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ABSTRACT

Convolutional Neural Networks (CNNs) excel in many visual tasks, but they tend
to be sensitive to slight input perturbations that are imperceptible to the human eye,
often resulting in task failures. Recent studies indicate that training CNNs with
regularizers that promote brain-like representations, using neural recordings, can
improve model robustness. However, the requirement to use neural data severely
restricts the utility of these methods. Is it possible to develop regularizers that
mimic the computational function of neural regularizers without the need for neural
recordings, thereby expanding the usability and effectiveness of these techniques?
In this work, we inspect a neural regularizer introduced in Li et al. (2019) to extract
its underlying strength. The regularizer uses neural representational similarities,
which we find also correlate with pixel similarities. Motivated by this finding, we
introduce a new regularizer that retains the essence of the original but is computed
using image pixel similarities, eliminating the need for neural recordings. We show
that our regularization method 1) significantly increases model robustness to a range
of black box attacks on various datasets and 2) is computationally inexpensive and
relies only on original datasets. Our work explores how biologically motivated loss
functions can be used to drive the performance of artificial neural networks.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved high performance on a variety of visual tasks
such as image classification and segmentation. Despite their remarkable success, these networks
are notably brittle; even a small change in the input can significantly alter the network’s output
Biggio et al. (2013); Szegedy et al. (2013). Szegedy et al. (2013) found that small perturbations,
imperceptible to the human eye, can lead CNNs to misclassify images. These adversarial images
pose a significant threat to computer vision models.

Improving the robustness of CNNs against adversarial inputs is a major focus in machine learning.
Various methods have been proposed, each with different levels of success and computational demands
Li et al. (2022). Some researchers have drawn inspiration from the mammalian brain, finding that deep
neural networks trained to mimic brain-like representations are more resistant to adversarial attacks
(Li et al., 2019; Safarani et al., 2021; Li et al., 2023). In particular, Li et al. (2019) demonstrated that
incorporating a regularizer into the loss function, which aligns the CNN’s representational similarities
(Kriegeskorte et al., 2008) with those of the mouse primary visual cortex (V1), significantly enhances
the network’s robustness to Gaussian noise and adversarial attacks. Using a loss term to steer models
towards brain-like representations is referred to as neural regularization. However, a significant
drawback of these methods is the reliance on neural recordings, which are often difficult to obtain
and limit the methods’ applicability.

In this work, focusing on CNNs used for image classification tasks, we take a deeper look at the
neural regularizer introduced in Li et al. (2019). We ask whether the underlying working principles
of this biologically-inspired regularizer can be extracted and utilized to enhance the robustness of
deep neural networks without relying on large-scale neural recordings. In particular, the regularizer
introduced in Li et al. (2019) steers a CNN’s representations to match the representational similarities
of a predictive model of brain recordings. Taking this as a starting point, our contributions are the
following:
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• We observe that the representational similarities produced by the predictive model correlate
highly with pixel-based similarities. Motivated by this, we propose a simple and interpretable
similarity measure for regularization derived from the regularization image dataset, without
using neural data.

• We evaluate the robustness of regularized models on black box attacks, where the attacker only
has query access to the model as opposed to white box attacks where gradients and parameters
are accessible to the attacker. We show that our regularizer drives the network to be more
robust to a wide range of black box attacks.

• We demonstrate the flexibility of our method by using different datasets for regularization,
including the classification dataset itself. We show that our method works on both grayscale
and color datasets.

• We assess the robustness of the regularized models to common corruptions using the CIFAR-
10-C dataset Hendrycks & Dietterich (2019a).

• Our regularization method is computationally efficient, relying on original image datasets
without the need for data distortions or augmentations during training. We show that it requires
a relatively small regularization batch size and a small number of regularization images.

• We show that our regularization method primarily protects against high-frequency perturbations
by analyzing the Fourier transformation of minimal perturbations needed to mislead models, as
obtained from decision-based Boundary Attacks Brendel et al. (2017).

Our work demonstrates that a brain-inspired regularizer can enhance model robustness without large-
scale neural recordings. This contributes to the broader use of biologically-inspired loss functions
to improve artificial neural networks’ performance. The end product is a simple, computationally
efficient regularizer that performs well across a wide range of scenarios.

2 RELATED WORKS

Adversarial attacks. Identifying adversarial examples that can mislead a model is a dynamic field of
research, with an increasing number of attacks being introduced Szegedy et al. (2013); Hinton et al.
(2015); Moosavi-Dezfooli et al. (2016); Brendel et al. (2017); Madry et al. (2017). In this study, we
concentrate on black box attacks, which do not have access to detailed model information, as these
are more reflective of real-world scenarios. We evaluate our models against four types of attacks:
random noise, common corruptions, transfer-based attacks, and decision-based attacks.

Random noise attacks involve applying noise sampled from known distributions (e.g., Gaussian,
Uniform, and Salt and Pepper) to an input - see Appendix A.1. Common corruptions correspond to
distortions that can be found in real life computer vision applications (eg : motion blur) Hendrycks &
Dietterich (2019a). A transfer-based attack involves finding adversarial perturbations for a substitute
model (an unregularized model in our case) and applying them to a target model. Evaluating
robustness on transfer-based attacks is crucial because adversarial examples crafted for one model can
also mislead another distinct model Papernot et al. (2016). We find these perturbations by applying
the Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014) to the substitute model. Such
adversarial samples are computed as :

xadv = x+ ϵ× sign(∇xL(θ, x, y)) (1)

where xadv is the adversarial example, x denotes the original input image, y denotes the original
input label, θ denotes the model parameters and L is the loss. A decision based attack is an attack
which solely depends on the final model’s decision. Evaluating robustness on them is key as they are
applicable to real world black box models. Precisely, we evaluate robustness on a Boundary Attack
introduced by Brendel et al. (2017). This attack starts from a large adversarial perturbation, and seeks
to reduce the perturbation while remaining adversarial.

Adversarial training as a defense to adversarial attacks. As adversarial attacks have advanced,
corresponding defenses have also been developed to secure against them Goodfellow et al. (2014);
Bhagoji et al. (2018); Diffenderfer et al. (2021); Kireev et al. (2022). A common defense strategy
involves augmenting each batch of training data with adversarial examples, a technique known
as adversarial training Goodfellow et al. (2014); Madry et al. (2017). A widely-used method for
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generating these adversarial examples is the Projected Gradient Descent (PGD) attack Madry et al.
(2017), which is a multi-step variant of the Fast Gradient Sign Method (FGSM) attack. PGD is
popular due to its effectiveness in creating challenging adversarial examples, thereby enhancing the
model’s resilience against attacks.

Neural regularization. Recent work showed that jointly training a deep network to perform image
classification while steering it towards having brain-like representations can improve the model’s
robustness to adversarial attacks Li et al. (2019); Safarani et al. (2021). This is achieved by introducing
a penalty term in the loss function acting directly on image representations Li et al. (2019) or
activations Safarani et al. (2021) at different network depths. Such a process is referred to as neural
regularization. For instance, Li et al. (2019) used a neural regularizer to drive a CNN to aligh its
representational similarities (Kriegeskorte et al., 2008) with those of mouse primary visual cortex
(V1). Later on, Safarani et al. (2021) used a neural regularizer to drive a CNN towards predicting
neural activity in macaque primary visual cortex (V1) in response to the same natural stimuli. The
key bottleneck of such defenses is their reliance on the measurement of large scale neural recordings.

3 A NEURAL REPRESENTATIONAL SIMILARITY REGULARIZER

To increase the robustness of artificial neural networks to adversarial attacks, one research direction
focuses on extracting and applying computational concepts from the mammalian brain. In particular,
Li et al. (2019) showed that adding a neural regularizer term to the training loss enhances the
adversarial robustness of CNNs on image classification tasks. The regularization term is denoted by
Lsim as it depends on similarities between neural responses.
The loss function L is written as:

L = Ltask + αLsim (2)
where Lsim given image pairs (i, j) is defined as,

Lsim =
∑
i ̸=j

(
arctanh(SCNN

ij )− arctanh(Starget
ij )

)2
, (3)

and α is a parameter that sets the overall regularization strength. Starget
ij in eq. equation 3 is the

target’s pairwise cosine similarity between the representations of images i and j. SCNN
ij measures

the similarity between the representations of images i and j in a CNN. We compute it following the
approach of Li et al. (2019). We combine feature similarities from a selection of K equally spaced
convolutional layers and average the results through a trainable weights γl, where l is the layer
number. The latter are the output of a softmax function meaning

∑
l γl = 1 and γl ≥ 0. Overall,

SCNN
ij =

∑
l

γlS
CNN−l
ij , (4)

where SCNN−l
ij is the mean-substracted cosine feature similarity between images i and j at layer l.

Having γl be trainable enables the model to choose which layer(s) to regularize to match the similarity
target.

In their setup, Li et al. (2019) used a ResNet (He et al., 2016) to classify grayscale CIFAR-10 and
CIFAR-100 datasets. To compute Starget

ij , neural responses were collected from mouse primary visual
cortex (V1), while the mouse was looking at grayscale images from ImageNet dataset. However,
in practice, due to noise in neural recording, Starget

ij was not computed from the neural recordings
directly. Instead, it was computed from a predictive model (Sinz et al., 2018; Walke et al., 2018)
trained to predict the neural responses from images. The predictive model consisted of a 3-layered
CNN with skip connections Sinz et al. (2018); Walke et al. (2018); Li et al. (2019), it accounts for
behavioural data such as pupil position, size and running speed on treadmill (Appendix A.1).

Training is done by first processing a batch of images from the classification task dataset to calculate
the classification loss Ltask, and then processing a batch of image pairs from the regularization
dataset to compute the similarity loss Lsim. We then compute the full loss L which we use for
backpropagation.

We inspect the similarity loss Lsim (eq.equation 3) introduced in Li et al. (2019) to extract its
underlying strength. Our goal is to formulate a method that can bypass the use of neural recordings
which can be costly.
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Since the primary visual cortex (V1), where the neural recordings come from, is the first visual
processing area in the cortex, we inspect the correlation between the neural representational similarity
and image pixel similarities (computed as described in Appendix A.1). We observe that there is
a high correlation between the two as shown in Fig. 2, left panel. Thus, we investigate the effect
of using pixel similarities as target similarities in Lsim instead of similarities obtained from neural
recordings. To compare both approaches, we replicate the experimental setup in Li et al. (2019).
We train a ResNet to classify grayscale CIFAR-10 and CIFAR-100, and use grayscale images from
ImageNet data, as the regularization dataset (same datasets used in (Li et al., 2019)). However, we
differ from Li et al. (2019) in our choice of Starget

ij : we set Starget
ij in eq. equation 3 to Spixel

ij , where
Spixel
ij is computed as the pixel cosine similarity between images which are flattened, mean subtracted

and normalized. After training, we observe that the regularized model exhibits some enhancement
in robustness, however this enhancement is not consistent across different image perturbations and
adversarial attacks. For example, we see a modest enhancement in robustness to Gaussian noise
(Fig. 1a), and decision-based Boundary Attack (Fig. 1c), but this was not the case for transferred
FGSM attack (Fig. 1b). For Uniform noise and Salt and Pepper noise, we see an enhancement in
robustness at large noise levels (see Fig. 12 in A.2). In Fig. 1 we also show the performance of the
model of Li et al. (2019), which is regularized using neural representational similarities, for direct
comparison.

(a) (b) (c)

Figure 1: ResNet18 classifying grayscale CIFAR-10 is regularized using ImageNet (Spixel) or a neural
predictive model trained on ImageNet as in Li et al. (2019). (a) Robustness to Gaussian Noise, (b)
Transferred FGSM Goodfellow et al. (2014) perturbations and (c) to a decision-based Boundary
Attack Brendel et al. (2017) as shown by the difference in retrieved perturbation sizes retrieved.
Neural and pixel regularized models use α = 10. Error shades/bars represent the SEM across 7 seeds
per model - except for neural models where we had access to 5 models. (Details on the experimental
setup can be found in Appendix A.1)

If we go back and visually examine the last two panels in Fig.2, we observe that the image pixel
and neural representational similarity matrices have similar patterns, however the pattern is more
enhanced in the neural representational similarity matrix. Thus, at the first stage of cortical visual
processing, the brain seems to roughly preserve an underlying structure of the image pixel similarities
but amplify it. Based on this observation, we define a new target similarity STh, such that

STh
ij =


1, if Spixel

ij > Th,

−1, if Spixel
ij < −Th,

0, if |Spixel
ij | ≤ Th

(5)

where, Th ∈ (0, 1) is a tunable thresholding hyperparameter. That is, we set Starget
ij to be STh

ij . We
note that in practice we don’t use exactly 1 and −1 in eq. equation 5 by a very small number ϵ
because of the arctanh function in eq.equation 3. Finally, we note that even though we use Lsim as
in equation 3, the application of the arctanh function is not necessary in this case. The intuition
behind this regularization term is as follow: it is constraining the lower layers in the network (as
we show in Appendix A.6) to have identical representations for image pairs that are close in pixel
space, measured by the cosine similarity; hence viewing those images pairs as adversarial versions of
each other. At the same time, it is pushing images farther away in pixel space to have orthogonal
representations. In A.7, we show the contribution of each term of STh on robustness. In section 4.2
we propose how to select the hyperparameter Th and the regularization hyperparameter α.
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Figure 2: Correlation between representational similarities computed from the neural predictive
model used in Li et al. (2019) (see section 3 and Appendix A.1) and from image pixels computed
as the cosine similarity between images which are flattened, mean subtracted and normalized. We
trained more than 3 models on 6 distinct scans to predict neural responses and averaged their resulting
representational similarity. We observe that the neural representational similarity correlates with the
image pixel similarity.

Key advantages for this regularization method are 1) it does not require access to large scale neural
recordings, 2) it relies on the original datasets, and does not require the introduction of data distortions
or augmentations during training, 3) it is computationally inexpensive, as we show later in Section
4.6

4 EXPERIMENTS

We train ResNets He et al. (2016) on image classification tasks using L = Ltask + α Lsim (eq. equa-
tion 2, and setting Starget = STh in the regularization in the loss Lsim (eq. equation 3). The (α, Th)
pairs used for each classification-regularization dataset pairs are reported in Appendix A.5. We
also report in Appendix A.6 the value of γl (as defined in Section 3) for each dataset combination.
After training, we evaluate the regularized model robustness to a set of black box adversarial attacks
(Section 2). Even though we report below results for ResNet18, we show in A.4 and A.8 results for
ResNet34. To allow direct comparison with Li et al. (2019), we mainly show results using grayscale
CIFAR-10 as classification dataset. However, to demonstrate the success of our method, we also
show results using colored CIFAR-10. Furthermore, in the appendix we show results using other
classification datasets like grayscale CIFAR-100 (A.4), colored CIFAR-100 (A.8), MNIST (A.4) and
FashionMNIST (A.4). The details of our experimental setup and implementation can be found in
Appendix A.1.

4.1 ROBUSTNESS TO ADVERSARIAL ATTACKS

We first test the robustness of regularized models using grayscale CIFAR-10 and grayscale ImageNet
as classification and regularization datasets respectively, as used in Li et al. (2019). We first show
robustness to Gaussian noise perturbations. We find that regularized models exhibit a substantial
increase in robustness when compared to unregularized models as seen in Fig.3, left panel. They also
show a similar performance to neural regularized models Li et al. (2019) (Fig.3, left panel). The
robustness of models regularized using STh, to Uniform and Salt and Pepper perturbations can be
found in appendix A.3.

We then test robustness to stronger black box attacks, particularly, to transferred FGSM (Goodfellow
et al., 2014) perturbations from an unregularized model, and decision-based Boundary Attack Brendel
et al. (2017) (Section 2). We observe an increase in robustness to both attacks (Fig.3, center and right
panels). Note that for decision-based Boundary attack, the larger the perturbation size between the
adversarial input and the original image, the better in terms of robustness. Again, we observe that
models regularized using Sth perform similar to those regularized using neural data Li et al. (2019)
(Fig. 3, center and right panels).
The experiments above demonstrate that we can obtain similar robustness to neural regularized
models Li et al. (2019) by simply regularizing using STh, which does not require neural data, and
relies only on the original unaugmented regularization dataset.
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Figure 3: Robustness to Gaussian noise (left), transferred FGSM Goodfellow et al. (2014) (center),
and decision-based Boundary Attack Brendel et al. (2017) (right). A ResNet18 is trained to classify
grayscale CIFAR-10 and is regularized on grayscale images from ImageNet dataset. Results for
different regularization targets are shown : Spixel, STh and neural based targets as in Li et al. (2019).
For the decision-based Boundary Attack, we compute the median squared L2 perturbation size per
pixel, averaged across 1000 images, and 5 repeats. Error shades represent the SEM across seven
seeds per model.

4.2 HYPERPARAMETER SELECTION AND CONSISTENT BEHAVIOR ACROSS ATTACKS

An important question is how to select an α, Th hyperparameter pair ? We propose a criteria to select
those hyperparameters, as follows. A suitable pair should (1) be such that the resulting model has an
’acceptable’ accuracy on the distortion-free dataset, and (2) showcases an increase in robustness to
adversarial attacks. To properly define what we mean by this, we introduce the following quantities
R0, RN , U0 and UD. Where, R0 is the regularized model’s accuracy on distortion-free images and
RD its accuracy at high distortion level. U0 and UD are their equivalent for the unregularized model.
The ratios R0

U0
and RD

UD
reflect how our regularization affects the model’s accuracy at zero and high

distortion levels. To meet condition (1), we require that R0

U0
≥ A0, where A0 is user defined. We

select A0 = 0.9. Condition (2) is simply met by requiring that RD

UD
> 1.

We can visualize the performance of a model by plotting R0

U0
vs RD

UD
for each α, Th pair. This allows

the user to select the hyperparameter pair based on the selection criterion that they choose. In Fig.4
we show the above plot for different adversarial attacks (the gray shaded planes).
As seen, the regularization method produces a consistent behavior across all the adversarial attacks
that we use. This allows the user to use the simplest attack, like adding Gaussian noise to the images,
to select the α, Th pair. In Fig.4, the blue shaded area represents the region where conditions (1) and
(2) are met for each attack.

Figure 4: Behavior across multiple black box attacks and hyperparameters (α, Th) choices. Models
are trained to classify grayscale CIFAR-10 and regularized on grayscale images from ImageNet
dataset. Different planes show results for different black box attacks. In each plane, the region shaded
in blue represents the region of ’acceptable’ models, which we’ve taken here to be RD/UD ≥ 1
and R0/U0 ≥ 0.9 – a criteria that can be adjusted as needed. UD, RD are computed at ϵ = 0.1 for
random attacks and ϵ = 0.02 for the transferred FGSM Goodfellow et al. (2014) attack. Mean metrics
across 7 seeds per model are displayed.
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4.3 ROBUSTNESS ACROSS DATASETS COMBINATIONS

Our method is flexible to the choice of the regularization dataset. We find that regularizing on
different datasets leads to an increase in model robustness, but, there is a quantitative difference in
the robustness level achieved by regularizing on different datasets. Fig. 5 shows the performance of a
ResNet18 trained to classify grayscale CIFAR-10 regularized on grayscale images from three datasets
separately (CIFAR-10, CIFAR-100 or ImageNet) for three attacks (Gaussian noise, transferred FGSM,
and decision-based Boundary Attack) compared to an unregularized model. In Appendix A.4 we
show results for different classification-regularization datasets combinations.

Figure 5: Robustness of a ResNet18 trained to classify grayscale CIFAR-10 regularized on grayscale
images from different datasets : grayscale CIFAR-10 (blue), CIFAR-100 (purple) or ImageNet (red).
For the decision-based Boundary Attack, we compute the median L2 perturbation size, averaged
across 1000 images, and 5 repeats. Error shades/bars represent the SEM across seven seeds per
model. The same (α,Th) values were used in training all models i.e for all regularization datasets
(see Appendix A.5).

4.4 ROBUSTNESS TO COMMON CORRUPTIONS

Regularized models are also more robust than their unregularized counterpart on common corruptions.
We evaluate regularized models on grayscale CIFAR-10-C dataset Hendrycks & Dietterich (2019a)
which consists of grayscaled CIFAR-10 images with common corruptions that can be found on
everyday computer vision application. Evaluating on common corruptions at different severity levels
is critical as they simulate real world conditions. Fig. 6 shows the performance of a ResNet18 trained
to classify CIFAR-10 regularized with grayscale images from ImageNet dataset vs unregularized
model. Fig. 6 (left) shows the performance averaged over all 15 common corruptions at different
severity levels, Fig. 6 (right) shows the robustness of unregularized and regularized models for the 15
individual corruptions present in CIFAR-10-C Hendrycks & Dietterich (2019a), at severity level 4.

Figure 6: Robustness to grayscale CIFAR-10-C Common Corruptions Hendrycks & Dietterich
(2019a). (left) We compute the regularized model accuracy on grayscale CIFAR-10-C for different
severity levels, averaging across all 15 common corruptions present in CIFAR-10-C. (right) We show
the robustness of unregularized and regularized models on 15 individual corruptions at severity 4.
Error bars correspond to the SEM across seven seeds per model. Results are for a ResNet18 trained
to classify grayscale CIFAR-10 regularized wih grayscale images from ImageNet dataset.
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4.5 FREQUENCY DECOMPOSITION OF ADVERSARIAL PERTURBATIONS AND COMMON
CORRUPTIONS

To understand the strengths and weaknesses of our regularization method, we investigate the frequency
components present in the minimal perturbation required to flip the decision of unregularized and
regularized models which we compute via a decision-based Boundary Attack Brendel et al. (2017).
We observe that models regularized using pixel-based similarities (STh) rely more on low frequency
information than their unregularized counterparts (Fig. 7 center and right panels). We further evaluate
our regularized model performance on grayscale CIFAR-10-C Hendrycks & Dietterich (2019a)
following the approach described in Li et al. (2023), where we categorize the 15 corruptions in
CIFAR-10-C into Low, Medium, and High frequency based on their spectra (see Fig. 7 left panel and
Appendix Fig. 25). Results are shown for ResNet18 trained to classify CIFAR-10 and regularized
using images from CIFAR-10, CIFAR-100 or imageNet datasets. Our results show that regularized
models outperform unregularized ones, especially on high-frequency corruptions, confirming our
findings. Such a reliance on low-frequency information has also been observed in models subjected
to neural regularization as explained in Li et al. (2023).

Figure 7: Frequency perspective on robustness. The results are for ResNet18 trained to classify
grayscale CIFAR-10 and regularized on grayscale images from different datasets: CIFAR-10, CIFAR-
100 or ImageNet. (left) Robustness of regularized ResNet18 models evaluated on grayscale CIFAR-
10-C at severity 4, categorized by the frequency range of each corruption. (center) Fourier power
spectrum for the mean minimal corruption required to flip a model’s decision. (right) Radial Spectrum
of minimal pertubation required to mislead models, as provided by a decision-based Boundary Attack
Brendel et al. (2017) - using 10k steps. The error bars (left panel) and shaded areas (right panel)
represent the SEM across seven and four seeds per model respectively.

4.6 COMPUTATIONAL ADVANTAGES

In addition to being a simple method to apply, our regularization method is computationally inexpen-
sive. First, in regard to training time, for k image pairs per regularize batch, the additional time taken
per batch to train the model corresponds to 2× k additional forward passes. We see in Fig. 8 that the
method is successful for regularization batch size values: 4, 8, 16, 32. Choosing a smaller batch size
can help in cutting the extra training time needed for successful regularization.

Figure 8: Robustness of a ResNet18 trained to classify grayscale CIFAR-10 and regularized on
grayscale images from ImageNet dataset is shown for different regularization batch sizes, k ∈
{4, 8, 16, 32}. For the decision-based Boundary Attack, we compute the median L2 perturbation size,
averaged across 1000 images, and 5 repeats. Error shades/bars represent the SEM across seven seeds
per model.
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Second, although the number of target similarities is
(
N
2

)
for N selected regularization images, we

find that we do not need many images for regularization. In our experiments we used N = 5000,
leading to approx 12× 106 pairs (Appendix A.1), however, we show in Fig. 9 that we do not need
that much images; as can be seen using only N ∈ {100, 1000} images provides robustness increase
to black box attacks. Last, our method relies on the original image datasets, and does not require the
introduction of different data distortions or augmentations during training.

Figure 9: Robustness of a ResNet18 trained to classify grayscale CIFAR-10 and regularized on
grayscale images from ImageNet dataset is shown for different number of regularization images. For
the decision-based Boundary Attack, we compute the median L2 perturbation size, averaged across
1000 images, and 5 repeats. Error shades/bars represent the SEM across seven seeds per model.

4.7 RESULTS USING COLOR DATASETS

Our previous results were obtained using grayscale datasets, which as we previously mentioned, were
chosen to allow direct comparison with Li et al. (2019), and for consistency. Here, we show that our
method is also successful when using color datasets, which are more utilized in practice.

In Fig. 10 we show results using color CIFAR-10 as classification dataset, and color CIFAR-10,
CIFAR-100 or ImageNet as regularization datasets. As seen, there is an increase in the model’s
robustness for all regularization datasets. Similar results are observed when using color CIFAR-100
as classification dataset (see Appendix A.8).

Figure 10: Robustness of a ResNet18 trained to classify colored CIFAR-10 regularized on colored
images from different datasets : CIFAR-10 (blue), CIFAR-100 (purple) or ImageNet (red). For the
decision-based Boundary Attack, we compute the median L2 perturbation size, averaged across 1000
images, and 5 repeats. Error shades/bars represent the SEM across seven seeds per model.

5 CONCLUSION AND DISCUSSION

Extracting the working principles of the brain to advance AI is a long-term goal of neuroscience. To
further this goal, we examined a brain-inspired method for adversarial robustness proposed by Li
et al. (2019). This method uses neural recordings from the brain to align learned representations
in an artificial neural network with brain representations through a regularization term added to
the training loss. We extracted the core working principle behind this regularizer and proposed a
simple, pixel-based regularization scheme that achieves similar performance, and gave an intuitive
interpretation of our method. These findings contribute to the broader objective of leveraging
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brain-inspired principles to advance AI.

We showed that our proposed method increases the robustness of CNNs to a spectrum of black box
attacks (Section 2). We proposed a method to select the regularization hyperparameters (α, Th). We
also showed that the choice of an (α, Th) pair value for regularization, affects the robustness level
in a consistent way across different attacks. We demonstrated the effectiveness and scalability of
our method, by showing its success in increasing model robustness using different combinations of
classification and regularization datasets, including classification datasets CIFAR-10 and CIFAR-100
(Appendix A.1). We evaluated the performance of regularized models on common corruptions using
grayscale CIFAR-10-C. We performed a Fourier analysis on minimal adversarial perturbations
obtained from a decision-based Boundary Attack on our regularized model, and found that the
perturbations from the regularized model contained higher low-frequency components relative to the
unregularized model. We also showed that our method is more effective against common corruptions
that are categorized as high frequency corruptions based on the average frequency estimated from the
Fourier spectrum of the perturbations induced by these corruptions Li et al. (2023). These findings
are in line to those in Li et al. (2023), who examined the same perturbations for a model regularized
using neural data Li et al. (2019). Even though we mostly presented results using grayscale
datasets to allow direct comparison with the method in Li et al. (2019), we demonstrated that our
method is also successful when using color datasets, where we showed results for color CIFAR-10
and color CIFAR-100. We also investigated the contribution of different parts of STh (Appendix A.7).

Even though we use a biologically inspired loss term that originally utilized large scale neural
recordings to enhance the robustness of machine learning models, we have shown that this loss term
can be implemented in a successful way that bypasses the use of neural data. Furthermore, our
regularization method, although effective, is very simple. It relies on the original image datasets, and
does not require the introduction of any additional data distortions or augmentations during training.
It is flexible in regard to choosing the regularization dataset. It is computationally inexpensive, it
requires a relatively small batch size for regularization. It also requires a small number of images
to regularize on, or more precisely to construct the targets STh (eq. equation 5). Our work is an
encouraging step towards dissecting the workings of neural regularizers, to come up with methods
that can both, enhance the performance of machine learning models, and be implemented by a broader
machine learning community. Finally, we point out that one limitation of our method, is its inability
to increase model robustness to some common corruptions as can be seen in Fig. 6 (right) and Fig .7
(left). Also, it does not achieve the level of robustness attained using state of the art defenses against
adversarial attacks Croce et al. (2020). Although we stress that our aim is not to come up with the
best adversarial defence, but rather to show that our method which is based on the neural regularizer
in Li et al. (2019) can be equally effective without the need to use expensive neural data.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EXPERIMENTAL SETUP

Training - Neural Predictive Model - We train neural predictive models Sinz et al. (2018); Walke
et al. (2018) to predict neural responses using all scans (measurements of neurons) with the same
training configurations and neural data available in the codebase left by Li et al. (2019).
Training - Image classification - All models were trained by stochastic gradient descent on a
NVIDIA A100-SXM4-40GB GPU. Models classifying grayscale CIFAR-10 were trained during 40
epochs. Training and regularizing a ResNet18 CIFAR-10 took in average 34 min to run. We used a
batch size of 64 for the classification pathway and a batch of 16 image pairs for the regularization
pathway. The number of regularization images used by default is 5, 000. Target similarities Spixel

ij are
computed as follows. We compute the cosine similarity between images which are flattened, mean
subtracted and normalized. We use the same learning schedule as in Li et al. (2019). Models were
trained using Pytorch (Paszke et al., 2017).
The classification datasets used are : MNIST Lecun et al. (1998), FashionMNIST Xiao et al. (2017),
grayscale CIFAR-10 Krizhevsky et al. (2009), grayscale CIFAR-100. The regularization datasets used
are : MNIST, FashionMNIST, grayscale CIFAR-10, grayscale CIFAR-100 and grayscale ImageNet
Deng et al. (2009). In Appendix A.5, we report the (α, Th) used for each dataset combinations. The
codebase used for training is based on the codebase used in Li et al. (2019). All training codes are
supplemented with this submission.

Adversarial attacks (see Section 2) - All perturbations are reported for image pixels in the range
[0, 1]. We evaluate model robustness to random noise and transferred FGSM Goodfellow et al. (2014)
perturbations by measuring the accuracy of evaluated models for distinct perturbation strengths
ϵ. We empirically find the range of perturbation strengths used to evaluate models, such that the
unregularized model performs bad at the highest ϵ used for that particular model-dataset-attack
combination. The random noise perturbations are showcased in Fig 11.

Figure 11: Visualization of (left) Gaussian noise, (center) Uniform noise and (right) Salt and Pepper
noise with ϵ = 0.06.

The decision-based Boundary Attack Brendel et al. (2017) was applied via Foolbox Rauber et al.
(2017) using 50 steps, unless stated otherwise. To evaluate the success of this attack, we measure the
following score :

S(M) = mediani

(
1

d

∥∥ηM (xi
original)

∥∥2
2

)

introduced in Brendel et al. (2017) where ηM (xoriginal) = xoriginal − xadversarial ∈ Rd is the
adversarial perturbation found by the attack. We measure this score using 1,000 randomly sampled
images from the test set. The final reported score is the average S(M) calculated over 5 repetitions.
All codes relative to adversarial evaluation are supplemented with this submission.
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A.2 ROBUSTNESS TO RANDOM NOISE FOR MODELS TRAINED TO CLASSIFY CIFAR-10
REGULARIZED USING SPIXEL

Figure 12: Robustness of a ResNet18 trained to classify grayscale CIFAR-10 and regularized on
Spixel from grayscale images from ImageNet dataset to Gaussian, Uniform noise and Salt and Pepper
noise. Error shades represent the SEM across seven seeds per model.

A.3 ROBUSTNESS TO RANDOM NOISE FOR MODELS TRAINED TO CLASSIFY CIFAR-10
REGULARIZED USING STh

Figure 13: Robustness of a ResNet18 trained to classify grayscale CIFAR-10 and regularized on STh

from grayscale images from ImageNet dataset to Gaussian, Uniform noise and Salt and Pepper noise.
Error shades represent the SEM across seven seeds per model.

A.4 ROBUSTNESS ON IMAGE CLASSIFICATION TASK FOR DIFFERENT
CLASSIFICATION-REGULARIZATION DATASETS

Figure 14: Robustness of a ResNet18 trained to classify MNIST and regularized on images from
MNIST and FashionMNIST datasets to Gaussian noise, Uniform noise and Salt and Pepper noise.
Error shades/bars represent the SEM across seven seeds per model.
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Figure 15: Robustness of a ResNet18 trained to classify FashionMNIST and regularized on images
from MNIST and FashionMNIST datasets to Gaussian, Uniform and Salt and Pepper noise. Error
shades/bars represent the SEM across seven seeds per model.

Figure 16: Robustess of a ResNet34 trained to classify grayscale CIFAR-100 and regularized on
grayscale images from CIFAR-10, CIFAR-100, ImageNet datasets to Gaussian noise, Uniform noise
and Salt and Pepper noise. Error shades/bars represent the SEM across seven seeds per model.

Figure 17: Robustess of a ResNet18 trained to classify MNIST and regularized on MNIST and Fash-
ionMNIST images to transferred FGSM Goodfellow et al. (2014) perturbations from an unregularized
model, and a decision boundary attack Brendel et al. (2017). Error shades/bars represent the SEM
across seven seeds per model.
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Figure 18: Robustess of a ResNet18 trained to classify FashionMNIST and regularized on images
from MNIST and FashionMNIST to transferred FGSM Goodfellow et al. (2014) perturbations from
an unregularized model, and a decision boundary attack Brendel et al. (2017). Error shades/bars
represent the SEM across seven seeds per model.

Figure 19: Robustess of a ResNet34 trained to classify grayscale CIFAR-100 and regularized
on grayscale images from CIFAR-10, CIFAR-100, and ImageNet datasets to transferred FGSM
Goodfellow et al. (2014) perturbations from an unregularized model, and a decision boundary attack
Brendel et al. (2017). Error shades/bars represent the SEM across seven seeds per model.

A.5 HYPERPARAMETERS USED FOR REGULARIZATION

The α, Th value pairs selected in our work yield an acceptable accuracy-robustness trade-off (RD

R0
> 1

and R0

U0
≥ 0.9) across attacks during regularization. These pairs are:

Table 1: Hyperparameters used for regularization

Classification - Regularization α Th

CIFAR-10 - CIFAR-10 10 0.8
CIFAR-10 - CIFAR-100 10 0.8
CIFAR-10 - ImageNet 10 0.8
CIFAR-100 - CIFAR-10 10 0.8
CIFAR-100 - CIFAR-100 10 0.8
CIFAR-100 - ImageNet 10 0.8
MNIST - MNIST 4 0.2
MNIST - FashionMNIST 10 0.8
FashionMNIST - MNIST 10 0.4
FashionMNIST - FashionMNIST 10 0.8

We did not conduct an extensive hyperparameter sweep, so there are likely some α and Th pairs that
could yield stronger robustness.
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A.6 WEIGHTING CANDIDATE LAYERS

We here report the weights γl obtained after training, for different models and dataset-combinations.

Table 2: Averaged weights for all candidate layers in a ResNet18 across seven seeds per model

Classification - Regularization γ1 γ5 γ9 γ13 γ17

CIFAR-10 - CIFAR-10 8.2× 10−3 0.56 0.38 5.2× 10−2 0
CIFAR-10 - CIFAR-100 0.62 0.38 0 0 0
CIFAR-10 - ImageNet 0.62 0.38 0 0 0
MNIST - MNIST 0.5 0.125 0.25 0.125 0
MNIST - FashionMNIST 0.125 0.375 0.5 0 0
FashionMNIST - MNIST 0.75 0.125 0.125 0 0
FashionMNIST - FashionMNIST 0.143 0.286 0.571 0 0

Table 3: Averaged weights for all candidate layers in a ResNet34 across seven seeds per model

Classification - Regularization γ1 γ7 γ15 γ27 γ33

CIFAR-100 - CIFAR-10 0.375 0.375 0.25 0 0
CIFAR-100 - CIFAR-100 0.875 0.125 0 0 0
CIFAR-100 - ImageNet 0.8 0.2 0 0 0

A.7 RELEVANCE OF DIFFERENT SIMILARITY RANGES

In this subsection, we share an investigation regarding the target similarity ranges which matter the
most for regularization. We define the following sets of regularization target pairs i, j : STh

− := {Sij |
Sij < −Th or |Sij | < Th} , STh

+ := {Sij | Sij > Th or |Sij | < Th}, STh
low := {Sij | |Sij | < Th},

STh
high := {Sij | |Sij | > Th}. We also define a target set depending on two thresholds : Th1 >

Th2 > 0 such that STh1,Th2

double := {Sij | |Sij | < Th2 or |Sij | > Th1}.

Figure 20: ResNet18 trained to classify grayscale CIFAR-10 and regularized with grayscale images
from ImageNet for different regularization targets. Error shades/bars represent the SEM across seven
seeds per model.
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Figure 21: ResNet18 trained to classify grayscale CIFAR-10 and regularized with grayscale images
from CIFAR-10 for different regularization targets. Error shades/bars represent the SEM across seven
seeds per model.

Figure 22: ResNet18 trained to classify grayscale CIFAR-10 and regularized with grayscale images
from CIFAR-100 for different regularization targets. Error shades/bars represent the SEM across
seven seeds per model.

A.8 REGULARIZATION ON COLORED DATASETS

In Fig. 23 we show results using color CIFAR-100 as classification dataset, and color CIFAR-10,
CIFAR-100 or ImageNet as regularization datasets. As seen, there is an increase in the model’s
robustness for all regularization datasets.

Figure 23: Robustness of a ResNet34 trained to classify colored CIFAR-100 regularized on colored
images from different datasets : CIFAR-10 (blue), CIFAR-100 (purple) or ImageNet (red). For the
decision-based Boundary Attack, we compute the median L2 perturbation size, averaged across 1000
images, and 5 repeats. Error shades/bars represent the SEM across seven seeds per model.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.9 BENCHMARKING OUR METHOD AGAINST THOSE IN THE ROBUSTBENCH LEADERBOARD

We benchmarked a model trained to classify (colored) CIFAR-10 regularized on (colored) CIFAR-100
using our method, against 3 models referenced in the RobustBench Hendrycks & Dietterich (2019b)
leaderboard - commonly used to systematically track the real progress in adversarial robustness -
on CIFAR-10-C, at severity 5. We select L∞, L2 and common corruption (thereafter CC) specific
models denoted as Carmon2019Unlabeled Carmon et al. (2019), Engstrom2019Robustness Engstrom
et al. (2019) , Modas2021PRIMEResNet18 Modas et al. (2022) respectively. We also benchmark
against the ’standard’ model available on RobustBench. As we see in Fig. 24, our regularized model
performs better than the standard model reflecting the robustness gain, but does not reach the same
performance as state of the art networks. We acknowledge that our method does not beat the state of
the art methods in the adversarial robustness literature. The aim of our method is not to beat the state
of the art methods, but rather to show that our method which is based on the neural regularizer in Li
et al. (2019) can be equally effective without the need to use expensive neural data.

Figure 24: Benchmarking a model trained to classify (colored) CIFAR-10 regularized on (colored)
CIFAR-100 using our method, against 3 models referenced in the RobustBench Hendrycks & Diet-
terich (2019b) leaderboard - commonly used to systematically track the real progress in adversarial
robustness - on CIFAR-10-C, at severity 5. We select L∞, L2 and common corruption (thereafter CC)
specific models denoted as Carmon2019Unlabeled Carmon et al. (2019), Engstrom2019Robustness
Engstrom et al. (2019) , Modas2021PRIMEResNet18 Modas et al. (2022) respectively. We selected
our most robust model on CIFAR10-C for such benchmarking. We also benchmark against the
’standard’ model available on RobustBench.

A.10 FOURIER SPECTRA OF COMMON CORRUPTIONS

Following the approach of Li et al. (2023), we divided the common corruptions present in CIFAR-10-
C into three categories based on their corresponding dominating frequencies whether they belong to
low, medium or high frequency ranges. Low frequency corruptions are composed of ‘snow’, ‘frost’,
‘fog’, ‘brightness’, ‘contrast’ corruptions. Medium-frequency corruptions are composed of ‘motion
blur’, ‘zoom blur’, ‘defocus blur’, ‘glass blur’, ‘elastic transform’, ‘jpeg compression’ and ‘pixelate’
corruptions. High-frequency corruptions are composed of ‘gaussian noise’, ‘shot noise’ and ‘impulse
noise’ corruptions. For completeness, we reproduced the Fourier transformation of the common
corruptions as shown below.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 25: Fourier transform of the corruptions in CIFAR-10-C at severity 3, ordered by groups of
frequency ranges from low, to medium to high. For each corruption, we compute E[|F (C(X)−X)|]
by averaging over all test images, where F denotes a discrete Fourier transformation, X denotes
an original image, and C(X) its corrupted counterpart. We apply a logarithm x 7→ log(1 + x) for
visualization purposes.
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