Predictor (G). A predictor defined by a posterior-weighted average with a continuous
prior over the true data-generating distribution Ttrue. Such a predictor does not depend on the tasks
seen during training, and can hence generalize well to novel, unseen tasks. This predictor maps
onto ‘task-learning’ or ‘inference’ notions of ICL [26]. See App. G for the form of generalizing
predictors in the studied settings.

Memorizing Predictor (M). A predictor defined by a posterior-weighted average with a discrete
prior defined over the distribution of tasks seen by the model during training, Ttrain. Such a
predictor depends on the tasks seen during training, and hence generalizes primarily to those tasks.
This predictor maps onto ‘task-retrieval’ notions of ICL, though it also captures ‘in-weights learning’
in the classification task introduced by Chan et al. [20]. See App. G for the form of memorizing
predictors in the studied settings.

Task Diversity (D). For a mixture distribution Ttrain defined over D tasks {f(w1, ·), . . . , f(wD, ·)},
D is referred to as the task diversity of the mixture.

Relative Distance (drel). A measure we use to characterize trade-off between predictors in settings
where there are primarily two predictors (though one can easily generalize this measure to a setting
with more predictors). Specifically, given a model h, two predictors Q1, Q2, and a distance function
d, we define the term r := d(h,Q1)−d(h,Q2)

d(Q1,Q2)
and then relative distance as drel = (r+1)/2. The latter

operation rescales r to a scale of 0 (if h = Q1) to 1 (if h = Q2), essentially assessing where the
model h lives when a line is drawn with endpoints ranging from Q1 to Q2.

Posterior Odds, Prior Odds, Bayes Factor. Consider a set of observations X and two hypotheses
H1 and H2 that are being assessed as candidates to explain the data. Prior odds are defined as the
ratio P (H1)

P (H2)
, i.e., if no observations are seen yet, which hypothesis is apriori preferred. Bayes factor

is defined as the ratio of likelihoods P (X|H1)
P (X|H2)

, i.e., once the observations are received, we compare
how likely individual hypotheses deem these observations. Finally, posterior odds are defined as
the ratio P (H1|X)

P (H2|X)
= P (H1)

P (H2)
× P (X|H1)

P (X|H2)
= Prior odds × Bayes factor, i.e., how do observations

affect the prior to help assess which hypothesis is more likely.

Rational Analysis. Rational analysis is a framework in cognitive science introduced by John R.
Anderson [38], in which the behavior of a learner is explained as an optimal adaptation to its
learning environment, given its goal and computational constraints. In the case of training a neural
network, the learning environment is given by the training data distribution, the goal is given
by the optimization objective, and the computational constraints can be seen as constraints and
inductive biases of the architecture and optimization algorithm. The framework of rational analysis
is characterized as normative, since it specifies how a learner should behave, in an optimal sense,
given its environment, goals, and computational constraints. This approach has been successfully
applied in cognitive science to explain a wide range of phenomena in humans [38, 39, 41, 79, 80].

Transient Generalization (N∗). For a given task diversity D, when a model is trained for sufficiently
long, its behavior transitions from more closely resembling a generalizing predictor to more closely
resembling a memorizing one. We define this point as the point at which the relative distance
between memorizing and generalizing crosses 0.5. This phenomenon is called transience, transient
generalization, or the transient nature of in-context learning (see App. B for a longer discussion).
The critical time to reach this point is denoted N∗ in the main paper.

18

B Related Work

B.1 Prior Work Studying Task-Diversity Effects and Transience

We first discuss prior work studying the phenomenology of ICL that forms the core of our paper: task
diversity effects and transience. These works often focus on providing mechanistic accounts that are
more bottom-up in nature, i.e., suitable for studying specific settings. For example, the induction
head is a core mechanism employed by a model to perform the in-context classification task by Singh
et al. [24], Reddy [28]. When transience occurs, the role of induction head is diminished, since it is
not vital for implementing a memorizing predictor. However, as we show, transience occurs across a
spectrum of settings, including ones where induction heads are never learned during training (e.g.,
Balls and Urns, which we analyze using a one-layer Transformer)—prior mechanistic accounts would
not help justify transience in such settings. Our work thus takes a top-down account, i.e., we offer
insights based on a computational model of ICL developed by capturing its phenomenology. This
helps identify relevant control variables controlling a dynamic we argue lies at the heart of transience
and task diversity effects: tradeoff between loss and complexity of a solution, which manifests itself
into transitions between generalizing and memorizing predictors. Reconciling our computational
model with mechanistic approaches undertaken in prior work can be an exciting avenue for progress.

• Task diversity Threshold. A phenomenon first popularized by Raventós et al. [25] in an in-
context linear regression task, albeit originally demonstrated by Kirsch et al. [61] in a prior work
on in-context classification of permuted MNIST images, and recently expanded to a Markov
modeling setting by Park et al. [26], to another classification setting by Nguyen and Reddy [29],
as well as to a modular arithmetic setting by He et al. [60]. Specifically, Raventós et al. [25]
empirically show that if one trains Transformers on a mixture of linear regression tasks, there is
a critical number of tasks below which the model behavior is well-characterized by a Bayesian
predictor over the seen tasks (what we term the memorizing predictor), while above it the behavior
is well-characterized by the standard solution of ridge regression. These results were expanded
in a recent theoretical work by Lu et al. [81], who study the asymptotic dynamics of a linear
attention Transformer and show the change in solution used by the model as a function of task
diversity is a second-order phase transition. In contrast to their work, our empirical analysis
covers a broad range of settings that involve sequence modeling, regression, and classification,
while the analytical parts of our paper provide a predictive framework that identifies the relevant
control variables and explains how they affect the behavior of standard, nonlinear Transformers
across all studied settings.

• Transience / Transient Nature of In-Context Learning. Originally observed by Chan et al.
[20] while investigating the effects of data-centric properties on ICL, the term was popularized
by Singh et al. [24]. Specifically, focusing on an in-context classification task, Singh et al.
[24] showed that a model’s ability to perform the generalizing ICL solution (employing a copy
mechanism via the induction head) goes away when trained long enough. This phenomenon was
recently generalized to a Markov modeling task by Park et al. [26] and to simplified variants of
the in-context classification setting by Chan et al. [27], Nguyen and Reddy [29]. We especially
emphasize the work of Nguyen and Reddy [29], who empirically identify a competition dynamic
between a memorizing and generalizing solution for their task, building on this observation to
perform a gradient flow analysis of their task and developing an effective theory of how transient
generalization occurs. Our work differs in the sense that we provide an account of the competition
dynamic and a model for its origins, instead of a gradient flow account that operates under the
assumption of competition.

B.2 Hierarchical Bayesian Models of Learning to Learn

Hierarchical Bayesian models have been widely employed in cognitive science as models of ‘learning
to-learn’, or meta-learning, in humans [82–87]. These models allow the agent to learn the prior
distribution from the data, rather than the prior being predefined. This allows learning inductive
biases that constrain hypothesis spaces (called over-hypotheses), which can instruct future learning
[86]. Additionally, it entails estimating evidence for several different hypothesis spaces (like the
continuous vs. discrete priors in our work) and using these hypothesis spaces for generalization
[85]. Note also that much of the work on hierarchical Bayesian models in cognitive science takes
a normative perspective. Finally, we want to highlight the work of Grant et al. [88], who explicitly

19

analyze a well-known meta-learning algorithm (MAML [89]) via a hierarchical Bayesian lens, as
well as Binz et al. [90], who highlight connections between meta-learning and hierarchical Bayesian
models. We have been broadly influenced by this literature in approaching the study of ICL, which
we believe has many direct parallels with work on learning to learn.

B.3 Broader Work on Understanding ICL
A crucial benefit of our Bayesian modeling framework is that one can retrieve posterior probabilities
over the predictors the model predictions are being decomposed into. In other words, we can represent
the model predictions as an interpolation of the predictors’ outputs (since posterior probabilities
sum to 1). Park et al. [26] propose a similar approach: “Linear Interpolation of Algorithms” (LIA).
Specifically, LIA represents model predictions as an interpolation of the predictors’ outputs, directly
fitting the weights for interpolation. That is, for each condition of training time (N), task diversity
(D), LIA requires fitting a set of parameters, summing up to a total of N ×D parameters fit (across
many of the maps in our work, this would mean over 900 parameters per combination of context-
length, task dimensionality, and MLP width). Meanwhile, our framework, by defining a precise
functional form that explicates the role of N and D, minimizes the number of terms needed to
perform fitting to 3—these terms are primarily related to model family, its learning dynamics, and
intrinsic randomness of the data, hence making them hard to explicate. Crucially, one can see our
framework as providing grounding to LIA: under the hood, LIA is trying to identify the posterior
probabilities for all experimental settings! Moreover, our framework offers an explanation for why
change in predictor weights occurs during training, and importantly, can predict dynamics of N,D
conditions it was not trained on, which LIA cannot do since it has to be fit separately to each N,D
condition.

Beyond the papers discussed above, there have been several complementary efforts to understand
ICL from different perspectives (see the recent summary by Lampinen et al. [37] for a longer review).
For example, several works, some briefly discussed above, characterized the trade-off between
memorizing and generalizing in a more mechanistic way, as a competition dynamic between circuits
[24, 26, 29, 33]. We see our results as elucidating the forces driving this competition, as well as
demonstrating its consistency across several settings. Additionally, several papers analogize ICL as
implicitly performing optimization to learn novel tasks [22, 36, 53] or to meta-learning in general [91];
develop scaling laws for the sample efficiency of ICL [73]; identify limits of tasks that can be learned
in-context [14, 17, 92]; demonstrate sudden learning curves exist in ICL [10, 54]; and characterize
mechanisms employed by a model to perform ICL [13, 31, 34, 93]. Broadly, all these papers offer
useful insights that are complementary to ours.

B.4 A Note Regarding Complexity

Our setup in this work was quite specific in the sense that, in all cases, task diversity was the
variable by which we titrated the complexity of implementing the memorizing solution. However, it
should be noted that our theory and the simplicity bias we assume refer broadly to the complexity of
implementing predictive solutions, which can arise from other sources in diverse data distributions.
Furthermore, while in our setup, the generalizing solution was often simpler than the memorizing
one given high enough task diversity, in many cases, the optimal generalizing solution can be quite
complex, and other heuristic solutions (which still do not involve memorizing the training distribution)
may be preferred. An excellent example of such a dynamic is provided by Qin et al. [94], who show
that more complex training data can indeed drive learning of a hierarchical generalizing solution
(rather than a linear, heuristic solution), whereas in simple-data conditions, models learn the heuristic
solution.

C Takeaways and Future Work

Takeaways. We see several main takeaways from our work for understanding ICL, training dynam-
ics, and generalization behavior in neural networks more broadly.

• Is ICL Bayesian? Depends on the Assumptions. There exists debate regarding whether ICL can
be viewed as Bayesian [25, 35, 62, 95]. Some studies that saw the emergence of a generalizing
predictor have categorized it as ‘non-Bayesian’ [25, 62], since it is not the Bayes-optimal solution
given the training distribution (which is the memorizing solution). In contrast, taking the perspective

20

of rational analysis, the right question is not whether ICL is Bayesian, but under what assumptions is
it Bayesian. Clearly, the generalizing predictor is Bayes-optimal with respect to the true distribution
Ttrue. Moreover, as we show in this work, when taking into account a simplicity bias over predictors,
learning a generalizing predictor can be considered Bayes-optimal in certain conditions even when
it is not the optimal strategy for minimizing train loss. Thus, by extending a Bayesian perspective on
ICL to both training and inference-time, we show that assessing the Bayes-optimality of ICL requires
considering the model’s bias towards different predictors coming from pretraining. Cautiously, given
our highly predictive results, we conclude that ICL can be considered as approximately Bayesian
given constraints (assumptions) of a simplicity bias and sublinear sample efficiency (though see
App. K for discussion of a deviation from Bayes-optimality that is not accommodated by our current
assumptions).

• A Loss-Complexity Tradeoff is Fundamental to Understanding Training Dynamics. We find
that a tradeoff between the loss and complexity of solutions learned by models lies at the heart
of ICL phenomenology. We believe the hierarchical view from which this tradeoff emerges, in
which pretraining is a process of updating posterior probability for different solutions based on
their complexity and loss, and ICL is a posterior-weighted average of solutions, can be a powerful
explanatory perspective for understanding Transformer learning dynamics more broadly.

• The Value of a Normative Perspective. An important takeaway that we believe may be of
independent interest to the community is that, to understand generalization behavior in Transformers
and neural networks more broadly, it may be enough to observe the structure of the data, and assume
the network is well-approximated by a Bayes-optimal density estimator with a simplicity bias and
sublinear sample efficiency. We hope our work shows that such a top-down normative perspective
can provide highly predictive accounts, as well as potential explanations for why models behave the
way they do. We encourage a wider adoption of this approach for understanding neural network
behavior.

Our work also opens up several exciting avenues for further progress.

• Can we Explain In-Context Transitions? First, we note the phase transition elicited in this
work primarily assumes a biased optimization process, and the ability to overcome this bias by
seeing data supporting another solution. Accordingly, since ICL can be viewed as an optimization
process [22, 96], it may be possible to use our results to explain behavioral transitions seen in
recent work on in-context learning of novel concepts or behaviors [10, 54, 97].

• Does our Framework Explain other Pretraining Phenomena? we believe the competition
dynamic characterized in our work is similar to the one demonstrated by Qin et al. [94] in
a language modeling task. There, the authors show that depending on the data diversity and
complexity, a model can either learn a bag of heuristics or the underlying grammar to generate
sentences from the language. It may be possible to explain the phenomenology elicited in that
work via the hierarchical Bayes lens we take in this paper, since there likely exists a tradeoff
between compressibility and loss of a heuristic vs. grammar-learning solution.

• Connecting our top-down framework to a bottom-up mechanistic account. Our work in-
tentionally takes a top-down approach, and hence does not offer a mechanistic account of how
Transformer learning dynamics implement the loss-complexity tradeoff, or how the model weights
different solutions at inference time. Such a bottom-up analysis likely requires studying either
the gradient flow dynamics of ICL [29] or using mechanistic interpretability tools to examine
circuits [32, 33].

D Derivations

Below, we derive formal expressions for the functional form of log-posterior odds (Eq. 4) and show
how one can convert it into a predictive model (Eq. 5). For completeness, we repeat below the
constraints underlying our modeling framework.

• A1: Loss scales in a power-law manner with dataset-size N , i.e., L(N) ≈ L(∞) + A/Nα, where
L(N) denotes the average loss on a dataset at time N , and A is a constant that depends on model
loss at initialization and training hyperparameters.

• A2: Neural networks exhibit a bias toward simpler solutions. Specifically, using K(Q) to
denote the Kolmogorov complexity for predictor Q, we accommodate the Transformer-specific

21

implementation cost by defining KT(Q) = K(Q)β . Then, taking the form of a universal prior, the
prior probability of learning a predictor Q is p(Q) ∝ 2−KT(Q) = 2−K(Q)β .

D.1 Log-Posterior Odds

We consider a parameterized model class H(.) learning to implement a predictor Q ∈ {M,G} when
trained using a learner T on a dataset STtrain(N,D) of N sequences sampled from the distribution Ttrain
with diversity D. Note that, when required for clarity, we use MD to denote the memorizing solution
defined for a dataset with task diversity D, but in most cases we use M for brevity. We approximate
this model’s learning dynamics via a hierarchical Bayes framework, i.e., we assume learning happens
via a posterior update by computing likelihood of the data under all considered hypotheses (which are
themselves Bayesian predictors, hence the term ‘hierarchical’). Each hypothesis has an associated
prior that reflects the learning pipeline’s proclivity towards implementing it. For brevity, we will use
the notation STtrain to refer to the dataset, with sequences seen at update N denoted via a superscript
S
(n)
Ttrain

; i.e., STtrain = ∪nS
(n)
Ttrain

. We also use ΘQ to denote the set of parameters in the landscape of
model-class H , such that H(θ, s) = Q(s) for any sequence s if θ ∈ ΘQ.

We begin by analyzing the posterior of the predictor Q learned by the model:

P (Q|STtrain , T,H) = P (ΘQ|STtrain , T,H)

=

∫
θ∈ΘQ

P (θ|STtrain , T,H)

∝
∫
θ∈ΘQ

P (S
(1)
Ttrain

, . . . , S
(N)
Ttrain

|θ)P (θ|T,H)

A1
=

∫
θ∈ΘQ

Neff∏
n=1

P (S
(n)
Ttrain

|θ)P (θ|T,H)

=

∫
θ∈ΘQ

Neff∏
n=1

P (S
(n)
Ttrain

|Q)P (θ|T,H)

=

Neff∏
n=1

P (S
(n)
Ttrain

|Q) ·
∫
θ∈ΘQ

P (θ|T,H)︸ ︷︷ ︸
Prior of the learner and model-class towards learning Q

A2∝
Neff∏
n=1

P (S
(n)
Ttrain

|Q) · (2−K(Q)β)

We now take the log of this quantity, thereby examining the unnormalized log-posterior for Q:

log

Neff∏
n=1

P (S
(n)
Ttrain

|Q) · (2−K(Q)β)

=

Neff∑
n=1

logP (S
(n)
Ttrain

|Q)−K(Q)β

= Neff
1

Neff

Neff∑
n=1

logP (S
(n)
Ttrain

|Q)︸ ︷︷ ︸
Average log likelihood of data under predictor Q

−K(Q)β

= −Neff LQ(STtrain(D))−K(Q)β .

22

Overall, we have then

η(N,D) := log
P (M |STtrain , T,H)

P (G|STtrain , T,H)

= Neff
(
LG(STtrain(D))− LMD

(STtrain(D))
)
−
(
K(MD)β −K(G)β

)
= Neff ∆L(D)−∆K(D)β . (6)

In the above, our constraints get operationalized as follows.

• A1 helps us accommodate the fact that while a Bayesian learner would make optimal use of all
samples shown to it, neural network training in fact makes suboptimal use of samples seen during
training, which we model by defining Neff, i.e., the effective number of samples a neural network
learns from. We will estimate this value below in Eq. 8.

• A2 provides a form for the prior the learning pipeline (includes the learner T and model-class H)
has towards implementing the predictor Q.

We next model Neff. Specifically, we use the power-law scaling behavior of neural networks’ learning
dynamics to compute the loss reduced in N updates by such a pipeline, identifying the number of
updates an idealized Bayesian learner would have to make in order to reduce loss by this amount.

Neff :=
Loss under power-law scaling in N updates
Loss of a Bayesian learner in a single update

=

∑N
n=1(L(n)− L(∞))δn

LQ

=
1

LQ

N∑
n=1

A

nα
δn

=
A

LQ

N1−α

∫ 1

0

1

n̂α
δn̂

=
A

(1− α) LQ

N1−α

= γN1−α,

where LQ = LQ(STtrain(D)), n̂ = n/N and γ = A
(1−α) LQ

is a constant that subsumes the loss of the
predictor Q and the constant A from our assumed form of power-law scaling, which depends on the
random loss of a network and effects of hyperparameters like batch-size and sequence lengths used to
define the train data.

Substituting Neff back into Eq. 6, we get our final model:

η(N,D) = γN1−α∆L(D)−∆K(D)β . (7)

D.2 Converting from Posterior-Odds to a Predictive Model

At inference, the pretrained Transformer is shown a sequence s, for which it makes a next-token
prediction. To simulate this process in our framework, we define a Bayesian predictor, denoted hpred,

23

as follows.

hpred(si|s1:i−1, STtrain) :=
∑

Q∈{M,G}

P (Q|STtrain , T,H)Q(si|s1:i−1)

=
∑

Q∈{M,G}

P (Q|STtrain , T,H)︸ ︷︷ ︸
Pretraining Prior

Q(si|s1:i−1)︸ ︷︷ ︸
Prediction

=
∑

Q∈{M,G}

P (Q|STtrain , T,H)∑
Q∈{M,G} P (Q|STtrain , T,H)

Q(si|s1:i−1)

=
exp (η(N,D))

1 + exp (η(N,D))
M(si|s1:i−1) +

1

1 + exp (η(N,D))
G(si|s1:i−1).

(8)

Using σ(.) to denote the sigmoid function, we have the final form from Eq. 5 as follows.

hpred(si|s1:i−1, STtrain) = σ(η(N,D))M(si|s1:i−1) + (1− σ(η(N,D)))G(si|s1:i−1). (9)

Remark. It is worth highlighting that η(N,D) essentially serves the role of free-energy in the
analysis above. Use of free-energy to model an interpolation between two states of a system is a
common theoretical framework used in physics to study systems that undergo transitions between a
disordered state to an ordered state: e.g., see in Landau theory, one considers interpolations between
free energy at high temperature and low temperature to model continuous (second-order) phase
transitions [98]. Our overall theoretical model, and the phenomenology it elicits, are very similar to
models from physics, a parallel that we believe can be worth pursuing in future work, e.g., to uncover
universality behavior beyond what we considered in this paper.

D.3 Extending the Framework to Multiple Predictors

Our framework can be easily extended to multiple predictors. In the case of multiple predictors, the
posterior predictive is written as:

hpred(si|s1:i−1, STtrain) =
∑
i

P (Qi|STtrain , T,H)Qi(si|s1:i−1).

By similar logic as the above derivations, by computing the log-posterior odds with respect to each
predictor Qi compared with its complement (i.e., all other predictors in the hypothesis space), we can
get the posterior for each predictor:

η(Qi)(N,D) := log
P (Qi|STtrain , T,H)∑
j ̸=i P (Qj |STtrain , T,H)

= Neff

∑
j ̸=i

LQj
(STtrain(D))− LQi

(STtrain(D))

−

K(Qi)
β −

∑
j ̸=i

K(Qj)
β


= Neff ∆L(Qi, D)−∆K(Qi, D)β

Thus, giving us a final form of:

hpred(si|s1:i−1, STtrain) =
∑
i

σ(η(Qi)(N,D)) Qi(si|s1:i−1). (10)

Which, in the case of linear regression with M , G, and an optimal constant solution C, is:

hpred(si|s1:i−1, STtrain) = σ(η(G)(N,D)) G(si|s1:i−1) + σ(η(M)(N,D)) M(si|s1:i−1) + σ(η(C)(N,D)) C(si|s1:i−1).

D.4 Extending the Framework to Accommodate In-Context Strategy Selection

In most of our analyses, we assume that the posterior for a predictor Q does not depend on the current
sequence and only depends on sequences seen during training. Formally, P (Qi|STtrain , s, T,H) =

24

P (Qi|STtrain , T,H). While we find that this assumption does not harm the predictive ability of our
model for ID evaluation, it is known that Transformers perform in-context strategy selection [21, 99].
Furthermore, for OOD evaluation, we find that Transformers behave more like the generalizing
solution (see Fig. 6), indicating in-context strategy selection, since the generalizing solution performs
better OOD compared with the memorizing solution. Thus, to accommodate in-context strategy
selection, we discard the assumption that the posterior only depends on sequences seen during
training, and instead write it as:

P (Q|STtrain , s, T,H) ∝ P (STtrain |Q) P (s|Q) P (Q|T,H)

Which, given predictors M and G, yields the following form for the log-posterior odds:

η(N,D) := log
P (M |STtrain , s)

P (G|STtrain , s)︸ ︷︷ ︸
Posterior odds

= log
P (STtrain |M)

P (STtrain |G)︸ ︷︷ ︸
Bayes factor (Pretraining)

+ log
P (s|M)

P (s|G)︸ ︷︷ ︸
Bayes factor (Context)

+ log
P (M)

P (G)︸ ︷︷ ︸
Prior odds

.

Following a similar argument as detailed in D.1, and assuming N to be the number of total tokens
seen by the Transformer, we write:

η(N,D) := log
P (M |STtrain , s)

P (G|STtrain , s)︸ ︷︷ ︸
Posterior odds

= Neff Ltrain(D) + seff ∆Lcontext(D)−∆K(D)β

= γN1−α∆Ltrain(D) + γ|s|1−α∆Lcontext(D)−∆K(D)β .

With |s| being the number of in-context examples in the context, and ∆Lcontext(D) := LG(s) −
LMD

(s) is the difference between the average loss of each predictor for the specific context. We note
that this functional form is certainly idealized, as it assumes similar sample efficiency parameters for
in-context learning and pretraining, and future research is needed to shed light on the similarities and
differences of belief updating in-context vs. during training.

25

E Two-Hypotheses Threshold: Minimum amount of training to enable the
Hierarchical Bayesian Model

One can reasonably expect our proposed Hierarchical Bayesian model to explain learning dynamics
of in-context learning will not be predictive of a Transformer’s behavior early-on in training, for
otherwise we are saying even an untrained model perfectly generalizes. In actuality, the Transformer
becomes amenable to approximation by our model after some minimal amount of training has
occurred. To automatically calculate whether we have finished this regime of training, we calculate
an “optimal” interpolation between the two predictors if they were capable of explaining the model
behavior: specifically, we rely on the relative distance as an estimate of the optimal interpolation
weighting, and use it as a baseline to compare model outputs with. In particular, we compute the
loss between this optimal interpolation baseline and our trained Transformer model, and if this
loss is below a threshold, we claim our theoretical model is applicable. We call this threshold the
two-hypotheses threshold (see Fig. 7).

To define the two-hypotheses threshold, we make the observation that while the loss between
Transformer and interpolating predictor can be large to begin with, it very quickly reduces to a
small value. We can expect this latter regime is where our theoretical model is most likely to
accurate at modeling the trained Transformer’s behavior. Motivated by this, we heuristically choose
the two-hypotheses threshold as a loss value 20% higher than minimum for Balls & Urns and
Classification, and 10% higher than minimum for Linear Regression, on the scale defined from
minimum to maximum loss (we find that a stricter threshold is required for linear regression to
surpass the early high-loss regime, given the larger variance in interpolation loss values).

) &)� �)� #)� �)� �))�

 �������	$����

)�)

)�&

)��

)�#

)��

�
	�

���
�

�

�!����'� !�$(��

�!�!���

�!�!���

�!�!���#

�!�!��%&

�!�!��#�

�!�!���&�

�!�!��&�#

�!�!����&

�!�!���)&�

�!�!��&)��

�!�!���)�#) &)� �)� #)� �)� �))�

)�))

)�)�

)�)&

)�)%

)�)�

)�)�

)�)#

)�)"

*�$� �$� �!���
�����$���%�

APPENDIX: TWO HYPOTHESES THRESHOLD FIG

Linear Regression

(%(� �(� "(� �(� �((�

	�
�������#
���

(�((

(�(�

(��(

(���

(�%(

�
��
���

�

	
 ����&
� �#'��

	
 � ���

	
 � ���

	
 � ���"

	
 � ��$%

	
 � ��"�

	
 � ���%�

	
 � ��%�"

	
 � ����%

	
 � ���(%�

	
 � ��%(��

	
 � ���(�"%(� �(� "(� �(� �((�

(�((

(�(�

(�(%

(�($

(�(�

(�(�

(�("

(�(!

)�#
��#��
 ��������
#�����

(%(� �(� "(� �(� �((�

	�
�������#
���

(�(((

(�(%�

(�(�(

(�(!�

(��((

(��%�

(���(

(��!�

(�%((

�
��
���

�

	
 ����&
� �#'��

	
 � ���

	
 � ���

	
 � ���"

	
 � ��$%

	
 � ��"�

	
 � ���%�

	
 � ��%�"

	
 � ����%

	
 � ���(%�

	
 � ��%(��

	
 � ���(�"(%(� �(� "(� �(� �((�

(�(((

(�((�

(�(�(

(�(��

(�(%(

(�(%�

)�#
��#��
 ��������
#�%��

Balls & Urns

Classification

Figure 9: Two-Hypotheses Threshold. Defining an ‘optimal’ interpolation between the memorizing
and generalizing predictors towards minimizing the Euclidean distance to the trained Transformer’s
predictions, we report the loss between this optimal interpolation and the Transformer’s predictions.
We observe a minimum amount of training is necessary for this loss to become sufficiently small such
that our hierarchical Bayesian model, which implicitly assumes the Transformer can be functionally
decomposed into the two predictors, will become applicable. The dotted lines demarcate this
threshold, which we call the “two-hypotheses threshold”. Mean-squared error (MSE) in the figure
above is normalized by dimension. KL in this figure indicates forward KL from the Transformer’s
next token predictions to the interpolation of predictors.

26

F Experimental Details

F.1 Training and Model Details

Model. For all settings, we use the GPT-NeoX architecture sourced from Huggingface [56, 57].
While the number of layers / blocks in the model depend on the specific experimental setting (as
reported below), we use only 1 attention head per layer and follow a sequential residual stream
architecture across all settings.

Training. We use the Huggingface trainer with default parameters, changing only the learning
rate, batch-size, total iterations, and warmup steps (reported below). Gradients are clipped to unit-
norm. All models are trained on A100 GPUs, with maximum training budget reaching 2 days
for all experiments encompassing the linear regression setting. We vary data-diversity D from
{22, 24, . . . , 212} across all settings.

Settings-Specific Details. For our three core settings, we report results covering the following
hyperparameters. We note that similar to Carroll et al. [30], as we vary task-diversity D, we include
tasks from the lower diversity-values in the setting involving the larger one—this allows us to assess
effects of increasing diversity on the learning of a given task.

• Balls and Urns. Models of hidden dimension size 64 are trained for 100K steps, with no warmup
steps, at a constant learning rate of 5 × 10−4 and batch-size of 64. For our analysis, we derive
experimental settings from combinations of task-dimensionality (equivalent to vocabulary-size),
which varies in the set {8, 12, 16}; context length, which varies in the set {128, 256, 320}; and
MLP expansion factor, which varies in the set {0.5, 4, 8}.
– We conduct a separate experiment in which we attempt to elicit transience in higher task

diversity settings (D ∈ {28, 29}). To do so on a reasonable compute budget (2M, 10M steps,
respectively), we, similar to prior work [24, 29], have to intervene on the training pipeline.
However, unlike prior work that often relies on weight decay for this purpose, we use learning
rate annealing and find it to be sufficient. Specifically, we rely on an inverse square root schedule
for decaying the learning rate with number of dimensions, context length, and MLP expansion
fixed to 8, 128, and 4 respectively. We train up to D = 27 for 100K steps, and then train with
D = 28 for 2M steps, and with D = 29 steps for 10M steps. Results of this experiment are
shown in Fig. 7(c) and App. K.

• Linear Regression. Models of hidden dimension size 64 are trained for 100K steps, with 5K
warmup steps, at a constant learning rate of 5× 10−4 and batch-size of 128. For our analysis, we
derive experimental settings from combinations of task-dimensionality, which varies in the set
{8, 12, 16}; context length, which varies in the set {16, 32, 64}; and MLP expansion factor, which
varies in the set {0.5, 4, 8}. Like in Balls & Urns, we additionally train a setting using learning
rate annealing (setting parameters are task dimensionality of 8, Context length of 16, and MLP
expansion factor of 4. We train once with warmup of 500, and once with warmup of 5000. See
results in app. K).

• Classification. Models of hidden dimension size 64 are trained for 100K steps, with no warmup, at
a constant learning rate of 5× 10−4 and batch-size of 64. For our analysis, we derive experimental
settings from combinations of task-dimensionality, which varies in the set {8, 16}; context length,
which varies in the set {128, 256, 384}; and MLP expansion factor, which varies in the set
{0.5, 4, 8} for the 8 dimensions experiment, and is kept constant at 4 for the 16 dimensions
experiment.

F.2 Analysis Details

Next, we specify broad details of our analysis pipeline. These notes clarify design decisions made in
our evaluation and motivations underlying them.

General model and predictor evaluation. For OOD evaluation of both the Transformer and our
procedurally defined predictors, i.e., the memorizing predictor M and generalizing predictor G, we
draw 500 sequences from 500 unseen tasks (however, following still the same task distribution Ttrue).
In comparison, ID evaluation involves 500 sequences from seen tasks. If task-diversity D is less
than 500, sequences from the same task may be seen multiple times. We note that in addition to the

27

standard ID evaluation, there is another method for ID evaluation in Classification that is slightly
different. Following the popularly used pipeline of ‘in-weights learning’ (IWL) first introduced by
Chan et al. [20], one specifically ensures that a copy of the test item does not appear in the context,
thus making the use of an in-context copying solution ineffective, and testing memorization more
explicitly.

Fig. 1 details. In this figure, we use context length of 128, MLP expansion factor of 4, and task
dimensionality of 8 for Balls & Urns. Linear Regression uses similar parameters, only with a context
length of 32, and Classification uses similar parameters, only with MLP expansion factor of 8. In
all plots displaying task diversity effects, we hold N = 100K. For classification, we show the IWL
method for ID evaluation. In the transience figures, we use D = 256 for Balls & Urns, D = 64 for
Linear Regression, and D = 512 for Classification. For the comparison of relative distance maps, we
show maps from the Balls & Urns setting with the parameters described above.

Computing absolute distance between Transformer and predictors. Given an input, we use
both the Transformer model and the procedurally defined predictors to make next-token predictions.
Then, we compare distance between these predictions using either the symmetrized KL (average of
forward and backward KL) for the Balls and Urns and Classification settings, or the mean-squared
error (MSE) for linear regression.

Computing relative distance between Transformer and predictors. Recall that relative dis-
tance, for a given distance measure d(., .) between two functions or distributions (symmetrized
KL-divergence or Euclidean distance), is defined as drel = (r+1)/2, where r := d(h,G)−d(h,M)

d(G,M) and
h(.) denotes the Transformer model trained from scratch. This metric implicitly makes the assump-
tion that in some function space, the model h(.) lies on a line between the predictors M and G.
Correspondingly, for the scenarios this assumption is violated, the value of drel can go outside the
range 0–1. This occurs relatively rarely, but nevertheless noticeably (e.g., if the model implements
the optimal constant solution early on in training for linear regression). Accordingly, we clamp the
metric between 0–1.

Minimum amount of training to enable the Hierarchical Bayesian Model. One can reasonably
expect our proposed Hierarchical Bayesian model to explain learning dynamics of in-context learning
will not be predictive of a Transformer’s behavior early on in training, for otherwise, we are saying
even an untrained model perfectly generalizes. In actuality, the Transformer becomes amenable to
approximation by our model after some minimal amount of training has occurred. To automatically
calculate whether we have finished this regime of training, we use the relative distance as an estimate
of an “optimal” interpolation weight between the two predictors. We compute the loss between this
optimal interpolation baseline and our trained Transformer model, and if this loss is below a threshold,
we claim our theoretical model is applicable now (see details on our choice of threshold in App. E)

Fitting the Bayesian Model. We must perform the following three steps in order to fit our model.

• Approximating Kolmogorov complexity. Because true Kolmogorov complexity is not com-
putable, we estimate an upper bound by compressing a self-contained bundle for each predictor:
(i) the cleaned Python source that instantiates the predictor, and (ii) any numpy arrays it needs
at inference time (e.g., the full table of urn distributions for the memorizing baseline in Balls &
Urns). We remove comments, docstrings, and extraneous whitespace from the source code. For
arrays, we first apply simple delta-encoding (store successive differences) to expose additional
structure. The pre-processed bundle is compressed with four strong, off-the-shelf algorithms:
lzma (preset=9 | PRESETEXTREME), bzip2 (level=9), brotli (quality=11, mode=TEXT),
and zstd (level=22). We take the smallest compressed size (in bits) across the four algorithms
as our estimate; this is a standard practice for obtaining a loose but practical upper bound. To
keep estimates comparable, we exclude external libraries such as PyTorch from compression: all
predictors call the same set of PyTorch primitives, so including them would add a large constant
offset without altering relative complexities. This choice does, however, ignore the fact that
some primitives might be cognitively “cheaper” for a Transformer to implement than others—an
important caveat for future work.

28

• Computation of average log likelihood per predictor. For every experimental condition we first
compute the token-level log-likelihood that each predictor assigns to the in-distribution sequences
(note that we use standard ID sequences for classification, not the IWL sequences). Because the
irreducible error term cancels when models are compared, we use KL-based evaluations to the Balls
& Urns and classification tasks, treating the linear-regression setting separately. To summarize
performance, we need the mean log-likelihood per token, yet the empirical loss distribution is, at
times, quite skewed: most tokens later in the context incur near-zero loss, whereas a small fraction
of early tokens produce large spikes. Therefore, a naive arithmetic mean converges slowly and
exhibits high variance. Thus, we instead use median of means, an estimator for the true mean that
has better convergence under long-tailed distributions.

• How fitting is done. To fit the 3 free parameters of the Bayesian model, we minimize the mean KL
divergence (or mean-squared error in the linear-regression setting) between the interpolated predic-
tions and the Transformer outputs. Optimization is performed with scipy.optimize.minimize
using the L-BFGS-B algorithm, capped at 1K iterations and 2K function evaluations, with gradient
and function tolerances of 10−7. Exact gradients are supplied via PyTorch’s automatic differen-
tiation, ensuring stable convergence. For each task we fit on 80% of the (N,D) configuration
grid and reserve the remaining 20% for held-out validation and diagnostic checks. The process of
fitting and evaluation takes around a minute or less to complete.

Novel Predictions Analysis Details. To show sub-linear sample efficiency and a sigmoidal curve
in N1−α, we fit a parameterized logistic a

1+exp(−b(N1−α−N0))
with free parameters a, b,N0 to each

training run (constant D value), via scipy curvefit function. We use the α value given by the Bayesian
model. Curve fits are shown in Fig. 7(a). To compute the second derivative of the relative distance
(Fig. 7), we simply use parameters for the logistic fits described above (which provide very close fits,
as can be seen in Fig. 7(a)), then compute the second derivative based on the form for the second
derivative of a parametrized logistic. To plot the vector field, we normalize both U and V directions
by the larger value among the 90th percentile values for U and V .

G Additional Details Regarding Settings and Predictors

We now give a more detailed discussion of the different settings analyzed in this work: (i) Balls &
Urns, (ii) Linear Regression, and (iii) Classification. We also provide details of how the memorizing
and generalizing predictors are implemented for these settings. Broadly, as also visualized in Fig. 10,
all settings involve learning of a mixture of tasks Ttrain drawn from the true task distribution Ttrue.
The number of tasks involved in the mixture is called its task diversity (denoted D). For all settings,
we find models learn predictors of two types: a memorizing predictor, which corresponds to the
Bayesian posterior predictive distribution with a discrete prior over seen tasks Ttrain, and a generalizing
predictor, which corresponds to the Bayesian posterior predictive distribution with a prior over the
true task distribution Ttrue. The precise forms of these predictors, as well as how sequences are
assembled into training batches in each setting, are provided in the following sections.

G.1 Balls and urns

Memorizing Predictor. The memorizing predictor perform a Bayesian averaging operation and
requires computing a weighted average of all urn distributions seen during training. The weight on
each urn is derived from the likelihood of the current sequence of observations being generated by
that urn. Formally, let wd denote the parameters for an urn d ∈ {1, . . . , D}, with each element w(k)

d
containing the probability for ball type k ∈ {1, . . . ,m} under urn D. Then, the probability of a new
ball being of type k after seeing a sequence s is:

p(k|s) ∝
∑

wd∈Ttrain

w
(k)
d

∏
k′∈{1,...,m}

(w
(k′)
d)nk′ .

With nk′ being the number of occurrences of ball of type k′ in the sequence.

Generalizing Predictor. Given that the true distribution is a uniform Dirichlet, and that the Dirichlet
distribution is a conjugate prior of the categorical distribution (from which we draw our samples), the
optimal way to estimate the probability of a ball of a particular type k in a sequence s of length C is:

29

f(w2)

APPENDIX: GENERAL PREDICTORS PROCEDURE

Memorizing

Mixture of Tasks

x1 ? ?…x2 x3 x4 xC-1xC

Generalizing

∑

˜ ∫
w ∼

Posterior predictive
over tau

Posterior predictive
over tau

…
f(w1)
f(w2)

f(wD)

…

f(w1)
f(w2)

f(wD)

Next-token prediction
over samples from task(s)

Figure 10: General Abstraction Capturing our Experimental Settings and their Predictors. Each
setting involves a mixture of parameterized functions (called a “task”), with D functions (the “task
diversity"). Task consist of predicting the next element in a sequence, and vary based on whether
models are trained in a standard auto-regressive fashion (like Balls & Urns) or whether they are only
trained to predict some elements in the sequence (only function outputs in Linear Regression, and
only the last label in Classification). Across settings, the solutions learned by Transformers can be
characterized as memorizing predictors or generalizing predictors. A memorizing predictor is defined
as the Bayesian posterior predictive distribution with Ttrain, the distribution of seen tasks, as its prior.
A generalizing predictor is defined as the Bayesian posterior predictive with the true task distribution
Ttrue as its prior.

?

APPENDIX: BALLS & URNS PROCEDURE

Memorizing

Generalizing
Compute

count
(+1 pseudo-count)

∑
?˜ Dirichlet(1)

Estimate
likelihoods Compute weighted

average

…

… w ∼

Figure 11: Visualizing the setup for Balls and Urns. Each task involves an “urn” that outputs a
“ball” of a specific type every time it is sampled from. The task then involves seeing samples from an
urn, concatenated to form a sequence. A memorizing predictor for this setting involves computing
the sequence-level unigram statistics, i.e., the counts for each ball type, and comparing them with
distributions from urns seen during training. Meanwhile, a generalizing predictor simply assumes the
distribution of balls follows a uniform Dirichlet prior, thus predicting simply based on computing
the unigram statistics from the sequence and adding a 1 pseudo-count for each ball type. Thus, this
predictor generalizes to novel urns not seen by the model during training.

p(k|s) = nk+1
C , with nk being the number of occurrences of ball of type k in the sequence. That is,

the optimal strategy for the true distribution is simply computing a count for each type, adding a 1
pseudo-count, and dividing by the sequence length.

G.2 Linear regression

Additional Details Not Provided in Main Text. To maintain a constant signal-to-noise ratio across
tasks with different dimensionality m, we set ϵi ∼ N (0, σ2), with σ2 = m

256 .

Generalizing Predictor. The generalizing predictor in this case simply performs ridge regression.
Given x = (x⊺

1 , ...,x
⊺
C−1) and y = (y1, ..., yC−1), the weight estimate is after seeing C−1 examples

is:
ŵ

(C)
G = (x⊺x+ σ2Im)−1x⊺y

Memorizing Predictor. The memorizing predictor in this case performs inference by Bayesian
averaging: a weighted average across all w(d)s seen in the training distribution, with weights

30

Estimate
likelihoods

Ridge
regression

(x1, w⊺
2 x1 + ϵ1)

(x4,?) Memorizing

Generalizing

APPENDIX: LINEAR REGRESSION PROCEDURE

∑˜𝒩(0, Im)
(x2, w⊺

2 x2 + ϵ2)

(x3, w⊺
2 x3 + ϵ3)

Compute weighted
average

…
w ∼…

Figure 12: Visualizing the setup for Linear Regression. Each task involves a linear regression
problem, defined by parameters w, that outputs a pair (x, y), where y = w⊺x+ ϵ is a noisy linear
transformation of the vector x. The task then involves seeing a sequence of such pairs, concatenated
to form a sequence. A memorizing predictor for this setting involves computing the likelihood of
the pairs seen in context under the parameters of each task seen during training, using this result
to compute a posterior over said tasks and a posterior-weighted average with a discrete prior over
seen tasks. Meanwhile, the generalizing predictor is merely the ridge regression operation, which
is equivalent to performing a Bayesian average operation assuming a continuous Gaussian prior.
Correspondingly, this predictor generalizes to novel regression tasks that were not seen by the model
during training.

determined by the likelihood that the sequence was generated by the specific w(t). After seeing C−1
examples, the weight estimate is:

ŵ
(C)
M =

∑
wd∈Ttrain

exp(− 1
2σ2

∑C−1
c=1 (yc −w⊺

d xc)
2)∑

wd′∈Ttrain
exp(− 1

2σ2

∑C−1
c=1 (yc −w⊺

d′ xc)2)
wd

G.3 Classification

We use the classification setting with the formulation from [29] as well as inspiration from the noisy
class centroids introduced by [28]. As Nguyen and Reddy [29] have shown, their simplified setting
captures the phenomenology of other classification settings proposed by Chan et al. [20], Reddy [28].
For simplicity, we include only binary labels in our version.

Additional Details Not Provided in Main Text. When presented in context, items w are noised
and presented as w̃ = w+σϵ√

1+σ2
. We use within-class variance of σ2 = 0.5 in all settings, and

ϵ ∈ N (0, Im/m) is sampled separately for each item in the context.

Memorizing Predictor. The memorizing predictor in this setting performs inference by com-
puting a posterior-weighted average over item-label pairs seen in the training distribution Ttrain,
i.e., w1 ⊕ l1, . . . ,wD ⊕ lD. The form for a noisy item used for defining the input sequence is
w̃ = w+σϵ√

1+σ2
for some w ∼ Ttrain. Thus, since ϵ has covariance Im/m, we can write a noisy item

sampled from a given w will be distributed as: (w̃ | w = wd) ∼ N (1√
1+σ2

w, σ2

1+σ2 Im/m). The
probability of the query label being 1 can then be defined as follows:

p(1|s) ∝
∑

wd∈Ttrain

p(w̃query|wd) p(1|wd)

∝
∑

wd∈Ttrain

exp

(
− m

2σ2
(1 + σ2)

∥∥∥∥w̃query −
1√

1 + σ2
wd

∥∥∥∥2
)

1(ld = 1),

where we disregard constants outside the exp term.

Generalizing Predictor. The generalizing predictor in this setting performs inference by computing
a posterior-weighted average over item-label pairs in the context. Specifically, note that we define

31

…

?

APPENDIX: BINARY CLASSIFICATION PROCEDURE

Noisy
copy

Noisy
retrieval Memorizing

Generalizing

∑

∑̃
w ∈ context

˜𝒩(0, Im

m
)

{0,1}

wD

lDl2

w2w1

l1

w̃2

l2 l1 lD

w̃1 w̃D w̃query

˜
Compute weighted

average

Compute weighted
average

w ∼?

…

Figure 13: Visualizing the setup for Classification. Each task involves noisy item-label pairs
w̃ ⊕ l, and ends with a noisy query item w̃query which comes from the same true item w as one
of the items in the sequence. Items are noised via w̃ = w+σϵ√

1+σ2
, with ϵ ∈ N (0, Im/m) sampled

from the same distribution as the true item w. A memorizing predictor knows the true items in the
training distribution, computes the likelihood that the noisy query item comes from each true item,
and accordingly computes a posterior-weighted average using the labels for each true item. Note that
this predictor completely ignores the context, and hence was described as an ‘in-weights learning’
solution in previous works [24, 28]. In contrast, the generalizing predictor implements a noisy copy
operation. It estimates the likelihood that the query head and each item seen in context come from
the same true item. Then, it predicts via a posterior-weighted average according to the labels of each
item seen in context. Therefore, this predictor works for OOD settings containing novel items that
were not previously seen during training.

sequences using noised versions w̃ of task vectors w ∼ Ttrue. Importantly, we allow sampling with
replacement, i.e., the same task w can be used to define multiple item-label pairs. This can be thought
of as a biased sampling process, instead of the random sampling one, whereby a task seen in-context
has finite odds of being seen again in the sequence than a random one. Accordingly, the prior will
collapse onto just the seen item pairs (as it will be infinitesimally small for items sampled randomly).
We thus merely need to compute the joint probability of the query item given the items seen in context,
leading to the following form:

p(1|s) ∝
∑

w̃d∈Context

exp

(
−m (1 + σ2)2

2σ2 (2 + σ2)

∥∥∥∥w̃query −
w̃d

1 + σ2

∥∥∥∥2
)

1(ld = 1).

H Main Results Across All Settings

In the following sections, we provide the results reported in the main paper across all settings and
experiments.

H.1 Task Diversity Effects

We find task diversity effects [25] to be very robust across settings and experimental conditions. More
specifically, we consistently find that increasing task diversity yields a transition in Transformer
behavior from behaving like a memorizing predictor to behaving like a generalizing predictor. In the
following, we present evidence of this phenomenon for ID sequences. See results in following pages.

32

H.1.1 Balls & Urns

APPENDIX: BALLS: task div threshold

MLP Expansion Factor

0.5 4 8

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

����

����

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

�
�

�� �� �� �� ���

������
�	��
����

����

����

����

���

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

����

�
�

�� �
 �� �� ���

���
����	�������

����

����

����

����

���

����

����

�
�

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 8

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

2

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

6

C
o

nt
ex

t L
en

g
th

25
6

32
0

Figure 14: Task Diversity Effects Across Balls & Urns Conditions. Red dashed line indicates the
memorizing solution M , blue dashed line indicates the generalizing solution G, and black solid line
indicates Transformer behavior at the end of training (100K steps).

33

H.1.2 Linear Regression

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	������
�������

���

��

���

���

���

���

�
��

�� �� �� �� ���

�	������
�������

���

��

���

���

���

���

�
��

�� �� �� �� ���

�	������
�������

���

��

���

���

���

���

�
��

�� �� �� �� ���

�	����
�
��
����

���

���

���

���

���

�
��

�� �� �� �� ���

�	����
�
��
����

���

���

���

���

���

�
��

�� �� �� �� ���

�	����
�
��
����

���

���

���

���

���

�
��

�� �� �� �� ���

�	����
�
��
����

�

�

�

�

�

�
��

�� �� �� �� ���

�	����
�
��
����

�

�

�

�

�

�
��

�� �� �� �� ���

�	����
�
��
����

�

�

�

�

�

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	������
�������

���

��

���

���

���

���

��

�
��

�� �� �� �� ���

�	����
�
��
����

� � �

� � �

� � �

� � �

�� �

�� �

�� �

�
��

�� �� �� �� ���

�	������
�������

���

��

���

���

���

���

��

�
��

�� �� �� �� ���

�	������
�������

�

�

�

�
��

�� �� �� �� ���

�	������
�������

�

�

�

�
��

�� �� �� �� ���

�	������
�������

�

�

�

�
��

�� �� �� �� ���

�	����
�
��
����

�

�

�

�

�
��

�� �� �� �� ���

�	����
�
��
����

�

�

�

�

�
��

�� �� �� �� ���

�	������
�������

�

�

�

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

�
��

�� �� �� �� ���

�	�
����
�������

���

���

���

���

�
��

APPENDIX: LINREG: task div threshold

MLP Expansion Factor

0.5 4 8

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 8

C
o

nt
ex

t
Le

ng
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

2

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

6

C
o

nt
ex

t L
en

g
th

25
6

32
0

Figure 15: Task Diversity Effects Across Linear Regression Conditions. Red dashed line indicates
the memorizing solution M , blue dashed line indicates the generalizing solution G, and black solid
line indicates Transformer behavior at the end of training (100K steps).

34

H.1.3 Classification
APPENDIX: CLASS: task div threshold

Context Length

128 256 384

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

���

��	

���

��	

���

��	

���

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

�

�

�

�

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

�

�

�

�

�
��
��

�

�
��
��

�� �	 �� �� ���

����������������

�

�

�

�

�
��
��

�

�
��
��

Ta
sk

 D
im

en
si

o
na

lit
y

16
8

8
8

M
LP

 E
xp

an
si

o
n

Fa
ct

o
r

4
8

4
0.

5

Figure 16: Task Diversity Effects Across Classification Conditions. Red dashed line indicates the
memorizing solution M , blue dashed line indicates the generalizing solution G, and black solid line
indicates Transformer behavior at the end of training (100K steps). IWL evaluation presented.

H.2 Transience

Across settings and conditions, we also find the phenomenon of transience [24] to be consistent
in moderate task diversity values. More specifically, in moderate task diversity values, we see the
Transformer approach the generalizing solution in terms of OOD performance early in training,
only to eventually begin memorizing and worsen in OOD performance. In the figures below, we
show OOD performance of Transformers trained in different task diversity conditions, with low task
diversity values showing immediate memorization, moderate task diversity values showing transience,
and high task diversity values often continuing to generalize well throughout training. See results in
following pages.

35

H.2.1 Balls & Urns

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

���

���

���

��

���

���

�
�

��

�

����

�

����

� ��
����

APPENDIX: BALLS: transience

MLP Expansion Factor

0.5 4 8

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 8

C
o

nt
ex

t
Le

ng
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

2

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

6

C
o

nt
ex

t L
en

g
th

25
6

32
0

Figure 17: Transience Across Balls & Urns Conditions. OOD performance presented. Blue Dashed
line indicates OOD performance of generalizing solution G.

36

H.2.2 Linear Regression

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��
�
��

��

�

����

� ����
� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

�
�� ��

�

����

� ����
� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
�� ��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

��

�
�� ��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

��

��

�
��

��

�

����

� ����
� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

�

��

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

����

����

����

����

����

����

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

����

����

����

����

����

����

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

��

��

��

��

�
�� ��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�
����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�

����

� ��
����

��� ��� ��
 ���

�����������	����

�

��

��

��

��

�
��

��

�

����

�

����

� ��
����

APPENDIX: LINREG: transience

MLP Expansion Factor

0.5 4 8

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 8

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

2

C
o

nt
ex

t L
en

g
th

25
6

32
0

12
8

Ta
sk

 D
im

en
si

o
na

lit
y

=
 1

6

C
o

nt
ex

t L
en

g
th

25
6

32
0

Figure 18: Transience Across Linear Regression Conditions. OOD performance presented. Blue
Dashed line indicates OOD performance of generalizing solution G.

37

H.2.3 Classification

��� ��� ��� ���

�������
��������

���

���

���

���

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

����

����

����

����

����

����

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

����

����

����

����

����

����

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

���

���

���

���

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

���

���

���

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

����

����

����

����

����

����

�
��
��
��
��
��
�� �
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

���

���

���

���

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

���

���

���

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

����

����

����

����

����

����

�
��
��
��
��
��
�� �
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

�

�

�

�

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

�

�

�

�

�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

��� ��� ��� ���

�������
��������

�

�

�
�
��
��
��
��
��
��

�
�

�

�
��

�

�
��	

� �
�����

APPENDIX: CLASS: transience

Context Length

128 256 384

Ta
sk

 D
im

en
si

o
na

lit
y

16
8

8

M
LP

 E
xp

an
si

o
n

Fa
ct

o
r

4
8

4
0.

58

Figure 19: Transience Across Classification Conditions. OOD performance presented. Blue Dashed
line indicates OOD performance of generalizing solution G. Note that in the case of classification, it
is often the case that only one or two task diversity conditions show transient generalization, as can
be seen more clearly from the absolute distance maps in the next section.

H.3 Absolute Distance from Predictors

We find that across settings and conditions, Transformers primarily learn and transition between
behaving like two predictors: a generalizing solution G, which consists of the Bayesian posterior
predictive distribution over the true task distribution Ttrue and a memorizing solution M which
consists of the Bayesian posterior predictive distribution over the training task distribution Ttrain. In
the figures below, we display the absolute distance from each of these predictors, as well the relative
distance in the background (ranging from red indicating closeness to M to blue indicating closeness
to G). See results in following pages.

38

H.3.1 Balls & Urns

MLP Expansion Factor

0.5 4 8

1
2
8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 8

C
o

n
te

xt
 L

e
n

g
th

2
5
6

3
2
0

1
2
8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
2

C
o

n
te

xt
 L

e
n

g
th

2
5
6

3
2
0

1
2
8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
6

C
o

n
te

xt
 L

e
n

g
th

2
5
6

3
2
0

G
M

Figure 20: Absolute and Relative Distance from Predictors Across Balls & Urns Conditions.
Distance from the generalizing solution G shown in the dashed black line, while distance from the
memorizing solution M is shown in the solid line. KL indicates symmetrized KL divergence (average
of forward and backward KL).

39

H.3.2 Linear Regression

MLP Expansion Factor

0.5 4 8

1
2
8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 8

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
2

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
6

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

G
M

Figure 21: Absolute and Relative Distance from Predictors Across Linear Regression Conditions.
Distance from the generalizing solution G shown in the dashed black line, while distance from the
memorizing solution M is shown in the solid line.

40

H.3.3 Classification

Context Length

128 256 384

Ta
sk

 D
im

e
n

si
o

n
a
lit

y

1
6

8
8

M
L
P

 E
xp

a
n

si
o

n
 F

a
ct

o
r

4
8

4
0
.58

G
M

Figure 22: Absolute and Relative Distance from Predictors Across Classification Conditions.
Distance from the generalizing solution G shown in the dashed black line, while distance from the
memorizing solution M is shown in the solid line. KL indicates symmetrized KL divergence (average
of forward and backward KL).

H.4 Model Predictions

Across settings and training conditions, we find that our model’s predictions consistently perform
well both in estimating the next-token prediction behavior of the Transformer, as well as capturing
its change in generalization behavior across conditions, as displayed by the relative distance from
predictors G and M . We conduct thorough stress-testing of our model across 3 settings and 72 (N,D)
maps, each containing 11 different training runs, and find that our model consistently performs well
across maps, thus providing robust evidence for the predictive and explanatory power of our account.
See results in following pages.

41

H.4.1 Balls & Urns

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
�� ,� "2
�

-2
�

,2
�

��
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
�� ,� "2
�

-2
�

,2
�

��
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

MLP Expansion Factor

0.5 4 8

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 8

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
2

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
6

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

G M

0 1

Figure 23: Bayesian Model Predictions Across Balls & Urns Conditions. Red indicates closeness
to memorizing predictor M , while blue indicates closeness to generalizing predictor G. Shown is a
comparison between the posterior probability of the memorizing solution M given by our Bayesian
model (left) and the relative distance from the Transformer (top right), as well as heatmaps indicating
similarity with Transformer next-token predictions (bottom right). Max color bar value is determined
by the performance of a baseline predictor that always outputs the mean of the distribution Ttrue.

42

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
,� ,� "2
�

"�
�

,2
�

�2
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
-� ,� "2
�

"�
�

-�
�

�2
�

*2
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

2&
�� ,� "2
�

-2
�

,2
�

��
�

*2
�

�2
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

M
L
P

 E
x
p

a
n

si
o

n
 F

a
c
to

r

0.5

1

2

4

8

12

16

24

32

G M

0 1

Figure 24: Bayesian Model Predictions Across Balls & Urns Conditions with Varying MLP
Expansion Factors. Red indicates closeness to memorizing predictor M , while blue indicates
closeness to generalizing predictor G. Shown is a comparison between the posterior probability
of the memorizing solution M given by our Bayesian model (left) and the relative distance from
the Transformer (top right), as well as heatmaps indicating similarity with Transformer next-token
predictions (bottom right). Context length is 128, task dimensionality is 8, and hidden size is 64 in all
conditions shown. MLP width is given by hidden size times MLP expansion factor. Max color bar
value is determined by the performance of a baseline predictor that always outputs the mean of the
distribution Ttrue.

43

H.4.2 Linear Regression

�� "�
�

.�
�

-�
�

��
�

*3
�

 �
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� !�
�

,1
�

+1
�

�1
�

�1
�

)�
�

�1
�

!1
1�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

!1
�

!�
�

,1
�

+1
�

�1
�

��
�

)�
�

��
�

!1
1�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+�
�

�1
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+1
�

��
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

�� !1
�

,1
�

+�
�

�1
�

)�
�

��
�

�'�������
*�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*0
�

,,

,�

,)

,�

,!1

,!,

��0�(����	 ���
#�&%�+$

�'��(� '��'
#���%���(*����$

�(���� '���**���

��(���

�.�*��
�/*�� �����'����*� �(

1%1

1%,

1%�

1%)

1%�

!%1

-3
�

-�
�

�3
�

�3
�

+3
�

*3
�

�3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

,�
�

�2
�

�2
�

*2
�

*�
�

�2
�

 2
�

"2
2�

�(�������
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)����	!���
$�'&�,%

�(��)�!(��(
$���&���)+����%

�)����!(���++���

��)���

�/�+��
�0+��!�����(����+�!�)

2&2

2&-

2&�

2&*

2&�

"&2

-3
�

-�
�

�3
�

�3
�

+3
�

*3
�

�3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� "�
�

.�
�

�3
�

��
�

*�
�

 �
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� "�
�

.�
�

-�
�

�3
�

*3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� "�
�

.�
�

�3
�

��
�

*�
�

 �
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� "2
�

-2
�

,�
�

�2
�

*�
�

 2
�

�(�������
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)����	!���
$�'&�,%

�(��)�!(��(
$���&���)+����%

�)����!(���++���

��)���

�/�+��
�0+��!�����(����+�!�)

2&2

2&-

2&�

2&*

2&�

"&2

�� "3
�

.3
�

-�
�

�3
�

*3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

!�
�

-�
�

,�
�

��
�

��
�

)2
�

��
�

�'�������
+�"(�

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�.
�'
(�
+1
�

--

-�

-*

-�

-!2

-!-

��1�(����	 ���
#�&%�,$

�'��(� '��'
#���%���(+����$

�(���� '���++���

��(���

�/�+��
�0+�� �����'����+� �(

2%2

2%-

2%�

2%*

2%�

!%2

-�
�

�3
�

�3
�

+3
�

*3
�

�3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�3
�

�3
�

+3
�

*3
�

�3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

+�
�

*3
�

*�
�

�3
�

��
�

 3
�

 �
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

"3
�

.3
�

.�
�

-�
�

�3
�

+3
�

*�
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

"2
�

-2
�

-�
�

,�
�

�2
�

*�
�

�2
�

 �
�

�(�������
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)����	!���
$�'&�,%

�(��)�!(��(
$���&���)+����%

�)����!(���++���

��)���

�/�+��
�0+��!�����(����+�!�)

2&2

2&-

2&�

2&*

2&�

"&2

"2
�

-2
�

-�
�

,�
�

�2
�

*�
�

�2
�

 �
�

�(�������
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)����	!���
$�'&�,%

�(��)�!(��(
$���&���)+����%

�)����!(���++���

��)���

�/�+��
�0+��!�����(����+�!�)

2&2

2&-

2&�

2&*

2&�

"&2

�� "�
�

.�
�

-�
�

�3
�

*3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

�� "�
�

.�
�

-�
�

��
�

*3
�

 �
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

"�
�

.�
�

-�
�

��
�

+3
�

*3
�

 3
�

�(�������
,�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
�

..

.�

.+

.�

."3

.".

��2�)����	!���
$�'&�-%

�(��)�!(��(
$���&���),����%

�)����!(���,,���

��)���

�0�,��
�1,��!�����(����,�!�)

3&3

3&.

3&�

3&+

3&�

"&3

MLP Expansion Factor

0.5 4 8

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 8

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
2

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

1
2

8

Ta
sk

 D
im

e
n

si
o

n
a
lit

y
=

 1
6

C
o

n
te

xt
 L

e
n

g
th

2
5

6
3

2
0

G M

0 1

Figure 25: Bayesian Model Predictions Across Linear Regression Conditions. Red indicates
closeness to memorizing predictor M , while blue indicates closeness to generalizing predictor G.
Shown is a comparison between the posterior probability of the memorizing solution M given by our
Bayesian model (left) and the relative distance from the Transformer (top right), as well as heatmaps
indicating similarity with Transformer next-token predictions (bottom right).

44

H.4.3 Classification

�� #�
�

/�
�

.�
�

�4
�

+4
�

!4
�

�)�� � ��
-�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
�

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

"2
�

"�
�

-2
�

,2
�

�2
�

��
�

*�
�

��
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

#3
�

.3
�

-3
�

�3
�

�3
�

+�
�

�3
�

!�
�

�)�� � ��
,�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�/
�)
*�
,2
�

..

.�

.+

.�

.#3

.#.

��2�*�� �	"���
%�('�-&

�)� *�")��)
%���'���*,� ��&

�*����")���,,� �

� *��

�����*,� ���0�,��
�1,��"�� ��)����,�" *

3'33

3'3�

3'#3

3'#�

3'.3

3'.�
�� #3
�

.3
�

-�
�

�3
�

+�
�

!3
�

�)�� � ��
,�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�/
�)
*�
,2
�

..

.�

.+

.�

.#3

.#.

��2�*�� �	"���
%�('�-&

�)� *�")��)
%���'���*,� ��&

�*����")���,,� �

� *��

�����*,� ���0�,��
�1,��"�� ��)����,�" *

3'33

3'3�

3'#3

3'#�

3'.3

3'.�

3'-3

.3
�

-3
�

�3
�

�3
�

+�
�

�3
�

!�
�

�)�� � ��
,�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�/
�)
*�
,2
�

..

.�

.+

.�

.#3

.#.

��2�*�� �	"���
%�('�-&

�)� *�")��)
%���'���*,� ��&

�*����")���,,� �

� *��

�����*,� ���0�,��
�1,��"�� ��)����,�" *

3'33

3'3�

3'#3

3'#�

3'.3

3'.�

#�
�

/�
�

.�
�

��
�

,4
�

+�
�

!4
�

�)�� � ��
-�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
�

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

�� "2
�

-2
�

,�
�

�2
�

*�
�

��
�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&22

2&2�

2&"2

2&"�

2&-2

2&-�

2&,2

/�
�

.�
�

��
�

,4
�

+4
�

!4
�

�)�� � ��
-�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
�

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'44

4'4�

4'#4

4'#�

4'/4

4'/�

.3
�

.�
�

-�
�

�3
�

+�
�

�3
�

!�
�

�)�� � ��
,�$*�
�

�
�

�
�

�
�

�
�

�
�

��
*�
��
�/
�)
*�
,2
�

..

.�

.+

.�

.#3

.#.

��2�*�� �	"���
%�('�-&

�)� *�")��)
%���'���*,� ��&

�*����")���,,� �

� *��

�����*,� ���0�,��
�1,��"�� ��)����,�" *

3'33

3'3�

3'#3

3'#�

3'.3

3'.�

�� #3
�

.3
�

-�
�

�3
�

+�
�

!3
�

�)�� � ��
,�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�/
�)
*�
,2
�

..

.�

.+

.�

.#3

.#.

��2�*�� �	"���
%�('�-&

�)� *�")��)
%���'���*,� ��&

�*����")���,,� �

� *��

�����*,� ���0�,��
�1,��"�� ��)����,�" *

3'3

3'#

3'.

3'-

3'�

"�
�

-2
�

,2
�

�2
�

�2
�

*�
�

�2
�

"2
2�

�(�� � ��
+�#)�

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�.
�(
)�
+1
�

--

-�

-*

-�

-"2

-"-

��1�)�� �	!���
$�'&�,%

�(�)�!(��(
$���&���)+� ��%

�)����!(���++� �

�)��

�����)+� ���/�+��
�0+��!�� ��(����+�!)

2&2

2&"

2&-

2&,

2&�

.4
�

.�
�

��
�

��
�

,�
�

+4
�

��
�

!�
�

�)�� � ��
-�$*�

�
�

�
�

�
�

�
�

�
�

�

��
*�
��
�0
�)
*�
-3
�

//

/�

/,

/�

/#4

/#/

��3�*�� �	"���
%�('�.&

�)� *�")��)
%���'���*-� ��&

�*����")���--� �

� *��

�����*-� ���1�-��
�2-��"�� ��)����-�" *

4'4

4'#

4'/

4'.

4'�

Context Length

128 256 384
Ta

sk
 D

im
e

n
si

o
n

a
lit

y

1
6

8
8

M
L
P

 E
xp

a
n

si
o

n
 F

a
ct

o
r

4
8

4
0
.58

G M

0 1

Figure 26: Bayesian Model Predictions Across Classification Conditions. Red indicates closeness
to memorizing predictor M , while blue indicates closeness to generalizing predictor G. Shown is a
comparison between the posterior probability of the memorizing solution M given by our Bayesian
model (left) and the relative distance from the Transformer (top right), as well as heatmaps indicating
similarity with Transformer next-token predictions (bottom right). Max color bar value is determined
by the performance of a baseline predictor that always outputs the mean of the distribution Ttrue.
The conditions where task dimensionality equals 16 in this setting (bottom row) reveal a limitation
of our complexity measure: since the memorizing and generalizing predictors are very close in
performance in low task diversities for these conditions, the loss term does not strongly bias the
Transformer towards the memorizing predictor. However, the Transformer, is very close to the
memorizing predictor for low task diversities, which would indicate according to our framework that
memorizing few items is substantially simpler than implementing a copy operation. However, this is
not captured by our complexity measure, since the compressed size of the code for the memorizing
and generalizing predictors is roughly the same, thus we are unable to capture the bias toward the
memorizing predictor in low task diversity settings. To overcome this, in these 3 conditions only, we
heuristically multiply the bit size of the code for the generalizing predictor by 5, and with that fix, we
find good performance (though as can be seen, the model still under-weights the memorizing solution
for some low task diversity conditions).

45

I Functional Form Ablations

Our functional form for the log posterior odds η consists of 3 free parameters, α, determining
sublinear sample efficiency, β, a power law on the estimated Kolmogorov complexity K, and γ, a
coefficient for the loss term. We find that each of these free parameters are necessary for the success
of our model, since removing any of them results in a worsening of the model’s ability to capture the
phenomenology of ICL.

3&
.� -� "3
�

"�
�

.�
�

�3
�

+3
�

�3
�

"3
3�

�(�� � ��
,�#)��

�
�

�
�

�
�

�
�

�
�

�

��
)�
��
�/
�(
)�
,2
��

..

.�

.+

.�

."3

.".

��2�)�� �	!���
$�'&�-%

�(�)�!(��(
$���&���),� ��%

�)����!(���,,� �

�)��

�����),� ���0�,��
�1,��!�� ��(����,�!)

3&333

3&3.�

3&3�3

3&3*�

3&"33

3&".�

3&"�3

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0

APP: Functional Form Ablation

0%
,� +� !0
�

!�
�

,�
�

�0
�

)0
�

�0
�

!0
0�

�'��������*�"(��

�
�

�
�

�
�

�
�

�
�

�

��
(�
��
�-
�'
(�
*/
��

,,

,�

,)

,�

,!0

,!,

��/�(����
 ���
#�&%�+$

�'��(� '��'
#
��%���(*����$

�(���� '���**���

��(���

�	�� '���.*�� �����'����*� �(

0%00

0%0,

0%0�

0%0)

0%0�

0%!0 Full ModelNo Free Parameters No No No γβ α

G M

0 1

Linear β

Figure 27: Power laws over complexity measure and sample efficiency are necessary for explain-
ing ICL phenomenology. By ablating our functional form, we see that the free parameters α, β, γ
are required for the performance of the model. In particular, the simplicity bias derived from K
without a β term is much too sharp and over-penalizes complexity compared to the Transformer, and
simply adding a linear β term does not capture the contour of the transition or the gradual transience
of generalization even in higher task diversity conditions. Additionally, memorization proceeds much
too rapidly without the α term, pointing toward the necessity of assuming sub-linear sample efficiency
for capturing Transformer training dynamics.

46

J Memorization Continues to Increase After Task Diversity Threshold –
Refutation of Raventós et al. [25]’s Claim

In Fig. 28, we show a refutation of the claim made by Raventós et al. [25], who claimed that after the
task diversity threshold is reached, the Transformer will only continue to get closer to the generalizing
solution throughout training, regardless of how long one trains. In making this claim, Raventós et al.
[25] focused only on the absolute distance between the Transformer and the generalizing solution.
However, when we considering a relative distance measure, we can show this claim to be false
(see right side of Fig. 28): Even in conditions in which the task diversity threshold was reached
and generalization is sustained throughout a reasonable amount of training (100K steps), we see
that by absolute distance, the Transformer not only gets closer to the generalizing solution during
training, it also continues to get closer to the memorizing solution (left side of Fig. 28). It seems
that the rate at which the Transformer nears the memorizing solution is greater than that at which
it nears the generalizing solution in task diversity settings such as D = 512 or D = 256, which is
why the relative distance continues to grow even despite the transformer nearing the generalizing
solution. Note also, that in settings that clearly show transience, e.g., D = 64, the distance from the
generalizing solution shrinks until a certain critical point in which it begins to grow. It is likely that
this point can be reached in all task diversity settings examined given the growth trend of the relative
distance. However, it may require a very long training process to reach that point.

� ��� ��� ��� ����
��	�������������

���

���

���

���

���

���

��
�	
���

��
�
��
�	
�

�

�
�

�
��

�
���

�
����

�� ��
� ���

���

���

���

���

���

���

��
�	
���

��
�
��
�	
�

�

�
�

�
��

�
���

�
����

����

����

��
�����

����

����

����

����

��
�����

����

����

����

����

��
����

����

����

����

����

��
���

����

����

����

����

��
���

����

����

��� ���

�������
���	����

����

����

��
��

�
��

APPENDIX: RAVENTOS ET AL REFUTATION

G
M

Figure 28: Relative distance continues to rise throughout training, even after the task diversity
threshold. The figure displays relative distance, as well as absolute distance from the memorizing
and generalizing solutions, for the linear regression setting with context length of 32, MLP expansion
factor of 4, and 8 dimensions.

47

K Learning Rate Annealing Can Improve Adherence to Bayes-Optimal
Trajectories

In our main experimental settings, in which we train with a constant learning rate, we find that
relative distance trajectories follow a sigmoidal growth pattern with respect to N1−α (see Fig. 7
and Fig. 29(a) top and bottom right). However, in contrast with our theory’s predicted sigmoidal
curves which plateau at 1 (i.e., some amount of training would eventually yield full adherence to the
memorizing solution, when it has a lower loss than the generalizing solution), this does not seem
to be the case with the trajectories displayed by Transformers, which appear to plateau early (see
Fig. 29(a) top right D = 256 for a clear example). Indeed, fitting parameterized logistic curves to
these trajectories yields plateau values different from 1. To explain this, we turn to foundational work
from Geman and Geman [100], who showed that a slow (logarithmic) temperature cooling schedule
for Gibbs sampling substantially increases the likelihood of convergence to the global minimum
(MAP estimate). Drawing a very rough parallel to the case of deep learning, it is reasonable to assume
that a learning rate annealing schedule of some form is required to converge to the MAP estimate
(which is the memorizing solution, in cases where it has lower loss than the generalizing solution).
To test this, we repeated experiments in the Balls & Urns and Linear Regression settings and used
warm-up and inverse-squared learning rate decay. Surprisingly, we indeed find that adding learning
rate annealing can increase adherence to Bayes-optimal trajectories (Fig. 29(a)). However, we also
find this effect is highly sensitive to training conditions: training for longer, even in conditions that
yield the effect for a smaller number of training steps, can lead to plateau (Fig. 29(b), top), and slight
changes in training conditions, in this case number of warm-up steps, can substantially reduce the
effect (Fig. 29(b), bottom). It should also be noted that in this case, adherence to the Bayes-optimal
trajectory is actually negative for generalization, since it means the model will converge to the
memorizing solution quicker. However, this is not necessarily the case in more realistic training
regimes, where the ability to overcome a simplicity bias and adopt more complex solutions is likely
beneficial.

APP: Annealing comparison

(a) (b)

� � � � � �
�����������
����

���

���

���

���

���

���

�

��
���

�
�
��
��
�	

���

����

���
�

������

�� �� �� ��
�
� ���

���

���

���

���

���

���

�

��
���

�
�
��
��
�	

���

����

���
�

������

Learning Rate Annealing can Increase
Adherence to Bayes-Optimal Trajectories

But Effect is Highly
Sensitive to Training Conditions

" ��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

���� ��

" ��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��" ���

����

�����

���"��

���
����

� �" ��
� ���

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

� �" ��
� ���

"�"

"��

"��

"��

"��

��" ���

����

�����

���"��

" ��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

���� ��

" ��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��" ���

����

�����

���"��

���
����

� �" ��
� ���

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

� �" ��
� ���

"�"

"��

"��

"��

"��

��" ���

����

�����

���"��

With Annealing Without Annealing

Ba
lls

 &
 U

rn
s

Li
ne

ar
 R

eg
re

ss
io

n

��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

���� ��

��� �"� ��� �""�

��������	������

"�"

"��

"��

"��

"��

��" ���

����

��������"��

���
����

�" �� �� �� ��
� ���

"�"

"��

"��

"��

"��

��"

��
��
��!
��
�
��
��
��
�

���

����

�����

���"��

�" �� �� �� ��
� ���

"�"

"��

"��

"��

"��

��" ���

����

��������"��

 �� �#� ��� �##�

��������	������

#�#

#�

#��

#��

#��

��#

��
��
��"
��
�
��
��
��
�

���

����

�� ��
���# �

����!��

 �� �#� ��� �##�

��������	������

#�#

#�

#��

#��

#��

��#
���

����

�� �����# �

���
����

��� ��# ��� ��#
� ���

#�#

#�

#��

#��

#��

��#

��
��
��"
��
�
��
��
��
�

���

����

�� ��
���# �

��� ��# ��� ��#
� ���

#�#

#�

#��

#��

#��

��#
���

����

�� �����# �

With Annealing Without Annealing

Plateaus throughout training

Sensitive to Warmup

 �� �#� ��� �##�

��������	������

#�#

#�

#��

#��

��
��
��"
��
�
��
��
��
�

���

��� �

����

����!��

 �� �#� ��� �##�

��������	������

#�#

#�

#��

#��

���

��� �

����

���
����

�# �# �# �## � #
� ���

#�#

#�

#��

#��

��
��
��"
��
�
��
��
��
�

���

��� �

����

�# �# �# �## � #
� ���

#�#

#�

#��

#��

���

��� �

����

Figure 29: Learning Rate Annealing Can Increase Adherence to Bayes-Optimal Trajectories.
(a) Balls & Urns setting uses context length of 128, MLP width of 256, and 8 dimensions. Linear
regression uses similar variables except a context length of 16. (b) Effect is highly sensitive to
training conditions: e.g., Training in the Linear regression setting with 5000 warmup steps failed, but
succeeds with 500 warmup steps (the number used for the experiment in panel (a)).

48

L Code Availability

All code used to run the experiments and analysis is available at:
https://github.com/DanielWurgaft/rational-icl

49

M NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a lot of empirical verification to back our claims, which we
theoretically justify in the first place.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

50

Justification: Appendices provide detailed constructions, and the main paper discusses
assumptions in detail.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed appendix with details on experiments and release code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

51

Answer: [Yes]
Justification: We provide access to a repository containing all code for the experiment, as
well as data for replication of the main results in a single setting.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See experimental details in appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We prioritized robustness across settings over robustness across runs of a single
setting. Hence, we report our theoretical model holds well on the order of 3,000 settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

52

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See experimental setup in appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have tried our best to avoid leaking signatures of our names or any
affiliations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As a theoretical paper, we believe this question does not feasibly apply.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

53

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Does not apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We primarily use PyTorch.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

54

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets were introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

55

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

56

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries: Learning a Finite Mixture of Tasks
	What Strategies: Memorizing and Generalizing Predictors
	Validating the Memorizing and Generalizing Predictors

	Answering the Why: A Hierarchical Bayesian Account of ICL
	Predictions
	The Loss-Complexity Tradeoff

	Discussion
	Appendix
	 Appendix
	Glossary of Useful Terms
	Related Work
	Prior Work Studying Task-Diversity Effects and Transience
	Hierarchical Bayesian Models of Learning to Learn
	Broader Work on Understanding ICL
	A Note Regarding Complexity

	Takeaways and Future Work
	Derivations
	Log-Posterior Odds
	Converting from Posterior-Odds to a Predictive Model
	Extending the Framework to Multiple Predictors
	Extending the Framework to Accommodate In-Context Strategy Selection

	Two-Hypotheses Threshold: Minimum amount of training to enable the Hierarchical Bayesian Model
	Experimental Details
	Training and Model Details
	Analysis Details

	Additional Details Regarding Settings and Predictors
	Balls and urns
	Linear regression
	Classification

	Main Results Across All Settings
	Task Diversity Effects
	Balls & Urns
	Linear Regression
	Classification

	Transience
	Balls & Urns
	Linear Regression
	Classification

	Absolute Distance from Predictors
	Balls & Urns
	Linear Regression
	Classification

	Model Predictions
	Balls & Urns
	Linear Regression
	Classification

	Functional Form Ablations
	Memorization Continues to Increase After Task Diversity Threshold – Refutation of raventos2024pretraining's Claim
	Learning Rate Annealing Can Improve Adherence to Bayes-Optimal Trajectories
	Code Availability
	NeurIPS Paper Checklist

