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ABSTRACT

We study a security threat to adversarial multi-armed bandits, in which an attacker
perturbs the loss or reward signal to control the behavior of the victim bandit
player. We show that the attacker is able to mislead any no-regret adversarial bandit
algorithm into selecting a suboptimal target arm in every but sublinear (T � o(T ))
number of rounds, while incurring only sublinear (o(T )) cumulative attack cost.
This result implies critical security concern in real-world bandit-based systems, e.g.,
in online recommendation, an attacker might be able to hijack the recommender
system and promote a desired product. Our proposed attack algorithms require
knowledge of only the regret rate, thus are agnostic to the concrete bandit algorithm
employed by the victim player. We also derived a theoretical lower bound on the
cumulative attack cost that any victim-agnostic attack algorithm must incur. The
lower bound matches the upper bound achieved by our attack, which shows that
our attack is asymptotically optimal.

1 INTRODUCTION

Multi-armed bandit presents a sequential learning framework that enjoys applications in a wide range
of real-world domains, including medical treatment Zhou et al. (2019); Kuleshov & Precup (2014),
online advertisement Li et al. (2010), resource allocation Feki & Capdevielle (2011); Whittle (1980),
search engines Radlinski et al. (2008), etc. In bandit-based applications, the learning agent (bandit
player) often receives reward or loss signals generated through real-time interactions with users. For
example, in search engine, the user reward can be clicks, dwelling time, or direct feedbacks on the
displayed website. The user-generated loss or reward signals will then be collected by the learner to
update the bandit policy. One security caveat in user-generated rewards is that there can be malicious
users who generate adversarial reward signals. For instance, in online recommendation, adversarial
customers can write fake product reviews to mislead the system into making wrong recommendations.
In search engine, cyber-attackers can create click fraud through malware and causes the search
engine to display undesired websites. In such cases, the malicious users influence the behavior of
the underlying bandit algorithm by generating adversarial reward data. Motivated by that, there has
been a surge of interest in understanding potential security issues in multi-armed bandits, i.e., to what
extend are multi-armed bandit algorithms susceptible to adversarial user data.

Prior works mostly focused on studying reward attacks in the stochastic multi-armed bandit setting Jun
et al. (2018); Liu & Shroff (2019), where the rewards are sampled according to some distribution.
In contrast, less is known about the vulnerability of adversarial bandits, a more general bandit
framework that relaxes the statistical assumption on the rewards and allows arbitrary (but bounded)
reward signals. The adversarial bandit also has seen applications in a broad class of real-world
problems especially when the reward structure is too complex to model with a distribution, such
as inventory control Even-Dar et al. (2009) and shortest path routing Neu et al. (2012). Similarly,
the same security problem could arise in adversarial bandits due to malicious users. Therefore, it is
imperative to investigate potential security caveats in adversarial bandits, which provides insights to
help design more robust adversarial bandit algorithms and applications.

In this paper, we take a step towards studying reward attacks on adversarial multi-armed bandit
algorithms. We assume the attacker has the ability to perturb the reward signal, with the goal of
misleading the bandit algorithm to always select a target (sub-optimal) arm desired by the attacker. Our
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main contributions are summarized as below. (1) We present attack algorithms that can successfully
force arbitrary no-regret adversarial bandit algorithms into selecting any target arm in T � o(T )
rounds while incurring only o(T ) cumulative attack cost, where T is the total rounds of bandit play.
(2) We show that our attack algorithm is theoretically optimal among all possible victim-agnostic
attack algorithms, which means that no other attack algorithms can successfully force T � o(T )
target arm selections with a smaller cumulative attack cost than our attacks while being agnostic to
the underlying victim bandit algorithm. (3) We empirically show that our proposed attack algorithms
are efficient on both vanilla and a robust version of Exp3 algorithm Yang et al. (2020).

2 PRELIMINARIES

The bandit player has a finite action space A = {1, 2, ...,K}, where K is the total number of arms.
There is a fixed time horizon T . In each time step t 2 [T ], the player chooses an arm at 2 A, and
then receives loss `t = Lt(at) from the environment, where Lt is the loss function at time t. In this
paper, we consider “loss” instead of reward, which is more standard in adversarial bandits. However,
all of our results would also apply in the reward setting. Without loss of generality, we assume the
loss functions are bounded: Lt(a) 2 [0, 1], 8a, t. Moreover, we consider the so-called non-adaptive
environment Slivkins (2019); Bubeck & Cesa-Bianchi (2012), which means the loss functions L1:T

are fixed beforehand and cannot change adaptively based on the player behavior after the bandit
play starts. The goal of the bandit player is to minimize the difference between the cumulative loss
incurred by always selecting the optimal arm in hindsight and the cumulative loss incurred by the
bandit algorithm, which is defined as the regret below.
Definition 2.1. (Regret). The regret of the bandit player is

RT = E

"
TX

t=1

Lt(at)

#
�min

a

TX

t=1

Lt(a), (1)

where the expectation is with respect to the randomness in the selected arms a1:T .

We now make the following major assumption on the bandit algorithm throughout the paper.
Assumption 2.2. (No-regret Bandit Algorithm). We assume the adversarial bandit algorithm satisfies
the “no-regret” property asymptotically, i.e., RT = O(T↵) for some ↵ 2 [ 12 , 1)

1.

As an example, the classic adversarial bandit algorithm Exp3 achieves ↵ = 1
2 . In later sections,

we will propose attack algorithms that apply not only to Exp3, but also arbitrary no-regret bandit
algorithms with regret rate ↵ 2 [ 12 , 1). Note that the original loss functions L1:T in (1) could as well
be designed by an adversary, which we refer to as the “environmental adversary”. In typical regret
analysis of adversarial bandits, it is implicitly assumed that the environmental adversary aims at
inducing large regret on the player. To counter the environmental adversary, algorithms like Exp3
introduce randomness into the arm selection policy, which provably guarantees sublinear regret for
arbitrary sequence of adversarial loss functions L1:T .

2.1 MOTIVATION OF ATTACKS ON ADVERSARIAL BANDITS

In many bandit-based applications, an adversary may have an incentive to pursue different attack
goals than boosting the regret of the bandit player. For example, in online recommendation, imagine
the situation that there are two products, and both products can produce the maximum click-through
rate. We anticipate a fair recommender system to treat these two products equally and display them
with equal probability. However, the seller of the first product might want to mislead the recommender
system to break the tie and recommend his product as often as possible, which will benefit him
most. Note that even if the recommender system chooses to display the first product every time, the
click-through rate (i.e., reward) of the system will not be compromised because the first product has
the maximum click-through rate by assumption, thus there is no regret in always recommending it. In
this case, misleading the bandit player to always select a target arm does not boost the regret. We point
out that in stochastic bandits, forcing the bandit player to always select a sub-optimal target arm must

1We assume ↵ � 1
2 because prior works Auer et al. (1995); Gerchinovitz & Lattimore (2016) have proved

that the regret has lower bound ⌦(
p
T ).
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induce linear regret. Therefore, a robust stochastic bandit algorithm that recovers sublinear regret
in presence of an attacker can prevent a sub-optimal arm from being played frequently. However,
in adversarial bandit, the situation is fundamentally different. As illustrated in example 1, always
selecting a sub-optimal target arm may still incur sublinear regret. As a result, robust adversarial
bandit algorithms that recover sublinear regret in presence of an adversary (e.g., Yang et al. (2020))
can still suffer from an attacker who aims at promoting a target arm.
Example 1. Assume there are K = 2 arms a1 and a2, and the loss functions are as below.

8t,Lt(a) =

⇢
1�

p
T/T if a = a1,

1 if a = a2.
(2)

Note that a1 is the best-in-hindsight arm, but always selecting a2 induces
p
T regret, which is

sublinear and does not contradict the regret guarantee of common bandit algorithms like Exp3.

3 THE ATTACK PROBLEM FORMULATION

While the original loss functions L1:T can already be adversarial, an adversary who desires a target
arm often does not have direct control over the environmental loss functions L1:T due to limited
power. However, the adversary might be able to perturb the instantiated loss value `t slightly. For
instance, a seller cannot directly control the preference of customers over different products, but he
can promote his own product by giving out coupons. To model this attack scenario, we introduce
another adversary called the “attacker”, an entity who sits in between the environment and the bandit
player and intervenes with the learning procedure. We now formally define the attacker in detail.

(Attacker Knowledge). We consider an (almost) black-box attacker who has very little knowledge of
the task and the victim bandit player. In particular, the attacker does not know the clean environmental
loss functions L1:T beforehand. Furthermore, the attacker does not know the concrete bandit
algorithm used by the player. However, the attacker knows the regret rate ↵

2.

(Attacker Ability) In each time step t, the bandit player selects an arm at and the environment
generates loss `t = Lt(at). The attacker sees at and `t. Before the player observes the loss, the
attacker has the ability to perturb the original loss `t to ˜̀

t. The player then observes the perturbed
loss ˜̀

t instead of the original loss `t. The attacker, however, cannot arbitrarily change the loss value.
In particular, the perturbed loss ˜̀

t must also be bounded: ˜̀t 2 [0, 1], 8t.
(Attacker Goal). The goal of the attacker is two-fold. First, the attacker has a desired target arm
a
†, which can be some sub-optimal arm. The attacker hopes to mislead the player into selecting a

†

as often as possible, i.e., maximize NT (a†) =
PT

t=1 1
⇥
at = a

†⇤. On the other hand, every time
the attacker perturbs the loss `t, an attack cost ct = |˜̀t � `t| is induced. The attacker thus hopes to
achieve a small cumulative attack cost over time, defined as below.
Definition 3.1. (Cumulative Attack Cost). The cumulative attack cost of the attacker is defined as

CT =
TX

t=1

ct, where ct = |˜̀t � `t|. (3)

The focus of our paper is to design efficient attack algorithms that can achieve E
⇥
NT (a†)

⇤
=

T � o(T ) and E [CT ] = o(T ) while being agnostic to the concrete victim bandit algorithms.

Intuitively, if the total loss of the target arm
PT

t=1 Lt(a†) is small, then the attack goals would be
easy to achieve. In the extreme case, if Lt(a†) = 0, 8t, then even without attack, a† is already the
optimal arm and will be selected frequently in most scenarios 3. On the other hand, if Lt(a†) = 1, 8t,
then the target arm is always the worst arm, and forcing the bandit player to frequently select a† will
require the attacker to significantly reduce Lt(a†). In later sections, we will formalize this intuition
and characterize the attack difficulty.

2It suffices for the attacker to know an upper bound on the regret rate to derive all the results in our paper, but
for simplicity we assume the attacker knows exactly the regret rate.

3An exceptional case is when there exists some non-target arm a0 that also has 0 loss in every round, then a0

is equally optimal as a†, and without attack a0 will be selected equally often as a†.
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4 ATTACK WITH TEMPLATE LOSS FUNCTIONS

In this section, we first propose a general attack strategy called “template-based attacks”. The
template-based attacks perform loss perturbations according to a sequence of template loss functions
L̃1:T . The templates L̃1:T are determined before the bandit play starts. Then in each time step t during
the bandit play, the attacker perturbs the original loss `t to ˜̀

t = L̃t(at). Note that template-based
attacks may seem weak at first glance, because the template loss functions are fixed beforehand and
thus non-adaptive to the behaviors of the victim bandit player. This is in stark contrast to most prior
works such as Jun et al. (2018). However, as we will show in later sections, template-based attacks
are efficient and can even achieve the optimal attack cost.

We first make the following important observation, which is a critical property used to prove the main
theoretical results in our paper.
Observation 1. (Equivalence of Attack) Due to the partial observability of loss functions in the
multi-armed bandit framework, running any bandit algorithm in the original environment L1:T with
template-based attack L̃1:T , is equivalent to, running the same algorithm in an environment with loss
functions L̃1:T . In particular, the standard regret guarantee RT = O(T↵) holds with respect to the
template loss functions L̃1:T .

We next instantiate the template-based attack on an easy attack scenario and general attack scenarios.
For each scenario, we will design the template loss functions L̃1:T ,

4.1 AN EASY ATTACK SCENARIO

In this section, we first study a relatively easy attack scenario, which serves as a motivating example
that illustrates two key principles behind the design of our attack algorithms: (1) Try to keep the
loss of the target arm Lt(a†) unchanged; and (2) Boost the loss of all the other non-target arms to
the maximum. The easy attack scenario has the following assumption on the original loss functions,
which requires the loss of the target arm to be at least ⇢ bounded away from the maximum value.
Assumption 4.1. (Easy Attack Scenario). There exists some constant ⇢ 2 (0, 1] such that

Lt(a
†) 2 [0, 1� ⇢], 8t 2 [T ]. (4)

The boundedness condition (4) needs to hold over all T rounds. If assumption 4.1 holds, then the
attacker can design the template loss functions L̃t as in (5) to perform attack.

8t, L̃t(a) =

⇢
Lt(a) if a = a

†
,

1 otherwise. (5)

Remark 4.2. A few remarks are in order. First, note that although the form of L̃t(a) depends on
Lt(a), the attacker does not require knowledge of the original loss functions L1:T beforehand to
implement the attack. This is because when at = a

†, the perturbed loss is ˜̀t = L̃t(at) = Lt(a†) = `t

while `t is observable. When at 6= a
†, ˜̀t can be directly set to 1. Second, note that the target arm a

†

becomes the best-in-hindsight arm after attack. Consider running a no-regret bandit algorithm on
the perturbed loss L̃1:T , since L̃t(a†) = Lt(a†)  1� ⇢, every time the player selects a non-target
arm at 6= a

†, it will incur at least ⇢ regret. However, the player is guaranteed to achieve sublinear
regret on L̃1:T by observation 1, thus non-target arms can at most be selected in sublinear rounds.
Finally, note that the loss remains unchanged when the target arm a

† is selected. This design is
critical because should the attack be successful, then a

† will be selected in T � o(T ) rounds. By
keeping the loss of the target arm unchanged, the attacker does not incur attack cost when the target
arm is selected. As a result, our design (5) induces sublinear cumulative attack cost.

Theorem 4.3. Assume assumption 4.1 holds, and the attacker applies (5) to perform attack. Then
there exists a constant M > 0 such that the expected number of target arm selections satisfies
E
⇥
NT (a†)

⇤
� T �MT

↵
/⇢, and the expected cumulative attack cost satisfies E [CT ]  MT

↵
/⇢.

Remark 4.4. Note that as the regret rate ↵ decreases, the target arm selections E
⇥
NT (a†)

⇤
increases

and the cumulative attack cost E [CT ] reduces. That means, our attack algorithm becomes more

4



Published as a conference paper at ICLR 2023

effective and efficient if the victim bandit algorithm has a better regret rate. The constant M comes
from the regret bound of the victim adversarial bandit algorithm and will depend on the number of
arms K (similarly for Theorem 4.6 and 4.9). We do not spell out its concrete form here because
our paper aims at designing general attacks against arbitrary adversarial bandit algorithms that
satisfy assumption 2.2. The constant term in the regret bound may take different forms for different
algorithms. Comparatively, the sublinear regret rate ↵ is more important for attack considerations.

4.2 GENERAL ATTACK SCENARIOS

Our analysis in the easy attack scenario relies on the fact that every time the player fails to select
the target arm a

†, at least a constant regret ⇢ will be incurred. Therefore, the player can only take
non-target arms sublinear times. However, this condition breaks if there exists time steps t where
Lt(a†) = 1. In this section, we propose a more generic attack strategy, which provably achieves
sublinear cumulative attack cost on any loss functions L1:T . Furthermore, the proposed attack strategy
can recover the result of Theorem 4.3 (up to a constant) when it is applied in the easy attack scenario.
Specifically, the attacker designs the template loss functions L̃t as in (6) to perform attack.

8t, L̃t(a) =

⇢
min{1� t

↵+✏�1
,Lt(a)} if a = a

†
,

1 otherwise, (6)

where ✏ 2 [0, 1 � ↵) is a free parameter chosen by the attacker. We discuss how the parameter ✏
affects the attack performance in remark 4.7.
Remark 4.5. Similar to (5), the attacker does not require knowledge of the original loss functions
L1:T beforehand to implement the attack. When a non-target arm is selected, the attacker always
increases the loss to the maximum value 1. On the other hand, when the target arm a

† is selected,
then if the observed clean loss value `t = Lt(at) > 1 � t

↵+✏�1, the attacker reduces the loss to
1 � t

↵+✏�1. Otherwise, the attacker keeps the loss unchanged. In doing so, the attacker ensures
that the loss of the target arm L̃t(a†) is at least t↵+✏�1 smaller than L̃t(a) for any non-target arm
a 6= a

†. As a result, a† becomes the best-in-hindsight arm under L̃1:T . Note that the gap t
↵+✏�1

diminishes as a function of t since ✏ < 1�↵. The condition that ✏ must be strictly smaller than 1�↵

is important to achieving sublinear attack cost, which we will prove later.

Theorem 4.6. Assume the attacker applies (6) to perform attack. Then there exists a constant M > 0
such that the expected number of target arm selections satisfies

E
⇥
NT (a

†)
⇤
� T � 1

↵+ ✏
T

1�↵�✏ �MT
1�✏

, (7)

and the expected cumulative attack cost satisfies

E [CT ] 
1

↵+ ✏
T

1�↵�✏ +MT
1�✏ +

1

↵+ ✏
T

↵+✏
. (8)

Remark 4.7. According to (7), the target arm will be selected more frequently as ✏ grows. This is
because the attack (6) enforces that the loss of the target arm L̃t(a†) is at least t↵+✏�1 smaller than
the loss of non-target arms. As ✏ increases, the gap becomes larger, thus the bandit algorithm would
further prefer a†. The cumulative attack cost, however, does not decrease monotonically as a function
of ✏. This is because while larger ✏ results in more frequent target arm selections, the per-round
attack cost may also increase. For example, if Lt(a†) = 1, 8t, then whenever a

† is selected, the
attacker incurs attack cost t↵+✏�1, which grows as ✏ increases.
Corollary 4.8. Assume the attacker applies (6) to perform attack. Then when the attacker chooses
✏ = 1�↵

2 , the expected cumulative attack cost achieves the minimum value asymptotically. Corre-
spondingly, we have E

⇥
NT (a†)

⇤
= T �O(T

1+↵
2 ) and E [CT ] = O(T

1+↵
2 ).

We now show that our attack (6) recovers the results in Theorem 4.3 when it is applied in the easy
attack scenario. We first provide another version of the theoretical bounds on E

⇥
NT (a†)

⇤
and E [CT ]

that depends on how close Lt(a†) is to the maximum value.
Theorem 4.9. Let ⇢ 2 (0, 1] be any constant. Define T⇢ = {t | Lt(a†) > 1 � ⇢}, i.e., the set of
rounds where Lt(a†) is within distance ⇢ to the maximum loss value. Let |T⇢| = ⌧ . Also assume that

5
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the attacker applies (6) to perform attack, then there exists a constant M > 0 such that the expected
number of target arm selections satisfies

E
⇥
NT (a

†)
⇤
� T � ⇢

1
↵+✏�1 � ⌧ �MT

↵
/⇢, (9)

and the cumulative attack cost satisfies

E [CT ]  ⇢
1

↵+✏�1 + ⌧ +MT
↵
/⇢. (10)

Remark 4.10. In the easy attack scenario, there exists some ⇢ such that ⌧ = 0, thus compared
to Theorem 4.3, the more generic attack (6) induces an additional constant term ⇢

1
↵+✏�1 in the bounds

of E
⇥
NT (a†)

⇤
and E [CT ], which is negligible for large enough T .

5 ATTACK COST LOWER BOUND

We have proposed two attack strategies targeting the easy and general attack scenarios separately.
In this section, we show that if an attack algorithm achieves T � o(T ) target arm selections and is
also victim-agnostic, then the cumulative attack cost is at least ⌦(T↵). Note that since we want to
derive victim-agnostic lower bound, it is sufficient to pick a particular victim bandit algorithm that
guarantees O(T↵) regret and then prove that any victim-agnostic attacker must induce at least some
attack cost in order to achieve T � o(T ) target arm selections. Specifically, we consider the most
popular Exp3 algorithm (see algorithm 1 in the appendix). We first provide the following key lemma,
which characterizes a lower bound on the number of arm selections for Exp3.
Lemma 5.1. Assume the bandit player applies the Exp3 algorithm with parameter ⌘ (see (34) in the
appendix) and initial arm selection probability ⇡1. Let the loss functions be L1:T . Then 8a 2 A, the
total number of rounds where a is selected, NT (a), satisfies

E [NT (a)] � T⇡1(a)� ⌘T

TX

t=1

E [⇡t(a)Lt(a)] , (11)

where ⇡t is the arm selection probability at round t. Furthermore, since ⇡t(a)  1, we have

E [NT (a)] � T⇡1(a)� ⌘T

TX

t=1

Lt(a). (12)

Remark 5.1. Lemma 5.1 provides two different lower bounds on the number of arm selections based
on the loss functions for each arm a. (12) shows that the lower bound on E [NT (a)] increases as
the cumulative loss

PT
t=1 Lt(a) of arm a becomes smaller, which coincides with the intuition. In

particular, if ⇡1 is initialized to the uniform distribution and ⌘ is picked as �T� 1
2 for some constant

�, the lower bound (12) becomes E [NT (a)] � T/K � �
p
T
PT

t=1 Lt(a). One direct conclusion
here is that if the loss function of an arm a is always zero, i.e., Lt(a) = 0, 8t, then arm a must be
selected at least T/K times in expectation.

Now we provide our main result in Theorem 5.2, which shows that for a special implementation of
Exp3 that achieves O(T↵) regret, any attacker must induce ⌦(T↵) cumulative attack cost.
Theorem 5.2. Assume some victim-agnostic attack algorithm achieves E

⇥
NT (a†)

⇤
= T � o(T ) on

all victim bandit algorithms that has regret rate O(T↵), where ↵ 2 [ 12 , 1). Then there exists a bandit
task such that the attacker must induce at least expected attack cost E [CT ] = ⌦(T↵) on some victim
algorithm. Specifically, one such victim is the Exp3 algorithm with parameter ⌘ = ⇥(T�↵).

The lower bound ⌦(T↵) matches the upper bound proved in both Theorem 4.3 and Theorem 4.9 up
to a constant, thus our attacks are asymptotically optimal in the easy attack scenario. However, there
is a gap compared to the upper bound O(T

1+↵
2 ) proved for the general attack scenario (corollary 4.8).

The gap diminishes as ↵ approaches 1, but how to completely close this gap remains an open problem.

6 EXPERIMENTS

We now perform empirical evaluations of our attacks. We consider two victim adversarial bandit
algorithms: the Exp3 algorithm (see Algorithm 1 in the appendix), and a robust version of Exp3
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called ExpRb (see Yang et al. (2020)). The ExpRb assumes that the attacker has a fixed attack budget
�. When � = O(

p
T ), the ExpRb recovers the regret of Exp3. However, our attack does not have a

fixed budget beforehand. Nevertheless, we pretend that ExpRb assumes some budget � (may not be
bounded by the cumulative attack cost of our attacker) and evaluate its performance for different �’s.
Note that as illustrated in example 1, robust bandit algorithms that can recover sublinear regret may
still suffer from an attacker who aims at promoting a target arm in the adversarial bandit setting.

6.1 AN EASY ATTACK EXAMPLE

In out first example, we consider a bandit problem with K = 2 arms, a1 and a2. The loss function is
8t,Lt(a1) = 0.5 and Lt(a2) = 0. Without attack a2 is the best-in-hindsight arm and will be selected
most of the times. The attacker, however, aims at forcing arm a1 to be selected in almost very round.
Therefore, the target arm is a† = a1. Note that Lt(a†) = 0.5, 8t, thus this example falls into the easy
attack scenario, and we apply (5) to perform attack.

(a) T �NT (a
†) of (5). (b) CT of (5). (c) T �NT (a

†) of (6). (d) CT of (6).

Figure 1: Using (5) and (6) to perform attack in an easy attack scenario.

In the first experiment, we let the total horizon be T = 103, 104, 105 and 106. For each T , we run the
Exp3 and ExpRb under attack for T rounds, and compute the number of “non-target” arm selections
T � NT (a†). We repeat the experiment by 10 trials and take the average. In Figure 1a, we show
log(T �NT (a†)), i.e., the log value of the total number of averaged “non-target” arm selections, as
a function of log T . The error bars are tiny small, thus we ignore them in the plot. Smaller value of
log(T �NT (a†)) means better attack performance. Note that when no attack happens (blue line),
the Exp3 algorithm almost does not select the target arm a

†. Specifically, for T = 106, the Exp3
selects a† in 1.45⇥ 104 rounds, which is only 1.5% of the total horizon. Under attack though, for
T = 103, 104, 105, 106, the attacker misleads Exp3 to select a† in 8.15⇥102, 9.13⇥103, 9.63⇥104,
and 9.85 ⇥ 105 rounds, which are 81.5%, 91.3%, 96.3% and 98.5% of the total horizon. We also
plotted the line y = x for comparison. Note that the slope of log(T �NT (a†)) is smaller than that
of y = x, which means T �NT (a†) grows sublinearly as T increases. This matches our theoretical
results in Theorem 4.3. For the other victim ExpRb, we consider different levels of attack budget �.
The attacker budget assumed by ExpRb must be sublinear, since otherwise the ExpRb cannot recover
sublinear regret, and thus not practically useful. In particular, we consider � = T

0.5
, T

0.7 and T
0.9.

Note that for � = T
0.7 and T

0.9, the ExpRb cannot recover the O(
p
T ) regret of Exp3. For T = 106,

our attack forces ExpRb to select the target arm in 9.83⇥ 106, 8.97⇥ 106, and 6.32⇥ 106 rounds for
the three attacker budget above. This corresponds to 98.3%, 89.7%, and 63.2% of the total horizon
respectively. Note that the ExpRb is indeed more robust than Exp3 against our attack. However, our
attack still successfully misleads the ExpRb to select the target a† very frequently. Also note that the
attack performance degrades as the attacker budget � grows. This is because the ExpRb becomes
more robust as it assumes a larger attack budget �.

Figure 1b shows the attack cost averaged over 10 trials. For Exp3, the cumulative attack costs are
1.85 ⇥ 102, 8.72 ⇥ 102, 3.67 ⇥ 103, and 1.45 ⇥ 104 for the four different T ’s. On average, the
per-round attack cost is 0.19, 0.09.0.04, and 0.01 respectively. Note that the per-round attack cost
diminishes as T grows. Again, we plot the line y = x for comparison. Note that slope of logCT

is smaller than that of y = x. This suggests that CT increases sublinearly as T grows, which is
consistent with our theoretical results in Theorem 4.3. For ExpRb, for T = 106, our attack incurs
cumulative attack costs 1.73⇥ 104, 1.03⇥ 105 and 3.68⇥ 105 when ExpRb assumes � = T

0.5
, T

0.7

and T
0.9 respectively. On average, the per-round attack cost is 0.02, 0.10 and 0.37. Note that our

attack induces larger attack cost on ExpRb than Exp3, which means ExpRb is more resilient against
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our attacks. Furthermore, the attack cost grows as ExpRb assumes a larger attack budget �. This is
again due to that a larger � implies that ExpRb is more prepared against attacks, thus is more robust.

Next we apply the general attack (6) to verify that (6) can recover the results of Theorem 4.3 in the
easy attack scenario. We fix ✏ = 0.25 in (6). In Figures 1c and 1d, we show the number of target
arm selections and the cumulative attack cost. For the Exp3 victim, for the four different T ’s, the
attack (6) forces the target arm to be selected in 8.12 ⇥ 102, 9.12 ⇥ 103, 9.63 ⇥ 104, 9.85 ⇥ 105

rounds, which is 81.2%, 91.2%, 96.3% and 98.5% of the total horizon respectively. Compared
to (5), the attack performance is just slightly worse. The corresponding cumulative attack costs
are 1.89 ⇥ 102, 8.76 ⇥ 102, 3.68 ⇥ 103, and 1.45 ⇥ 104. On average, the per-round attack cost is
0.19, 0.09, 0.04 and 0.01. Compared to (5), the attack cost is almost the same.

6.2 A GENERAL ATTACK EXAMPLE

In our second example, we consider a bandit problem with K = 2 arms and the loss function is
8t,Lt(a1) = 1 and Lt(a2) = 0. The attacker desires target arm a

† = a1. This example is hard to
attack because the target arm has the maximum loss across the entire T horizon. We apply the general
attack (6) to perform attack. We consider T = 103, 104, 105, and 106. The results reported in this
section are also averaged over 10 independent trials.

In the first experiment, we let the victim bandit algorithm be Exp3 and study how the parameter
✏ affects the performance of the attack. We let ✏ = 0.1, 0.25 and 0.4. In Figure 2a, we show
the number of target arm selections for different T ’s. Without attack, the Exp3 selects a† in only
1.20⇥ 102, 5.27⇥ 102, 2.12⇥ 103, and 8.07⇥ 103 rounds, which are 12%, 5.3%, 2.1% and 0.81%
of the total horizon. In Figure 2a, we show log(T � NT (a†)) as a function of log T for different
✏’s. Note that as ✏ grows, our attack (6) enforces more target arm selections, which is consistent
with Theorem 4.6. In particular, for ✏ = 0.4, our attack forces the target arm to be selected
in 8.34 ⇥ 102, 9.13 ⇥ 103, 9.58 ⇥ 104, 9.81 ⇥ 105 rounds, which are 83.4%, 91.3%, 95.8% and
98.1% of the total horizon. In Figure 2b, we show the cumulative attack cost. Note that according
to corollary 4.8, the cumulative attack cost achieves the minimum value at ✏ = 0.25. This is
exactly what we see in Figure 2b. Specifically, for ✏ = 0.25, the cumulative attack costs are
4.20 ⇥ 102, 2.84 ⇥ 103, 1.85 ⇥ 104, and 1.14 ⇥ 105. On average, the per-round attack cost is
0.42, 0.28, 0.19 and 0.11 respectively. Note that the per-round attack cost diminishes as T grows. In
both Figure 2a and 2b, we plot the line y = x for comparison. Note that both T �E

⇥
NT (a†)

⇤
and

CT grow sublinearly as T increases, which verifies our results in Theorem 4.6.

(a) T �NT (a
†) as ✏ varies. (b) CT as ✏ varies. (c) T�NT (a

†) as � varies. (d) CT as � varies.

Figure 2: Using (6) to perform attack in general attack scenarios.

In our second experiment, we evaluate the performance of our attack (6) on the robust adversarial
bandit algorithm ExpRb Yang et al. (2020). We fixed ✏ = 0.25 in (6). We consider three levels of
attacker budget � = T

0.5
, T

0.7 and T
0.9 in ExpRb, corresponding to increasing power of the attacker.

In Figure 2c, we show the total number of target arm selections. For T = 106, our attack forces
the Exp3 to select the target arm in 9.24⇥ 105 rounds, which is 92.4% of the total rounds. For the
ExpRb victim, for the three different attack budgets �’s, our attack forces ExpRb to select the target
arm in 8.97⇥ 105, 6.65⇥ 105 and 5.07⇥ 105 rounds, corresponding to 89.7%, 66.5% and 50.7% of
the total horizon respectively. Note that when � = T

0.5, i.e., the ExpRb can recover the regret of
Exp3, but our attack still forces target arm selection in almost 90% of rounds. This is smaller than
the 92.4% on the Exp3 victim, which demonstrates that ExpRb indeed is more robust than Exp3.
Nevertheless, the ExpRb failed to defend against our attack. Even when ExpRb assumes a very large
attacker budget like � = T

0.9, our attack still forces the target arm selection in 50.7% of rounds.

8



Published as a conference paper at ICLR 2023

In Figure 2d, we show the cumulative attack costs. For T = 106, the cumulative attack cost on the
Exp3 victim is 1.14 ⇥ 105. On average, the per-round attack cost is 0.11. For the ExpRb victim,
for T = 106, the cumulative attack costs are 1.40⇥ 105, 3.62⇥ 105, and 5.15⇥ 105 for the three
different attacker budgets � = T

0.5
, T

0.7
, T

0.9. The per-round attack cost is 0.14, 0.36 and 0.51
respectively. Note that when � = T

0.5, the ExpRb recovers the regret of Exp3. The per-round attack
cost for ExpRb is 0.14, which is slightly higher than Exp3. This again shows that ExpRb is indeed
more robust than Exp3. Also note that the attack cost grows as ExpRb assumes a larger attacker
budget. This is reasonable since larger attacker budget � implies stronger robustness of ExpRb.

7 RELATED WORKS

Existing research on attacks of multi-armed bandit mostly fall into the topic of data poisoning Ma
et al. (2019b). Prior works are limited to poisoning attacks on stochastic bandit algorithms. One
line of work studies reward poisoning on vanilla bandit algorithms like UCB and ✏-greedy Jun et al.
(2018); Zuo (2020); Niss; Xu et al. (2021b); Ma et al. (2018); Liu & Shroff (2019); Wang et al.
(2021); Ma (2021); Xu et al., contextual and linear bandits Garcelon et al. (2020), and also best
arm identification algorithms Altschuler et al. (2019). Another line focuses on action poisoning
attacks Liu & Lai (2020; 2021a) where the attacker perturbs the selected arm instead of the reward
signal. Recent study generalizes the reward attacks to broader sequential decision making scenarios
such as multi-agent games Ma et al. (2021) and reinforcement learning Ma et al. (2019a); Zhang
et al. (2020); Sun et al. (2020); Rakhsha et al. (2021); Xu et al. (2021a); Liu & Lai (2021b), where
the problem structure is more complex than bandits. In the multi-agent decision-making scenarios, a
related security threat is an internal agent who adopts strategic behaviors to mislead competitors and
achieves desired objectives such as Deng et al. (2019); Gleave et al. (2019).

There are also prior works that design robust algorithms in the context of stochastic bandits Feng et al.
(2020); Guan et al. (2020); Rangi et al. (2021); Ito (2021), linear and contextual bandits Bogunovic
et al. (2021); Ding et al. (2021); Zhao et al. (2021); Yang & Ren (2021); Yang (2021), dueling
bandits Agarwal et al. (2021), graphical bandits Lu et al. (2021), best-arm identification Zhong et al.
(2021), combinatorial bandit Dong et al. (2022), and multi-agent Vial et al. (2022) or federated
bandit learning scenarios Mitra et al. (2021); Demirel et al. (2022). Most of the robust algorithms are
designed to recover low regret even in presence of reward corruptions. However, as we illustrated
in example 1, recovering low regret does not guarantee successful defense against an attacker who
wants to promote a target arm in the adversarial bandit scenario. How to defend against such attacks
remains an under-explored question.

Of particular interest to our paper is a recent work on designing adversarial bandit algorithms robust
to reward corruptions Yang et al. (2020). The paper assumes that the attacker has a prefixed budget of
attack cost �, and then designs a robust adversarial bandit algorithm ExpRb, which achieves regret
that scales linearly as the attacker budget � grows RT = O(

p
K logKT +K� log T ). As a result,

the ExpRb can tolerate any attacker with budget � = O(
p
T ) while recovering the standard regret

rate of Exp3. We point out that one limitation of ExpRb is that it requires prior knowledge of a fixed
attack budget �. However, our attack does not have a fixed budget beforehand. Instead, our attack
budget depends on the behavior of the bandit player. Therefore, the ExpRb does not directly apply as
a defense against our attack. Nevertheless, in our experiments, we pretend that ExpRb assumes some
attack budget � and evaluate its performance under our attack.

8 CONCLUSION

We studied reward poisoning attacks on adversarial multi-armed bandit algorithms. We proposed
attack strategies in both easy and general attack scenarios, and proved that our attack can successfully
mislead any no-regret bandit algorithm into selecting a target arm in T � o(T ) rounds while incurring
only o(T ) cumulative attack cost. We also provided a lower bound on the cumulative attack cost
that any victim-agnostic attacker must induce in order to achieve T � o(T ) target arm selections,
which matches the upper bound achieved by our attack. This shows that our attack is asymptotically
optimal. Our study reveals critical security caveats in bandit-based applications, and it remains an
open problem how to defend against our attacker whose attack goal is to promote a desired target arm
instead of boosting the regret of the victim bandit algorithm.
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