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Abstract

The remarkable empirical performance of distributional reinforcement learn-
ing (RL) has garnered increasing attention to understanding its theoretical ad-
vantages over classical RL. By decomposing the categorical distributional loss
commonly employed in distributional RL, we find that the potential superiority
of distributional RL can be attributed to a derived distribution-matching entropy
regularization that captures higher moment knowledge. This less-studied entropy
regularization aims to capture additional knowledge of return distribution beyond
only its expectation, contributing to an augmented reward signal in policy opti-
mization. In contrast to the vanilla entropy regularization in MaxEnt RL, which
explicitly encourages exploration by promoting diverse actions, the novel entropy
regularization derived from categorical distributional loss implicitly updates poli-
cies to align the learned policy with (estimated) environmental uncertainty. Finally,
extensive experiments verify the significance of this uncertainty-aware regular-
ization from distributional RL on the empirical benefits over classical RL. Our
study offers an innovative exploration perspective to explain the intrinsic benefits
of distributional learning in RL.

1 Introduction

The fundamental characteristics of classical reinforcement learning (RL) [49], such as Q-learning [53],
rely on estimating the expectation of discounted cumulative rewards that an agent observes while in-
teracting with the environment. In contrast to the expectation-based RL, a novel branch of algorithms,
termed distributional RL, seeks to estimate the entire distribution of total returns and has achieved
state-of-the-art performance across a diverse array of environments [2, 8, 7, 59, 35, 54, 48, 44]. Mean-
while, discussions of distributional RL have increasingly extended into a broader range of fields, such
as risk-sensitive control [7, 25, 5], offline learning [29, 58], policy exploration [30, 41, 6, 20], robust-
ness [47, 45, 43], optimization [43, 22, 46], statistical inference [60], multivariate rewards [61, 57],
and continuous-time setting [56].

Motivation: Understanding the Benefits of Employing (Categorical) Distributional Loss in RL.
Despite the impressive empirical success of distributional RL algorithms, our comprehension of their
advantages over classical RL remains incomplete, especially for the general function approximation
setting and practical implementations. Early work [27] demonstrated that in many realizations of
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tabular and linear approximation settings, distributional RL behaves similarly to classic RL, suggesting
that its benefits are mainly realized in the non-linear approximation setting. Although their findings
offer profound insights, their analysis, based on a coupled update method, overlooks several factors,
such as the optimization effect under various losses. The statistical benefits of quantile temporal
difference (QTD), employed in quantile distributional RL, e.g., QR-DQN [8], were highlighted
in [43, 42], which posited that the robust estimation of QTD fosters the benefits in stochastic
environments. The foundational theoretical aspects of Categorical Distributional RL (CDRL), e.g.,
C51 [2], were first discussed in [40]; however, explaining the advantages of categorical distributional
learning remains under-explored. Recent studies [52, 51] elucidate the benefits of distributional RL by
introducing the small-loss and second-order PAC bounds, revealing the enhanced sample efficiency,
particularly in specific cases with small achievable costs. Yet, their findings are not directly based on
practical distributional RL algorithms, such as C51 or QR-DQN. Therefore, it is imperative to close
this gap between understanding their theoretical advantages and practical deployment in complex
environments for distributional RL algorithms. More related work is provided in Appendix A.

Contributions. In this study, we interpret the potential superiority of distributional learning in RL
over classical RL, specifically focusing on CDRL, the pioneering family within distributional RL. We
examine the benefits through the lens of a regularized exploration effect, offering a distinct perspective
relative to existing literature. Our investigation begins by decomposing the categorical distributional
loss into a mean-related term and a distribution-matching regularization term, facilitated by our
proposed return density decomposition technique. The resulting regularization acts as an augmented
reward in the actor critic framework, encouraging policies to explore states whose current return
distribution estimates lag far behind the (estimated) environmental uncertainty in the target return.
This derived regularization from the categorical distributional loss in CDRL promotes an uncertainty-
aware exploration effect, which diverges from the exploration for diverse actions commonly used
in MaxEnt RL [55, 13, 14]. We also provide the convergence foundations when leveraging the
decomposed uncertain-aware regularization in the actor critic. Empirical evidence underscores the
pivotal role of the uncertainty-aware entropy regularization in the empirical success of adopting
categorical distributional loss in RL over classical RL on both Atari games and MuJoCo tasks. We
further elucidate the distinct roles that the uncertainty-aware entropy in distributional RL and the
vanilla entropy in MaxEnt RL play by exploring their mutual impacts on learning performance. This
opens new avenues for future research in this domain. Our contributions are summarized as follows:

1. By applying a return density decomposition on the categorical distributional loss, we derive a
distribution-matching regularization. This regularization promotes uncertainty-aware exploration,
interpreting the benefits of categorical distributional learning in RL.

2. We extend the benefit interpretation of the categorical distributional loss to policy gradient methods.
We compare the different exploration effects of our decomposed uncertainty-aware regularization
from distributional RL and the vanilla entropy regularization in MaxEnt RL.

3. Empirically, we verify the uncertainty-aware regularization effect on the performance improvement
of distributional RL and investigate the mutual impacts of two regularizations in learning.

2 Preliminaries

Markov Decision Process (MDP) and Classical RL. An environment is modeled via an Markov
Decision Process (S,A,R, P, γ), with a set of states S and actions A, the bounded reward function
R : S × A → P([Rmin, Rmax]), the transition kernel P : S × A → P(S), and a discounted factor
γ ∈ [0, 1]. We denote the reward the agent receives at time t as rt ∼ R(st, at). Given a policy π, the
key quantity of interest is the return Zπ, which is the total cumulative rewards over the course of a
trajectory defined by Zπ(s, a) =

∑∞
t=0 γ

trt|s0 = s, a0 = a. Classical RL focuses on estimating the

expectation of the return, i.e., Qπ(s, a) = Eπ

[∑+∞
t=0 γ

trt|s0 = s, a0 = a
]
. We also define Bellman

evaluation operator T πQ(s, a) = E[R(s, a)] + γEs′∼P,a′∼π [Q (s′, a′)], and Bellman optimality
operator T optQ(s, a) = E[R(s, a)] + γmaxa′ Es′∼P [Q (s′, a′)].

Distributional RL and CDRL. Instead of only learning the expectation in classical RL, distributional
RL models the full distribution of the return Zπ. The return distribution ηπ : S × A → P(R)
is defined as ηπ(s, a) = D(Zπ(s, a)), where D extracts the distribution of a random variable.
ηπ(s, a) is updated via the distributional Bellman operator Tπ, defined by TπZ(s, a)

D
= R(s, a) +
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γZ (s′, a′), where D
= implies that random variables of both sides are equal in distribution. Categorical

Distributional RL (CDRL) is the first successful distributional RL family that approximates the return
distribution by a discrete categorical distribution η̂π =

∑N
i=1 piδzi , where {zi}Ni=1 is a set of fixed

supports and {pi}Ni=1 are learnable probabilities. The leverage of a heuristic projection operator ΠC
(see Appendix B for more details) and the Kullback–Leibler (KL) divergence guarantee the theoretical
convergence of CDRL under Cramér distance or Wasserstein distance in the tabular setting [40].

3 Regularization Benefits in Value-based Distribution RL

3.1 Distributional RL: Neural FZI

Classical RL: Neural Fitted Q-Iteration (Neural FQI). Neural FQI [9, 39] offers a statistical
explanation of DQN [32], capturing its key features, including experience replay and the target
network Qθ∗ . We update a parameterized Qθ in each iteration k of an iterative regression:

Qk+1
θ = argminQθ

1

n

n∑
i=1

[
yki −Qθ (si, ai)

]2
, (1)

where the target yki = r(si, ai) + γmaxa∈A Qk
θ∗ (s′i, a) is fixed within every Ttarget steps to update

target network Qθ∗ by letting Qk
θ∗ = Qk

θ . The experience buffer induces independent samples
{(si, ai, ri, s′i)}i∈[n]. If {Qθ : θ ∈ Θ} is sufficiently large such that it contains T optQk

θ∗ , i.e., the
realizable assumption in learning theory [33], Neural FQI has the solution Qk+1

θ = T optQk
θ∗ , which

is exactly the updating rule under Bellman optimality operator [9].

Distributional RL: Neural Fitted Z-Iteration (Neural FZI). Analogous to Neural FQI, we simplify
value-based distributional RL algorithms with the parameterized Zθ as Neural FZI:

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Y
k
i , Zθ (si, ai)), (2)

where we denote the target return as Y k
i = R(si, ai)+γZk

θ∗ (s′i, πZ(s
′
i)) with the policy πZ following

the greedy rule πZ(s
′
i) = argmaxa′ E

[
Zk
θ∗(s′i, a

′)
]
. The target Y k

i is fixed within every Ttarget steps
to update target network Zθ∗ . dp is a distribution divergence between two distributions. While our
analysis is not intended to involve properties of deep neural networks, we interpret distributional RL
as Neural FZI, as it is by far the closest to the practical algorithms.

3.2 Distributional RL: Entropy-regularized Neural FQI

As mentioned previously in preliminary knowledge in Section 2, CDRL employs neural networks to
learn the probabilities {pi}Ni=1 in a discrete categorical distribution to represent Zθ, and choose KL
divergence as dp in Eq. 2 of Neural FZI. We next decompose the KL-based distributional loss dp in
CDRL by utilizing an equivalent histogram density estimator p̂ in representing Zθ.

∆! ∆!

1
∆

∆!

�̂�!,# �̂�!,#𝕀(𝑥 ∈ ∆!)/∆

Figure 1: Return Density Decomposition on
Histograms.

Return Density Decomposition. To characterize the
impact of additional knowledge from the return dis-
tribution beyond its expectation, we use a variant of
gross error model from robust statistics [18], which
was also similarly applied to analyze Label Smooth-
ing [34] and Knowledge Distillation [17]. Akin to the
categorical parameterization in CDRL, we utilize a
histogram function estimator p̂s,a(x) with N bins to
approximate an arbitrary continuous density ps,a(x)
of Zπ(s, a), given a state s and action a. In contrast
to categorical parameterization defined on a set of fixed supports, the histogram estimator operates
over a continuous interval, enabling more nuanced analysis within continuous functions. Given a
fixed set of supports l0 ≤ l1 ≤ ... ≤ lN with the equal bin size as ∆, each bin is thus denoted as
∆i = [li−1, li), i = 1, ..., N − 1 with ∆N = [lN−1, lN ]. As such, the histogram density estimator is
formulated by p̂s,a(x) =

∑N
i=1 pi1(x ∈ ∆i)/∆ with pi as the coefficient in the i-th bin ∆i. Denote
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∆E as the interval that E [Zπ(s, a)] falls into, i.e., E [Zπ(s, a)] ∈ ∆E . Putting all together, we apply
an action-state return density decomposition over the histogram density estimator p̂s,a:

p̂s,a(x) = (1− ϵ)1(x ∈ ∆E)/∆+ ϵµ̂s,a(x), (3)

where p̂s,a is decomposed into a single-bin histogram 1(x ∈ ∆E)/∆ with all mass on ∆E and an
induced histogram density function µ̂s,a evaluated by µ̂s,a(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ with pµi

as the coefficient of the i-th bin ∆i. ϵ is a hyper-parameter pre-specified before the decomposition,
controlling the proportion between 1(x ∈ ∆E)/∆ and µ̂s,a(x). See Figure 1 for the illustration of
the decomposition. More specifically, the induced histogram density function µ̂s,a in the second term
of Eq. 3 represents the difference between the full histogram function p̂s,a and a single-bin histogram
1(x ∈ ∆E)/∆ , where 1(x ∈ ∆E)/∆ only captures the mean. This difference indicates that µ̂s,a

captures the additional distribution information of Zπ(s, a) beyond its expectation E [Zπ(s, a)],
incorporating higher-moments information. This reflects the influence of using a full distribution on
the performance of distributional RL. The additional leverage of µ̂s,a in the distributional loss explains
the behavior differences between classical and distribution RL algorithms. We next demonstrate that
µ̂s,a is a valid probability density under certain ϵ in Proposition 1.

Proposition 1. (Decomposition Validity) Denote p̂s,a(x ∈ ∆E) = pE
1(x∈∆E)

∆ , where pE is the
coefficient on the bin ∆E . µ̂s,a(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid density if and only if

ϵ ≥ 1− pE .

The proof can be found in Appendix C. Proposition 1 demonstrates that the return density decomposi-
tion is valid when the hyper-parameter ϵ is well specified as ϵ ≥ 1− pE . Under this condition, our
analysis maintains the standard categorical distributional learning in distributional RL.

Distributional RL: Entropy-regularized Neural FQI. We apply the decomposition in Eq. 3
on the histogram density function, denoted as p̂s

′
i,πZ(s′i), of the target return Y k

i = R(si, ai) +
γZk

θ∗ (s′i, πZ(s
′
i)) in Eq. 2 of Neural FZI. Consequently, we have p̂s

′
i,πZ(s′i)(x) = (1 − ϵ)1(x ∈

∆i
E)/∆+ ϵµ̂s′i,πZ(s′i)(x), where ∆i

E represents the interval that the expectation of the target return
Y k
i falls into, i.e., E

[
Y k
i

]
∈ ∆i

E , and µ̂s′i,πZ(s′i) is the induced histogram density function, similar
to the role of µ̂s,a in Eq. 3. Let H(U, V ) be the cross-entropy between two probability measures
U and V , i.e., H(U, V ) = −

∫
x∈X U(x) log V (x) dx. Immediately, we can derive the following

entropy-regularized loss function form of Neural FZI for distributional RL in Proposition 2. The
proof is provided in Appendix D.
Proposition 2. (Decomposed Neural FZI) Denote qs,aθ as the histogram density estimator of Zk

θ (s, a)
in Neural FZI. Based on the decomposition in Eq. 3 and the KL divergence as dp, the Neural FZI
process in Eq. 2 is simplified as

Zk+1
θ = argmin

qθ

1

n

n∑
i=1

[− log qsi,ai

θ (∆i
E)︸ ︷︷ ︸

Mean-Related Term

+ αH(µ̂s′i,πZ(s′i), qsi,ai

θ )︸ ︷︷ ︸
Regularization Term

], (4)

where α = ε/(1− ε) > 0 and the mean-related term is negative log-likelihood centered on ∆i
E .

Connection between Neural FQI and FZI. A crucial bridge between classical RL and distributional
RL is established in Proposition 3, where we demonstrate that minimizing the mean-related term in
Eq. 4 of Neural FZI is asymptotically equivalent to minimizing Neural FQI in terms of the minimizers
as ∆→ 0. As such, with this equivalence in the objective function, the remaining regularization term
αH(µ̂s′i,πZ(s′i), qsi,ai

θ ) in Eq. 4 thus interprets the potential benefits of CDRL over classical RL. For
the uniformity of notation, we still use s, a in the following analysis instead of si, ai.
Proposition 3. (Equivalence between the Mean-Related term in Decomposed Neural FZI and Neural
FQI) In Eq. 4, assume the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the
target {Y k

i }ni=1 for all k, when ∆→ 0, minimizing the mean-related term in Eq. 4 implies

P(Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, (5)

where T optQk
θ∗(s, a) is the scalar-valued target in the k-th phase of Neural FQI.

Proposition 3 demonstrates that as ∆ → 0, the random variable Zk+1
θ (s, a) with the limiting

distribution in Neural FZI (distributional RL) will degrade to a constant T optQk
θ∗(s, a), the minimizer
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(scalar-valued target) in Neural FQI (classical RL). That being said, minimizing the mean-related term
in Neural FZI is asymptotically equivalent to minimizing Neural FQI with the same limiting minimizer.
A formal proof for convergence in distribution with the convergence rate o(∆) is given in Appendix E.
The realizable assumption that {Zθ : θ ∈ Θ} is sufficiently large such that it contains {Y k

i }ni=1
implies good in-distribution generalization performance in each phase of Neural FZI, which is also
adopted in [58]. This connection is also consistent with the mean-preserving property of distributional
RL in the tabular setting [40], but we extend this conclusion to the arbitrary function approximation
with a histogram density estimator. Proposition 3 especially focuses on the asymptotic property of the
mean-related term, which is different from existing convergence results based on the entire categorical
distribution [40, 3]. Given the connection between optimizing the mean-related term of Neural FZI
with Neural FQI in Proposition 3, we can leverage the regularization term αH(µ̂s′i,πZ(s′i), qsi,ai

θ ) to
explain the behavior difference between CDRL and classical RL, as analyzed later.

3.3 Uncertainty-aware Regularized Exploration

Regularization Effect. It turns out that minimizing the regularization term αH(µ̂s′i,πZ(s′i), qsi,ai

θ )
in Neural FZI pushes qs,aθ for the current return density estimator to catch up with the target return
density function of µ̂s′i,πZ(s′i). Importantly, µ̂s′i,πZ(s′i) encompasses the uncertainty of the entire return
distribution in the learning course beyond only its expectation, given that µ̂s′i,πZ(s′i) is the induced
histogram density after applying the return density decomposition in Eq. 3. Since it is a prevalent
notion that distributional RL can significantly reduce intrinsic uncertainty of the environment [30, 7],
the derived distribution-matching regularization term αH(µ̂s′i,πZ(s′i), qsi,ai

θ ) helps to capture more
uncertainty of the environment by modeling higher moments of the whole return distribution beyond
the expectation. In Section 4, we further demonstrate that this derived regularization contributes to an
uncertainty-aware regularized exploration effect in the policy optimization or actor critic.

Remark: Approximation and Calculation of µ̂s′,πZ(s′). In practical distributional RL algorithms,
we typically use temporal-difference (TD) learning to attain the target probability density estimate
π̂s′,πZ(s′). Then we evaluate µ̂s′,πZ(s′) based on the decomposition in Eq. 3, provided E [Z(s, a)]

exists and ϵ ≥ 1 − pE in Proposition 1. The approximation error of µ̂s′,πZ(s′) is fundamentally
determined by the TD learning nature. A desirable approximation of µ̂s′,πZ(s′) intuitively leads to
performance improvement in distributional RL.

4 Regularization Benefits in Actor Critic

4.1 Connection with MaxEnt RL

Explicit Entropy Regularization in MaxEnt RL. MaxEnt RL explicitly encourages exploration by
optimizing for policies to reach states with higher entropy in the future:

J(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st,at) + βH(π(·|st))] , (6)

where H (πθ (·|st)) = −
∑

a πθ (a|st) log πθ (a|st) and ρπ is the generated distribution following
π. The temperature parameter β determines the relative importance of the entropy term against the
cumulative rewards and thus controls the action diversity of the optimal policy learned via Eq. 6.

𝑞!
",$(𝑥)

𝜇",$(𝑥) 𝑞!
",$(𝑥)

𝜇",$(𝑥)

Figure 2: qs,aθ is optimized to disperse (left)
or concentrate (right) to align with the uncer-
tainty of target return distributions.

Implicit Entropy Regularization in Distributional
RL. For a direct comparison with MaxEnt RL, it
is required to specifically analyze the impact of
the regularization term in Eq. 4. Therefore, we di-
rectly incorporate the distribution-matching regular-
ization of distributional RL in Eq. 4 into the Actor
Critic (AC) framework, enabling us to consider a
new soft Q-value. The new Q function can be com-
puted iteratively by applying a modified Bellman
operator denoted as T π

d , called Distribution-Entropy-
Regularized Bellman Operator. Given a fixed qθ, T π

d is defined as

T π
d Q (st,at) ≜ r (st,at) + γEst+1∼P (·|st,at) [V (st+1)] , (7)
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where a new soft value function V (st) is defined by

V (st) = Eat∼π [Q (st,at) + f(H (µst,at , qst,at

θ ))] , (8)

where f is a continuous increasing function over the cross-entropyH. µst,at is the induced true target
return histogram density function via the decomposition in Eq. 3, which excludes its expectation.
Note that µst,at can be approximated via bootstrap TD estimate µ̂st+1,πZ(st+1) similar to Eq. 4. In
this specific tabular setting regarding st,at, we particularly use qst,at

θ to approximate the true density
function of Z(st,at). The f transformation over the cross-entropyH between µst,at and qst,at

θ (x)
serves as the uncertainty-aware entropy regularization that we implicitly derive from value-based
distributional RL in Section 3.2. By optimizing qθ that is involved in the value-based critic component
in actor critic, this regularization reduces the mismatch between the target return distribution and
current estimate, aligning with the regularization effect analyzed in Section 3.3. As illustrated in
Figure 2, qs,aθ is optimized to catch up with the uncertainty involved in the target return distribution
of µs,a, iteratively expanding the agent’s knowledge about the environment uncertainty to contribute
to more informative decisions. Next, we elaborate on its additional impact on policy learning in the
actor critic compared to MaxEnt RL.

Reward Augmentation for Policy Learning. As opposed to the vanilla entropy regularization in
MaxEnt RL that explicitly encourages the policy to explore, our derived regularization term in the
distributional loss of RL plays the role of reward augmentation for policy learning. Compared with
classical RL, the augmented reward from the distributional loss incorporates additional knowledge
of the return distribution in the learning process. As we will show later, the augmented reward
encourages policies to reach states st with actions at ∼ π(·|st), whose current action-state return
distribution qst,at

θ lags far behind the (estimated) environmental uncertainty from the target returns.

For a detailed comparison with MaxEnt RL, we now focus on the properties of our decomposed
distribution-matching regularization in the actor critic. In Lemma 1, we demonstrate that Distribution-
Entropy-Regularized Bellman operator T π

d inherits the convergence property in the policy evaluation
phase with a cumulative augmented reward function as the new objective function J ′(π).
Lemma 1. (Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator T π

d in Eq. 7 and assumeH(µst,at , qst,at

θ ) is bounded for all (st,at) ∈
S × A. We define Qk+1 = T π

d Qk. Given qθ, Qk+1 will converge to a corrected Q-value of π as
k →∞ with the new objective function J ′(π) defined as

J ′(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st,at) + γf(H (µst,at , qst,at

θ ))] . (9)

The updating rule is πnew = argmaxπ′∈Π Eat∼π′ [Qπold(st,at) + f(H (µst,at , qst,at

θ ))] in phase of
policy optimization. Next, we derive a new policy iteration algorithm, called Distribution-Entropy-
Regularized Policy Iteration (DERPI), alternating between policy evaluation and policy improvement.
It provably converges to a policy regularized by the distribution-matching term.
Theorem 1. (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq. 7 and the policy improvement, the policy converges to
an optimal policy π∗ such that Qπ∗

(st,at) ≥ Qπ (st,at) for all π ∈ Π.

Please refer to Appendix F for the proof of Lemma 1 and Theorem 1. Theorem 1 demonstrates that if
we incorporate the decomposed regularization into the actor critic in Eq. 9, we can design a variant of
“soft policy iteration” [13] that can guarantee the convergence to an optimal policy given any fixed qθ.
In summary, our theoretical investigation is a variant of the standard analytical framework in MaxEnt
RL that allows a comparable analysis. Importantly, we next recognize a fundamental difference
between our decomposed entropy regularization and the vanilla entropy regularization in MaxEnt RL.

Uncertainty-aware Regularized Exploration in CDRL Compared with MaxEnt RL. For the
objective function J(π) in Eq. 6 of MaxEnt RL, the state-wise entropy H(π(·|st)) is maximized
explicitly w.r.t. π for policies with a higher entropy in terms of diverse actions to encourage an
explicit exploration. For the objective function J ′(π) in Eq. 9 of distributional RL, the policy π is
implicitly optimized through the action selection process at ∼ π(·|st) guided by an augmented
reward signal from the distribution-matching regularization f(H (µst,at , qst,at

θ )). Concretely, the
learned policy is encouraged to visit state st along with the policy-determined action via at ∼ π(·|st),
whose current action-state return distributions qst,at

θ lag far behind the target return distributions with
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a large discrepancy. This discrepancy is measured by the magnitude of the cross entropy between
two return distributions of qst,at

θ and µst,at . A large discrepancy indicates that the uncertainty of
the current return distribution is considerably misestimated for the considered states, enabling an
uncertainty-aware exploration against these states in the policy optimization phase. This also indicates
that the policy learning in CDRL is additionally driven by the uncertainty difference between the
current and the target estimates, leading to a distinct exploration strategy of distributional RL.

Interplay of Uncertainty-aware Regularization in Distributional Actor Critic. Putting the critic
and actor learning together in distributional RL, we reveal their interplay impact pertinent to the
uncertainty-aware regularized exploration. For the actor component, the policy learning seeks states
and actions whose current return distribution estimate lags far behind the environmental uncertainty
of the target returns. For the critic component, the critic learning reduces the return distribution
mismatch on the states and actions explored by the policy, with two situations illustrated in Figure 2.
This uncertainty-aware exploration effect arises from the decomposed regularization via the return
density decomposition, interpreting the benefits of CDRL over classical RL.

5 Experiments

We comprehensively demonstrate our theoretical analysis using both Atari games and MuJoCo tasks.
In this section, we validate that the uncertainty-aware regularization is crucial to the outperformance
of CDRL over classical RL by varying ϵ in the return density decomposition. We also investigate the
mutual impacts between the vanilla entropy regularization in MaxEnt RL and the uncertainty-aware
entropy regularization from CDRL. Due to space limit, we provide the results in Appendix H.2. More
implementation details, including the description of baselines, are provided in Appendix G.

Baseline Algorithm: H(µ, qθ)(ε = 0.8/0.5/0.1). For the categorical distributional loss in C51
or the distributional critic loss in the actor critic, we employ µ̂s,a instead of p̂s,a as the target
return distribution, leading to the decomposed algorithms, denoted byH(µ, qθ). This decomposed
algorithm enables us to assess the uncertainty-aware regularization effect of distributional RL by
directly comparing its performance with the classical RL and CDRL.

Experimental Details. We substantiate that the decomposed uncertainty-aware entropy regularization,
derived in Eq. 4 through the return density function decomposition, plays a crucial role in the empirical
superiority of CDRL over classical RL. We compare CDRL with the decomposed baseline algorithm
H(µ, qθ) under different ϵ based on Eq. 3. To ensure a pre-specified ϵ that guarantees a valid
decomposition analyzed in Proposition 1, we employ a new notation ε, which is proportional to ϵ but
is more convenient in the implementation. See Appendix G.1 for more explanation, including the
transformation equation between ϵ and ε, and the details of the baseline algorithmH(µ, qθ).
Results. Figure 3 showcases that as ε gradually decreases from 0.8 to 0.1, learning curves of
decomposed C51, i.e.,H(µ, qθ)(ε = 0.8/0.5/0.1), tend to degrade from C51 to DQN across most
Atari games. The sensitivity of the decomposed algorithm H(µ, qθ) regarding ε depends on the
environment. Similar results in MuJoCo environments can be found in Appendix H.1. Overall, our
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Figure 3: Learning curves of value-based CDRL (C51) and the decomposed algorithmH(µ, qθ)(ε =
0.8/0.5/0.1) after applying the return distribution decomposition with different ε on eight Atari
games. Results are averaged over three seeds, and the shade represents the standard deviation.
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empirical result corroborates that the decomposed uncertainty-aware entropy regularization from the
categorical distributional loss is pivotal to the empirical advantage of CDRL over classical RL.

6 Conclusion

In this study, we interpret the benefits of CDRL over classical RL as uncertainty-aware regularization
via return density decomposition. In contrast to the exploration to encourage diverse actions in
MaxEnt RL, the uncertainty-aware regularization in CDRL promotes exploring states where the
environmental uncertainty is largely underestimated. Our study offers a novel exploration perspective
to analyze the benefits of (categorical) distributional learning in RL. In future, it remains interesting
yet challenging to extend our conclusion to general distributional RL, given that the analytical
techniques, such as those in QR-DQN, are largely different from CDRL.
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A Related Work

Distributional Learning via Categorical Representation. Categorical learning has been widely
employed, with advantages in representation [38, 21] and optimization [19, 46]. Recently, the
empirical superiority of categorical distribution learning has been further investigated in various RL
tasks [10]. A pressing need exists to examine the theoretical foundations of categorical distributional
learning, particularly in RL. The perspective of uncertainty-aware regularized exploration that our
study introduces provides significant insights into understanding the benefits of employing categorical
distribution loss in the RL context.

Uncertainty-oriented Exploration. Uncertainty-oriented exploration plays an integral part in exist-
ing exploration methods [16], which leverages uncertainty either in the (posterior) estimation of the
value function, as seen in Bayesian framework [37, 1], Bootstrap [36], and Ensemble methods [24],
or in the entire distribution of returns [50, 30, 6]. For example, Decaying Left Truncated Vari-
ance (DLTV) [30] and Perturbed Quantile Regression (PQR) [6] exploit the variability of the learned
return distribution to promote an optimistic exploration in distributional RL. In contrast, the primary
aim of this study is to demonstrate that distributional learning in RL entails an intrinsic exploration
effect against environmental uncertainty, contributing to the outperformance of distributional RL
over classical RL. Our study goal is independent of designing advanced exploration strategies on top
of distributional RL. Similarly, MaxEnt RL [55], which includes soft Q-learning [12], Soft Actor
Critic (SAC) [13] and their variants [15], also promotes uncertainty-oriented exploration by relying
on the stochasticity of the learned policy.

Uncertainty in RL. Uncertainty is ubiquitous in RL and sequential decision-making, and therefore
harnessing uncertainty is always crucial in designing efficient algorithms [26]. In the literature of
uncertainty quantification, uncertainty is often decomposed into two sources: aleatoric uncertainty
and epistemic uncertainty.

• Aleatoric uncertainty, also called intrinsic or environmental uncertainty, originates from
the stochastic or probabilistic nature of the environment, encompassing three main sources:
stochastic transition dynamics, stochastic policy, and stochastic reward function. Aleatoric
uncertainty is determined by the environment, which is thus irreducible. However, we
can design more efficient algorithms by capturing more environmental uncertainty in the
learning process, e.g., via distributional RL.

• Epistemic uncertainty, also called parametric uncertainty, often originates from the stochas-
ticity in statistical estimation in the presence of limited data or incomplete knowledge. As
opposed to aleatoric uncertainty, epistemic uncertainty is reducible and should decrease over
more data, which contributes to a more reliable statistical estimation.

Uncertainty-oriented Exploration. There are a few survey papers that comprehensively summarize
existing exploration approaches [23, 16]. Following [16], we classify the exploration strategies into
two main categories: uncertainty-oriented exploration and intrinsic motivation-oriented exploration.
The latter is inspired by psychology, which is not the focus of our study. Importantly, according to the
two categories of uncertainty in RL, uncertainty-oriented exploration, which often applies Optimism
in the Face of Uncertainty (OFU) principle, involves aleatoric and epistemic uncertainty.

• Epistemic uncertainty-oriented exploration takes advantage of the uncertainty in the (pos-
terior) estimation of value functions. The typical exploration methods include Bayesian
framework [37, 1, 31], Bootstrap [36], and Ensemble methods [24]. For instance, Boot-
strapped DQN [36] maintains several independent Q-estimators and randomly samples one
of them, enabling the agent to perform temporally extended exploration.

• Aleatoric uncertainty-oriented exploration aims to capture more environmental uncertainty
from three sources of stochastic transition dynamics, stochastic policies, and stochastic
reward function, all of which can be comprehensively integrated into return distribution. [6]
employs Perturbed Quantile Regression (PQR) to promote the optimistic exploration within
the distributional RL framework, while Decaying Left Truncated Variance (DLTV) [30]
utilizes the variance from the learned return distributions. [50] investigates the approximate
posterior sampling in distributional RL to encourage the exploration. By contrast, our primal
goal in this study is to attribute the benefits of distributional RL to its intrinsic uncertainty-
aware exploration we derived via return density decomposition instead of harnessing the
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learned return distribution to develop subsequent aleatoric uncertainty-oriented exploration
strategies in [50, 30]. On the other hand, MaxEnt RL [12, 13, 14] utilizes the stochasticity of
learned policy, one of the three sources in environmental uncertainty, to encourage diverse
actions. Therefore, MaxEnt RL can also be categorized into the aleatoric uncertainty-
oriented exploration, and it is thus intuitive and interesting to make a detailed comparison of
the exploration effects between distributional RL and MaxEnt RL, conducted in Section 4.1
of our study.

B More Details about Categorical Distributional RL and Algorithm
Description of C51

Distributional Loss and Projection in CDRL. Categorical Distributional RL [2] uses the heuristic
projection operator ΠC , which was defined as

ΠC (δy) =


δz1 y ≤ z1
zi+1−y
zi+1−zi

δli +
y−zi

zi+1−zi
δzi+1 zi < y ≤ zi+1

δzN y > zN

, (10)

After applying the distributional Bellman operator Tπ on the current return distribution ηπ(s, a) in
each update, the resulting new distribution, which we denote as η̃π(s, a), typically no longer lies
in the same (discrete) support with the original one on {zi}Ni=1. To maintain the same support, the
underpinning of the KL divergence, CDRL additionally applies the projection operator ΠC on the new
distribution η̃π(s, a). This projection rule distributes the weight of δy across the original support points
{zi}Ni=1 based on the linear interpolation. For example, if y lies in between two support points zi and
zi+1, the probability mass on y is split between zi and zi+1 with the weight inversely proportional
to its distance ratio to zi and zi+1. Therefore, the projection extends affinely to finite mixtures
of Dirac measures, such that for a mixture of Diracs

∑N
i=1 piδyi

, we have ΠC

(∑N
i=1 piδyi

)
=∑N

i=1 piΠC (δyi
). The Cramér distance was recently studied as an alternative to the Wasserstein

distances in the context of generative models [4]. Recall the definition of Cramér distance in the
following.
Definition 1. (Definition 3 [40]) The Cramér distance ℓ2 between two distributions ν1, ν2 ∈P(R),
with cumulative distribution functions Fν1 , Fν2 respectively, is defined by:

ℓ2 (ν1, ν2) =

(∫
R
(Fν1

(x)− Fν2
(x))

2
dx

)1/2

.

Further, the supremum-Cramér metric ℓ̄2 is defined between two distribution functions η, µ ∈
P(R)X×A by

ℓ̄2(η, µ) = sup
(x,a)∈X×A

ℓ2

(
η(x,a), µ(x,a)

)
.

Thus, the contraction of categorical distributional RL can be guaranteed under Cramér distance:
Proposition 4. (Proposition 2 [40]) The operator ΠCT π is a

√
γ-contraction in ℓ̄2.

An insight behind this conclusion is that Cramér distance endows a particular subset with a notion of
orthogonal projection, and the orthogonal projection onto the subset is exactly the heuristic projection
ΠC (Proposition 1 in [40]). [40] also states that the operator ΠCT π is contractive under Wasserstein
distance.

Description of CDRL Algorithm: C51. With N = 51, C51 instantiates the CDRL algorithm. To
elaborate the algorithm, we first introduce the pushforward measure f#ν ∈ P(R) from Definition 1
in [40]. This pushforward measure shifts the support of the probability measure µ according to the
map f , which is commonly used in distributional RL literature. In particular, we consider an affine
shift map fr,γ : R→ R, defined by fr,γ(x) = r + γx. As Algorithm 1 displays, we first apply the
pushforward measure on the target return distribution η̂(s′, a∗) by affinely shifting its support points,
leading to a new distribution η̃(s, a). Next, we project the support points of η̃(s, a) by employing
ΠC onto the original support, allowing us to compute the KL divergence in the end. Notably, we
decompose the distributional objective function on the KL loss KL(η̂target(s, a)||η̂(s, a)).
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Algorithm 1 CDRL Update (Adapted from Algorithm 1 in [40])
Require: Number of atoms N , e.g., N = 51 in C51, the categorical distribution η̂(s, a) =∑N

i=1 p
s,a
i δzi for the current return distribution.

Input: Sample transition (s, a, r, s′)

1: if Policy evaluation: then
2: a∗ ∼ π(·|s′)
3: else if Control: then
4: a∗ ← argmaxa′∈A ER∼η̂(s′,a′) [R]
5: end if
6: η̃(s, a)← (fr,γ)#η̂(s

′, a∗) # Distributional Bellmen update by applying T̂π

7: η̂target(s, a)← ΠC η̃(s, a) # Project target support points and then distribute the probabilities
Output: Compute the distributional loss KL(η̂target(s, a)||η̂(s, a)) # Choose KL divergence as dp

C Proof of Proposition 1

Proposition 1.(Decomposition Validity) Denote p̂s,a(x ∈ ∆E) = pE/∆, where pE is the coefficient
on the bin ∆E . µ̂s,a(x) =

∑N
i=1 p

µ
i 1(x ∈ ∆i)/∆ is a valid density if and only if ϵ ≥ 1− pE .

Proof. Recap a valid probability density function requires non-negative and one-bounded probability
in each bin and all probabilities should sum to 1. We start to prove all probabilities should sum to 1,
which is straightforward by taking the integral of both sides of Eq 3:∫

p̂s,a(x)dx = (1− ϵ)

∫
1 (x ∈ ∆E)

∆
dx+ ϵ

∫
µ̂s,a(x)dx

1 = (1− ϵ) + ϵ

∫
µ̂s,a(x)dx,

(11)

which directly implies
∫
µ̂s,a(x)dx = 1. Next, we show necessity and sufficiency of non-negative

and one-bounded probability in each bin.

Necessity. (1) When x ∈ ∆E , Eq. 3 can simplified as pE/∆ = (1− ϵ)/∆+ ϵpµE/∆, where pµE =
µ̂(x ∈ ∆E). Thus, pµE = pE

ϵ −
1−ϵ
ϵ ≥ 0 if ϵ ≥ 1− pE . Obviously, pµE = pE

ϵ −
1−ϵ
ϵ ≤

1
ϵ −

1−ϵ
ϵ = 1

guaranteed by the validity of p̂s,aE . (2) When x /∈ ∆E , we have pi/∆ = ϵpµi /∆, i.e.,When x /∈ ∆E ,
We immediately have pµi = pi

ϵ ≤
1−pE

ϵ ≤ 1 when ϵ ≥ 1− pE . Also, pµi = pi

ϵ ≥ 0.

Sufficiency. (1) When x ∈ ∆E , let pµE = pE

ϵ −
1−ϵ
ϵ ≥ 0, we have ϵ ≥ 1− pE . pµE = pE

ϵ −
1−ϵ
ϵ ≤ 1

in nature. (2) When x /∈ ∆E , pµi = pi

ϵ ≥ 0 in nature. Let pµi = pi

ϵ ≤ 1, we have pi ≤ ϵ. We need to
take the intersection set of (1) and (2), and we find that ϵ ≥ 1− pE ⇒ ϵ ≥ 1− pE ≥ pi that satisfies
the condition in (2). Thus, the intersection set of (1) and (2) would be ϵ ≥ 1− pE .

In summary, as ϵ ≥ 1− pE is both the necessary and sufficient condition, we have the conclusion
that µ̂(x) is a valid probability density function ⇐⇒ ϵ ≥ 1− pE .

D Proof of Proposition 2

Proposition 2 (Decomposed Neural FZI) Denote qs,aθ as the histogram density function of Zk
θ (s, a)

in Neural FZI. Based on Eq. 3 and KL divergence as dp, Neural FZI in Eq. 2 is simplified as

Zk+1
θ = argmin

qθ

1

n

n∑
i=1

[− log qsi,ai

θ (∆i
E)︸ ︷︷ ︸

(a)

+ αH(µ̂s′i,πZ(s′i), qsi,ai

θ )]. (12)
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Proof. Firstly, given a fixed p(x) we know that minimizing DKL(p, qθ) is equivalent to minimizing
H(p, q) by following

DKL(p, qθ) =

N∑
i=1

∫ li

li−1

pi(x)

∆
log

pi(x)/∆

qiθ/∆
dx

= −
N∑
i=1

∫ li

li−1

pi(x)

∆
log

qiθ
∆

dx−

(
N∑
i=1

∫ li

li−1

pi(x)

∆
log

pi(x)

∆
dx

)
= H(p, qθ)−H(p)
∝ H(p, qθ)

(13)

where p =
∑N

i=1 pi(x)1(x ∈ ∆i)/∆ and qθ =
∑N

i=1 qi/∆. Based onH(p, qθ), we use ps
′
i,πZ(s′i)(x)

to denote the target probability density function of the random variableR(si, ai)+γZk
θ∗ (s′i, πZ(s

′
i)).

Then, we can derive the objective function within each Neural FZI as

1

n

n∑
i=1

H(ps
′
i,πZ(s′i), qsi,ai

θ )

=
1

n

n∑
i=1

−(1− ϵ)

N∑
j=1

∫ lj

lj−1

1(x ∈ ∆i
E)

∆
log

qsi,ai

θ (∆j)

∆
dx− ϵ

N∑
j=1

∫ lj

lj−1

pµj
∆

log
qsi,ai

θ (∆j)

∆
dx


=

1

n

n∑
i=1

(
(1− ϵ)(− log qsi,ai

θ (∆i
E)) + ϵH(µ̂s′i,πZ(s′i), qsi,ai

θ )
)
+ (1− ϵ)∆

∝ 1

n

n∑
i=1

(
− log qsi,ai

θ (∆i
E) + αH(µ̂s′i,πZ(s′i), qsi,ai

θ )
)
, where α =

ϵ

1− ϵ
> 0

(14)
where recall that µ̂s′i,πZ(s′i) =

∑N
i=1 p

µ
i (x)1(x ∈ ∆i)/∆ =

∑N
i=1 p

µ
i /∆ for conciseness and denote

qsi,ai

θ =
∑N

j=1 q
si,ai

θ (∆j)/∆. The cross-entropy H(µ̂s′i,πZ(s′i), qsi,ai

θ ) is based on the discrete
distribution when i = 1, ..., N . ∆i

E represent the interval that E
[
R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i))
]

falls into, i.e., E
[
R(si, ai) + γZk

θ∗ (s′i, πZ(s
′
i))
]
∈ ∆i

E .

E Proof of Proposition 3

Proposition 3 (Equivalence between the Mean-Related term in Decomposed Neural FZI and Neural
FQI) In Eq. 4, assume the function class {Zθ : θ ∈ Θ} is sufficiently large such that it contains the
target {Y k

i }ni=1, when ∆→ 0, for all k, minimizing the mean-related term in Eq. 4 implies

P (Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1, and
∫ +∞

−∞

∣∣∣Fqθ (x)− FδT optQk
θ∗ (s,a)

(x)
∣∣∣ dx = o(∆),

(15)
where T optQk

θ∗(s, a) is the scalar-valued target in the k-th phase of Neural FQI, and δT optQk
θ∗ (s,a)

is
the Dirac delta function defined on the scalar T optQk

θ∗(s, a).

Proof. Limiting Case. Firstly, we define the distributional Bellman optimality operator Topt as
follows:

ToptZ(s, a)
D
= R(s, a) + γZ (S′, a∗) , (16)

where S′ ∼ P (· | s, a) and a∗ = argmax
a′

E [Z (S′, a′)]. If {Zθ : θ ∈ Θ} is sufficiently large

enough such that it contains ToptZθ∗ ({Y k
i }ni=1), then optimizing Neural FZI in Eq. 2 leads to

Zk+1
θ = ToptZθ∗ .

Secondly, we apply the return density decomposition on the target histogram function p̂s,a(x).
Consider the parameterized histogram density function hθ and denote hE

θ /∆ as the bin height in the
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bin ∆E , under the KL divergence between the first histogram function 1(x ∈ ∆E) with hθ(x), the
objective function is simplified as

DKL(1(x ∈ ∆E)/∆, hθ(x)) = −
∫
x∈∆E

1

∆
log

hE
θ

∆
1
∆

dx = − log hE
θ

(17)

Since {Zθ : θ ∈ Θ} is sufficiently large enough that can represent the pdf of {Y k
i }ni=1, it also

implies that {Zθ : θ ∈ Θ} can represent the mean-related term part in its pdf via the return
density decomposition. The KL minimizer would be ĥθ = 1(x ∈ ∆E)/∆ in expectation. Then,
lim∆→0 argminhθ

DKL(1(x ∈ ∆E)/∆, hθ(x)) = δE[Z target(s,a)], where δE[Z target(s,a)] is a Dirac Delta
function centered at E [Z target(s, a)] and can be viewed as a generalized probability density function.
That being said, the limiting probability density function (pdf) converges to a Dirac delta function at
E [Z target(s, a)]. In Neural FZI, we have Z target = ToptZθ∗ . Here, we use Zk+1

θ (s, a) as the random
variable whose cdf is the limiting distribution. According to the definition of the Dirac function, in
the limiting case where ∆→ 0, we attain that

P(Zk+1
θ (s, a) = E

[
ToptZk

θ∗(s, a)
]
) = 1. (18)

This is because the pdf of the limiting return random variable Zk+1
θ (s, a) is a Dirac delta function,

which implies that the random variable takes this constant value with probability one. Due to the
linearity of expectation in Lemma 4 of [2], we have

E
[
ToptZk

θ∗(s, a)
]
= ToptE

[
Zk
θ∗(s, a)

]
= T optQk

θ∗(s, a) (19)

Finally, we obtain the convergence in probability one in the limiting case:

P(Zk+1
θ (s, a) = T optQk

θ∗(s, a)) = 1 as ∆→ 0 (20)

Convergence in Distribution. The connection established above is in the limiting case. Alternatively,
we can provide more formal proof by using the language of convergence in distribution. Here, we
use Zk+1

θ,∆ to replace Zk+1
θ to explicitly consider its asymptotic behavior. According to the fact that

∞{x ∈ ∆E}/∆ is the optimizer when minimizing the mean-related term in Eq. 4 given a fixed ∆,
the convergence in distribution is:

lim
∆→0

D(Zk+1
θ,∆ ) = lim

∆→0
D(1{x ∈ ∆E}/∆) = D(δT optQk

θ∗ (s,a)
), (21)

where δT optQk
θ∗ (s,a)

is the Dirac Delta function centered at T optQk
θ∗(s, a). D(δT optQk

θ∗ (s,a)
) is the

corresponding step function, where D(δT optQk
θ∗ (s,a)

)(x) = 1 if x ≥ T opt Qk
θ∗(s, a), and equals 0

otherwise. Note that the convergence in distribution in terms of the Dirac delta function implies that
P(Zk+1

θ (s, a) = T optQk
θ∗(s, a)) = 1 as ∆→ 0 in Eq 20.

Convergence Rate. In order to characterize how the difference varies when ∆ → 0, we further
define ∆E = [le, le+1) and we have:∫ +∞

−∞

∣∣∣Fqθ (x)− FδT optQk
θ∗ (s,a)

(x)
∣∣∣ dx =

1

2∆

((
T optQk

θ∗(s, a)− le
)2

+
(
le+1 − T optQk

θ∗(s, a)
)2)

=
1

2∆
(a2 + (∆− a)2)

≤ ∆/2

= o(∆),
(22)

where T optQk
θ∗(s, a) = E

[
ToptZk

θ∗(s, a)
]
∈ ∆E and we denote a = T optQk

θ∗(s, a) − le. The first
equality holds as qθ(x), the KL minimizer while minimizing the mean-related term, will follow a
uniform distribution on ∆E , i.e., q̂θ = 1(x ∈ ∆E)/∆. Thus, the integral of LHS would be the area
of two centralized triangles accordingly. The inequality holds as the maximizer is obtained when
a = ∆ or 0. The result implies that the convergence rate in distribution difference is o(∆).
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F Convergence Proof of DERPI in Theorem 1

F.1 Proof of Distribution-Entropy-Regularized Policy Evaluation in Lemma 1

Lemma 1(Distribution-Entropy-Regularized Policy Evaluation) Consider the distribution-entropy-
regularized Bellman operator T π

d in Eq. 7 and assumeH(µst,at , qst,at

θ ) is bounded for all (st,at) ∈
S ×A. Define Qk+1 = T π

d Qk, then Qk+1 will converge to a corrected Q-value of π as k →∞ with
the new objective function J ′(π) defined as

J ′(π) =

T∑
t=0

E(st,at)∼ρπ
[r (st,at) + γf(H (µst,at , qst,at

θ ))] .

Proof. Firstly, we plug in V (st+1) into RHS of the iteration in Eq. 7, then we obtain

T π
d Q (st,at)

= r (st,at) + γEst+1∼P (·|st,at) [V (st+1)]

= r (st,at) + γEst+1∼P (·|st,at),at+1∼π

[
f(H(µst+1,at+1 , q

st+1,at+1

θ ))
]
+ γEst+1∼P (·|st,at),at+1∼π [Q (st+1,at+1)]

≜ rπ (st,at) + γEst+1∼P (·|st,at),at+1∼π [Q (st+1,at+1)] ,
(23)

where rπ (st,at) ≜ r (st,at) + γEst+1∼P (·|st,at),at+1∼π

[
f(H(µst+1,at+1 , q

st+1,at+1

θ ))
]

is the en-
tropy augmented reward. Applying the standard convergence results for policy evaluation [49], we
can attain that this Bellman updating under T π

d is convergent under the assumption of |A| <∞ and
bounded entropy augmented rewards rπ .

F.2 Policy Improvement with Proof

Lemma 2. (Distribution-Entropy-Regularized Policy Improvement) Let π ∈ Π and a new pol-
icy πnew be updated via the policy improvement step in the policy optimization: πnew =
argmaxπ′∈Π Eat∼π′ [Qπold(st,at) + f(H (µst,at , qst,at

θ ))]. Then Qπnew (st,at) ≥ Qπold (st,at) for
all (st,at) ∈ S ×A with |A| <∞.

Proof. The policy improvement in Lemma 2 implies that

Eat∼πnew [Q
πold(st,at) + f(H (µst,at , qst,at

θ ))] ≥ Eat∼πold [Q
πold(st,at) + f(H (µst,at , qst,at

θ ))] .

We consider the Bellman equation via the distribution-entropy-regularized Bellman operator T π
sd:

Qπold (st,at)

≜ r (st,at) + γEst+1∼P [V πold (st+1)]

= r (st,at) + γEst+1∼P

[
Eat+1∼πold

[
f(H(µst+1,at+1 , q

st+1,at+1

θ )) +Qπold (st+1,at+1)
]]

≤ r (st,at) + γEst+1∼P

[
Eat+1∼πnew

[
f(H(µst+1,at+1 , q

st+1,at+1

θ )) +Qπold (st+1,at+1)
]]

= r (st,at) + γEst+1∼P,at+1∼πnew

[
f(H(µst+1,at+1 , q

st+1,at+1

θ ))
]
+ γEst+1∼P,at+1∼πnew [Q

πold (st+1,at+1)]

= rπnew (st,at) + γEst+1∼P,at+1∼πnew [Q
πold (st+1,at+1)]

...
≤ Qπnew (st+1,at+1) ,

(24)
where Qπold (st+1,at+1) indicates that the future actions are taking following πold, given ss+t and
at+1. We have repeated expanded Qπold on the RHS by applying the distribution-entropy-regularized
distributional Bellman operator. Each following step will then incorporate the actions following the
new policy. Convergence to Qπnew follows from Lemma 1.

F.3 Proof of DERPI in Theorem 1

Theorem 1 (Distribution-Entropy-Regularized Policy Iteration) Repeatedly applying distribution-
entropy-regularized policy evaluation in Eq. 7 and the policy improvement, the policy converges to
an optimal policy π∗ such that Qπ∗

(st,at) ≥ Qπ (st,at) for all π ∈ Π.
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Proof. The proof is similar to soft policy iteration [13]. For completeness, we provide the proof here.
By Lemma 2, as the number of iteration increases, the sequence Qπi at i-th iteration is monotonically
increasing. Since we assume the uncertainty-aware entropy is bounded, the Qπ is thus bounded as
the rewards are bounded. Hence, the sequence will converge to some π∗. Further, we prove that π∗ is
in fact optimal. At the convergence point, for all π ∈ Π, it must be case that:

Eat∼π∗ [Qπold (st,at)] ≥ Eat∼π [Q
πold (st,at)] .

According to the proof in Lemma 2, we can attain Qπ∗
(st,at) > Qπ(st,at) for (st,at). That is

to say, the “corrected” value function of any other policy in Π is lower than the converged policy,
indicating that π∗ is optimal.

G Implementation Details

G.1 Replacing ϵ with the ratio ε for Visualization

ε shares the same utility as ϵ, but it is more convenient in implementation. ε is defined as the mass
proportion centered at the bin that contains the expectation when transporting the mass to other
bins. A large proportion probability ε, which transports less mass to other bins, corresponds to a
large ϵ in Eq. 3. Increasing ε indicates that the decomposed algorithm performs more similarly to
a pure CDRL algorithm. As Proposition 1 elucidates, the return density decomposition requires
that ϵ exceed certain thresholds to ensure the resultant decomposed µ̂s,a qualifies as a valid density
function. In practice, pinpointing this lower boundary for ϵ in each iteration to regulate its range
could be prohibitively time-intensive. A more pragmatic approach involves redistributing the mass
from the bin that contains the expectation to other bins in specified ratios, thereby introducing the
corresponding ratio term ε. By varying ε from 0 to 1, it invariably meets the validity condition
outlined in Proposition 1, thereby streamlining the process for conducting ablation studies concerning
µ̂s,a as demonstrated in Figure 3.

To delineate the relationship between the ratio ε and the coefficient ϵ in constructing µ̂s,a, after some
calculations we establish their equivalence as follows:

ε =
pE − (1− ϵ)

pEϵ
, (25)

where pE represents the weighting assigned to the bin ∆E as specified in Proposition 1. The resulting
ε ∈ [0, 1] has a monotonically increasing relationship with ϵ. In addition, ϵ = 1 implies ε = 1. These
properties facilitate the visualization without undermining our conclusion.

Decomposition Details. By varying ε, we can evaluate ϵ via the transformation equation in Eq. 25,
which guarantees the validity of return density decomposition. Next, under different ϵ, we compute
the induced histogram density µ̂s,a via the return density decomposition in Eq. 3:

µ̂s,a(x) = p̂s,a(x /∈ ∆E)/ϵ+ p̂s,a(x ∈ ∆E)ε, (26)
where combines Eq. 3 and Eq. 25. Importantly, by summing all the probabilities of pµi in µ, we have:

n∑
i=1

pµi =
1− pE

ϵ
+

pE − (1− ϵ)

ϵ
= 1. (27)

This substantiates the validity of our decomposition by using ε instead of ϵ for visualization. Next,
we replace p̂s,a with µ̂s,a in C51 or the critic loss in Distributional AC (C51) as the decomposed
algorithmH(µ, qθ) and compare the performance of all considered algorithms. Please refer to the
code in the implementation for more details.

G.2 Hyper-parameters and Network structure

Our implementation is adapted from the popular RLKit platform. For Distributional SAC with C51,
we use 51 atoms similar to the C51 [2]. For distributional SAC with quantile regression, instead of
using fixed quantiles in QR-DQN, we leverage the quantile fraction generation based on IQN [7] that
uniformly samples quantile fractions in order to approximate the full quantile function. In particular,
we fix the number of quantile fractions as N and keep them in ascending order. Besides, we adapt
the sampling as τ0 = 0, τi = ei/

∑N−1
i=0 ei, where ϵi ∈ U [0, 1], i = 1, ..., N . We adopt the same

hyper-parameters, which are listed in Table 1 and network structure as in the original distributional
SAC paper [28].
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Table 1: Hyper-parameters Sheet.
Hyperparameter Value
Shared

Policy network learning rate 3e-4
(Quantile) Value network learning rate 3e-4
Optimization Adam
Discount factor 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4

DSAC with C51
Number of Atoms (N ) 51

DSAC with IQN
Number of quantile fractions (N ) 32
Quantile fraction embedding size 64
Huber regression threshold 1

Hyperparameter Temperature Parameter β Max episode lenght
Walker2d-v2 0.2 1000
Swimmer-v2 0.2 1000
Reacher-v2 0.2 1000
Ant-v2 0.2 1000
HalfCheetah-v2 0.2 1000
Humanoid-v2 0.05 1000
HumanoidStandup-v2 0.05 1000
BipedalWalkerHardcore-v2 0.002 2000

H Experiments Results

H.1 Uncertainty-aware Regularization Effect by Varying ϵ in Actor Critic
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Figure 4: Learning curves of DSAC (C51) with the return distribution decompositionH(µ, qθ) under
different ε.

We study the uncertainty-aware regularization effect from being categorical distributional in the actor-
critic framework, where we decompose the C51 critic loss in Distributional SAC (DSAC) according
to Eq. 3. We denote the decomposed DSAC (C51) with different ε as H(µ, qθ)(ε = 0.9/0.5/0.1)..
As suggested in Figure 4, the performance ofH(µ, qθ) tends to vary from the vanilla DSAC (C51) to
SAC with the decreasing of ε on four MuJoCo environments. In some environments, the difference of
H(µ, qθ) across various ε may not be pronounced between DSAC (C51) and SAC. We hypothesize
that the algorithm performance is not sufficiently sensitive when ε changes within this restricted range.
Although ε ∈ (0, 1) is designed to guarantee a valid density decomposition, it does not guarantee
that ϵ in Eq. 3 can flexibly vary from 0 to 1. It is worth noting that our return density decomposition
is valid only when ϵ ≥ 1 − pE as shown in Proposition 1, and therefore ϵ can not strictly go to 0,
where H(µ, qθ) would degenerate to SAC ideally. Therefore, compared with the ablation study in
Figure 3, the trend varying from DSAC to SAC in Figure 4 by decreasing ε may not be as pronounced
as that in value-based RL evaluated on Atari games. One crucial reason behind is that the actor-critic
architecture is generally perceived to be more prone to instability compared to value-based learning
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Figure 5: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and AC+UE+VE (DSAC) over five
seeds across seven MuJoCo environments where the distributional RL part is based on C51. (First
Row): Mutual Improvement. (Second Row): Potential Interference.

in RL. As outlined in [11], this instability stems from the policy updates, which likely introduces
additional bias or variance from the critic learning process.

H.2 Mutual Impacts of the Two Entropy Regularization on DSAC (C51)

Baseline Algorithms. For a detailed comparison of the mutual impacts between Vanilla Entropy (VE)
in MaxEnt RL and Uncertainty-aware Entropy (UE) in CDRL, we conduct an ablation study across
several related baseline algorithms. We denote SAC with/without vanilla entropy as AC+VE and
AC. We denote Distributional SAC (DSAC) [28] with/without vanilla entropy as AC+UE+VE and
AC+UE. AC+UE is also denoted as DAC. The implementation details can be found in Appendix G.

Experimental Details. We demonstrate that the two types of regularized exploration in MaxEnt RL
and CDRL play distinct roles in policy learning when employed simultaneously, including mutual
improvement or potential interference. We perform our experiments for both DSAC (C51) in Figure 5
and DSAC (IQN) in Figure 6 of Appendix H.3, where the latter is used to examine the mutual impacts
in quantile-based distributional RL heuristically.

Results. In the first row of Figure 5, simultaneously employing uncertainty-aware and vanilla entropy
regularization renders a mutual improvement. Conversely, the two kinds of regularizations, when
adopted together, can also lead to performance degradation, as exhibited in the second row in Figure 5.
For instance, AC+UE+VE outperforms both AC+VE (SAC) and AC+UE (DAC) on humanoidstandup,
while suffering from performance degradation on Ant and Swimmer. We posit that the potential
interference may result from distinct exploration directions in the policy learning for the two types
of regularizations. SAC optimizes the policy to visit states with high entropy, while distributional
RL updates the policy to explore states and the associated actions whose current return distribution
estimate lags far behind the environment uncertainty in target returns.

H.3 Mutual Impacts on DSAC (IQN)

To extend the mutual impact of the two types of regularization to broader distributional RL algorithm,
we investigate the learning behavior of distributional RL based on IQN. The conclusion when using
IQN is similar to that when using categorical distributional learning in Figure 5. In particular, in the
first row of Figure 6, simultaneously employing uncertainty-aware and vanilla entropy regularization
renders a mutual improvement. Conversely, the two kinds of regularizations, when adopted together,
can also lead to performance degradation, as exhibited in the second row in Figure 6. For instance,
on Swimmer and Reacher, AC+UE+VE is significantly inferior to AC+UE or AC+VE. These results
about potential interference also serve as the emprical evidence to reveal distinct exploration directions
in the policy learning for the two types of regularizations.
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Figure 6: Learning curves of AC, AC+VE (SAC), AC+UE (DAC) and AC+UE+VE (DSAC) over five
seeds across eight MuJoCo environments where DAC and DSAC are based on IQN. (First Row):
Mutual improvement. (Second Row): Potential interference.

H.4 Ablation Study across Different Bin Sizes (Number of Atoms)

To further demonstrate our regularization effect based on the return density decomposition, we
conducted an additional ablation study by varying the number of bins/atoms (equivalent to adjusting
the bin sizes) of both C51 and our decompose algorithmH(µ, qθ).
Figure 7 suggests that decreasing ε implies thatH(µ, qθ) degrades from C51 with the same bin size
to DQN. Another interesting observation is that, as shown in Breakout (the first row in Figure 7),
increasing the number of atoms (reducing the bin size) restricts the range of ϵ for a valid return
density decomposition in Proposition 1. Consequently, a small number of atoms or a large bin size
can allow a broader variation of H(µ, qθ) from C51 to DQN, facilitating the demonstration of our
regularization effect empirically.
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Figure 7: Learning curves of value-based CDRL, i.e., C51 algorithm, and the decomposed algorithm
H(µ, qθ) across different numbers of atoms (various bin sizes) on two Atari games. Results are
averaged over three seeds, and the shade represents the standard deviation.
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