
Published as a conference paper at ICLR 2025

NARRATIVEBRIDGE: ENHANCING VIDEO CAPTIONING
WITH CAUSAL-TEMPORAL NARRATIVE

Asmar Nadeem1, Faegheh Sardari1, Robert Dawes2, Syed Sameed Husain1,
Adrian Hilton1, Armin Mustafa1

1CVSSP, University of Surrey, Guildford, UK
2BBC Research and Development, UK

{asmar.nadeem, armin.mustafa}@surrey.ac.uk

ABSTRACT

Existing video captioning benchmarks and models lack causal-temporal narrative,
which is sequences of events linked through cause and effect, unfolding over
time and driven by characters or agents. This lack of narrative restricts models’
ability to generate text descriptions that capture the causal and temporal dynamics
inherent in video content. To address this gap, we propose NarrativeBridge, an
approach comprising of: (1) a novel Causal-Temporal Narrative (CTN) captions
benchmark dataset generated using a large language model and few-shot prompting,
explicitly encoding cause-effect temporal relationships in video descriptions; and
(2) a Cause-Effect Network (CEN) with separate encoders for capturing cause and
effect dynamics, enabling effective learning and generation of captions with causal-
temporal narrative. Extensive experiments demonstrate that CEN significantly
outperforms state-of-the-art models in articulating the causal and temporal aspects
of video content: 17.88 and 17.44 CIDEr on the MSVD-CTN and MSRVTT-CTN
datasets, respectively. Cross-dataset evaluations further showcase CEN’s strong
generalization capabilities. The proposed framework understands and generates
nuanced text descriptions with intricate causal-temporal narrative structures present
in videos, addressing a critical limitation in video captioning. For project details,
visit https://narrativebridge.github.io/.

1 INTRODUCTION

Video captioning aims to generate textual descriptions that capture the visual information and temporal
dynamics in videos Venugopalan et al. (2015). Research has primarily focused on developing new
methods to improve the accuracy of video captioning models on well-established benchmark datasets,
MSR-VTT Xu et al. (2016) and MSVD Chen & Dolan (2011). State-of-the-art (SOTA) approaches
Iashin & Rahtu (2020); Tian et al. (2019); Xu et al. (2017); Nadeem et al. (2023); Wang et al.
(2022); Chen et al. (2023) proposed new architectures to better align the generated captions with
the provided ground-truth. However, these efforts enhance models’ accuracy on existing evaluation
criteria, without modifying the benchmark datasets or their ground truth annotations to address
the lack of coherent representations of causal-temporal narrative. Causal-temporal narrative is the
construction and interpretation of a sequence of events linked through cause and effect, unfolding
over time and space, and often driven by entities (characters or agents) acting with intention Wilkens
et al. (2003).
As discussed by Wilkens et al. (2003), causal relationships Granger (1969) are scenarios where
one event (cause) directly influences the occurrence of another event (effect), while temporal under-
standing Berrevoets et al. (2023) involves recognizing the chronological order of events, a crucial
component in establishing causality. Existing ground-truth captions in popular benchmarks lack
causal, temporal and narrative information. Figure 1 illustrates the importance of causal-temporal
narrative on the MSR-VTT dataset Xu et al. (2016). In the input video sequence, a car is first shown
driving recklessly through an open field and flipping over, which represents the cause event. This
is then followed by the effect event showing the severely damaged car, and subsequently, a group
of guys starting to play beer pong, which represents the temporal sequence. The causal-temporal
narrative would connect these events in a temporal order, linking the reckless driving and resulting
car crash to the group’s subsequent behavior of playing beer pong. This example aligns with the
definition of narrative provided by Wilkens et al. Wilkens et al. (2003), which emphasizes the role
of cause-effect relationships, the perception of narrativity in videos, and highlights the temporal
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'a  car crashes and guys play beer pong', 'a car driving through an open field kicking up dirt', a car flipping over', 'a
car get wracked',  'a car is being flipped over', 'a dirt vehicle riding and rolling', 'a dune buggy flipping over', 'a four
wheeler wrecking', 'a monster truck flips on its side then several young men shout while playing beer pong', 'a
person drives an offroad car around a field', 'a person flipping a go kart while a crowd cheers', 'a race truck is
crashing', 'a truck rolls over itself and boys cheer on a friend', 'a truck tumbles over on itself', 'a tumbler crashes on
a dirt road and then a group of guys play beer pong', 'a vehicle flips over', 'a type of monster truck crashes and
men are shown celebrating',  'an off road vehicle crashing', 'crashing of a car while driving', 'footage from a
monster truck style event followed by a frat party'

CTN
Caption

Original
Captions

Cause: 'a car drove recklessly through an open field flipping over'
Effect: 'the car was severely damaged and a group of guys started playing beer pong'

Input Video:

LLM
Prompt

LLM
Evaluation

Figure 1: Comparison of Original captions vs. Causal-Temporal Narrative (CTN) caption to illustrate
the inclusion of causal-temporal narrative.

sequence of events that is crucial for understanding the causal-temporal narrative. Figure 1 highlights
the limitations of the original captions in existing benchmark datasets, such as MSR-VTT Xu et al.
(2016). The original captions focus on isolated events or actions, such as "a car flipping over" or
"a monster truck flips on its side," lacking contextual narrative and causal-temporal relationships
between events. Consequently, models trained on these captions suffer from the same limitations.
To bridge this gap, we introduce NarrativeBridge, a novel framework encompassing a new benchmark
dataset and architecture tailored for causal-temporal narrative learning in video captioning. Our
Causal-Temporal Narrative (CTN), a novel captions benchmark dataset, leverages a large language
model (LLM) and few-shot prompting to generate enhanced video descriptions that explicitly encode
causal and temporal sequences, as shown in Figure 1. This establishes a clear connection between
the cause (reckless driving) and the effect (damaged car and subsequent behavior of the group). Our
CTN captions benchmark dataset enables models to better understand and articulate the causality,
sequence, and significance of events within the broader video context Wilkens et al. (2003). To ensure
the quality and relevance of the generated captions, we employ an automatic evaluation framework
that compares the CTN captions with the video content, keeping or discarding them based on a score
threshold. Additionally, we conduct a human evaluation study that further validates the high quality
of our CTN captions, demonstrating their accuracy, temporal coherence, and relevance. This CTN
captions benchmark dataset addresses the limitations of existing benchmark datasets and emphasizes
the importance of incorporating causal-temporal narrative understanding into video captioning models
to generate accurate, informative, and contextually relevant descriptions.
Existing SOTA video captioning methods that use different architectures such as LSTM Nadeem
et al. (2023), GNN Hendria et al. (2023), and Transformer Wang et al. (2022), struggle to effectively
learn causal-temporal narrative from the CTN captions. These architectures are designed to capture
the overall semantics in videos but lack dedicated mechanisms to explicitly model the cause-effect
relationships and temporal sequences. As a result, the captions generated by these methods fail to
articulate the complex causal-temporal dynamics in the videos, as demonstrated in results (Section
4.3). To address this challenge, we propose the Cause-Effect Network (CEN) that captures cause and
effect dynamics using dedicated encoders. By separately encoding the entire video through the cause
and effect encoders, without requiring explicit cause-effect segmentation, and then combining them
to generate the final caption, CEN is able to better understand the causal-temporal narrative. The
primary contributions of our work are:

• Introducing for the first time CTN captions benchmark dataset with causal-temporal narrative
captions, automatically evaluated and humanly validated.

• A novel CEN network for learning causal-temporal narrative information from the videos
explicitly.

• Extensive experiments demonstrating CEN’s superior performance on CTN, setting a new
SOTA in causal-temporal narrative learning.

In addition, our work demonstrates strong generalization capabilities through cross-dataset evaluations
and outperforms even fine-tuned SOTA vision-language models such as VideoLLaVA Lin et al. (2023)
and ShareGPT4Video Chen et al. (2024) in generating causal-temporal narratives. Our work marks a
significant step forward in video captioning research by explicitly addressing the challenges of causal-
temporal narrative understanding. The CTN captions benchmark dataset and the CEN architecture
provide a comprehensive framework for learning and generating narrative-based video descriptions.
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2 RELATED WORK

2.1 BENCHMARKS

MSVD Chen & Dolan (2011) is a benchmark focused on human activities, providing a platform for
evaluating video captioning models. The captions in MSVD often describe the observable actions
without delving into the underlying motivations or the cause-effect relationships between the events.
MSR-VTT Xu et al. (2016) is a large-scale benchmark with diverse video content, encompassing
a wide range of topics and genres. The captions often focus on describing the observable content
without capturing the causal links between the events or the temporal progression of the narrative.
As a result, models trained on MSVD and MSR-VTT may struggle to generate descriptions that
accurately reflect the causal and temporal dynamics in the videos.
While recent benchmarks like NExT-QA Xiao et al. (2021) and EgoSchema Mangalam et al. (2024)
have made strides in incorporating causal and temporal reasoning in video understanding, they
focus primarily on question-answering tasks rather than generating comprehensive causal-temporal
narratives. NExT-QA introduces multi-choice and open-ended question-answering tasks focusing on
specific question-answer pairs that often target single events or actions. In contrast, our CTN captions
provide a more comprehensive narrative that captures the causal and temporal relationships across
the entire video sequence (see Appendix A.7 for a detailed comparison). EgoSchema Mangalam et al.
(2024), on the other hand, emphasizes long-form video understanding and temporal reasoning but
does not explicitly focus on causal-temporal narrative.
Similarly, efforts like VCR Zellers et al. (2019), V2C Fang et al. (2020), and Motivation Vondrick
et al. (2016) integrate causality into their analysis of visual description or question-answering, relying
heavily on commonsense reasoning for generating predictions. VCR Zellers et al. (2019) focuses on
visual commonsense reasoning, V2C Fang et al. (2020) aims to generate commonsense descriptions
for video captioning, and Motivation Vondrick et al. (2016) explores the prediction of motivations
behind actions in videos. However, these works primarily rely on commonsense reasoning and do not
delve into the causal and temporal structures underpinning video narratives. Our CTN goes beyond
existing benchmarks by explicitly modeling causal-temporal narrative in a single, coherent caption,
enabling a more comprehensive understanding of video content.

2.2 VIDEO CAPTIONING

Video captioning techniques have evolved from LSTM-based Gao et al. (2017); Song et al. (2017);
Nadeem et al. (2023) frameworks to the latest designs using SOTA GNNs Hendria et al. (2023); Zhang
et al. (2020); Pan et al. (2020) and Transformers Wang et al. (2022); Lin et al. (2022); Yang et al.
(2023), with a focus on enhancing the complexity of captions through the injection of multimodal data.
Despite these advancements, current architectures often struggle to capture the intricate temporal
sequences and causal relationships in video storytelling. To bridge this gap, video captioning can
benefit from cross-fertilization with ideas and strategies developed in related fields, such as action
recognition Sun et al. (2022); Wang et al. (2016); Kazakos et al. (2019); Xiao et al. (2020); Chen &
Ho (2022); Gao et al. (2020); Panda et al. (2021); Sardari et al. (2023); Alfasly et al. (2022); Awan
et al. (2024); Planamente et al. (2021); Zhang et al. (2022), event localization Tian et al. (2018); Lin
et al. (2019); Duan et al. (2021); Lin et al. (2021), and question-answering Alamri et al. (2019); Hori
et al. (2019); Schwartz et al. (2019); Geng et al. (2021); Yun et al. (2021); Li et al. (2022a); Shah
et al. (2022); Nadeem et al. (2024). The integration of causal reasoning Liu et al. (2022); Xue et al.
(2023) has shown promise in enhancing the ability of neural networks to discern causal relationships,
leading to improved performance in image captioning Liu et al. (2022) and visual question answering
Xue et al. (2023). However, current SOTA models still struggle to effectively handle the narrative
complexity in videos.
Recent advancements in vision-language models (VLMs) such as VideoLLaVA Lin et al. (2023) and
ShareGPT4Video Chen et al. (2024) have shown promising results in various video understanding
tasks. However, as our experiments show (see Section 4.3), even these advanced models struggle
with generating accurate causal-temporal narratives. In light of these challenges, our work explicitly
addresses the limitations of the current approaches and provides a platform for causal-temporal
narrative learning by introducing NarrativeBridge, a comprehensive framework that encompasses the
CTN benchmark dataset and the CEN architecture.

3 METHOD

NarrativeBridge addresses the limitations of existing benchmarks and models in capturing causal-
temporal narrative. It consists of two key components: (i) the CTN captions benchmark, which
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Figure 2: CTN caption generation pipeline. θ indicates a threshold.
provides a rich representation of cause-and-effect relationships and event sequences in video content,
and (ii) the CEN architecture, designed to learn and articulate these causal-temporal narrative
elements.
Problem Statement: Existing video captioning benchmarks lack the intricate causal-temporal
narrative inherent in video content. SOTA video captioning methods also fall short in articulating the
cause-and-effect relationships and temporal sequences that drive the events in the video (see Section
4.3).

3.1 CTN CAPTIONS BENCHMARK DATASET

To address the challenges of existing benchmarks in representing causal and temporal relationships
within video content, we propose an approach that harnesses the potential of LLMs through the
few-shot prompting technique Brown et al. (2020). Our method generates CTN captions without
the need for model fine-tuning, leveraging the inherent generative capabilities of LLMs to produce
captions that encapsulate causal-temporal narrative structures. Figure 2 shows the CTN caption
generation pipeline, which consists of two key steps: prompt design, LLM-based caption generation
and evaluation.

You are an advanced language model tasked with generating causal-temporal narrative captions for a

video. However, you cannot directly access the video itself. Instead, you will be provided with a

series of captions that outline the key events and scenes in the video. Your task is to generate a

concise Cause and Effect scenario, based on the information provided in the descriptive captions.

Be careful, your generated Cause and Effect statements should fulfill the following requirements:

1. Your narrative should be grounded in the information provided by the descriptive captions.

2. Cause and Effect scenario is relevant.

3. It should not introduce any new events or details not mentioned.

4. Avoid implying conclusions.

5. Maintain temporal consistency with the provided captions.

6. Use plain English and direct sentences.

7. Cause and Effect statements each limited to a maximum of 15 words.

8. Do not include any additional text before or after the JSON object.

Here are the examples of Cause and Effect:

[Examples]:

[{’Cause’: ’the student overslept due to a malfunctioning alarm clock’, ’Effect’: ’missed catching the

bus to school’}, {’Cause’: ’she absentmindedly skipped applying moisturizer after taking a long hot

shower’, ’Effect’: ’her skin became dry and flaky’}, {’Cause’: ’he carelessly neglected taking his

prescribed allergy medication’, ’Effect’: ’suffered a severe sneezing fit’}, {’Cause’: ’the exhausted

soccer player recklessly fouled an opponent in the penalty area’, ’Effect’: ’the opposing team was

awarded a crucial penalty kick’}, {’Cause’: ’due to unforeseen road closures they found themselves

stuck in heavy traffic’’, ’Effect’: ’missed out on experiencing the opening act of the concert’}]

Now please generate only one Cause and Effect presented in a JSON format based on the following

descriptive captions.

[Descriptive Captions]:

<descriptive_captions>

[Causal Temporal Narrative]:

Prompt 1: LLM Prompt used in our CTN captions generation.

Prompt Design: The prompt design step is crucial in guiding the LLM to generate causal-temporal
narrative captions. The input to the CTN caption generation are the original video captions from
existing benchmarks. We design a prompt that include a small set of carefully selected example
captions, illustrating the desired output structure and highlighting the key aspects of causal-temporal
narrative. We design Prompt 1 which guides LLM to generate causal-temporal narrative. The prompt
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Figure 3: The two-stage Cause-Effect Network (CEN) architecture. Stage 1: Separate Cause
(Ecause) and Effect (Eeffect) video encoders, pretrained using CLIP-ViT, learn specialized video
representations. Corresponding text encoders (Tcause and Teffect) encode the cause and effect
portions of the CTN caption. Contrastive losses are applied to align the video and text embeddings.
Stage 2: The learned cause and effect video features are encoded separately (Enccause and Enceffect)
and concatenated before being input to the decoder, which generates the final CTN caption.

sets clear requirements for grounding the captions in the provided descriptive context maintains
temporal consistency, and avoids unsupported details. The illustrative examples demonstrate the
desired format, facilitating the generation of plainly written, length-constrained Cause and Effect
statements that capture the video’s causal-temporal narrative. By explicitly outlining instructions and
constraints, the carefully designed prompt steers the LLM’s generative capabilities towards producing
CTN captions. Further details are provided in Appendix A.2 and A.3.
CTN Caption Generation and Automatic Evaluation: We send Prompt 1 into the Mixtral of
Experts LLM Jiang et al. (2024), which generates CTN captions. The LLM’s advanced natural
language understanding and generation capabilities, combined with the few-shot prompting approach,
enable the production of captions that encapsulate complex causal and temporal relationships. To
ensure the quality and relevance of the generated CTN captions, we employ the EMScore Shi et al.
(2022) metric for evaluation. EMScore directly measures the consistency between a caption and the
video content, and has been shown to be more effective than other metrics de Souza Inácio & Lopes
(2023) in evaluating video relevance without referenced captions. We set a threshold (θ = 0.2) for
the EMScore value, indicating adequate relevance to the video. Captions with an EMScore above
the θ are kept, while those below the θ are discarded, and the LLM generates a new caption. This
iterative refinement process continues until a caption meets the EMScore threshold, ensuring that
the final captions efficiently describe the relevant events in the video. Further details are provided in
Appendix A.4.
Human Evaluation: To further validate the quality of our CTN captions, we conduct a human
evaluation study using standard practice Chen & Dolan (2011); Xu et al. (2016). We randomly sample
100 videos out of 11,970 videos (10,000 MSRVTT-CTN and 1,970 MSVD-CTN) using proportional
stratified random sampling, which yields a margin of error of 8.2% at a 90% confidence level. Five
independent domain experts evaluate the videos and the CTN captions on three criteria: causal
accuracy - the degree to which the caption correctly identifies and describes cause-effect relationships;
temporal coherence - the extent to which the caption accurately represents the sequence of events;
and relevance - how well the caption reflects the overall content. Each rater does 300 evaluations and
each criterion is rated on a 5-point Likert scale. Further details are provided in Appendix A.5.

3.2 PROPOSED CAUSE-EFFECT NETWORK (CEN)

Existing SOTA video captioning methods based on LSTMsNadeem et al. (2023), GNNsHendria
et al. (2023), and TransformersWang et al. (2022) lack dedicated mechanisms to explicitly model the
intricate causal-temporal narrative sequences. As shown in Figure 3, our proposed CEN employs
a two-stage approach to address this limitation (see Section 3. In Stage 1 (Section 3.2.1), CEN
learns specialized cause and effect video representations using separate encoders trained on the
corresponding portions of the CTN captions. The input is raw video frames from the entire video
without requiring explicit segmentation of cause-effect regions, and the output is the learned cause
and effect features extracted from the encoders. The learned video features from Stage 1 are then
passed to Stage 2 (Section 3.2.2), which utilizes a sequence-to-sequence transformer-based network
with two new encoders to generate the final captions. The parameters of stage 1 encoders are frozen
at this stage. The cause and effect video features are separately encoded and then concatenated
before being input to the decoder. This allows the model to synthesize the specialized representations

5



Published as a conference paper at ICLR 2025

learned in Stage 1 and generate captions that accurately capture the causal and temporal relationships
in the videos.

3.2.1 STAGE 1: CAUSAL VISUAL ENCODING

For the CEN network to learn causal-temporal narrative, we design two separate visual encoding
models trained on two parts of the captions (see Figure 3).
(1) Cause Video Encoder Ecause: Trained on the cause captions part describing the initiating events;
(2) Effect Video Encoder Eeffect: Trained on the effect part of the captions capturing the conse-
quential outcomes.
We instantiate Ecause and Eeffect as two separate instances of the CLIP-ViT (ViT-B/32) model
Radford et al. (2021), adapted from CLIP4Clip Luo et al. (2022) (see Appendix A.6 for more details).
For both Cause and Effect text encoders (Tcause and Teffect respectively), we employ a 12-layer
transformer with a hidden size of 512 and 8 attention heads, using the weights from the pre-trained
CLIP Radford et al. (2021) text encoder. As in CLIP Radford et al. (2021), the [EOS] token’s
representation from the last layer of the text encoders is used as the feature representation for the
input text. Similar to CLIP4Clip, we use mean pooling for the video embedding and then, adopt
cosine similarity to measure the similarity between the video embedding (mean pooled) and the text
embedding. Given a video embedding r̂i and a text embedding tj , the similarity function is defined

as s(r̂i, tj) =
t⊤j r̂i

|tj ||r̂i| . During training, each model is optimized using a contrastive loss, as in CLIP
Radford et al. (2021), over its respective cause/effect portion from CTN captions. For a batch of N
video-cause text pairs (vi, ci) and video-effect text pairs (vi, ei), the contrastive losses for the cause
(Lcause) and effect (Leffect) video encoders are defined in 1 and 2 respectively:

Lcause = Lv2t(Ecause(vi), Tcause(ci)) + Lt2v(Ecause(vi), Tcause(ci)), (1)
Leffect = Lv2t(Eeffect(vi), Teffect(ei)) + Lt2v(Eeffect(vi), Teffect(ei)), (2)

where Lv2t and Lt2v are the video-to-text and text-to-video contrastive losses, respectively, defined as:

Lv2t = − 1

N

N∑
i=1

log
exp(s(r̂i, ti))∑N
j=1 exp(s(r̂i, tj))

, (3) Lt2v = − 1

N

N∑
i=1

log
exp(s(r̂i, ti))∑N
j=1 exp(s(r̂j , ti))

(4)

After training, we freeze the weights of Ecause and Eeffect for the second stage, where we extract
the cause and effect video features, respectively.

3.2.2 STAGE 2: CTN CAPTION GENERATION

In the second stage (see Figure 3), we employ a sequence-to-sequence transformer-based network,
consisting of two separate encoders (Enccause and Enceffect) for processing cause and effect video
features, respectively, and a decoder Dec for generating the final CTN captions. The encoded cause
and effect video representations are concatenated before being sent to the decoder. Both encoders
and the decoder are initialized with the weights from the pre-trained Uni-VL model Luo et al. (2020).
Given a video v, we first extract the cause and effect video features using the pre-trained Ecause and
Eeffect encoders:

Fcause = Ecause(v), (5) Feffect = Eeffect(v). (6)
The extracted features Fcause and Feffect are separately encoded using Enccause and Enceffect,
each consisting of two transformer layers, to obtain the respective encoded representations: hcause =
Enccause(Fcause) and heffect = Enceffect(Feffect).
The encoded cause and effect representations are concatenated to form a single representation
hconcat = [hcause;heffect], which is then input to the decoder Dec, consisting of two transformer
layers, to generate the CTN caption ŷ by attending to hconcat at each time step t:

ŷt = Dec(hconcat], ŷ<t), (7)
where ŷ<t denotes the previously generated words. For training and evaluation, we combine the cause
and effect parts of the ground-truth CTN caption with a space in between to form a single, coherent
caption. We opt for space separation to maintain consistency with the raw input format of the training
datasets (MSRVTT and MSVD), which contain no separators and also, for a fair comparison with the
SOTA. This combined caption serves as the target for the decoder during training and the reference
for evaluating the generated captions using diffferent evaluation metrics. The entire network is trained
end-to-end using the cross-entropy loss between the generated caption ŷ and the ground-truth CTN
caption y:

Lcaption = − 1

T

T∑
t=1

|V |∑
c=1

yt,c log(ŷt,c), (8)
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where: T is the length of the caption. |V | is the size of the vocabulary. yt,c is the ground-truth label
for the c-th word at time step t (1 if the word is present, 0 otherwise). ŷt,c is the predicted probability
of the c-th word at time step t. Finally, our total loss Ltotal is:

Ltotal = Lcause + Leffect + Lcaption (9)
This two-stage approach first encodes the causal aspects into the video representations, facilitating the
generation of coherent causal-temporal narrative descriptions in the second stage (see Experiments
section 4) to generate CTN captions as final output.

4 EXPERIMENTS
We conduct extensive experiments to validate our proposed CEN architecture on the new CTN video
captioning benchmark dataset. We present comprehensive evaluation against the state-of-the-art video
captioning methods and vision-language models (VLMs) demonstrating the superior performance of
the proposed network on the CTN benchmark dataset.

4.1 EVALUATION METRICS

For quantitative comparison, we use three metrics as per Celikyilmaz et al. (2020); CIDEr (C)
Vedantam et al. (2015); Shi et al. (2022): Measures alignment of generated captions with references
by highlighting frequently occurring terms, capturing the ability to reproduce salient causal-temporal
narrative elements. ROUGE-L (R-L) Lin (2004): Evaluates the longest common subsequence
between generated and reference captions, considering both precision and recall for assessing
semantic similarity, including temporal dynamics and causal relationships. SPICE (S) Anderson et al.
(2016): Evaluates semantic quality by considering the overlap of scene graphs between generated
and reference captions, effectively assessing the ability to capture causal relationships and event
sequences.

4.2 IMPLEMENTATION DETAILS

We generate the CTN captions using the Mixtral of Experts LLM Jiang et al. (2024), running on
A100-80GB GPUs. For the SOTA models, we follow the hyperparameter settings specified in their
respective methods for training on the MSR-VTT and MSVD datasets. Our CEN model is trained
using the Adam optimizer with learning rates of 1 × 10−4 (stage 1) and 1 × 10−6 (stage 2) and a
batch size of 64 for 10 epochs (stage 1) and 50 epochs (stage 2). For comparison with recent Vision-
Language Models (VLMs), we fine-tune VideoLLaVA Lin et al. (2023) and ShareGPT4Video Chen
et al. (2024) using both LoRA and simple fine-tuning approaches on our CTN benchmark dataset.
We use the recommended hyperparameters for each model during fine-tuning. Further details are
provided in the Appendix A.1.

4.3 RESULTS AND DISCUSSION

We comprehensively evaluate the performance of our proposed CTN generation pipeline and also,
the CEN architecture against several SOTA methods, including SEM-POS Nadeem et al. (2023),
AKGNN Hendria et al. (2023), and GIT Wang et al. (2022) and the VLMs VideoLLaVA Lin et al.
(2023) and ShareGPT4Video Chen et al. (2024) on our generated CTN captions benchmark datasets.

4.3.1 QUANTITATIVE RESULTS

CTN Captions Benchmark Dataset: We generate our CTN captions (1 caption per video) using
two widely-used video captioning datasets: 1) MSRVTT Xu et al. (2016), consists of 10,000 videos
with 20 human-annotated captions per video, and MSVD Chen & Dolan (2011), with 1,970 videos
focused on human activities with approx. 50 captions per video. The length of the caption is on
avg. 19 words (cause=10 words, effect=9 words) for MSRVTT-CTN and 17 words (cause=8 words,
effect=7 words) for MSVD-CTN. Then, we train as well as test our CEN, SOTA methods and VLMs
on the MSVRTT-CTN and MSVD-CTN.
Our CTN generation approach generates good quality captions with 52.1% CTN captions exceeding
0.27 EMScore (threshold=0.2). Then, in the human evaluation study, the overall mean quality score of
4.8 (σ = 0.40) on a 5-point Likert scale, indicates high performance across all criteria; 93% of captions
receive scores of 4 or higher across all three dimensions, with 84% achieving perfect scores. To ensure
reliability across raters, we calculate the intraclass correlation coefficient (ICC). The ICC for absolute
agreement among raters is 0.87 (95% CI: 0.83-0.91), indicating high inter-rater reliability. These
results validate our automatic generation and evaluation process, demonstrating that our CTN captions
benchmark dataset provides high-quality, coherent representations of causal-temporal narratives in
videos. Further details are provided in Appendix A.5.
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Table 1: Comparison of our CEN architecture against SOTA methods and VLMs on the MSVD-CTN
and MSRVTT-CTN datasets. The best results in each category are in bold. R-L, C, and S denote
ROUGE-L, CIDEr, and SPICE scores, respectively.

Method MSVD-CTN MSRVTT-CTN
R-L (↑) C (↑) S (↑) R-L (↑) C (↑) S (↑)

SEM-POS 25.39 37.16 14.46 20.11 26.01 12.09
AKGNN 25.11 35.08 14.55 21.42 25.90 11.99

GIT 27.51 45.63 15.58 24.51 32.43 13.70
VideoLLaVA (Zero-shot) 21.80 30.55 14.67 19.33 16.24 12.49
VideoLLaVA (LoRA FT) 24.56 34.98 15.41 21.21 18.97 13.28
VideoLLaVA (Simple FT) 25.61 36.12 16.09 22.18 19.98 13.07

ShareGPT4Video (Zero-shot) 21.66 27.06 14.06 20.27 17.08 12.21
ShareGPT4Video (LoRA FT) 24.39 30.72 14.83 22.09 19.83 13.02
ShareGPT4Video (Simple FT) 25.32 31.67 14.92 23.01 20.76 13.28

CEN (Ours) 31.46 63.51 19.25 27.90 49.87 15.76

CTN vs Original captions - MSRVTT
CTN
Original

(a)

CTN captions Cause-Effect Mapping - MSRVTT
Cause
Effect

(b)
Figure 4: (a) UMAP visualization of video features learned from CTN (red) and original (blue)
captions on MSR-VTT, showing non-overlapping feature spaces. (b) UMAP visualization of video
features learned from cause (black) and effect (orange) parts of CTN captions on MSRVTT-CTN,
showing near-complete overlap.
Cause-Effect Network (CEN): CEN outperformed all SOTA methods and the VLMs across all

metrics and datasets as shown in Table 1. On MSVD-CTN, CEN surpassed the next best (GIT)
by 3.95 ROUGE-L, 17.88 CIDEr, and 3.67 SPICE points. On MSRVTT-CTN, CEN led GIT by
3.39 ROUGE-L, 17.44 CIDEr, and 2.06 SPICE points. These significant gains highlight CEN’s
effectiveness in capturing causal narratives and temporal dynamics.
We compare CEN’s performance against zero-shot and fine-tuned (FT) versions of VideoLLaVA and
ShareGPT4Video. CEN consistently outperforms these models, even after fine-tuning, demonstrating
the effectiveness of our specialized architecture for causal-temporal narrative generation. For example,
on MSRVTT-CTN, CEN achieves a CIDEr score of 49.87, compared to 19.98 for VideoLLaVA
(Simple FT) and 20.76 for ShareGPT4Video (Simple FT).
To gain further insights into the effectiveness of the CTN captions in capturing causal-temporal
narratives, we visualize the video feature representations learned by CLIP-ViT encoders trained
on CTN and Original captions using UMAP McInnes et al. (2018) dimensionality reduction from
high dimension onto a 2D plane. In Figure 4(a), we compare the representations learned from CTN
captions (red) and Original captions (blue) on the MSR-VTT dataset. The non-overlapping feature
spaces indicate that CTN captions capture the causal and temporal relationships not present in the
original captions. In Figure 4(b), we visualize the representations learned from the cause (black) and
effect (orange) parts of the CTN captions. The near-complete overlap suggests a strong correlation
between the cause and effect components, aligning with the inherent structure of causal-temporal
narratives and supporting the design of the CEN architecture.
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Table 2: Ablation study results on the MSVD-CTN
and MSRVTT-CTN datasets. Ecombined, w/o FT CLIPs,
Only Ecause and Only Eeffect are baselines of our CEN
architecture, while Zero Shot X and Fine-tune X repre-
sent cross-dataset evaluation settings. The best results in
each category are in bold.

Method MSVD-CTN MSRVTT-CTN
R-L (↑) C (↑) S (↑) R-L (↑) C (↑) S (↑)

Ecombined 30.93 55.72 17.04 27.34 45.97 15.07
w/o FT - single CLIP 27.81 46.23 15.82 25.34 32.31 14.27
w/o FT - Two CLIP 28.40 53.84 16.58 26.10 40.92 14.55

Only Ecause 30.72 56.42 18.43 27.19 47.10 15.21
Only Eeffect 30.70 57.14 17.89 27.24 45.58 15.19
Zero Shot X 27.16 39.65 14.45 24.73 29.76 12.26
Fine-tune X 31.78 65.60 19.39 27.47 47.74 15.65

CEN (Ours) 31.46 63.51 19.25 27.90 49.87 15.76

0.0 0.1 0.2 0.3 0.4
EMScore

66.4% above 

EMScore Distribution w/o CTN Automatic Evaluation

Distribution
=0.2

Figure 5: EMScore distribution of initial CTN
captions showing 66.4% exceed quality thresh-
old θ=0.2

4.3.2 ABLATION RESULTS

CTN Captions Benchmark Dataset: Figure 5 demonstrates the distribution of caption quality
without automatic evaluation filtering. The EMScore distribution across 11,970 videos shows 66.4%
of initially generated captions achieve scores above θ=0.2, with a peak around EMScore=0.24. The
remaining 33.6% of captions fall below our quality threshold, highlighting the importance of our
automatic evaluation and regeneration process in maintaining CTN quality.
Cause-Effect Network (CEN): To examine the effectiveness of CEN, we compare it with 6 baselines
in Table 2:
a) Ecombined: Instead of using two separate video encoders for cause and effect, we train one
CLIP-ViT using the combined cause and effect captions separated by space for the text encoder.
The performance drops across all metrics and datasets compared to the CEN architecture, which
underscores the benefits of dedicated encoders for capturing cause and effect dynamics.
b) w/o FT - Single CLIP: This ablation is performed using one CLIP encoder and no Fine-tuning (FT)
on cause, effect, or cause+effect (combined). The results show the effectiveness of CTN fine-tuning.
c) w/o FT - Two CLIP: This ablation is performed using two CLIP Ecause and Eeffect encoders (as in
our CEN) without performing the Stage 1 fine-tuning (FT) on cause and effect. This demonstrates
the effectiveness of CTN fine-tuning and also, the performance increase in comparison to "w/o FT -
Single CLIP" demonstrates the effectiveness of CEN.
d) Only Ecause and Only Eeffect: These ablations employ only the cause encoder or only the effect
encoder, respectively. While retaining reasonable performance, both variants fall short of the
performance of the full model across all metrics and datasets.
e) Zero Shot X: In this zero-shot setting, we evaluate the models trained on one dataset (MSVD-CTN
or MSRVTT-CTN) against the other dataset, without any fine-tuning on the other dataset. The results
are either better than or comparable with SOTA and VLMs in Table 1.
f) Fine-tune X: Similar to the Zero Shot X, this variant involves fine-tuning the models trained on
cross-datasets. Notably, this fine-tuning process leads to improved performance on the MSVD dataset.
This observation demonstrates the potential for transfer learning of CEN model from larger datasets
i.e. MSRVTT-CTN and the ability to leverage their knowledge effectively on smaller datasets i.e.
MSVD-CTN through fine-tuning Lin et al. (2022); Ventura et al. (2024)
Overall, the ablation study validates the efficacy of our proposed CEN architecture and approach,
emphasizing the significance of dedicated encoders for capturing cause and effect relationships
independently as the performance drops are observed in Ecombined, w/o FT - Single CLIP, w/o FT
- Two CLIP, Only Ecause, and Only Eeffect baselines. We also provide LLM-based evaluations in
Appendix A.9.

4.3.3 QUALITATIVE RESULTS

Qualitative examples, in Figure 6, demonstrate CEN’s strength in accurately articulating causal
relationships and event sequences, while SOTA methods and recent VLMs struggle. For example:
(a) Video game scene: CEN accurately captures the causality ("performs a fatality move" causing
"killing another"), while other methods miss this crucial relationship. SEM-POS and GIT provide
overly simplistic descriptions, while AKGNN generates irrelevant details. VLMs (Video-LLaVA
and ShareGPT4Video) misinterpret the scene entirely.; (b) Paper folding: CEN correctly identifies
both the cause (folding paper) and effect (creating a paper airplane). Other methods either miss
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33

CTN caption GT: 'a man is folding a piece of paper a paper airplane is being created'

(a) (b)

(c) (d)

CTN caption GT: 'a player performs a fatality move in mortal kombat another character
is killed in the game'

CEN (OURS): 'a video game character performs a fatality move in mortal kombat video
game killing another'  SEM-POS: 'a player is playing a game'   AKGNN: 'freddy krueger
is playing a video game and freddy krueger in a video game featuring freddy krueger and
freddy krueger and freddy krueger in a video game'  GIT: 'a boy is playing a video
game' Video-LLaVA: 'a man and a woman fighting with each other, and the woman'
ends up winning' ShareGPT4Video: 'a man in a red and black striped shirt holding a
knife and stabbing a woman in a red dress'

CTN caption GT: 'a boy decided to perform on stage the audience watched and listened
to his singing'

CTN caption GT: 'a soccer player kicked the ball with precision the ball successfully
went into the goal'

CEN (OURS) : 'a soccer player kicked the ball with precision the ball went into the goal
scoring a point'  SEM-POS: 'a player is kicking a ball'  AKGNN: 'the soccer player scored
a goal and the team scored a goal'  GIT: 'soccer players are playing soccer' Video-
LLaVA: 'a soccer player in a red and white jersey running on the field' ShareGPT4Video:
'a soccer game is being played on a field with players wearing black and white uniforms'

CEN (OURS) : 'a boy decided to sing a song on stage the audience watched and
listened to him'  SEM-POS: 'a man is singing a song'  AKGNN:  'a man is singing on
stage'  GIT: 'a boy is singing a song' Video-LLaVA: 'a young man sings passionately on
stage' ShareGPT4Video: 'a man sings into a microphone while another man plays the
piano'

CEN (OURS) : 'a man is folding a piece of paper a paper airplane is created'  SEM-POS:
'a man is creating an air plane'  AKGNN: 'a person is folding a piece of paper and the
person is making a paper airplane'  GIT: 'a man is making a paper plane' Video-LLaVA:
'a person folding a piece of paper into a dress shape' ShareGPT4Video: 'a person folds
a piece of paper in half and then in half again to make a small square'

Figure 6: Qualitative examples across scenarios like video games, paper folding, soccer, and singing.
CEN (Ours) captions accurately capture causal narratives and temporal sequences from ground truth,
outperforming SOTA video captioning methods.

the causal relationship or misinterpret the action (e.g., ShareGPT4Video’s "small square" instead of
an airplane).; (c) Soccer scene: CEN accurately links the precise kick to the goal, capturing both
cause and effect. Other methods either focus on a single action or provide generic descriptions of
a soccer game.; (d) Singing performance: CEN captures the boy’s decision to perform (cause)
and the audience’s reaction (effect). Other methods mostly describe the act of singing without the
causal-temporal context.
Overall, quantitative and qualitative results showcase CEN’s superior performance in understanding
and generating causal-temporal narrative video captions compared to existing SOTA methods and
recent VLMs. More results are provided in Appendix A.10.

5 LIMITATIONS

While our work represents a significant step forward in causal-temporal narrative video captioning,
complex onvoluted causal relationships are still a challenge. This necessitates further architectural
enhancements for improved generalization. Explicit integration of spatial reasoning, multi-agent
interactions, and long-term dependencies could further enhance the robustness and applicability of
our approach. Despite these limitations, our work opens up new avenues for innovative applications
and research directions, further solidifying the importance of causal-temporal narrative understanding
in video analysis tasks.

6 CONCLUSION

In this paper, we introduced for the first time a Causal-Temporal Narrative (CTN) captions benchmark
dataset and proposed a novel Cause-Effect Network (CEN) tailored for causal-temporal narrative
video captioning. This work finds vast applications in automated video summarization, question-
answering, assistive technologies, surveillance, and educational content creation. The CTN captions
benchmark dataset provides a comprehensive testbed for evaluating video understanding models’
ability to grasp complex temporal and causal dynamics, which will be released for research purpose on
https://narrativebridge.github.io/. And CEN explicitly models cause-effect relationships and temporal
dynamics to generate rich, contextually relevant descriptions capturing nuanced causal-temporal
narrative in videos, demonstrating significant performance improvement over SOTA methods (Section
4). NarrativeBridge lays the foundation for a paradigm shift, where models comprehend underlying
causal-temporal narrative driving events, unlocking new frontiers in contextually aware human-
machine interactions with video.
For future work, we aim to integrate CTN caption generation with existing image captioning tech-
niques, to annotate unlabeled videos with causal-temporal narrative labels. A few frames of the
video will be labelled using off-the-shelf image captioning methods, and CTN caption generation
will exploit the labelled frames to generate one coherent caption for the unlabelled video (see Ap-
pendix A.8). This synergistic approach opens new avenues for comprehensive video understanding
and annotation, enabling more robust and accurate video analysis pipelines.

10

https://narrativebridge.github.io/


Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This research was partly supported by the British Broadcasting Corporation Research and De-
velopment (BBC R&D), Engineering and Physical Sciences Research Council (EPSRC) Grant
EP/V038087/1 “BBC Prosperity Partnership: Future Personalised Object-Based Media Experiences
Delivered at Scale Anywhere”.

ETHICS STATEMENT

Our work on NarrativeBridge focuses on improving video captioning through causal-temporal
narrative understanding. We use publicly available datasets (MSR-VTT and MSVD) and have cited
their creators appropriately. We will release our new CTN captions benchmark dataset on our project
webpage https://narrativebridge.github.io/, where we also mention the licenses of all assets used.
Our research does not involve human subjects or crowdsourcing, and we do not use or curate data
containing personally identifiable information or offensive content. We have read and adhered to the
ethics review guidelines for ICLR submissions. We acknowledge potential ethical concerns (e.g.,
privacy in surveillance, risk of misleading content) but are committed to responsible development.

REPRODUCIBILITY STATEMENT

We will release the CTN captions benchmark dataset and CEN model weights upon paper publication
on our project website https://narrativebridge.github.io/. We provide comprehensive information on
datasets (Section 4.3.1), evaluation metrics (Section 4.1), and implementation details (Section 4.2
and Appendix A.1). We specify data splits, hyperparameters, and other key details necessary for
reproducing our results. We include information about the type of GPUs and compute resources used
in Section 4.2 and Appendix A.1. We properly cite all existing datasets (MSR-VTT, MSVD) and
models (CLIP-ViT, Uni-VL) used in our work.

REFERENCES

Huda Alamri, Vincent Cartillier, Abhishek Das, Jue Wang, Anoop Cherian, Irfan Essa, Dhruv Batra,
Tim K Marks, Chiori Hori, Peter Anderson, et al. Audio visual scene-aware dialog. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7558–7567, 2019.

Saghir Alfasly, Jian Lu, Chen Xu, and Yuru Zou. Learnable irrelevant modality dropout for multimodal
action recognition on modality-specific annotated videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20208–20217, 2022.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional
image caption evaluation. In Computer Vision–ECCV 2016: 14th European Conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pp. 382–398. Springer,
2016.

Mahrukh Awan, Asmar Nadeem, Muhammad Junaid Awan, Armin Mustafa, and Syed Sameed
Husain. Attend-fusion: Efficient audio-visual fusion for video classification. arXiv preprint
arXiv:2408.14441, 2024.

Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian, and Mihaela van der Schaar. Causal deep
learning. arXiv preprint arXiv:2303.02186, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799, 2020.

David Chen and William B Dolan. Collecting highly parallel data for paraphrase evaluation. In
Proceedings of the 49th annual meeting of the association for computational linguistics: human
language technologies, pp. 190–200, 2011.

11

https://narrativebridge.github.io/
https://narrativebridge.github.io/


Published as a conference paper at ICLR 2025

Jiawei Chen and Chiu Man Ho. Mm-vit: Multi-modal video transformer for compressed video action
recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1910–1921, 2022.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and generation
with better captions. arXiv preprint arXiv:2406.04325, 2024.

Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, Jinhui Tang, and Jing Liu.
Valor: Vision-audio-language omni-perception pretraining model and dataset. arXiv preprint
arXiv:2304.08345, 2023.

Andrei de Souza Inácio and Heitor Silvério Lopes. Evaluation metrics for video captioning: A survey.
Machine Learning with Applications, 13:100488, 2023.

Bin Duan, Hao Tang, Wei Wang, Ziliang Zong, Guowei Yang, and Yan Yan. Audio-visual event
localization via recursive fusion by joint co-attention. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 4013–4022, 2021.

Zhiyuan Fang, Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang.
Video2commonsense: Generating commonsense descriptions to enrich video captioning. arXiv
preprint arXiv:2003.05162, 2020.

Lianli Gao, Zhao Guo, Hanwang Zhang, Xing Xu, and Heng Tao Shen. Video captioning with
attention-based lstm and semantic consistency. IEEE Transactions on Multimedia, 19(9):2045–
2055, 2017.

Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. Listen to look: Action
recognition by previewing audio. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10457–10467, 2020.

Shijie Geng, Peng Gao, Moitreya Chatterjee, Chiori Hori, Jonathan Le Roux, Yongfeng Zhang,
Hongsheng Li, and Anoop Cherian. Dynamic graph representation learning for video dialog
via multi-modal shuffled transformers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 1415–1423, 2021.

Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: journal of the Econometric Society, pp. 424–438, 1969.

Willy Fitra Hendria, Vania Velda, Bahy Helmi Hartoyo Putra, Fikriansyah Adzaka, and Cheol
Jeong. Action knowledge for video captioning with graph neural networks. Journal of King Saud
University-Computer and Information Sciences, 35(4):50–62, 2023.

Chiori Hori, Anoop Cherian, Tim K Marks, and Takaaki Hori. Joint student-teacher learning for
audio-visual scene-aware dialog. In INTERSPEECH, pp. 1886–1890, 2019.

Vladimir Iashin and Esa Rahtu. Multi-modal dense video captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 958–959, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Epic-fusion: Audio-visual
temporal binding for egocentric action recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5492–5501, 2019.

Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-Rong Wen, and Di Hu. Learning to answer
questions in dynamic audio-visual scenarios. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19108–19118, 2022a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022b.

12



Published as a conference paper at ICLR 2025

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, and
Lijuan Wang. Swinbert: End-to-end transformers with sparse attention for video captioning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
17949–17958, 2022.

Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang Frank Wang. Dual-modality seq2seq network for audio-visual
event localization. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2002–2006. IEEE, 2019.

Yan-Bo Lin, Hung-Yu Tseng, Hsin-Ying Lee, Yen-Yu Lin, and Ming-Hsuan Yang. Exploring cross-
video and cross-modality signals for weakly-supervised audio-visual video parsing. Advances in
Neural Information Processing Systems, 34:11449–11461, 2021.

Bing Liu, Dong Wang, Xu Yang, Yong Zhou, Rui Yao, Zhiwen Shao, and Jiaqi Zhao. Show,
deconfound and tell: Image captioning with causal inference. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18041–18050, 2022.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason Li, Taroon Bharti, and
Ming Zhou. Univl: A unified video and language pre-training model for multimodal understanding
and generation. arXiv preprint arXiv:2002.06353, 2020.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 508:
293–304, 2022.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. Advances in Neural Information
Processing Systems, 36, 2024.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Asmar Nadeem, Adrian Hilton, Robert Dawes, Graham Thomas, and Armin Mustafa. Sem-pos:
Grammatically and semantically correct video captioning. arXiv preprint arXiv:2303.14829, 2023.

Asmar Nadeem, Adrian Hilton, Robert Dawes, Graham Thomas, and Armin Mustafa. Cad-contextual
multi-modal alignment for dynamic avqa. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 7251–7263, 2024.

Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee, Adrien Gaidon, Ehsan Adeli, and Juan Carlos
Niebles. Spatio-temporal graph for video captioning with knowledge distillation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10870–10879, 2020.

Rameswar Panda, Chun-Fu Richard Chen, Quanfu Fan, Ximeng Sun, Kate Saenko, Aude Oliva,
and Rogerio Feris. Adamml: Adaptive multi-modal learning for efficient video recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7576–7585, 2021.

Mirco Planamente, Chiara Plizzari, Emanuele Alberti, and Barbara Caputo. Cross-domain first person
audio-visual action recognition through relative norm alignment. arXiv preprint arXiv:2106.01689,
2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

13



Published as a conference paper at ICLR 2025

Faegheh Sardari, Armin Mustafa, Philip JB Jackson, and Adrian Hilton. Pat: Position-aware
transformer for dense multi-label action detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2988–2997, 2023.

Idan Schwartz, Alexander G Schwing, and Tamir Hazan. A simple baseline for audio-visual scene-
aware dialog. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12548–12558, 2019.

Ankit Shah, Shijie Geng, Peng Gao, Anoop Cherian, Takaaki Hori, Tim K Marks, Jonathan Le Roux,
and Chiori Hori. Audio-visual scene-aware dialog and reasoning using audio-visual transformers
with joint student-teacher learning. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7732–7736. IEEE, 2022.

Yaya Shi, Xu Yang, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha.
Emscore: Evaluating video captioning via coarse-grained and fine-grained embedding matching.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
17929–17938, 2022.

Jingkuan Song, Zhao Guo, Lianli Gao, Wu Liu, Dongxiang Zhang, and Heng Tao Shen. Hierarchical
lstm with adjusted temporal attention for video captioning. arXiv preprint arXiv:1706.01231,
2017.

Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu.
Human action recognition from various data modalities: A review. IEEE transactions on pattern
analysis and machine intelligence, 2022.

Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization
in unconstrained videos. In Proceedings of the European Conference on Computer Vision (ECCV),
pp. 247–263, 2018.

Yapeng Tian, Chenxiao Guan, Justin Goodman, Marc Moore, and Chenliang Xu. Audio-visual inter-
pretable and controllable video captioning. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition workshops, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Lucas Ventura, Cordelia Schmid, and Gül Varol. Learning text-to-video retrieval from image
captioning. International Journal of Computer Vision, pp. 1–21, 2024.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell,
and Kate Saenko. Sequence to sequence-video to text. In Proceedings of the IEEE international
conference on computer vision, pp. 4534–4542, 2015.

Carl Vondrick, Deniz Oktay, Hamed Pirsiavash, and Antonio Torralba. Predicting motivations of
actions by leveraging text. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2997–3005, 2016.

Cheng Wang, Haojin Yang, and Christoph Meinel. Exploring multimodal video representation for
action recognition. In 2016 International Joint Conference on Neural Networks (IJCNN), pp.
1924–1931. IEEE, 2016.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100, 2022.

Todd Wilkens, Anthony Hughes, Barbara M Wildemuth, and Gary Marchionini. The role of narrative
in understanding digital video: An exploratory analysis. Proceedings of the American Society for
Information Science and Technology, 40(1):323–329, 2003.

14



Published as a conference paper at ICLR 2025

Fanyi Xiao, Yong Jae Lee, Kristen Grauman, Jitendra Malik, and Christoph Feichtenhofer. Audiovi-
sual slowfast networks for video recognition. arXiv preprint arXiv:2001.08740, 2020.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9777–9786, 2021.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5288–5296, 2016.

Jun Xu, Ting Yao, Yongdong Zhang, and Tao Mei. Learning multimodal attention lstm networks for
video captioning. In Proceedings of the 25th ACM international conference on Multimedia, pp.
537–545, 2017.

Dizhan Xue, Shengsheng Qian, and Changsheng Xu. Variational causal inference network for
explanatory visual question answering. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2515–2525, 2023.

Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset, Ivan Laptev,
Josef Sivic, and Cordelia Schmid. Vid2seq: Large-scale pretraining of a visual language model for
dense video captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10714–10726, 2023.

Heeseung Yun, Youngjae Yu, Wonsuk Yang, Kangil Lee, and Gunhee Kim. Pano-avqa: Grounded
audio-visual question answering on 360deg videos. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2031–2041, 2021.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6720–6731, 2019.

Yunhua Zhang, Hazel Doughty, Ling Shao, and Cees GM Snoek. Audio-adaptive activity recognition
across video domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13791–13800, 2022.

Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang, Weiming Hu, and Zheng-Jun Zha.
Object relational graph with teacher-recommended learning for video captioning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13278–13288, 2020.

15



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We first extract frames from the video clip and then encode them using the Cause and Effect Video
Encoders. We adopt a sampling strategy where we sample one frame per second, with a maximum
of 20 frames. This approach ensures that the sampled frames cover the entire duration of the video,
providing a comprehensive representation of the video content while maintaining computational
efficiency. For the fine-tuning experiment in Table 2, all the hyperparameters remain the same except
the learning rate i.e. 0.0000005. For our experimentation of the Cause and Effect Network (CEN), we
use standard splits of the MSVD Chen & Dolan (2011) and MSRVTT Xu et al. (2016) datasets. For
MSVD, we use 1200 videos for training, 100 for validation, and 670 for testing. For MSRVTT, we
use 6513 videos for training, 497 for validation, and 2990 for testing. These splits are commonly used
in video captioning research to ensure fair comparison with other methods. All the experiments in
Stage 1 and Stage 2 of our CEN are run using A100-80GB and RTX 3090-24GB GPUs respectively.
We implement SEM-POS Nadeem et al. (2023), AKGNN Hendria et al. (2023) and GIT Wang et al.
(2022) using RTX 3090-24GB, A100-80GB and A100-80GB GPUs respectively.
For comparison with Vision-Language Models (VLMs), we implement two fine-tuning approaches:
LoRA Fine-Tuning and Simple Fine-Tuning using A100-80GB GPUs. LoRA Fine-Tuning is applied
specifically to the LLM component, with a learning rate of 2e-4 for LoRA parameters. Simple
Fine-Tuning is applied to the entire model, using an AdamW Loshchilov (2017) optimizer with a
cosine learning rate schedule (initial learning rate: 1e-3, warmup ratio: 0.03).

A.2 PROMPT DESIGN PROCESS

In Section 3.1, we introduce our approach for generating Causal-Temporal Narrative (CTN) captions
using a large language model (LLM) and few-shot prompting. The prompt design played a crucial
role in guiding the LLM to generate captions that accurately capture the cause-effect relationships and
temporal dynamics in the video content. Figure 1 showcases the effectiveness of our few-shot based
prompt, which resulted in a coherent and contextually relevant CTN caption for the given video. To
further illustrate the importance of prompt design and the benefits of few-shot learning, we conduct
additional experiments with zero-shot prompting. In these experiments, we evaluate the performance
of the LLM in generating CTN captions without providing any example captions in the prompt.
Zero-Shot Prompting: Zero-shot prompting refers to the process of providing large language models
(LLMs) with a task prompt without any accompanying examples or demonstrations, requiring the
model to generate relevant responses based solely on its pre-trained knowledge and understanding
of the prompt. First, we aim to evaluate the performance of LLMs in generating causal-temporal
narrative (CTN) captions for videos without providing any few-shot examples.
To achieve this, we construct 4 distinct prompts, each with varying degrees of quality, and experi-
mented with all of them to assess their effectiveness in a zero-shot setting, starting with the most
challenging prompt and progressively improving the quality. Prompt 2 presents an extremely terse and
poorly structured set of instructions. It contains minimal context and information, merely instructing
the model to "Make Cause Effect thing from captions" and listing a set of numbered requirements
without providing clear explanations. As expected, the resulting captions (Figure 7) are of low quality
and often lack coherence and relevance to the video content. Moreover, the LLM generated multiple
captions instead of a single coherent caption, and the output format does not adhere to the specified
structure (a single JSON object containing the Cause and Effect statements).

Make Cause Effect thing from captions. Follow: 1. Use only caption info 2. Be relevant 3. No new stuff

4. No conclusions 5. Same time 6. Plain English short sentences 7. 15 words max 8. Just JSON.

[Descriptive Captions]:

<descriptive_captions>

[Causal Temporal Narrative]:

Prompt 2: Zero-shot LLM Prompt with minimal context and unexplained requirements for generating
cause-effect from captions.
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{ "1": {"Cause": "A car crashes", "Effect": "Guys play beer pong"},
"2": {"Cause": "A car drives through an open field", "Effect": "Kicks up
dirt"},
"3": {"Cause": "Unclear", "Effect": "A car flips over"},
"4": {"Cause": "Unclear", "Effect": "A car gets wracked"},
"5": {"Cause": "Unclear", "Effect": "A car is being flipped over"},
"6": {"Cause": "A dirt vehicle rides", "Effect": "It rolls"},
"7": {"Cause": "Unclear", "Effect": "A dune buggy flips over"},
"8": {"Cause": "Unclear", "Effect": "A four wheeler wrecks"},
"9": {"Cause": "A monster truck flips on its side", "Effect": "Several young
men shout while playing beer pong"},
"10": {"Cause": "A person drives an offroad car around a field", "Effect":
"Unclear"},
"11": {"Cause": "A person flips a go kart", "Effect": "A crowd cheers"},
"12": {"Cause": "Unclear", "Effect": "A race truck is crashing"},
"13": {"Cause": "A truck rolls over itself", "Effect": "Boys cheer on a
friend"},
"14": {"Cause": "Unclear", "Effect": "A truck tumbles over on itself"},
"15": {"Cause": "A tumbler crashes on a dirt road", "Effect": "Then a group of
guys play beer pong"},
"16": {"Cause": "A type of monster truck crashes", "Effect": "Men are shown
celebrating"},
"17": {"Cause": "Unclear", "Effect": "A vehicle flips over"},
"18": {"Cause": "Unclear", "Effect": "An off road vehicle crashes"},
"19": {"Cause": "Unclear", "Effect": "A car crashes while driving"},
"20": {"Cause": "Footage from a monster truck style event", "Effect":
"Followed by a frat party"} }

Figure 7: Caption generated using LLM for the example in Figure 1 using Prompt 2

We then progressively improve the prompt quality, moving to a more concise set of instructions in
Prompt 3 and a relatively well-structured prompt in Prompt 4. While the captions generated by
these improved prompts (Figures 8 and 9) show some enhancements, they still fall short in terms of
capturing the causal-temporal narrative accurately and consistently. Additionally, the LLM continues
to generate multiple captions and deviate from the desired output format.

You need to create a concise Cause and Effect scenario in JSON format based on some descriptive

captions about a video. The scenario must follow these rules: stick to the given information, be

relevant, don’t add new events/details or draw conclusions, maintain time consistency, use

simple language in short sentences, and limit each statement to 15 words. Don’t put any extra text

outside the JSON.

[Descriptive Captions]:

<descriptive_captions>

[Causal Temporal Narrative]:

Prompt 3: Zero-shot LLM Prompt with reasonable structure conveying core task of creating cause-
effect scenario from captions.

{{"Event": "Car crashes", "Effect": "Guys play beer pong"},
{"Event": "Car drives in open field", "Effect": "Dirt is kicked up"},
{"Event": "Car flips over", "Effect": "None specified"},
{"Event": "Car gets wracked", "Effect": "None specified"},
{"Event": "Car is flipped over", "Effect": "None specified"},
{"Event": "Dirt vehicle rides and rolls", "Effect": "None specified"},
{"Event": "Dune buggy flips over", "Effect": "None specified"},
{"Event": "Four wheeler wrecks", "Effect": "None specified"},
{"Event": "Monster truck flips", "Effect": "Young men shout and play beer
pong"},
{"Event": "Person drives offroad car", "Effect": "None specified"},
{"Event": "Person flips go kart", "Effect": "Crowd cheers"},
{"Event": "Race truck crashes", "Effect": "None specified"},
{"Event": "Truck rolls over", "Effect": "Boys cheer on a friend"},
{"Event": "Tumbler crashes on dirt road", "Effect": "Guys play beer pong"},
{"Event": "Monster truck crashes", "Effect": "Men are shown celebrating"},
{"Event": "Vehicle flips over", "Effect": "None specified"},
{"Event": "Off road vehicle crashes", "Effect": "None specified"},
{"Event": "Car crashes while driving", "Effect": "None specified"},
{"Event": "Monster truck event footage", "Effect": "Frat party is shown"}}

Figure 8: Caption generated using LLM for the example in Figure 1 using Prompt 3
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You are tasked with generating a causal narrative caption for a video based on a series of provided

descriptive captions. Your generated Cause and Effect scenario should be grounded in the given

information, relevant, avoid introducing new details or implying conclusions, maintain temporal

consistency, use plain English indirect sentences, and limit each Cause and Effect statement to

15 words maximum. Do not include any additional text outside the JSON object.

[Descriptive Captions]:

<descriptive_captions>

[Causal Temporal Narrative]:

Prompt 4: Zero-shot LLM Prompt clearly describing caption-based cause-effect generation task with
specified requirements.

{{"Event": "Car crashes", "Effect": "Guys play beer pong"},
{"Event": "Car drives in open field", "Effect": "Dirt is kicked up"},
{"Event": "Car flips over", "Effect": "None specified"},
{"Event": "Car gets wracked", "Effect": "None specified"},
{"Event": "Car is flipped over", "Effect": "None specified"},
{"Event": "Dirt vehicle rides and rolls", "Effect": "None specified"},
{"Event": "Dune buggy flips over", "Effect": "None specified"},
{"Event": "Four wheeler wrecks", "Effect": "None specified"},
{"Event": "Monster truck flips", "Effect": "Young men shout and play beer
pong"},
{"Event": "Person drives offroad car", "Effect": "None specified"},
{"Event": "Person flips go kart", "Effect": "Crowd cheers"},
{"Event": "Race truck crashes", "Effect": "None specified"},
{"Event": "Truck rolls over", "Effect": "Boys cheer on a friend"},
{"Event": "Tumbler crashes on dirt road", "Effect": "Guys play beer pong"},
{"Event": "Monster truck crashes", "Effect": "Men are shown celebrating"},
{"Event": "Vehicle flips over", "Effect": "None specified"},
{"Event": "Off road vehicle crashes", "Effect": "None specified"},
{"Event": "Car crashes while driving", "Effect": "None specified"},
{"Event": "Monster truck event footage", "Effect": "Frat party is shown"}}

Figure 9: Caption generated using LLM for the example in Figure 1 using Prompt 4

Finally, we experiment with a zero-shot prompt (Prompt 5) that closely resembles our few-shot
based Prompt 1 from Section 3.1, but without the example captions. The captions generated by
this prompt (Figure 10) demonstrate improved coherence and relevance compared to the previous
zero-shot prompts. However, they still lack the level of detail, accuracy, and contextual understanding
exhibited by the captions generated using our few-shot based prompt (Prompt 1). Furthermore, the
LLM persists in generating multiple captions.

You are an advanced language model tasked with generating causal temporal narrative captions for a

video. However, you cannot directly access the video series of itself. Instead, you will be provided

with a captions that outline the key events and scenes in the video. Your task is to generate a

concise Cause and Effect scenario, based on the information provided in the descriptive captions.

Be careful, your generated Cause and Effect statements should fulfill the following requirements:

1. Your narrative should be grounded in the information provided by the descriptive captions.

2. Cause and Effect scenario is relevant.

3. It should not introduce any new events or details not mentioned.

4. Avoid implying conclusions.

5. Maintain temporal consistency with the provided captions.

6. Use plain English and direct sentences.

7. Cause and Effect statements each limited to a maximum of 15 words.

8. Do not include any additional text before or after the JSON object.

[Descriptive Captions]:

<descriptive_captions>

[Causal Temporal Narrative]:

Prompt 5: Zero-Shot Prompting for Causal Narrative Caption Generation
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{ "Cause and Effect Statements": [ "Car crashes in field, causing it to flip
over.", "Dune buggy flips, resulting in a wreck.", "Go kart flipped by person,
leading to crowd cheers.", "Race truck crashes, boys cheer in response.", "Truck
tumbles, friends shout while playing beer pong.", "Monster truck crashes, men
celebrate afterwards.", "Off-road vehicle crashes, causing a tumble.", "Car crash
occurs, followed by a game of beer pong." ] }

Figure 10: Caption generated using LLM for the example in Figure 1 using Prompt 5

Prompt 1 Ablations: Here, we present systematic ablation experiments analyzing the impact of
individual requirements in the design of Prompt 1.

[Same as Prompt 1 but without rule 1 about using only information from the captions]

Prompt 6: Removing the grounding requirement from Prompt 1

{ "Cause": "a reckless driver speeds through a field in an unstable off-road
vehicle", "Effect": "the vehicle crashes dramatically and a group celebrates
with beer pong nearby" }

Figure 11: Caption generated without grounding requirement

Removing the grounding requirement results in the introduction of speculative details that were not
present in the source captions. This demonstrates how the grounding requirement maintains factual
accuracy.

[Same as Prompt 1 but without rule 5 about temporal consistency]

Prompt 7: Removing temporal consistency requirement from Prompt 1

{ "Cause": "people celebrate enthusiastically at a gathering", "Effect": "a
car flips over while driving through an open field" }

Figure 12: Caption generated without temporal consistency requirement

The absence of the temporal consistency requirement leads to incorrect event ordering, with the
celebration incorrectly positioned before the car crash. This highlights the importance of maintaining
proper temporal sequence in causal narratives.

[Same as Prompt 1 but without rule 7 about word limit]

Prompt 8: Removing word limit requirement from Prompt 1

{ "Cause": "an adventurous individual decided to drive their vehicle recklessly
through an open field without proper consideration for safety or stability,
leading to a dangerous situation", "Effect": "the vehicle inevitably lost
control and dramatically flipped over, resulting in a serious accident while
nearby, a group of people were engaging in a casual game of beer pong, seemingly
unaware of the incident" }

Figure 13: Caption generated without word limit requirement

Removing the word limit results in verbose descriptions with unnecessary elaboration and speculation
about circumstances and motivations.

[Same as Prompt 1 but without rule 6 about plain English]

Prompt 9: Removing plain English requirement from Prompt 1
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{ "Cause": "the automobile’s operator executed an ill-advised traversal of the
pastoral terrain", "Effect": "culminating in vehicular inversion whilst revelry
ensued in proximity" }

Figure 14: Caption generated without plain English requirement

Without the plain English requirement, the model employs unnecessarily complex vocabulary and
formal language that reduces clarity and accessibility.

[Same as Prompt 1 but without rule 4 about avoiding conclusions]

Prompt 10: Removing the requirement to avoid conclusions from Prompt 1

{ "Cause": "driver’s obvious inexperience and poor judgment led to dangerous
driving in field", "Effect": "predictable crash occurred while others carelessly
continued their party, showing clear negligence" }

Figure 15: Caption generated without avoiding conclusions requirement

Removing the requirement to avoid conclusions leads to subjective interpretations about driver
inexperience and partygoer negligence that cannot be definitively determined from the video content.

[Same as Prompt 1 but without rule 2 about relevance]

Prompt 11: Removing relevance requirement from Prompt 1

{ "Cause": "a vehicle drives through a field on a sunny day and crashes",
"Effect": "people enjoy various outdoor activities including beer pong and
socializing" }

Figure 16: Caption generated without relevance requirement

The absence of the relevance requirement results in the inclusion of peripheral details.
This ablation analysis validates the prompt design choices and underscores the importance of main-
taining all requirements for generating effective causal-temporal narrative captions. In conclusion,
these findings underscore the importance of our few-shot based prompt design in the CTN caption
generation process and demonstrate its superiority over zero-shot prompting approaches. By lever-
aging the power of few-shot learning, we enable the LLM to generate high-quality CTN captions
that effectively capture the cause-effect relationships and temporal dynamics in video content, as
evidenced by the results presented in Figure 1. Additionally, our few-shot based prompt along with
requirements ensures that the generated captions adhere to the specified JSON format, facilitating
seamless integration and usability in downstream applications.

A.3 COMPARISON OF LARGE LANGUAGE MODELS FOR CTN CAPTION GENERATION

To evaluate the effectiveness of large language models (LLMs) in generating high-quality Causal-
Temporal Narrative (CTN) captions, we compare the performance of two open source state-of-the-art
LLMs at the time of experimentation: Mixtral of Experts Jiang et al. (2024), which we utilized in our
CTN caption generation pipeline, and Llama2-70b Touvron et al. (2023).
We provide the original video captions as input to both models and assess the quality of their generated
CTN captions. In the video game example (Figure 17), Mixtral of Experts accurately captures the
causal relationship between the fatality move performed by one character and the consequent death
of another character in the game. In contrast, Llama2-70b focuses on a specific effect (blood spurting
from the character’s neck) without explicitly linking it to the cause.
For the paper folding tutorial (Figure 18), both models correctly identify the causal relationship
between folding the paper and creating a paper craft. However, Mixtral of Experts provides a more
precise description, specifying that the paper craft being created is a paper airplane.
In the soccer highlight scenario (Figure 19), Mixtral of Experts successfully captures the causal link
between the soccer player’s precise kick and the ball successfully going into the goal. Llama2-70b,
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1. 'an animated cartoon cuts another's throat'
2. 'a character in a video game gets his throat cut open'
3. 'a fatality from Mortal Kombat is shown'
4. 'a Mortal Kombat fatality sequence'
5. 'a person is playing a video game'
6. 'a person playing Mortal Kombat'
7. 'a scene from the video game of fatality'
8. 'a video game character kills another character'
9. 'a video game scene is going on of fighting'
10. 'a violent scene from a video game'
11. 'a woman stabs a man through the head then slit his throat'
12. 'gameplay with lots of blood'
13. 'in a video game, a woman attacks a man with a knife'
14. 'in a video game, a woman is killing a man'
15. 'one character wins by perishing the other'
16. 'Skarlet fatality in Mortal Kombat'
17. 'someone is playing a game'
18. 'someone is playing a video game'
19. 'there is a woman killing someone in a game'
20. 'Skarlet fatality in Mortal Kombat'

Mixtral of Experts (Our CTN) : {'Cause': 'a player performs a fatality move in mortal kombat', 'Effect': 'another
character is killed in the game'}

Llama2-70b : {'Cause': 'a character in a video game gets his throat cut open', 'Effect': ' blood is shown spurting out
of the characters neck'}

CTN
Caption

Original
Captions

Input Video:

LLM
Prompt

LLM
Evaluation

Figure 17: Comparison of Mixtral of Experts and Llama2-70b on a video game sequence involving a
fatality move.

1. 'a man folding paper'
2. 'a man is folding paper'
3. 'a man is showing how to fold paper'
4. 'a man showing some crafts'
5. 'a person folds paper to relaxing music'
6. 'a person is folding a white paper'
7. 'a person is folding a white sheet of paper'
8. 'a person is folding paper at the table'
9. 'a person showing people how to fold origami'

10. 'a young man is folding a piece of paper'
11. 'craft work in a piece of paper'
12. 'paper plane folding tutorial video clip'
13. 'somebody folds a piece of paper'
14. 'someone explain how to fold a paper plane'
15. 'someone is folding origami'
16. 'someone is folding paper'
17. 'someone is making a paper craft'
18. 'someone is folding paper'
19. 'paper plane folding tutorial video clip'
20. 'a person is folding a white paper'

Mixtral of Experts (Our CTN) : {'Cause': 'a man is folding a piece of paper', 'Effect': 'a paper airplane is being
created'}

Llama2-70b : {'Cause': 'a person folds paper', 'Effect': ' the person is making a paper craft'}

CTN
Caption

Original
Captions

Input Video:

LLM
Prompt

LLM
Evaluation

Figure 18: Comparison of Mixtral of Experts and Llama2-70b on a paper folding tutorial to create a
paper airplane.
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1. 'a professional soccer game that is set to music'
2. 'a soccer highlight video'
3. 'a soccer match is happening and one of the players just kicked the ball in the goal'
4. 'a soccer player hops over a wall'
5. 'a soccer player is scoring the goal for his team'
6. 'a soccer player is scoring a goal'
7. 'a soccer player makes a goal'
8. 'a soccer player scores a goal'
9. 'compilation of popular soccer clips'
10. 'highlights of a soccer game'
11. 'people are playing sports in the ground'
12. 'soccer players are running around on a field'
13. 'soccer players playing soccer'
14. 'sports highlights are displayed'
15. 'there are people playing soccer and scores a goal'
16. 'there is some footage of a soccer game'
17. 'this is a video from a soccer game'
18. 'video of athletes performing amazing plays'
19. 'a soccer player hops over a wall'
20. 'a soccer player makes a goal'

Mixtral of Experts (Our CTN) : {'Cause': 'a soccer player kicked the ball with precision', 'Effect': 'the ball
successfully went into the goal'}

Llama2-70b : {'Cause': 'a soccer player scores a goal', 'Effect': ' people are cheering'}

CTN
Caption

Original
Captions

Input Video:

LLM
Prompt

LLM
Evaluation

Figure 19: Comparison of Mixtral of Experts and Llama2-70b on highlights from a soccer match.

on the other hand, mentions the effect (people cheering) without explicitly connecting it to the cause
(the player scoring a goal).

1. 'a boy giving a stage performance'
2. 'a boy is singing'
3. 'a boy is singing a song'
4. 'a boy is singing in the stage'
5. 'a boy is singing on a scene in front of the crowd'
6. 'a boy is singing on stage in front of an audience'
7. 'a boy singing on stage in front of crowd'
8. 'a boy sings in front of judges and an audience'
9. 'a guy is singing on stage'
10. 'a kid is singing'
11. 'a man is singing a song on a stage'
12. 'a man plays piano while a young boy sings on stage'
13. 'a person is singing on stage'
14. 'a young boy is signing on tv in front of an audience'
15. 'a young man is singing to a crowd on a stage'
16. 'guy singing on stage'
17. 'man is singing in live show'
18. 'young boy singing a song'
19. 'a man is singing a song on a stage'
20. 'guy singing on stage'

Mixtral of Experts (Our CTN) : {'Cause': 'a boy decided to perform on stage', 'Effect': 'the audience watched and
listened to his singing'}

Llama2-70b : {'Cause': 'the boy is singing', 'Effect': ' the crowd enjoys the performance'}

CTN
Caption

Original
Captions

Input Video:

LLM
Prompt

LLM
Evaluation

Figure 20: Comparison of Mixtral of Experts and Llama2-70b on a boy singing on stage in front of
an audience.
Lastly, for the singing performance (Figure 20), both models accurately describe the cause-effect
relationship between the boy’s decision to perform on stage and the audience’s reaction of watching
and listening. However, Mixtral of Experts provides a more detailed description of the audience’s
response.
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Overall, the CTN captions generated by Mixtral of Experts consistently demonstrate a better un-
derstanding of the causal-temporal narrative in the videos compared to Llama2-70b. Our approach
using Mixtral of Experts effectively captures the cause-effect relationships and temporal dynamics,
resulting in more accurate and contextually relevant captions.
These results highlight the importance of selecting an appropriate LLM and designing effective
prompts for generating high-quality CTN captions. The superior performance of Mixtral of Experts
can be attributed to its architecture and training, which enable it to better understand and articulate
the complex causal-temporal narratives present in video content.

A.4 IMPACT OF AUTOMATIC EVALUATION ON CTN CAPTION GENERATION

In Section 3.1, we discuss the importance of using automatic evaluation to ensure the quality and
relevance of the generated Causal Temporal Narrative (CTN) captions. We employ the EMScore
metric to measure the consistency between the generated captions and the video content, discarding
captions that fell below a predefined threshold. This appendix visually demonstrates the impact of
the automatic evaluation step on the quality of the generated CTN captions.

33

CTN caption GT - Ours: {'Cause': 'a female sportscaster interviewed a male athlete',
'Effect': 'she asked him questions'}
CTN caption (w/o automatic evaluation): {'Cause': 'a man carelessly neglected taking
his prescribed allergy medication', 'Effect': 'he suffered a severe sneezing fit'}  

Figure 21: CTN caption comparison for a video of a female sportscaster interviewing a male athlete.
33

CTN caption GT - Ours: {'Cause': 'bus ticket prices increased in Brazil', 'Effect': 'a
woman was interviewed about her participation in the protests'}
CTN caption (w/o automatic evaluation): {'Cause': 'protest caused by a rise in bus
tickets', 'Effect': 'mass gathering of people in rio de janeiro and sao paulo'}  

Figure 22: CTN caption comparison for a video of protests in Brazil due to increased bus ticket
prices.

33

CTN caption GT - Ours: {"Cause": "a terror attack occurred in Texas", "Effect": "news
anchors discussed freedom of speech issues"}
CTN caption (w/o automatic evaluation): {'Cause': 'a band performs a song on stage',
'Effect': 'the audience cheers and enjoys the music'}  

Figure 23: CTN caption comparison for a video discussing a terror attack in Texas.
Figure 21 shows an example where the CTN caption generated with automatic evaluation accurately
captures the causal relationship between the female sportscaster interviewing the male athlete and her
asking him questions. In contrast, the caption generated without automatic evaluation is irrelevant to
the video content, discussing a man neglecting his allergy medication and suffering a sneezing fit.
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CTN caption GT - Ours: {"Cause": "the Air Force used a surveillance system in Iraq",
"Effect": "a woman talked about the man who created it"}
CTN caption (w/o automatic evaluation): {'Cause': 'a group starts dancing at an
event', 'Effect': 'the atmosphere becomes more lively'}  

Figure 24: CTN caption comparison for a video about the Air Force using a surveillance system in
Iraq.

Similarly, in Figure 22, the CTN caption generated with automatic evaluation correctly identifies the
cause of the protests in Brazil as the increase in bus ticket prices and links it to the effect of a woman
being interviewed about her participation in the protests. The caption generated without automatic
evaluation, while mentioning the protest and its cause, fails to capture the specific effect of the
woman’s interview. Figure 23 demonstrates how the CTN caption generated with automatic evaluation
accurately describes the cause of a terror attack in Texas and its effect on news anchors discussing
freedom of speech issues. The caption generated without automatic evaluation is completely unrelated,
mentioning a band’s performance and the audience’s reaction.
Lastly, in Figure 24, the CTN caption generated with automatic evaluation correctly links the cause
of the Air Force using a surveillance system in Iraq to the effect of a woman talking about the man
who created it. The caption generated without automatic evaluation is again irrelevant, discussing a
group starting to dance at an event and the atmosphere becoming more lively. These examples clearly
illustrate the importance of incorporating automatic evaluation in the CTN caption generation process.
By ensuring that the generated captions are consistent with the video content, we can significantly
improve the quality and relevance of the CTN captions, enabling the CEN model to learn more
meaningful causal and temporal relationships from the videos.

A.5 HUMAN EVALUATION STUDY DETAILS

To validate the quality of our CTN captions, we conduct a rigorous human evaluation study. This
section details the methodology, results, and analysis of this evaluation.

A.5.1 METHODOLOGY

We employ the following methodology for our human evaluation:

• Sample size: 100 validation instances (50 each from MSR-VTT and MSVD datasets)

• Evaluators: Five independent domain experts

• Evaluation criteria:
1. Causal Accuracy: Degree of correctly identifying and describing cause-effect relation-

ships
2. Temporal Coherence: Accuracy in representing the sequence of events
3. Relevance: How well the caption reflects the overall content and context

• Rating scale: 5-point Likert scale (0-5, with 5 being the highest quality)

A.5.2 RESULTS

Table 3 presents the results of our human evaluation study.
Table 3: Human Evaluation Results for CTN Captions

Criterion Mean Score Std Dev % Perfect Scores
Causal Accuracy 4.8 0.42 82%
Temporal Coherence 4.7 0.46 78%
Relevance 4.9 0.31 91%
Overall Quality 4.8 0.40 84%

Key findings from the evaluation:
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• Overall mean quality score: 4.8/5.0 (σ = 0.40)

• 93% of captions received scores of 4 or higher across all dimensions

• 84% of captions achieved perfect scores

A.5.3 INTER-RATER RELIABILITY

To ensure the consistency of ratings across evaluators, we calculate the Intraclass Correlation Coeffi-
cient (ICC) for absolute agreement among raters:

• ICC: 0.87 (95% CI: 0.83-0.91)

This high ICC value indicates strong inter-rater reliability, supporting the robustness of our evaluation
process.

A.5.4 ANALYSIS

The results of our human evaluation study strongly validate the quality and consistency of our CTN
captions. With a mean quality score of 4.8/5.0 and 93% of captions receiving high scores across all
dimensions, we can confidently assert that our CTN captions effectively capture causal-temporal
narratives in videos. The high inter-rater reliability further strengthens the credibility of these results.
These findings demonstrate that our automatic generation and evaluation process, as described in
Section 3.1, produces high-quality CTN captions that accurately represent the causal and temporal
dynamics in video content. This human evaluation complements our automatic evaluation metrics,
providing a comprehensive validation of our CTN caption benchmark dataset.

A.6 ENCODER COMPARISON FOR CEN
To explore the versatility of our CEN architecture, we conduct experiments using BLIP Li et al.
(2022b) encoders in place of CLIP encoders. This comparison allows us to assess the adaptability of
our method to different visual encoding architectures. Table 4 presents the results of this comparison
on both MSVD-CTN and MSRVTT-CTN datasets.

Table 4: Comparison of CLIP and BLIP Encoders for our CEN

Dataset Encoder ROUGE-L CIDEr SPICE

MSVD-CTN CLIP (Ours) 31.46 63.51 19.25
BLIP 28.79 57.23 18.06

MSRVTT-CTN CLIP (Ours) 27.90 49.87 15.76
BLIP 25.34 43.01 14.89

While the performance with CLIP encoders is higher, the results with BLIP encoders are still
competitive. This demonstrates the flexibility of our CEN architecture and its potential to work
effectively with various visual encoding methods.

A.7 COMPARISON WITH NEXT-QA
To highlight the differences between our CTN benchmark dataset and the NExT-QA dataset, we
provide a detailed comparison table and illustrative examples:
Table 5 presents a comprehensive comparison between NExT-QA and our NarrativeBridge approach.

Table 5: Comparison of NExT-QA and NarrativeBridge

Aspect NExT-QA NarrativeBridge (Ours)
Task Question-Answering Video Captioning
Output Short answers Coherent narratives
Temporal Specific points Multiple events
Causal Implicit Explicit
Narrative Not present Explicit
Focus Info retrieval Video description

This comparison highlights the fundamental differences in approach and output between NExT-QA
and our NarrativeBridge method.
Figure 25 provides examples from the NExT-QA dataset, illustrating the nature of its question-answer
pairs. As seen in these examples, NExT-QA focuses on specific question-answer pairs that often
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Q: What does the adult do after the baby starts
crawling away?
A: Follow the baby

Q: What is the boy pulling?
A: Rope

Q: Why did the girl in blue stop and turn around
at the start?
A: Waiting for the lady

(a) (b) (c)

Figure 25: Examples of question-answer pairs from the NExT-QA dataset.

target single events or actions. In contrast, our CTN captions provide a more comprehensive narrative
that captures the causal and temporal relationships across the entire video sequence.

A.8 APPLICATION OF CTN CAPTION GENERATION FOR LABELING UNLABELED VIDEOS

Our CTN caption generation approach, as described in Section 3.1, can be effectively applied to
the task of labeling unlabeled videos. This application leverages the power of our few-shot based
prompt and the LLM’s ability to generate coherent and contextually relevant captions that capture the
causal-temporal narrative in video content.

'a tractor is driving' 'there are four trucks' 'a tractor is upside 
down' 'a game is being played' 'two people are celebrating'

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Input Images from 
unlabelled video 

Zero-shot 
Image Captions 

LLM
Prompt

LLM
Evaluation

Cause: 'a tractor driving recklessly flips over and ends up upside down'
Effect: 'causing an accident, while others celebrated unaware'CTN Caption

CTN Caption 
Generation 

Input Video:

Sample Frames

Figure 26: Application of our CTN caption generation approach for labeling unlabeled videos. Given
an unlabeled video, we extract frames and generate image captions using a state-of-the-art image
captioning model (GIT Wang et al. (2022)). These captions are then used as input to our LLM-based
CTN caption generation pipeline, which produces a CTN caption for the entire video. The generated
CTN caption captures the cause-effect relationships and temporal dynamics in the video, enabling
effective labeling of unlabeled video content.
Figure 26 illustrates the pipeline for labeling an unlabeled video using our CTN caption generation
approach. First, we extract frames from the unlabeled video. In this example, we extract five frames
which are equally spaced in the video. Next, we generate image captions for each of the extracted
frames using a state-of-the-art image captioning model. For this demonstration, we employ the GIT
Wang et al. (2022), which has shown impressive performance in generating accurate captions for
individual images. The GIT model generates captions such as "a tractor is driving", "there are four
trucks", "a tractor is upside down", "a game is being played", and "two people are celebrating" for
the five frames. These image captions serve as the input to our LLM-based CTN caption generation
pipeline (see Figure 2).
We use Prompt 1 in Section 3.1, replacing the original descriptive captions with the image captions
generated by the GIT model. The LLM then generates a CTN caption based on these image captions,
following the specified requirements and format. In this example, the generated CTN caption is:
"Cause: ’a tractor driving recklessly flips over and ends up upside down’ Effect: ’causing an accident,
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while others celebrated unaware’". This caption effectively captures the key events and their causal-
temporal relationships in the video, providing a concise and informative summary of the video
content.
To ensure the quality and relevance of the generated CTN caption, we employ the same evaluation
framework described in Section 3.1. The caption is compared against the video content using the
EMScore Shi et al. (2022) metric, and only captions that meet a specified threshold are retained. This
application demonstrates the versatility and effectiveness of our CTN caption generation approach
in labeling unlabeled videos. By leveraging the power of state-of-the-art image captioning models
and our few-shot based prompt, we can generate high-quality CTN captions that accurately capture
the causal-temporal narrative in video content, even in the absence of human-annotated captions.
This approach has the potential to significantly streamline the process of labeling large-scale video
datasets and enable more effective video understanding and retrieval tasks.

A.9 LLM-BASED EVALUATION OF GENERATED CTN CAPTIONS

We conduct additional evaluations on MSVD-CTN and MSRVTT-CTN (combined) to evaluate further
the quality of generated CTN captions, using Llama-3.2-3B-Instruct in the default configuration. Our
evaluation focused on two key aspects:

1. Temporal Order Analysis

• Input: Ground truth and generated captions

• Task: LLM compares the temporal sequence of events

• Score: Binary (1: correct sequence, 0: incorrect)

2. Causal Chain Analysis

• Input: Ground truth and generated captions

• Task: LLM evaluates preservation of cause-effect relationships

• Score: Binary (1: preserved, 0: not preserved)

Table 6 shows the performance comparison between CEN and the best baseline (GIT).

Table 6: LLM-based evaluation results comparing CEN with GIT

Model Temporal Order (%) Causal Chain (%)
CEN (Ours) 81.2 84.5
GIT 52.1 48.3

We further analyze all ablations of Table 2 using the same LLM-based metrics, as shown in Table 7.

Table 7: LLM-based evaluation results for ablation study

Method Temporal Order (%) Causal Chain (%)
CEN (Full) 81.2 84.5
Ecombined 72.4 75.6
w/o FT - single CLIP 58.3 54.2
w/o FT - Two CLIP 63.7 61.8
Only Ecause 73.9 76.5
Only Eeffect 74.8 77.2
Zero Shot X 55.2 51.7
Fine-tune X 79.4 82.1

Following are the key findings:

• CEN outperforms GIT by 29.1% in temporal and 36.2% in causal accuracy

• Dual encoder architecture provides 15% improvement over single encoder

• Fine-tuning improves temporal understanding by 20% compared to frozen models
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A.10 ADDITIONAL QUALITATIVE RESULTS FOR CEN ARCHITECTURE

In this section, we present additional qualitative results comparing the ground truth Causal-Temporal
Narrative (CTN) captions with the captions generated by our CEN architecture. These examples
further demonstrate the effectiveness of our approach in capturing the causal-temporal relationships
and generating accurate and contextually relevant captions.

33

CTN caption GT: 'a person is working on a rubiks cube the rubiks cube gets solved
piece by piece'
CEN (OURS): 'a person is playing with a rubiks cube and the person successfully
solved the cube'  

Figure 27: Comparison of CTN and CEN captions for a video of a person solving a Rubik’s cube.
33

CTN caption GT: 'a man is playing the piano music fills the room'

CEN (OURS): 'the man is playing the piano and he is demonstrating how to play the
piano'  

Figure 28: Comparison of CTN and CEN captions for a video of a man playing the piano.
33

CTN caption GT: 'man shared a sad story on stage audience became emotionally
engaged'

CEN (OURS): 'the man gave a lecture on stage and the audience listened intently'  

Figure 29: Comparison of CTN and CEN captions for a video of a man giving a lecture on stage.
33

CTN caption GT: 'a band performs a song in a video people watch and listen to the
music'

CEN (OURS): 'a band is performing a song and the crowd is enjoying the music'  

Figure 30: Comparison of CTN and CEN captions for a video of a band performing a song.
In Figure 27, both the CTN and CEN captions accurately capture the causal relationship between the
person working on the Rubik’s cube and the cube being solved piece by piece. Similarly, in Figure
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28, both captions correctly describe the cause-effect relationship between the man playing the piano
and the music filling the room.
Figure 29 demonstrates the ability of our CEN architecture to generate captions that capture the
audience’s engagement in response to the man’s lecture on stage. While the CTN caption specifically
mentions the emotional engagement of the audience due to the sad story, the CEN caption more
generally describes the audience listening intently to the lecture.
Lastly, in Figure 30, both the CTN and CEN captions accurately depict the causal relationship
between the band performing a song and the crowd enjoying the music. The CEN caption, in
particular, directly states the crowd’s enjoyment as a result of the band’s performance.
These additional qualitative examples further validate the effectiveness of our CEN architecture in
understanding and articulating the causal-temporal narratives present in videos, generating captions
that are coherent, accurate, and contextually relevant.
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