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ABSTRACT
This paper describes our entry to the GENEA (Generation and Eval-
uation of Non-verbal Behaviour for Embodied Agents) Challenge
2023. This year’s challenge focuses on generating gestures in a
dyadic setting – predicting a main-agent’s motion from the speech
of both themain-agent and an interlocutor.We adapt a Transformer-
XL architecture for this task by adding a cross-attention module
that integrates the interlocutor’s speech with that of the main-
agent. Our model is conditioned on speech audio (encoded using
PASE+), text (encoded using FastText) and a speaker identity label,
and is able to generate smooth and speech appropriate gestures
for a given identity. We consider the GENEA Challenge user study
results and present a discussion of our model strengths and where
improvements can be made.
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• Computing methodologies → Artificial intelligence; Ani-
mation.
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1 INTRODUCTION
Co-speech gesturing contributes to language production and per-
ception during conversation. Gestures can aid conversation turn-
taking and listener feedback while also providing semantic context
andmay be indicative of emotion and emphasis [4, 9, 16, 22]. Speech-
driven gesture generation has predominantly focused on estimating
motion for monadic speech input of a main-agent, with no knowl-
edge of interlocutor speech and no concept of interaction. Instead,
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this year’s GENEA challenge focuses on generating gestures in a
dyadic setting – predicting a main-agent’s motion from the speech
of both the main-agent itself and also the speech of the interlocutor.

We introduce a system to the GENEA Challenge 2023 that uses
PASE+ [21] speech embeddings in conjunction with FastText [2]
word embeddings and a speaker identity label as input to an adapted
Transformer-XL [3] architecture to generate smooth, contextually
and temporally coherent motion that can adapt to varying lengths
of historic context. Specifically, we extend the Transformer-XL
model to provide cross-attention with the interlocutor’s speech to
impart knowledge of both speakers into the prediction.

Video examples and code can be found in the supplement at
github.com/JonathanPWindle/uea-dh-genea23.

2 BACKGROUND & PRIORWORK
Many speech-to-motion deep learning techniques are built upon
recurrent models, such as bi-directional Long Short-Term Memory
models (LSTMs) [5, 7, 23]. Transformer architectures are growing
traction in favour of LSTM models in sequence-based AI, with
sequence-based motion prediction models already making use of
them [1, 10, 15, 24]. Transformer models do not have a concept of
temporal position but can effectively model temporal information
often using a sinusoidal position embedding which is added to the
input.

Transformers rely on attention mechanisms which inform the
network which parts of data to focus on [25]. In self-attention, the
mechanism is applied to the input sequence to find which elements
within the same sequence may relate to each other and which are
key to focus on. Conversely, cross-attention is computed for one
input source in relation to a separate input source, calculatingwhich
elements from one sequence may relate and be important to focus
on in another sequence.

To perform sequence-to-sequence generation using a vanilla
transformer as defined in Vaswani et al. [25] a sequence is processed
over a sliding window with a one-frame stride. For each window
of input, one frame of output is generated. This is computationally
expensive and window size is limited by the longest input sequence
seen during training. As the sequence length increases, the size of
the self-attention mechanism also grows exponentially, leading to
memory and computational limitations.

The Transformer-XL architecture [3] differs from the traditional
transformer architecture in two key ways: 1) Attention is calcu-
lated conditioned on the previous context, and 2) the positional
encoding uses a learned relative embedding. The Transformer-XL
architecture allows for extended attention beyond a fixed length
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by using segment-level recurrence with state reuse allowing the
alteration of context length. The Transformer-XL can therefore be
trained efficiently on small segment lengths while retaining histori-
cal influence through the state reuse. As the historic context length
can vary, the Transformer-XL introduces a learned, relative posi-
tional encoding scheme. Due to its improved ability for modelling
sequences, we adapt the Transformer-XL architecture for dyadic
gesture generation.

3 DATA & PREPROCESSING
Our model makes use of the GENEA challenge data [11] derived
from the TalkingWith Hands dataset [12]. This data includes dyadic
conversations between a main-agent and interlocutor and consists
of high-quality 30fps mocap data in Biovision Hierarchical (BVH)
format, with corresponding speech audio and text transcripts. Our
task is to generate the main-agent motion conditioned on both
main-agent and interlocutor speech. We process both main-agent
and interlocutor speech data the same, using all available modalities;
motion, speech, transcription and speaker identity.

3.1 Motion
Euler angles are required for test submission and are a convenient
representation supported bymany available 3D animation pipelines.
Despite this, Euler angles are discontinuous and difficult for neural
networks to learn [28]. We convert rotations to the 6D rotation
representation presented by Zhou et al. [28] for their suitability to
deep learning tasks. Global skeleton position is also encoded using
three 𝑥,𝑦, 𝑧 values. All values are standardised by subtracting the
mean and dividing by the variance computed from the training
data.

Each identity in the dataset has a skeleton with different bone
lengths. Additionally, per-frame joint offsets are also present in the
data, possibly to account for bone-stretching in the data capture.
Our analysis of these joint offset values revealed very low variance,
and setting them to a pre-defined fixed value for all frames did not
impact visual performance. We therefore compute one set of bone
lengths and offsets per speaker to simplify the training pipeline. We
randomly select a sample corresponding to each identity and fix the
bone lengths and offsets accordingly using the first data frame. Joint
positions can then be computed using the joint angles (measured
or predicted) and pre-defined speaker-specific bone measurements.

3.2 Speech
3.2.1 Audio. We extract audio features using the problem-agnostic
speech encoder (PASE+) [21]. PASE+ is a feature embedding learned
using a multi-task learning approach to solve 12 regression tasks
aimed at encoding important speech characteristics. These 12 tasks
include estimating MFCCs, FBANKs and other speech-related in-
formation including prosody and speech content.

PASE+ requires audio to be sampled at 16KHz, so we used band-
sinc filtering to reduce the audio sample rate from 42KHz to 16KHz.
We use the released, pre-trained PASE+ model to extract audio
feature embeddings of size 768 that represents a 33ms window of
audio to align with the 30 fps motion. The weights for this model
are not updated during training.

3.2.2 Text. We extract features from the text transcriptions using
the FastText word embedding described by Bojanowski et al. [2]
using the pre-trained model released by Mikolov et al. [17]. For
each spoken word, we extract the word embedding and align the
embedding values to each 33ms window of motion. If no word is
spoken at a given frame then a vector of zero values is passed.When
a word is spoken across multiple frames, the vector is repeated for
the appropriate number of frames.

4 METHOD
We adapt the Transformer-XL [3] architecture for speech-driven
gesture generation. Specifically, we modify this architecture to use
both self and cross-attention. The advantage of the Transformer-XL
architecture is that it allows us tomodel the longer term relationship
between speech and gesture for input of any duration.

Our feature extraction process, shown in Figure 1, is used to
generate a feature vector X of length 𝑤 for both the main-agent
and interlocutor. These features are then passed to our model as
shown in our overview Figure 2 where they are processed using a
number os Self-Attention Blocks and Cross-Attention Blocks.

FastText

"Hello"

PASE+ Speaker
Embedding

Speaker Label

Linear

Figure 1: Outline of our data processing pipeline. Our process
takes as input,𝑤 frames starting at frame 𝑡 of speech audio,
text transcript and a speaker identity label to generate a
feature vector X. We use pre-trained models for the audio
and text inputs. Red box defines frozen weights.

4.1 Feature Extraction
We segment the input into non-overlapping segments of length𝑤
frames. For each segment, an input feature vector X is generated
and used to predict Y, a sequence of poses of length𝑤 . Our model
is called for each𝑤-frame feature vector X. In a speech sequence
of length 𝑇 , it is therefore called ⌈𝑇𝑤 ⌉ times.

For each segment, we extract audio (PASE+) features 𝑎𝑡 :𝑡+𝑤 , and
text (FastText) features 𝑓𝑡 :𝑡+𝑤 as described in Section 3.2, where 𝑡
represents the start frame of a window𝑤 . For each utterance, there
is also a speaker label provided. This is a unique ID which we pass
to a learned embedding layer. The embedding layer acts as a lookup
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Figure 2: Outline of our prediction model which takes as input,𝑤 motion frames worth of encoded conditioning information
starting at time 𝑡 and predicts𝑤 frames of body motion. We show a self-attention block and cross-attention block, where we
extract 𝑄,𝐾,𝑉 vectors using main-agent or interlocutor speech according to the attention type conditioned on previous𝑚
number of hidden states M. These vectors are passed to the Transformer-XL attention block to calculate attention before being
fed into a feed-forward block. A final linear layer predicts𝑤 poses ŷt:t+w.
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table for learned feature embeddings that are representative of each
speaker style. The trainable weights ensure that two speakers with
similar gesture styles are close in the latent embedding space, and
conversely, those with different gesturing styles are far apart.

Each modality is extracted and concatenated into a single feature
vector X as shown in Figure 1. Feature vectors for both the main-
agent and the interlocutor are extracted in the same way using the
same learned weights. This is because a speaker may appear as the
main-agent in some sequences and the interlocutor in others.

4.2 Self-Attention
As shown in Figure 2, we process the features from the main-
agent using a self-attention block. The attention score is defined in
Vaswani et al. [25] as:

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉

Where Query 𝑄 , Key 𝐾 , and Value 𝑉 are all vectors and queries
and keys are of dimension 𝑑𝑘 , and values of dimension 𝑑𝑣 . These
vectors are often linear projections of an input vector into their
respective dimensions 𝑑 .

When calculating attention scores in the Transformer-XL model,
historic context is included using segment-level recurrence with
state reuse. This is achieved by caching previous hidden state se-
quences which can be usedwhen processing future segments.When
no historic context is present at the start of the speech sequence,
our Transformer-XL extracts 𝑄,𝐾 and 𝑉 vectors from the main-
agent inputs alone. The historic context from processed segments
M of length𝑚 is cached as each segment is processed. 𝑄,𝐾 and 𝑉
vectors are then extracted from the subsequent inputs, conditioned
on previous context. This process is completed using a Linear QKV
Net shown in Figure 2 which is a single linear layer.

Transformer models do not have inherent knowledge of posi-
tional order. To ensure temporal coherency, a positional encoding
is often added to the input vectors to inject some position context
to the model. As the Transformer-XL architecture can have varying
lengths of historic context and is not constrained to a maximum
length, a learned relative position encoding 𝑟 is instead utilised.
The learned relative encoding is from a single linear layer and takes
a sinusoidal position embedding for the full length of context, that
is the sum of both memory length available and the query length.
Rather than injecting the temporal information to the input before
calculating 𝑄 , 𝐾 and 𝑉 , which is the approach used in Vaswani
et al. [25], the Transformer-XL inputs this information after these
vectors have been extracted at the time of calculating the attention
score.

Using 𝑄 , 𝐾 and 𝑉 in conjunction with the relative position en-
coding 𝑟 , we use the Transformer-XL attention block to calculate
attention vectors. As Figure 2 shows, these attention vectors are
then passed to a Feed Forward Block which comprises of two Lin-
ear layers, with a ReLU activation on the first output and dropout
applied to both.

Each self-attention block has multiple attention heads, each aim-
ing to extract different attention features and a self-attention block
is repeated𝑁self times, with each layer feeding its output to the next.
Memory values M are persisted on a per-layer basis and therefore

hidden states are specific to each self-attention block. The length
of this memory𝑚 can be altered during training and evaluation.

4.3 Cross-Attention
While it is reasonable to assume the main-agent speech is driving
the majority of the gestures, the interlocutor can also influence
the motion of the agent indicating turn taking and backchannel
communication. For example, the main-agent might nod to show
agreement or understanding when the interlocutor is speaking.
Therefore we aim to derive the main source of information driving
the motion from the main-agent’s speech, but also include the inter-
locutor’s speech.We adapt the Transformer-XL to not only compute
self-attention over the main-agent inputs, but to also utilise cross-
attention from the interlocutor while maintaining segment-level
recurrence and relative position encoding. This cross-attention
block is shown in Figure 2.

Cross-attention is an attention mechanism where the Query 𝑄
is extracted from the input source and the Key 𝐾 and Value 𝑉 are
extracted from an external input element. Our cross-attention block
uses a similar approach as the self-attention block defined in Section
4.2, but instead has two separate networks to process the inputs; one
to extract𝑄 from themain-agent self-attention encoding and one to
extract𝐾 and𝑉 derived from the interlocutor speech. For each layer
of cross-attention blocks, the input to the𝑄 net is a skip connection
from the output of the self-attention encoder and therefore remains
the same input for all cross-attention blocks. The input to the𝐾𝑉 net
in the first iteration is the interlocutor feature vectors (described in
Section 4.1), and the output from a cross-attention block thereafter.

The output from the cross-attention block is then passed to a
single linear layer which predicts Y, the standardised 6D rotations
of each joint and the global position of the skeleton.

4.4 Training Procedure
For each segment of speech of length𝑤 , we predict the pose rep-
resented by a vector of joint rotations Ŷ of length 𝑤 . In motion
synthesis it is common to include both geometric and temporal
constraints in the loss function to ensure that the model gener-
ates output that is both geometrically and dynamically plausible
[6, 24, 26]. Our loss function 𝐿𝑐 comprises multiple terms including
a 𝐿1 loss on the rotations (𝐿𝑟 ), positions (𝐿𝑝 ), velocity (𝐿𝑣 ), acceler-
ation (𝐿𝑎) and kinetic energy (𝐿𝑣2 ) of each joint. If we take yr and
ŷr to be natural mocap and predicted 6D rotations respectively; yp
and ŷp to to be positions in world space computed using forward
kinematics given the predicted joint angles and the pre-defined
speaker-specific bone lengths, we use the following loss function:

𝐿𝑟 = 𝐿1 (yr, ŷr)
𝐿𝑝 = 𝐿1 (yp, ŷp)
𝐿𝑣 = 𝐿1 (𝑓 ′ (yp), 𝑓 ′ (ŷp))
𝐿𝑣2 = 𝐿1 (𝑓 ′ (yp)2, 𝑓 ′ (ŷp)2)
𝐿𝑎 = 𝐿1 (𝑓 ′′ (yp), 𝑓 ′′ (ŷp))
𝐿𝑐 = 𝜆𝑝𝐿𝑝 + 𝜆𝑣𝐿𝑣 + 𝜆𝑎𝐿𝑎 + 𝜆𝑟𝐿𝑟 + 𝜆𝑣2𝐿𝑣2

(1)
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Where 𝑓 ′ and 𝑓 ′′ are the first and second derivatives respectively.
Each term has a 𝜆 weighting to control the importance of each term
in the loss.

Table 1 summarises the parameters used, optimised using a ran-
dom grid search parameter sweep. These settings were chosen using
a combination of low validation loss values and quality of the pre-
dicted validation sequences as observed by our team. We train our
model for 1770 epochs using the AdamW [14] optimiser and found
that a segment length𝑤 of 90 frames and memory length𝑚 of 180
frames was optimal. The Feed Forward Blocks used in both self and
cross-attention layers are comprised using the same topology and
size.

Hyperparameter Value
TransformerXL Head Dimension 32

Number Heads 32
Self-Attention Layers (𝑁self ) 4
Cross-Attention Layers (𝑁cross) 2

Feed Forward Block Dropout 0.2
Hidden Size 4096

Embeddings Feature Embedding 1024
Speaker Embedding 8

Training Batch Size 32
Learning Rate 0.00001
𝜆𝑟 1
𝜆𝑝 0.01
𝜆𝑣 , 𝜆𝑎 0.5
𝜆𝑣2 0.2

Context Segment Length (𝑤 ) 90 frames
Memory Length (𝑚) 180 frames

Table 1: Training hyperparameters.

5 RESULTS
Our approach is evaluated in conjunction with the GENEA Chal-
lenge 2023 [11]. Each challenge participant submitted 70 BVH files
for main-agent motion generated using the speech of the main-
agent and interlocutor for each interaction. Using these submitted
BVH files, motion is rendered on the same character for comparison.
There are three studies of interest in this challenge; human likeness,
appropriateness to speech and appropriate to interlocutor. Each
challenge participant is assigned a unique ID to provide anonymity
during the evaluation process, our ID which will be used in Figures
and Tables throughout is SJ. NA denotes natural motion of the
mocap sequences, BD and BM are baseline systems in a dyadic
and monadic setting respectively. We give a brief overview of each
evaluation method, however, we strongly recommend also reading
the main challenge paper [11] for full details.

Condi- Human-likeness
tion Median Mean

NA 71 ∈ [70, 71] 68.4±1.0
SG 69 ∈ [67, 70] 65.6±1.4
SF 65 ∈ [64, 67] 63.6±1.3
SJ 51 ∈ [50, 53] 51.8±1.3
SL 51 ∈ [50, 51] 50.6±1.3
SE 50 ∈ [49, 51] 50.9±1.3
SH 46 ∈ [44, 49] 45.1±1.5
BD 46 ∈ [43, 47] 45.3±1.4
SD 45 ∈ [43, 47] 44.7±1.3
BM 43 ∈ [42, 45] 42.9±1.3
SI 40 ∈ [39, 43] 41.4±1.4
SK 37 ∈ [35, 40] 40.2±1.5
SA 30 ∈ [29, 31] 32.0±1.3
SB 24 ∈ [23, 27] 27.4±1.3
SC 9 ∈ [ 9, 9] 11.6±0.9

Table 2: Summary statistics of user-study ratings from the
human-likeness study, with confidence intervals at the level
𝛼 = 0.05. Conditions are ordered by decreasing samplemedian
rating. Ourmodel results are highlighted in pink . Table and
caption from [11].
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Figure 3: Significance of pairwise differences between condi-
tions in human-likeness study. White means that the condi-
tion listed on the 𝑦-axis rated significantly above the condi-
tion on the 𝑥-axis, blackmeans the opposite (𝑦 rated below 𝑥),
and grey means no statistically significant difference at the
level 𝛼 = 0.05 after Holm-Bonferroni correction. Conditions
are listed in the same order as in Table 2. Figure and caption
from [11].
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5.1 Human Likeness
This user-study aims to evaluate how human-like the motion gen-
erated is, independent of the speech. Although each comparison
system motion corresponds to the same input speech and condi-
tioning, these sequences were muted to ensure ratings can only
depend on the motion seen in the videos. 8 systems were compared
at any one time and participants were asked “Please indicate on a
sliding scale how human-like the gesture motion appears”. Study
participants gave their ratings in response to this question on a
scale from 0 (worst) to 100 (best).

Summary statistics (median, mean) are shown in Table 2 and
significance comparisons are provided in Figure 3. Our system
(SJ) was evaluated to be the third highest ranking of submitted
systems with regards to mean and median human likeness score.
Figure 3 shows only NA, SG and SF are significantly better than
our system. Our system scores significantly higher than 9 other
systems, including both baseline systems.

Condi- MAS Pref. Raw response count
tion matched 2 1 0 −1 −2 Sum

NA 0.81±0.06 73.6% 755 452 185 217 157 1766
SG 0.39±0.07 61.8% 531 486 201 330 259 1807
SJ 0.27±0.06 58.4% 338 521 391 401 155 1806
BM 0.20±0.05 56.6% 269 559 390 451 139 1808
SF 0.20±0.06 55.8% 397 483 261 421 249 1811
SK 0.18±0.06 55.6% 370 491 283 406 252 1802
SI 0.16±0.06 55.5% 283 547 342 428 202 1802
SE 0.16±0.05 54.9% 221 525 489 453 117 1805
BD 0.14±0.06 54.8% 310 505 357 422 220 1814
SD 0.14±0.06 55.0% 252 561 350 459 175 1797
SB 0.13±0.06 55.0% 320 508 339 386 262 1815
SA 0.11±0.06 53.6% 238 495 438 444 162 1777
SH 0.09±0.07 52.9% 384 438 258 393 325 1798
SL 0.05±0.05 51.7% 200 522 432 491 170 1815
SC −0.02±0.04 49.1% 72 284 1057 314 76 1803

Table 3: Summary statistics of user-study responses from the
appropriateness to speech study, with confidence intervals
for themean appropriateness score (MAS) at the level 𝛼 = 0.05.
“Pref. matched” identifies how often test-takers preferred
matched motion in terms of appropriateness, ignoring ties.
Our model results are highlighted in pink . Table and cap-
tion from [11].

5.2 Speech Appropriateness
To measure appropriateness of gestures to speech, participants
were asked to view two videos and answer “Which character’s
motion matches the speech better, both in terms of rhythm and
intonation and in terms of meaning?”. Both video stimuli are from
the same condition and thus ensure the same motion quality, but
one matches the speech and the other is mismatched, generated
from an unrelated speech sequence. Five response options were
available, namely “Left is clearly better”, “Left is slightly better”,
“They are equal”, “Right is slightly better”, and “Right is clearly
better”. Each answer is assigned a value of -2, -1, 0, 1, 2 where a
negative value is given for a preference to mismatched motion and
a positive value for a preference to matched motion.

Table 3 provides summary statistics and win rates, Figure 4
visualises the response distribution and Figure 5 shows significance
comparisons. Our approach (SJ) ranked second in the submitted
systems. Figure 5 shows that there are few significant differences
between pairwise systems. Only SG and the natural mocap (NA)
rank significantly better than our system. Again, our system ranks
significantly better than 9 other conditions including the dyadic
baseline system.
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Figure 4: Bar plots visualising the response distribution in
the appropriateness to speech study. The blue bar (bottom)
represents responses where subjects preferred the matched
motion, the light grey bar (middle) represents tied (“They are
equal”) responses, and the red bar (top) represents responses
preferring mismatched motion, with the height of each bar
being proportional to the fraction of responses in each cat-
egory. Lighter colours correspond to slight preference, and
darker colours to clear preference. On top of each bar is also
a confidence interval for the mean appropriateness score,
scaled to fit the current axes. The dotted black line indicates
chance-level performance. Conditions are ordered by mean
appropriateness score. Figure and caption from [11].

5.3 Interlocutor Appropriateness
As this year’s challenge includes awareness of the interlocutor
speech and motion, the appropriateness of the generated main-
agent motion to the interlocutor’s speech is also evaluated. The
was done using a similar technique used for measuring speech ap-
propriateness but differed in several important aspects. The test data
contained pairs of interactions, one with matched main-agent and
interlocutor interactions and another with the same main-agent
speech, but mismatched interlocutor speech. Preference can be
quantified for generated motion with matched over mismatched in-
terlocutor behaviour and we can assess how interlocutor behaviour
affects the motion.

Our system ranked 8th in this study but only natural mocap, SA,
BD and SL are rated significantly higher than it. There is no other
significant difference to any other system, except SHwherewewere
significantly better. We observe from the statistics in Figure 7 that
our system had the lowest number of negative scores (preference
for the mismatched dyadic interaction), and a large number of no
preference scores.
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Figure 5: Significance of pairwise differences between con-
ditions in the appropriateness to speech evaluation. White
means that the condition listed on the 𝑦-axis rated signifi-
cantly above the condition on the 𝑥-axis, black means the
opposite (𝑦 rated below 𝑥), and greymeans no statistically sig-
nificant difference at the level 𝛼 = 0.05 afterHolm-Bonferroni
correction. Conditions are listed in the same order as in Table
3. Figure and caption from [11].

Cond- MAS Pref. Raw response count
ition matched 2 1 0 −1 −2 Sum

NA 0.63±0.08 67.9% 367 272 98 189 88 1014
SA 0.09±0.06 53.5% 77 243 444 194 55 1013
BD 0.07±0.06 53.0% 74 274 374 229 59 1010
SB 0.07±0.08 51.8% 156 262 206 263 119 1006
SL 0.07±0.06 53.4% 52 267 439 204 47 1009
SE 0.05±0.07 51.8% 89 305 263 284 73 1014
SF 0.04±0.06 50.9% 94 208 419 208 76 1005
SI 0.04±0.08 50.9% 147 269 193 269 129 1007
SD 0.02±0.07 52.2% 85 307 278 241 106 1017
BM −0.01±0.06 49.9% 55 212 470 206 63 1006
SJ −0.03±0.05 49.1% 31 157 617 168 39 1012
SC −0.03±0.05 49.1% 34 183 541 190 45 993
SK −0.06±0.09 47.4% 200 227 111 276 205 1019
SG −0.09±0.08 46.7% 140 252 163 293 167 1015
SH −0.21±0.07 44.0% 55 237 308 270 144 1014

Table 4: Summary statistics of user-study responses from the
appropriateness to interlocutor study, with confidence inter-
vals for the mean appropriateness score (MAS) at the level 𝛼
= 0.05. “Pref. matched” identifies how often test-takers pre-
ferredmatchedmotion in terms of appropriateness, ignoring
ties. Our model results are highlighted in pink . Table and
caption from [11].
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Figure 6: Significance of pairwise differences between con-
ditions in the appropriateness to interlocutor study. White
means that the condition listed on the 𝑦-axis rated signifi-
cantly above the condition on the 𝑥-axis, black means the
opposite (𝑦 rated below 𝑥), and greymeans no statistically sig-
nificant difference at the level 𝛼 = 0.05 afterHolm-Bonferroni
correction. Conditions are listed in the same order as in Fig-
ure 4. Figure and caption from [11].
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Figure 7: Bar plots visualising the response distribution in the
appropriateness to interlocutor study. The blue bar (bottom)
represents responses where subjects preferred the matched
motion, the light grey bar (middle) represents tied (“They are
equal”) responses, and the red bar (top) represents responses
preferring mismatched motion, with the height of each bar
being proportional to the fraction of responses in each cat-
egory. Lighter colours correspond to slight preference, and
darker colours to clear preference. On top of each bar is also
a confidence interval for the mean appropriateness score,
scaled to fit the current axes. The dotted black line indicates
chance-level performance. Conditions are ordered by mean
appropriateness score. Figure and caption from [11].



ICMI ’23, October 9–13, 2023, Paris, France Windle, et al.

5.4 Observations
We observe that the animation generated from our model is smooth
and temporally coherent without jitter or sudden shifts in motion
while maintaining gesture beats in time with speech. Our model
appears to reliably and realistically animate beat gestures. Beat
gestures are simple and fast movements of the hands and have
a close relationship to prosodic activity such as acoustic energy
and pitch [20, 27]. The PASE+ model used for encoding audio in
our system was trained to estimate prosodic features as one of its
downstream tasks, making the derived audio features particularly
suitable for animating beat gestures.

We do not expect gestures to occur during every audio beat,
but when they happen they should synchronise with the speech.
Using the method of motion and audio beat extraction used in the
beat align score calculation presented in Liu et al. [13], we can
visualise the onset of audio beats and motion gesture over time.
Figure 8 shows two well timed gestures for a 3 second audio clip.
The utterance of “programs” shows a beat gesture where during
the syllable utterance “pro”, the speaker moves their right hand
from right to left and as the stressed syllable “grams” is spoken,
the hand begins to change velocity and move from left to right. We
also see an example of muted speech where our model continues to
perform well. As there is no speech, there is little to inform gesture,
we find the right arm drops to the side, and left arm lowers slightly.
However, as the speech begins again, both arms raise in time with
the speech.

A difference between natural mocap motion and our generated
animation is that the latter does not exhibit sporadic, non-speech
related motion such as self-adaptor traits. Self-adaptors are move-
ments that typically include self-touch, such as scratching of the
neck, clasping at an elbow, adjusting hair or interlocking fingers
[18]. Despite the indirect relationship between these behaviours
and speech, these traits are linked to perceived emotional stability
of an agent [18] and may influence perceived human-likeness.

6 DISCUSSION
Our approach performed well with regards to human-likeness and
appropriateness to speech. Our model performed comparably to
10 of the other systems with regards to appropriateness to the in-
terlocutor’s speech, but clearly it can be improved in this area. We
observe in Figure 7 and Table 4 that, for our system, participants
preferred the mismatched stimuli least compared to all other sys-
tems (including natural mocap). The majority of responses were
tied, meaning that they considered the mismatched stimuli to be of
equal appropriateness as the matched animation. It is unclear where
this uncertainty stems from and more work is required to evaluate
this cause. There may be a lack of influence from the interlocutor
speech in this model architecture. There are many ways to incorpo-
rate the interlocutor speech in this model, for example including as
an extra input to the self-attention rather than as cross-attention
or altering skip connections. These ideas or simply increasing the
number of cross-attention layers may improve the performance of
the appropriateness to the interlocutor.

More experiments are also required to determine the impact
of including the interlocutor information on human-likeness and
appropriateness to speech as well as appropriateness to interlocutor.

P    r    o g    r     a    m    s <mute>   medical

Figure 8: Generated gestures for given audio beats. Using a
3s audio clip from the test dataset we show the audio spec-
trogram, as well as aligned audio beat onsets and their cor-
responding onset strengths as well as motion gesture onset
detection of the right wrist using the method of beat detec-
tion defined in Liu et al. [13]. We can see during the syllable
utterance “pro”, the speaker moves their right hand hand
from right to left and as the stressed syllable “grams” is spo-
ken, the hand begins to move left to right. When there is
silence, the arms begin to rest and again gesture in the next
utterance.

This may have a positive effect on these two evaluations or may
limit performance in these areas.

Although our proposed method is deterministic, i.e. the same
inputs will always produce the same outputs, it could be possible to
incorporate this design into a probabilistic model. For example, this
approach could be adjusted to incorporate probabilistic diffusion
[8, 19] methods.

7 CONCLUSION
We have presented our submission to the GENEA Challenge 2023,
a modified Transformer-XL based approach that utilises both self-
attention and cross-attention. Our solution generates smooth, tem-
porally coherent animation from the conversational speech of a
main-agent and interlocutor. Subjective evaluation results support
that our system performs well in regards to human-likeness and
appropriateness, ranking third and second respectively when com-
pared to the 14 other systems and baselines and performing signifi-
cantly better than 9 in both evaluations. Our approach continues to
be competitive when evaluating the generated main-agent motion’s
appropriateness to the interlocutor, where only the natural mocap
and 3 systems performed significantly better.
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