
Under review as a conference paper at ICLR 2022

LIST: LITE SELF-TRAINING MAKES EFFICIENT
FEW-SHOT LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a new method LiST1 for efficient fine-tuning of large pre-trained lan-
guage models (PLMs) in few-shot learning settings. LiST significantly improves
over recent methods that adopt prompt-based fine-tuning (FN) using two key tech-
niques. The first one is the use of self-training to leverage large amounts of un-
labeled data for prompt-based FN to significantly boost the model performance
in few-shot settings. We use self-training in conjunction with meta-learning for
re-weighting noisy pseudo-prompt labels. However, traditional self-training is ex-
pensive as it requires updating all the model parameters repetitively. Therefore,
we use a second technique for light-weight fine-tuning where we introduce a small
number of task-specific adapter parameters that are fine-tuned during self-training
while keeping the PLM encoder frozen. This also significantly reduces the overall
model footprint across several tasks that can now share a common PLM encoder
as backbone for inference. Combining the above techniques, LiST not only im-
proves the model performance for few-shot learning on target domains but also
reduces the model memory footprint. We present a comprehensive study on six
NLU tasks to validate the effectiveness of LiST. The results show that LiST
improves by 35% over classic fine-tuning methods and 6% over prompt-based FN
with 96% reduction in number of trainable parameters when fine-tuned with no
more than 30 labeled examples from each target domain.

1 INTRODUCTION

Large pre-trained language models (PLMs) have obtained state-of-the-art performance in several
natural language understanding tasks (Devlin et al., 2019b; Clark et al., 2020; Liu et al., 2019a). De-
spite their remarkable success, these large language models suffer from two significant challenges.

(C1) Labeled training data. PLMs traditionally rely on thousands of labeled training data for adapt-
ing to downstream tasks to obtain state-of-the-art performance. While models like GPT-3 (Brown
et al., 2020) have obtained impressive few-shot performance with in-context task adaptation, they
have a significant performance gap relative to fully supervised SOTA models. For instance, the
few-shot GPT-3 performance is 20 points worse than the fully-tuned DeBERTa (He et al., 2021) on
SuperGLUE. This poses significant challenges for many real-world tasks where large labeled data
is difficult to obtain.

(C2) Large number of tunable parameters. PLMs have been steadily increasing in size in terms of
trainable parameters ranging from millions to billions of parameters. This significantly increases
both the computational cost to fine-tune all parameters of the very large PLM and the serving cost
in terms of the storage and overall model footprint, where every task requires its customized copy
of the large model parameters. In order to address the above challenges, we consider real-world
settings where fine-tuning PLMs needs to meet the following two criteria.

• Few-shot: We assume very limited amount of task labels in each task domain.

• Light-weight: The fine-tuning should have a small number of tunable parameters, for each
new task, to reduce the overall storage cost and model footprint.

1LiST is short for Lite Self-Training.

1

Under review as a conference paper at ICLR 2022

Note that the computational cost of inference is out of the scope of this paper and previous work has
studied several ways to address it including model distillation (Hinton et al., 2015), pruning (LeCun
et al., 1990), etc.

In this work, we present a new fine-tuning method LiST that aims to improve few-shot learning
ability and parameter-efficiency over existing fine-tuning strategies using two key techniques:

10 20 30 100 500 1000

Labeled Examples

30

40

50

60

70

80

90

A
cc

u
ra

cy

Classic Tuning

Prompt-based FN

LiST

400K Labeled Examples

10 100 200 350 400

#Tunable Parameters (Million)

Classic Tuning

Prompt-based FN

LiST

Figure 1: LiST leverages
prompt-based fine-tuning
(FN) with unlabeled data for
label-efficiency and adapters
for reducing tunable param-
eters . (a) shows classic
tuning, prompt-based FN and
LiST using RoBERTa-large
as backbone on MNLI task
for a comparison. The red
dash line depicts the ceiling
performance with full super-
vision (400K training labels)
with RoBERTa-large. (b)
shows the number of tunable
parameters for each method.

(a) Self-training with prompts and unlabeled data. The first one
is to leverage self-training with large amounts of unlabeled data
from the target domain to improve model adaptation in few-shot
settings. We demonstrate self-training to significantly improve with
prompt-tuning (Gao et al., 2021) where we iteratively update a pair
of teacher and student models given natural language prompts and
very few labeled examples for the task. Since the uncertain teacher
in few-shot settings produces noisy pseudo-labels, we further use
meta-learning to re-weight the pseudo-prompt labels.

(b) Light-weight adapter-tuning. Traditional self-training can be
expensive if we have to update all model parameters iteratively.
Therefore, we introduce a small number of task-specific adapter
parameters in the PLM that are updated with few-shot labels, while
keeping the large PLM encoder fixed. We demonstrate that light-
weight tuning with self-training can match the setting where all
model parameters are tuned. This enables efficient use of self-
training, improves parameter efficiency of the fine-tuning process,
and reduces the storage cost of the fine-tuned model since multiple
fine-tuned models can now share the same PLM as backbone during
inference.

Consider the following scenario for demonstration, where we want
to use RoBERTa-large with M = 355M parameters as the PLM for
T = 100 tasks. Full fine-tuning for this scenario requires updating
and storing M×T = 35.5B parameters. Now, consider fine-tuning
with LiST that requires A = 14M (tunable) adapter parameters
for every task while keeping the PLM fixed. This results in overall
M + A × T = 1.8B parameters, thereby, reducing the overall
storage cost by 20x.

We perform extensive experiments in six natural language under-
standing tasks to demonstrate the effectiveness of LiST . We de-
vise a comprehensive evaluation framework considering the vari-
ance in few-shot performance of PLMs with different shots, random
seeds and splits2. Results show that LiST improves over tradi-
tional and more recent prompt-based FN methods by 35% and 6%, respectively, with 96% reduction
in number of trainable parameters given only 30 labeled examples for each downstream task. Fig-
ure 1 shows the results on MNLI (Williams et al., 2018a) as an example.

Problem statement. Each downstream task in our framework consists of very few labeled training
examples DTrain

K for different shots K ∈ {10, 20, 30} where |DTrain
K | = K, unlabeled data DU

where DU ≫ DTrain
K , and a test set DTest.

Given the above dataset DK = DTrain
K ∪DU for a task with shotsK, a PLM with parameters ΘPLM

and a loss function L, we want to adapt the model for the few-shot learning task by introducing a
small number of tunable model parameters ψ ≪ ΘPLM.

2 BACKGROUND ON MODEL TUNING

Given a text sequence x or a pair of sequences {x1, x2} separated by special operators (e.g., [CLS]
and [SEP]) and a language model encoder enc(θ) parameterized by θ – classic fine-tuning popular-
ized by (Devlin et al., 2019a) leverages hidden state representation h[CLS] of the sequence(s) ob-

2We will release the code and dataset partitions for different shots, seeds and splits for every task to enable
reproducability and benchmarking of efficient few-shot language models.

2

Under review as a conference paper at ICLR 2022

tained from enc([[CLS] x1 [SEP] x2 [SEP]]) as input to a task-specific head softmax(WT · h[CLS])
for classification, whereW ∈ Rd×L with d and L representing the hidden state dimension and num-
ber of classes respectively, are randomly initialized tunable parameters. In the process it updates
both task-specific head W and encoder θ parameters jointly.

However, this introduces a gap between pre-training and fine-tuning objective with disparate label
spaces and additional randomly initiated parametersW introduced for task-specific fine-tuning. This
is particularly challenging for few-shot classic fine-tuning, where the limited labeled data is inad-
equate for adapting the task-specific head and PLM weights effectively. Prompt-based FN (Schick
& Schütze, 2021a; Gao et al., 2021) addresses this gap, by re-formulating the objective as a cloze-
style auto-complete task. This is done by adding a phrase (also called prompt) to a sentence like
x1 = “contains no wit, only labored gags” in the form of x̃ = x1 ⊕ “It was [MASK]”,
where ⊕ denotes the concatenation of two strings; and output mappings (also called verbalizers)
from vocabulary V to the label space Y like “{great, terrible}” corresponding to positive and
negative classes (refer to Figure 4 for an example). The probability of predicting class y ∈ Y is
equal to calculating the probability of corresponding label word v ∈ V:

p([MASK] = v|x̃) =
exp(WT

v · h[MASK])∑
v′∈V exp(WT

v′ · h[MASK])
(1)

where Wv indicates the tunable parameters. Since it is identical to masked language modeling
(MLM), Wv is initialized by the pre-trained weights of PLMs.

In this work, we demonstrate that lite self-training with unlabeled data can significantly improve
prompt-tuning of large language models in few-shot settings.

3 LITE SELF-TRAINING: LiST METHODOLOGY

3.1 OVERVIEW

Student
Adapter

(2) Assign
Pseudo-labels

Teacher
Adapter

Unlabeled
data

Few-shot
Labeled data

Pseudo-labeled
data

Frozen
PLM

Frozen
PLM

(1) Teacher Adapter
Tuning

(3) Re-weighting

Lite Self-training

Repeat above steps M times

(5)Knowledge
Transfer

(4) Student Adapter
Tuning

Figure 2: Lite self-training on
unlabeled data with prompts
and adapters make efficient
few-shot learners with LiST.

We adopt a PLM (e.g., RoBERTa (Liu et al., 2019b)) as the shared
encoder for both the student and teacher for self-training. The
shared PLM encoder is frozen and not updated during training.
We introduce tunable adapter parameters in both teacher and stu-
dent (discussed in Section 3.2) that are iteratively tuned during self-
training. Refer to Figure 2 for steps in the following discussion.

We first prompt-tune the teacher adapter (Step 1) with few-shot la-
beled examples and leverage the teacher model to assign pseudo-
prompt labels (Step 2) on unlabeled data Du. The teacher is often
uncertain in few-shot learning and produces noisy pseudo-labels.
Therefore, we adopt meta-learning (discussed in Section 3.3) to re-
weight the noisy pseudo-labeled samples (Step 3). The re-weighted
data is used to train the student adapter (Step 4). Since adapter
training with noisy pseudo labels is quite unstable, we introduce
knowledge distillation warmup (discussed in Section 3.3.1). Fi-
nally, we assign the trained student adapter to be the new teacher
adapter (Step 5). Following true few-shot learning settings, we do not use any held-out development
or validation set. Therefore, we repeat the above steps for a pre-defined number of times (M = 6).
The overall training procedure is summarized in Algorithm 1 (Appendix B). Throughout the train-
ing, we keep the shared student and teacher encoder parameters frozen and update the corresponding
adapter parameters along with their language model heads.

3.2 LIGHTWEIGHT PROMPT ADAPTER TUNING

The predominant methodology for task adaptation is to tune all of the trainable parameters of the
PLMs for every task. This raises significant resource challenges both during training and deploy-
ment. A recent study (Aghajanyan et al., 2020) show that PLMs have a low instrinsic dimension
that can match the performance of the full parameter space. To adapt PLMs for downstream tasks
with a small number of parameters, adapters (Houlsby et al., 2019) have recently been introduced
as an alternative approach for lightweight tuning. Adapters have been shown to match the PLM
performance in fully supervised settings with thousands of training labels in classic fine-tuning. In
contrast, this is the first work to study the role of adapters in few-shot prompt-based FN. We ex-

3

Under review as a conference paper at ICLR 2022

plore different design and placement choices of adapters in few-shot settings and investigate the
performance gap with fully supervised as well as fully tunable parameter space.

The adapter tuning strategy judiciously introduces new parameters into the original PLMs. In con-
trast to standard prompt-based FN that updates all the PLM parameters ΘPLM, prompt-adapter
tuning only updates the newly introduced adapter parameters as well as the (masked) language
model head of the PLM (jointly denoted as ψ), while keeping the remaining parameters of the orig-
inal network frozen. The adapter used in LiST consists of two fully connected layers as shown
in Figure 3, where a feedforward layer down projects input representations to a low dimensional
space d (referred as the bottleneck dimension), and another feedforward layer up projects the low-
dimensional features back to the original dimension. However, these newly-inserted parameters can
cause divergence resulting in up to 20% performance degradation in few-shot settings (discussed in
Section 4.4). To handle this issue, we adopt a skip-connection design where the adapter parameters
are initialized with zero-mean small Gaussian noise.

Multi-Head
Attention

Add & Norm

Feedforward-
intermediate

Input
Embedding

+Positional
Encoding

1

2

3

4

Feedforward Down

Feedforward Up

+

Adapter

Add & Norm

Feedforward-
output Skip-

connection

Figure 3: LiST explores sev-
eral adapter placement choices
(numbered positions in left) in
standard Transformer architecture,
with adapter design shown in right.

Adapter placement. Prior works on lightweight adaptation
tune bias (Cai et al., 2020b) or embeddings (Lester et al.,
2021) of Transformers in fully-supervised settings for im-
proving parameter-efficiency with minimal performance loss.
However, for few-shot settings, we note that adapter placement
is critical to bridge the performance gap with that of a fully
tunable model and the choices of tuning bias or embedding
can result in up to 10% performance degradation (discussed in
Section 4.4). To this end, we explore several choices of adapter
placement (refer to Figure 3) corresponding to the most im-
portant transformer modules, namely, embedding, intermedi-
ate feedforward, output feedforward and attention module in
every layer of the Transformer model. Based on empirical ex-
periments (refer to Section 4.4) across six diverse NLU tasks,
we observe the feedforward output and attention modules to be
the most important components for parameter-efficient adap-
tion in few-shot settings.

Frozen
PLM

[CLS] The movie
was very boring. It
was [MASK]. [SEP]

Fill [MASK] by label words:

Prompt Adapter-tuning

Adapter

[CLS] Houston is
really humid now?

[MASK], Houston is
freezing and dry
right now. [SEP]

great
terrible

yes
maybe
no

SST-2 Example MNLI Example

Figure 4: The underlined
text depicts task prompt
to transform classification
into Fill-in-MASK task.
Label words are used as
proxy for original task la-
bels.

Formally, consider D̃Train
K = {x̃l, ỹl} to be the few-shot labeled data

and D̃U = {x̃u} to be the unlabeled data, where we transform the input
sequences x to cloze-style input x̃ containing a single mask following
the prompting strategy outlined in Section 2. We use the same pattern
templates and verbalizers (output mapping from the task-specific labels
Y to single tokens in the vocabulary V) from traditional prompt-based
FN works (Gao et al., 2021). Given the above adapter design and place-
ment of choice with parameters ψ, a dataset D̃Train

K with shots K, a
PLM encoder enc with parameters ΘPLM, where ΘPLM ≫ ψ, we want
to perform the following optimization for efficient model adaptation:

ψ ← argmin
ψ

L(D̃TrainK ; ΘPLM, ψ) (2)

3.3 RE-WEIGHTING NOISY PROMPT LABELS

Consider {ŷ(t)n }Nn=1 to be the pseudo prompt-labels (for the masked
tokens in x̃un ∈ X̃) from the teacher (ΘPLM, ψ̂tea) in the t-th itera-
tion where N is the number of unlabeled instances and ψ̂tea represent
the teacher adapter parameters. In self-training, the student model is
trained to mimic the teacher predictions on the transfer set. Consider
L(ŷ(t)n , enc(x̃un; ΘPLM, ψ

(t)
stu)) to be the loss of the student model with parameters (ΘPLM, ψ

(t)
stu) on

the pseudo-labeled data in the t-th iteration, where ΘPLM and ψstu represent the PLM and the stu-
dent adapter parameters respectively. The student update (with step size α) can be formalized as:

ψ̂
(t)
stu = ψ̂

(t−1)
stu − α▽

(1

N

N∑
i=1

L(ŷ(t)i , enc(xui ; ΘPLM, ψ̂
(t−1)
stu)

)
. (3)

In order to reduce error propagation from noisy pseudo-labels, we leverage meta-learning to re-
weight them based on the student model loss on the validation set as our meta-objective. The in-

4

Under review as a conference paper at ICLR 2022

tuition of meta re-weighting is to measure the impact or weight of a pseudo-labeled example given
by its performance on the validation set (D̃Train

K in our work). To this end, we leverage the idea of
weight perturbation (Ren et al., 2018) to set the weight of pseudo-labeled example (x̃ui , ŷ

(t)
i) to ϵ(t)i

at iteration t as:

ψ̂
(t)
stu(ϵ) = ψ̂

(t−1)
stu − α▽

(1

N

N∑
i=1

[ϵ
(t)
i · L(ŷ

(t)
i , enc(x̃ui ; ΘPLM, ϕ̂

(t−1)
stu))]

)
. (4)

Weight perturbation is used to discover data points that are most important to improve the model
performance on the validation set. The optimal value for the perturbation ϵ(t)∗i can be obtained via
minimizing the student model loss on the validation set at iteration t as:

ϵ
(t)∗
i = argmin

ϵi

1

|D̃TrainK |

|D̃Train
K |∑
i=1

L(yi, enc(xi; ΘPLM, ψ̂
(t)
stu(ϵi)) (5)

To obtain a cheap estimate of the meta-weight at step t, we take a single gradient descent step on a
mini-batch D̃(t) ∈ D̃Train

K as:

u
(t)
i = − ∂

∂ϵi

(∑|D̃(t)|
i=1 L(yi, enc(x̃i; ΘPLM, ψ̂

(t)
stu(ϵ)))

|D̃(t)|

)∣∣∣∣
ϵ
(t)
i =0

(6)

The weight w(t)
i of (x̃ui , ŷ

(t)
i) at iteration t can be set to be proportional to the negative gradient u(t)i

to reflect the importance of pseudo-labeled samples. The samples with negative weights are filtered
out since they could potentially degrade the student performance. Finally, we update the student
adapter parameters ψstu while accounting for re-weighting as:

ψ̂
(t)
stu = ψ̂

(t−1)
stu − α▽

(1

N

N∑
i=1

[w
(t)
i · L(ŷ

(t)
i , enc(x̃ui ; ΘPLM, ψ̂

(t−1)
stu))]

)
. (7)

3.3.1 KNOWLEDGE DISTILLATION FOR STUDENT WARMUP

Meta re-weighting mechanism leverages gradient as a proxy to estimate the weight of noisy pseudo
labels. However, the gradients of adapter parameters ψ are not stable in the early stages of training
due to random initialization and noises in pseudo labels. This instability issue is further exacerbated
with adapter tuning that usually requires a larger learning rate (Pfeiffer et al., 2020). Therefore,
to stabilize adapter tuning, we propose a warmup training stage via knowledge distillation (Hinton
et al., 2015) to first tune adapter parameters via knowledge distillation loss Twarm steps and then we
continue self-training with re-weighted updates via Eq. 7. Since the re-weighting procedure requires
held-out validation set (few-shot training examples in our setting), we do not use labeled data in
knowledge distillation while using only the consistency loss between teacher model (ΘPLM, ψ̂tea)

and student model (ΘPLM, ψ̂stu) on unlabeled data as follows.

ψ̂stu ← argmin
ψ̂stu

KL(f(x̃u; ΘPLM, ψ̂tea) ∥ f(x̃u; ΘPLM, ψ̂stu)). (8)

We further validate the effectiveness of knowledge distillation for warmup with ablation analysis.

3.3.2 STUDENT ADAPTER RE-INITIALIZATION

A typical challenge in few-shot settings is the lack of a separate validation set. In the spirit of true
few-shot learning, we use only the available few-shot labeled examples D̃Train

K as the validation
set for meta-learning of the student model. This poses an interesting challenge of preventing label
leakage. To address this issue, we re-initialize the student adapter parameters every time at the
start of each self-training iteration to mitigate interference with labeled data. Note that the student
and teacher model share the encoder parameters ΘPLM that are always kept frozen and not updated
during training.

3.4 LITE SELF-TRAINING: SUMMARY

• Self-training helps in effective few-shot model adaptation by leveraging unlabeled data
from the target domain.

• Self-training with prompts improves model performance by bridging the gap between pre-
training and fine-tuning objectives.

5

Under review as a conference paper at ICLR 2022

• Adapters reduce overall storage cost and model footprint by tuning a small number of
model parameters while keeping the PLM encoder fixed.

• Combining the above strategies in a novel fine-tuning method, LiST improves both la-
beled data and parameter efficiency in few-shot settings, as we demonstrate in the empirical
study in the next section.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We perform large-scale experiments with six natural language understanding tasks as sum-
marized in Table 1. We use four tasks from GLUE (Wang et al., 2019), including MNLI (Williams
et al., 2018b) for natural language inference, RTE (Dagan et al., 2005; Bar Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009) for textual entailment, QQP3 for semantic equivalence
and SST-2 (Socher et al.) for sentiment classification. The results are reported on their development
set following (Zhang et al., 2021). MPQA (Wiebe et al., 2005) and Subj (Pang & Lee, 2004) are used
for polarity and subjectivity detection, where we follow (Gao et al., 2021) to keep 2, 000 examples
for testing and use remaining examples for semi-supervised learning.

Category Dataset #Labels #Full Train #Test Type Labels

sentence-
pair

MNLI 3 392,702 9,815 NLI entailment, neutral, contradiction
RTE 2 2,490 277 NLI entailment, not entailment
QQP 2 363,846 40,431 paraphrase equivalent, not equivalent

single-
sentence

SST-2 2 6,920 872 sentiment positive, negative
Subj 2 8,000 2,000 subjectivity subjective, objective
MPQA 2 8,606 2,000 opinion polarity positive, negative

Table 1: Dataset summary and task descriptions. For each task, we sample K ∈ {10, 20, 30} labeled
examples to form five different splits with different random seeds from the original training set, and
add the remaining to the unlabeled set while ignoring their labels.

For each dataset, we randomly sample |K| ∈ {10, 20, 30} manually labeled samples from the
training data, and add the remaining to the unlabeled set while ignoring their labels – follow-
ing standard setups for semi-supervised learning. We repeatedly sample K labeled instances five
times, run each model with 5 different seeds and report average performance with standard devi-
ation across the runs. Furthermore, for every split and shot, we sample the labeled data such that
DTrain

10 ⊂ DTrain
20 ⊂ DTrain

30 to evaluate the impact of incremental sample injection.

Following true few-shot learning setting (Perez et al., 2021), we do not use additional development
set beyond |K| labeled samples for any hyper-parameter tuning or early stopping. The performance
of each model is reported after fixed training epochs (see Appendix for details).

Baselines. In addition to classic-tuning (Classic FN), we adopt prompt-based fine-tuning (Prompt
FN) from Gao et al. (2021) as labeled-only baselines. We also adopt several state-of-the-art semi-
supervised baselines including UST (Mukherjee & Awadallah, 2020), MetaST (Wang et al., 2021)
and iPET (Schick & Schütze, 2021b). UST and MetaST are two self-training methods which are
based on classic fine-tuning strategies. iPET is a semi-supervised method leveraging prompt fine-
tuning and prompt ensembles to obtain state-of-the-art performance. While iPET ensembles multi-
ple fully-tuned models, we develop a lite self-training framework to achieve both data and parameter
efficiency. As the strongest semi-supervised baseline, we consider PromptST based on self-training
using prompts and adapters, but without any re-weighting, or KD warmup as in LiST . The meth-
ods Prompt FN, PromptST and LiST adopt same prompts and label words as in Gao et al. (2021).
We implement our framework in Pytorch and use Tesla V100 gpus for experiments. Prompts used
in experiments and hyper-parameter configurations are presented in Appendix.

4.2 KEY RESULT

Table 2 shows the performance comparison among different models with |K| = 30 labeled examples
with fixing RoBERTa-large as the encoder. Fully-supervised RoBERTa-large trained on thousands
of labeled examples provides the ceiling performance for the few-shot setting. We observe LiST
to significantly outperform other state-of-the-art baselines along with 96% reduction in tunable pa-
rameters, achieving both labeled data- and parameter-efficiency. More specifically, LiST improves
over Classic FN, Prompt FN, iPET and PromptST by 34.6%, 5.7%, 8.6% and 6.2% respectively
in terms of average performance on six tasks. This demonstrates the impact of self-training with

3https://www.quora.com/q/quoradata/

6

https://www.quora.com/q/quoradata/

Under review as a conference paper at ICLR 2022

Labels Models Avg #Tunable MNLI (m/mm) RTE QQP SST-2 Subj MPQA
Params (acc) (acc) (acc) (acc) (acc) (acc)

|K| = 30
Classic FN 60.9 355M 38.0 (1.7) / 39.0 (3.1) 51.4 (3.7) 64.3 (8.1) 65.0 (11.5) 90.2 (2.2) 56.1 (5.3)

Prompt FN 77.6 355M 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8)

|K| = 30
+Unlabeled Data

UST 65.8 355M 40.5 (3.3) / 41.5 (2.9) 53.4 (1.7) 61.8 (4.3) 76.2 (11.4) 91.5 (2.1) 70.9 (6.2)

MetaST 62.6 355M 39.4 (3.9) / 40.5 (4.4) 52.9 (2.0) 65.7 (6.2) 65.3 (15.2) 91.4 (2.3) 60.5 (3.6)

iPET 75.5 355M 61.0 (5.8) / 61.8 (4.7) 54.7 (2.8) 67.3 (4.1) 93.8 (0.6) 92.6 (1.5) 83.1 (4.8)

PromptST 77.2 14M 61.8 (1.9) / 63.1 (2.9) 66.2 (5.1) 71.4 (2.1) 91.1 (1.4) 90.3 (1.5) 81.8 (2.5)

LiST 82.0 14M 73.5 (2.8) / 75.0 (3.7) 71.0 (2.4) 75.2 (0.9) 92.8 (0.9) 93.5 (2.2) 85.2 (2.1)

Supervision with Classic FN 90.9 355M 89.6 / 89.5 83.0 91.8 95.2 97.2 88.8
Full Train Prompt FN 92.0 355M 89.3 / 88.8 88.4 92.1 95.9 97.1 89.3

Table 2: Performance comparison of different model tuning strategies on different tasks with
RoBERTa-large as the encoder with standard deviation in parantheses. UST, MetaST, PromptST
and iPET are semi-supervised methods using unlabeled data, whereas Classic and Prompt FN only
use labeled data. The best performance is shown in bold.
unlabeled data and prompt-based FN. Additionally, iPET and LiST both leverage prompt-based
FN to significantly improve over UST and MetaST that use classic fine-tuning strategies, confirm-
ing the effectiveness of prompt-based FN in the low data regime. iPET ensembles multiple prompts
with diverse qualities and under-performs Prompt FN on average in our few-shot setting without any
development set.

10 20 30 100 500 1000

Labeled Examples

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy

BERT-base-C

RoBERTa-base-C

RoBERTa-large-C

BERT-base-P

RoBERTa-base-P

RoBERTa-large-P

LiST

(a) MNLI

10 20 30 100 500 1000

Labeled Examples

30

40

50

60

70

80

90

A
cc

u
ra

cy

BERT-base-C

RoBERTa-base-C

RoBERTa-large-C

BERT-base-P

RoBERTa-base-P

RoBERTa-large-P

LiST

(b) RTE

10 100 200 350 400

#Tunable Parameters (Million)

BERT-base

RoBERTa-base

RoBERTa-large

LiST

(c) Parameters

Figure 5: Performance comparison of Classic-tuning (denoted as “C”) and prompt-based fine-tuning
(denoted as “P”) with LiST on MNLI and RTE using language model encoders of different sizes.

Figure 5 compares the performance of tuning methods with varying number of training labels and
encoders of different sizes. We observe that large models are more data-efficient compared to smaller
models. However, large fully-tunable models are expensive to use in practise. We observe that LiST
with small number of tunable parameters consistently outperforms fully-tunable classic and prompt-
based FN strategies in all labeled data settings, demonstrating both data and parameter efficiency.

Additional results with different backbone encoders and varying number of shots and fine-tuning
strategies are presented in the Appendix in Tables 12, 13, 14 and 18 that demonstrate similar trends
as we observe in Table 2 and Figure 5.
4.3 FEW-SHOT SUPERVISION WITH VARYING MODEL SIZES AND LABELS

Models #Params Avg Acc
BERT-base 110M 67.4
BERT-large 336M 68.0

RoBERTa-base 125M 73.7
RoBERTa-large 355M 77.6

T5-small 60M 66.5
T5-base 220M 71.9
T5-large 770M 77.3

Table 3: Average accuracy of
prompt FN with different en-
coders using |K| = 30 labels on
six tasks.

To better understand the role of different model families in few-
shot prompt-based FN, we evaluate the performance of repre-
sentative state-of-the-art PLMs like BERT (Devlin et al., 2019a),
RoBERTa (Liu et al., 2019b) and T5 (Raffel et al., 2020) of dif-
ferent sizes (parameters) using varying amounts of labeled data.
We report macro-averaged results over six tasks where each has
five different splits for easy comparison.

Effect of model choices. Table 3 shows the performance com-
parison of three representative PLMs with different parameters
using prompt-based FN on 30 labeled samples. We observe that
average performance increases with increase in model size within
each model family. Overall, we observe RoBERTa models to perform much better than BERT, and
marginally outperform T5 models of much bigger size. Accordingly, we use RoBERTa-large as the
base encoder for both LiST and other baseline methods.

Effect of varying the number of labels |K|. From Figure 5, we observe prompt-based FN to
consistently outperform classic-tuning under all labeled data settings when using the same encoder.

7

Under review as a conference paper at ICLR 2022

With increase in the amount of labeled examples, prompt-based FN and classic-tuning both improve
in performance, although with reduced performance gap. This demonstrates prompt-based FN to
be the most impactful for low-resource settings with few training labels. LiST improves over both
classic and prompt-based FN in all settings with massive reduction in number of tunable parameters.

4.4 ADAPTER ANALYSIS

In this section, we explore adapter design choices for prompt-based FN with RoBERTa-large as
encoder using only few-shot labeled data.

Tuning #Params Avg Diff
Full 355M 77.6 —

Embedding 53M 67.0 -10.7
Attention 101M 77.0 -0.6
FF-output 102M 77.6 +0.0

FF-intermediate 102M 75.9 -1.7

Table 4: Average accuracy on tun-
ing different modules of RoBERTa-
large with |K| = 30 labels on
six tasks. Diff shows performance
change relative to Full tuning.

Where to insert an adapter in Transformers? In order
to answer this question, we conduct an experiment to study
the role of various Transformer modules in few-shot prompt-
based FN. To this end, we tune a given module along with
the language model head while keeping all other parameters
frozen. Table 4 shows the performance comparison of tuning
specific modules on six tasks with varying number of labeled
examples. The main modules of RoBERTa include Embed-
ding, Attention, Feedforward Output and Feedforward Inter-
mediate layers. We observe that tuning only the Feedforward
Output or the Attention module delivers the best performance
across most tasks with few-shot labels. Correspondingly, this motivated us to insert our adapter
parameters into these two modules. More detailed results are presented in Appendix Table 10.

Tuning #Params Avg

Head-only 1M 66.9
Bias-only 1M 68.3
Prompt-only 1M 56.4
LiST Adapter (2) 1M 72.7
Houlsby Adapter 14M 57.9
LiST Adapter (128) 14M 77.7

Full tuning 355M 77.6

Table 5: Average accuracy of sev-
eral lightweight parameter-efficient
strategies with |K| = 30 labels
on six tasks along with the num-
ber (#) of tunable parameters. We
show LiST performance with dif-
ferent bottleneck dimension d of its
adapters in parantheses. The best
performance is shown in bold.

Comparison with other lightweight parameter efficient
model tuning strategies. To validate the effectiveness of
LiST adapters, we compare it against several baselines in-
cluding Bias-only (Cai et al., 2020b), Head-only, and Houlsby
Adapter (Houlsby et al., 2019) in Table 5. For a fair compar-
ison, we present two variations of our LiST adapters with
bottleneck dimensions d= {2, 128} corresponding to 1M and
14M parameters to match other adapter capacities. (1) Bias-
only is a simple but effective lightweight method, which tunes
bias terms of PLMs while keeping other parameters frozen.
(2) Tuning head layers is widely used as a strong baseline
for lightweight studies (Houlsby et al., 2019), where we tune
last two layers including language model head while freez-
ing other parameters. (3) Houlsby Adapter tunes the inserted
adapter parameters keeping the encoder frozen by adopting
classic tuning strategy. Besides these lightweight methods,
we also present a performance comparison with full model
tuning as a strong baseline. More detailed results are pre-
sented in Appendix in Tables 11 and 19 that demonstrate similar trends.

Table 5 shows LiST is able to match the performance of full model prompt-based FN with bot-
tleneck dimension d = 128 and outperforms all other baselines with similar capacities. While
lightweight model tuning choices like tuning the bias or inserting adapters into classic tuning mod-
els are shown to be effective in fully-supervised settings (Cai et al., 2020b; Houlsby et al., 2019),
we observe them to under-perform for few-shot learning. We observe that simpler tuning choices
like Head-only and Bias-only results in upto 10% performance degradation. Houlsby adapter and
Prompt-only results in upto 20% performance degradation. In constrast, LiST adapter is able to
match the performance of full tuning in few-shot setting, demonstrating the importance of adapter
placement choices and parameter initialization.

4.5 ABLATION ANALYSIS

Table 6 demonstrates the impact of different components and design choices of LiST .

• Adapter training stability. Training with very few labels and noisy pseudo labeled data results
in instability for adapter tuning. To demonstrate training stability, we include the average accuracy
and standard deviation across several runs and splits as metrics. We observe that hard pseudo-labels
hurt the model performance compared to soft pseudo-labels and exacerbate the instability issue.
This is in contrast to observations from classic fine-tuning (Wang et al., 2021). A potential reason

8

Under review as a conference paper at ICLR 2022

could be the well pre-trained language model head for prompt-based FN being able to capture better
associations among different prompt labels.

Method Avg Acc Avg Std Datasets
MNLI (m/mm) RTE

LiST (14MM) 72.6 2.8 73.5 (2.8) / 75.0 (3.7) 71.0 (2.4)

w/o re-init 68.3 4.2 66.7 (2.8) / 68.3 (4.3) 69.0 (4.9)

w/o KD Warmup 68.8 8.8 67.9 (12.9) / 69.0 (13.1) 69.2 (4.5)

w/o Re-weighting 71.6 4.0 72.9 (3.4) / 74.2 (4.5) 69.7 (4.1)

w/ Hard Pseudo-Labels 70.9 4.4 71.7 (3.8) / 73.0 (5.4) 69.5 (4.2)

LiST w/o Adapter (355MM) 72.6 2.5 73.6 (2.7) / 74.8 (2.7) 71.2 (2.3)

Table 6: Ablation analysis of LiST with 30 labels on
MNLI and RTE with tunable parameters in parantheses.

• Knowledge Distillation Warmup.
In this ablation study, we remove the
warmup phase with knowledge distilla-
tion from LiST (denoted as “LiST w/o
KD Warmup”). Removing this com-
ponent results in 4% performance drop
in terms of average accuracy and 300%
larger standard deviation – demonstrat-
ing the importance of KD Warmup in
stabilizing LiST training.
• LiST versus LiST w/o Adapter. In LiST, we only fine-tune the adapter and language model
head while keeping other encoder parameters frozen to achieve parameter efficiency. Table 6 shows
that LiST using only 4% tunable parameters is able to match the performance of fully tunable
LiST (that is without using any adapters and tuning all encoder parameters) on MNLI and RTE –
demonstrating the effectiveness of our lightweight design.

More ablation results with varying shots are presented in Appendix in Tables 15, 16 and 17 that
demonstrate similar trends as in Table 6.

5 RELATED WORKS

Few-shot and Semi-supervised Learning. Recent works have explored semi-supervised methods
for few-shot learning with task-specific unlabeled data, including data augmentation (Xie et al.,
2019; Du et al., 2020; Vu et al., 2021), self-training (He et al., 2019; Mukherjee & Awadallah,
2020; Wang et al., 2021) and contrastive learning (Gunel et al., 2020). GPT-3 (Brown et al., 2020)
leverages massive scale with 175 billion parameters to obtain remarkable few-shot performance on
several NLU tasks given natural language prompt and a few demonstrations for the task. Recent
works (Schick & Schütze, 2021b; Gao et al., 2021) extend this idea of prompting to language models
like BERT (Devlin et al., 2019a) and RoBERTa (Liu et al., 2019b). The most related work to
ours is iPET (Schick & Schütze, 2021b), which combines prompt-based FN with semi-supervised
learning. While iPET ensembles multiple fully-tuned models, we develop a lightweight self-training
framework to achieve both data and parameter efficiency.

Light-weight tuning. The standard approach to fine-tuning operate by tuning all of the trainable
model parameters for every task. Recent efforts have focused on tuning large PLMs in a lightweight
manner by updating a small set of parameters while keeping most of parameters in PLMs frozen,
including prefix tuning (Li & Liang, 2021), prompt token tuning (Lester et al., 2021) and Adapter
tuning (Houlsby et al., 2019; Pfeiffer et al., 2020). All of the above works focus on fully supervised
settings with thousands of labeled examples using classic fine-tuning methods. In contrast, in this
work, we focus on few-shot learning settings leveraging prompts for model tuning, where we make
several observations regarding the design and placement of adapters in few-shot settings in contrast
to its resource-rich counterpart. Some recent works (Beck et al., 2021; Zhong et al., 2021) pre-train
adapters with full supervision with thousands of labeled examples from source tasks for few-shot
target adaptation. Different from this, we explore adapter tuning for single-task few-shot learning
without any auxiliary supervision labels. We present a more detailed discussion on our single-task
true few-shot learning setup in contrast to few-shot target adaptation works in AppendixSection C.

6 CONCLUSIONS AND FUTURE WORK

We develop a new method LiST for lightweight tuning of large language models in few-shot set-
tings. LiST uses self-training to learn from large amounts of unlabeled data from target domains.
In order to reduce the storage and training cost, LiST tunes only a small number of adapter pa-
rameters with few-shot labels while keeping the large encoder frozen. With only 30 labels for every
task, LiST improves by upto 35% over classic fine-tuning and 6% over prompt-tuning while re-
ducing 96% of the tunable parameters. With significant reduction in the cost of (data) annotation
and overall model footprint, LiST provides an efficient framework towards life-long learning of AI
agents (Biesialska et al., 2020). While adapters reduce storage cost, LiST does not reduce infer-
ence latency given the PLM backbone. A future work is to consider combining model compression
techniques (Han et al., 2015; Cai et al., 2020a) with adapters to reduce FLOPS and latency.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

Data. In this work, we perform experiments on six NLU datasets, which are introduced in sub-
section 4.1. The task prompts are included in Table 7 (in Appendix). Data can be downloaded via
anonymous link4 and we include data preparation scripts in our uploaded code files.

Algorithm. We implement our framework in Pytorch and Huggingface5. More packages could be
found in our source code files. We upload our source codes in supplementary materials and source
codes can be also downloaded via anonymous link. The hyper-parameter configurations are included
in subsection D.1 (Appendix). The overall flow of LiST is summarized in Algorithm 1 (Appendix).
We report more detailed results which include average performance with standard deviation over five
runs for each task in subsection D.2.

Computation Infrastructure. We use Tesla V100 GPUs for experiments (refer to subsection 4.1).

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second PASCAL recognising textual entailment challenge. 2006.

Tilman Beck, Bela Bohlender, Christina Viehmann, Vincent Hane, Yanik Adamson, Jaber Khuri,
Jonas Brossmann, Jonas Pfeiffer, and Iryna Gurevych. Adapterhub playground: Simple and flex-
ible few-shot learning with adapters. arXiv preprint arXiv:2108.08103, 2021.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth PASCAL recognizing
textual entailment challenge. In TAC, 2009.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-jussà. Continual lifelong learning
in natural language processing: A survey. In Proceedings of the 28th International Conference
on Computational Linguistics, pp. 6523–6541, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020a.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems, 33, 2020b.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-
training text encoders as discriminators rather than generators. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/forum?id=r1xMH1BtvB.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In the First International Conference on Machine Learning Challenges: Evaluating
Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entailment, 2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019a.

4https://tinyurl.com/3mmfybuu
5https://huggingface.co/

10

https://openreview.net/forum?id=r1xMH1BtvB

Under review as a conference paper at ICLR 2022

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), pp. 4171–4186, 2019b. URL https://aclweb.org/anthology/
papers/N/N19/N19-1423/.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. Self-training improves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Association for Computational Linguistics (ACL), 2021.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recog-
nizing textual entailment challenge. In the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, 2007.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. Supervised contrastive learning
for pre-trained language model fine-tuning. In International Conference on Learning Represen-
tations, 2020.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural network. In NIPS, 2015.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural
sequence generation, 2019.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=XPZIaotutsD.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. CoRR, abs/2104.08691, 2021. URL https://arxiv.org/abs/2104.08691.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
CoRR, abs/2101.00190, 2021. URL https://arxiv.org/abs/2101.00190.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt Schiele.
Learning to self-train for semi-supervised few-shot classification. Advances in Neural Information
Processing Systems, 32:10276–10286, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019a. URL http://arxiv.org/abs/1907.11692.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019b.

11

https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
http://arxiv.org/abs/1907.11692

Under review as a conference paper at ICLR 2022

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Subhabrata Mukherjee and Ahmed Awadallah. Uncertainty-aware self-training for few-shot text
classification. Advances in Neural Information Processing Systems, 33, 2020.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. 2004.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
arXiv preprint arXiv:2105.11447, 2021.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transform-
ers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2020): Systems Demonstrations, pp. 46–54, Online, 2020. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.7.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International Conference on Machine Learning, pp. 4334–4343. PMLR,
2018.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2339–2352, Online,
June 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.185.
URL https://aclanthology.org/2021.naacl-main.185.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 255–269, 2021b.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank.

Tu Vu, Minh-Thang Luong, Quoc V Le, Grady Simon, and Mohit Iyyer. Strata: Self-training with
task augmentation for better few-shot learning. arXiv preprint arXiv:2109.06270, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.

Yaqing Wang, Subhabrata Mukherjee, Haoda Chu, Yuancheng Tu, Ming Wu, Jing Gao, and
Ahmed Hassan Awadallah. Meta self-training for few-shot neural sequence labeling. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1737–1747, 2021.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions
in language. Language resources and evaluation, 39(2):165–210, 2005.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122. Association for Computational Linguistics, 2018a. URL
http://aclweb.org/anthology/N18-1101.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. 2018b.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://aclanthology.org/2021.naacl-main.185
http://aclweb.org/anthology/N18-1101

Under review as a conference paper at ICLR 2022

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised data
augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample BERT fine-tuning. 2021.

Wanjun Zhong, Duyu Tang, Jiahai Wang, Jian Yin, and Nan Duan. Useradapter: Few-shot user
learning in sentiment analysis. In ACL/IJCNLP (Findings), 2021.

13

Under review as a conference paper at ICLR 2022

A DATASETS

A.1 PROMPTS

Table 7 summarizes manually-designed prompts and label words for each dataset in our experi-
ments. These prompts and label words were adopted from (Gao et al., 2021).

Task Prompt Label words
SST-2 <S1> It was [MASK] . positive: great, negative: terrible
MR <S1> It was [MASK] . positive: great, negative: terrible
Subj <S1> This is [MASK] . subjective: subjective, objective: objective

MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
RTE <S1> ? [MASK] , <S2> entailment: Yes, not entailment: No
QQP <S1> [MASK] , <S2> equivalent: Yes, not equivalent: No

Table 7: Task prompt and label words summary. <S1> and <S2> indicate input sentences.

B ALGORITHM FLOW

Algorithm 1 summarizes overall flow of LiST. We adopt a light self-training mechanism which
keeps the shared student and teacher encoder parameters frozen and only updates the adapter pa-
rameters along with the corresponding language model heads. Beside the lightweight tuning design,
another key step in our self-training framework is to utilize the few-shot labeled data to fine-tune
the student model ψ(T)

stu) in every self-training session. Such a step is different with conventional
self-training framework, which either leverages labeled data for initial teacher fine-tuning or com-
bine labeled data with unlabeled data for joint training of student model. The iterative usage of
unlabeled data and labeled data helps in better teacher initialization before next round of adapter
prompt-tuning on D̃Train

K which further helps in improving model tuning and the quality of pseudo
labels.

Algorithm 1: LiST Algorithm.
Input: Labeled samples D̃Train

K = {x̃l, ỹl}; Unlabeled samples D̃U = {x̃u}; a pre-trained language model with parameters
ΘPLM; randomly initialized Adapter with parameters ψ; Number of student training iterations T , KD warmup steps Twarm

and self-training sessionsM .
Initialize teacher adapter ψtea = ψ(0)

Tune teacher adapter ψtea on small labeled data D̃Train
K ;

form← 1 toM do
Initialize the student adapter ψstu = ψ(0) ;
for t← 1 to T do

Infer pseudo prompt labels {ŷ(t)n }
N
n=1 for unlabeled data D̃U = {x̃u} with teacher model (ΘPLM, ψtea);

Randomly sample a batch of pseudo-labeled samples from (x̃u, ŷ
(t)); if t< Twarm then

Train student adapter ψstu according to Eq. 8
else

Sample a mini-batch from D̃(t) ∈ D̃Train
K as validation mini-batc for re-weighting;

Train student adapter ψstu on re-weighted pseudo-labeled samples according to Eq. 7;
end

end
Tune student adapter ψ(T)

stu on small labeled data D̃Train
K ;

Update the teacher adapter: ψtea = ψ
(T)
stu

end

C FEW-SHOT TASK ADAPTATION V.S. TRUE FEW-SHOT NLU

Few-shot adaptation works (Finn et al., 2017; Li et al., 2019; Zhong et al., 2021; Beck et al., 2021)
train models on massive labeled data on source tasks and develop techniques to adapt them to a
target task with few-shot labels. For instance, Beck et al. (2021) first trains on miniImagenet with
38,400 labeled examples (64 classes and 600 samples per class). Similarly, Zhong et al. (2021);

14

Under review as a conference paper at ICLR 2022

Beck et al. (2021) first train their models on thousands of labels from the source task to study few-
shot target adaptation. In contrast, we focus on single-task true few-shot learning with only 10
to 30 labeled examples available overall and no auxiliary supervision labels. Refer to Perez et al.
(2021) for an overview of true few-shot learning for NLU. The objective of few-shot adaptation
and true few-shot learning is also quite different. The objective of true few-shot learning is to learn
a new task with limited labeled data while the objective of few-shot adaptation is to efficiently
transfer to a new task/domain with limited labeled data. Thus, few-shot adaptation leverages multi-
task setting with auxiliary labeled data from the source tasks that are not available in our setting.
The most relevant works to our setup (Gao et al., 2021; Wang et al., 2021; Schick & Schütze, 2021b;
Mukherjee & Awadallah, 2020) are used as baselines in our paper.

D EXPERIMENTAL DETAILS

D.1 HYPER-PARAMETERS

Following the true few-shot learning spirit, we do not have any additional development set for hyper-
parameter tuning. Instead we keep all the hyper-parameter same for different tasks, different model
families and sizes as well as different shots K. We retain most of the default hyper-parameter
configurations from related work. For each task, we run the model five times with different data splits
and different random seeds in {1, 2, 3, 4, 5}. Our experiments are conducted in few-shot supervision
setting and few-shot semi-supervised setting. In the following, we introduce the hyper-parameters
for each setting respectively.

Few-shot supervision setting. We set learning rate as 5e-6, training epochs as 400 and batch size
as 4. The bottleneck dimension d of Adapter is set to 128. The optimizer is AdamW (Loshchilov &
Hutter, 2017) with default settings besides learning rate. We use variance for adapter as 0.002 and
observe that the performance is not sensitive to variance values when the scale of variance values
are equal or less than 0.002.

Few-shot semi-supervised setting. For initial teacher fine-tuning, we adopt the same hyper-
parameter configuration as in few-shot supervision setting. To facilitate training on a large amounts
of unlabeled data, the learning rate in self-training is set to 1e-4 following fully supervised adapter
work (Pfeiffer et al., 2020). The batch size of unlabeled data for student adapter training is 16 and the
size of minibatch D̃ ∈ D̃Train

K for meta re-weighiting in Eq. 6 is 4. For each self-training session,
we train student adapter for T = 1000 steps and further fine-tune 50 epochs on given labeled data.
The student KD warmup ratio is set to 60%, i.e., Twarm = 600 steps, without extra hyper-parameter
tuning. We repeat all the steps in self-training training M = 6 times.

D.2 EXPERIMENTAL RESULT DETAILS

Fine-tuning strategies with varying number of shots. Table 8 shows the performance comparison
of RoBERTa-large with two fine-tuning strategies and varying number of labeled samples including
zero-shot supervision, few-shot supervision from 10 to 30 and full supervision. Prompt fine-tuning
shows competitive performance in zero-shot learning, outperforming classic fine-tuning strategy
with 30 labeled examples on several tasks like MNLI and SST-2. As the size of labeled exam-
ples increases, the average performance of classic and prompt fine-tuning strategy improves sig-
nificantly and prompt fine-tuning strategy consistently improves classic fine-tuning with a big gap
in the few-shot setting. With full supervision, Prompt fine-tuning strategy and classic fine-tuning
strategy achieve similar performance, demonstrating that Prompt fine-tuning is most impactful for
low-resource settings with few training labels.

Task performance of varying number of shots and models. We show performance changes re-
garding varying number of shots and varying model choices in Figure 5 and include more detailed
results including average accuracy over 5 runs and corresponding standard deviation on MNLI and
RTE in Table 9.

Task performance of different modules with varying number of shots. We show the average
accuracy on tuning different modules of RoBERTa-large with |K| = 30 on six tasks in Table 4. In
Table 10, we show average accuracy with standard deviation of RoBERTa-large on each task using
varying shots of labeled data. We can observe that Feedforward-output performs best in average

15

Under review as a conference paper at ICLR 2022

Labels Models Avg MNLI (m/mm) RTE QQP SST-2 Subj MPQA
(acc) (acc) (acc) (acc) (acc) (acc)

|K| = 0
Classic - - - - - - -
Prompt 58.4 51.7/52.4 51.3 38.6 83.6 51.4 67.6

|K| = 10
Classic 50.0 34.9 (0.3) / 35.2 (0.7) 50.3 (2.1) 61.1 (3.5) 51.8 (2.9) 71.2 (17.5) 52.4 (3.2)

Prompt 69.3 54.8 (3.7) / 55.6 (4.6) 60.0 (4.4) 58.7 (4.6) 89.5 (1.7) 84.5 (8.6) 67.8 (6.9)

|K| = 20
Classic 55.2 35.8 (1.0) / 36.8 (1.5) 51.0 (4.8) 61.3 (9.0) 57.2 (7.7) 84.8 (9.0) 55.9 (4.1)

Prompt 75.4 60.3 (2.0) / 61.6 (2.7) 64.3 (2.4) 67.8 (4.2) 90.6 (1.8) 88.3 (2.2) 80.6 (7.5)

|K| = 30
Classic 59.7 38.0 (1.7) / 39.0 (3.1) 51.4 (3.7) 64.3 (8.1) 65.0 (11.5) 90.2 (2.2) 56.1 (5.3)

Prompt 77.6 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8)

Full supervision Classic 90.7 89.6 / 89.5 83.0 91.8 95.2 97.2 88.8
Prompt 91.8 89.3 / 88.8 88.4 92.1 95.9 97.1 89.3

Table 8: Average performance and standard deviation of RoBERTa-large with Classic and Prompt-
tuning strategies with varying training labels |K|.

while Attention module achieves best performance on some tasks. The conclusion is consistent
across different shots of labeled data. Such observations motivate us to insert Adapter into Feedfor-
ward Output and Attention modules to handle diverse tasks.

Task performance of lightweight model tuning strategies. We show the average accuracy of
serveral lightweight strategies with |K| = 30 labeled examples on six tasks in Table 5. In Table 11,
we show average accuracy with standard deviation of lightweight tuning strategies on each task with
|K| = 30 labeled examples. We can observe that LiST Adapter outperforms all the lightweight
tuning strategies for all six tasks, demonstrating the effective design in adapter placement and pa-
rameter initialization.

Comparisons over different PLMs. Table 12, 13 and 14 show the performance comparison of two
representative PLMs with different parameters using prompt-based FN on 10, 20 and 30 labeled
samples. We observe that average performance increases with increase in model size within each
model family. Overall, we observe RoBERTa models to perform much better than BERT. This
observation is consistent with the observation in Table 3.

More ablation Analysis. Tables 15, 16 and 17 show the performance of LiST (14 MM parameters)
by removing different components as well as LiST without (w/o) adapter (355 MM parameters). It
can be observed that the trend is consistent over different shots. “w/o re-init“ leads to performance
drop consistently in various shots and different data sets. Adapter with 4% tunable parameters
obtains similar performance to full model tuning for shots of 10, 20 and 30 as shown in Table 8.

Adapters w different number of training labels. We compare the performance of LiST Adapter
(14 MM parameters) against full model tuning (355 MM parameters) where we obtain 96% tunable
parameter reduction with almost matching performance across 10, 20 and 30 shots.

16

Under review as a conference paper at ICLR 2022

Labels Models MNLI (m/mm) RTE
(acc) (acc)

|K| = 10
BERT-base-Classic 32.1 (1.2) / 32.4 (1.2) 49.3 (2.6)

RoBERTa-base-Classic 35.2 (1.1) / 35.3 (1.1) 50.6 (3.3)

RoBERTa-large-Classic 34.9 (0.3) / 35.2 (0.7) 50.3 (2.1)

BERT-base-Prompt 43.0 (2.1) / 44.2 (2.1) 50.6 (3.2)

RoBERTa-base-Prompt 49.5 (2.9) / 50.5 (3.1) 56.5 (2.3)

RoBERTa-large-Prompt 54.8 (3.7) / 55.6 (4.6) 59.1 (3.8)

LiST 62.6 (5.7) / 63.1 (6.7) 62.1 (4.1)

|K| = 20
BERT-base-Classic 33.1 (1.9) / 33.4 (2.0) 49.5 (5.4)

RoBERTa-base-Classic 36.1 (1.4) / 36.5 (1.4) 51.9 (4.5)

RoBERTa-large-Classic 35.8 (1.0) / 36.8 (1.5) 51.0 (4.8)

BERT-base-Prompt 42.8 (2.1) / 44.5 (2.8) 50.5 (3.1)

RoBERTa-base-Prompt 51.9 (2.9) / 52.8 (3.1) 57.5 (3.4)

RoBERTa-large-Prompt 60.3 (2.0) / 61.6 (2.7) 63.0 (2.4)

LiST 70.3 (4.0) / 71.9 (4.4) 68.2 (3.6)

|K| = 30
BERT-base-Classic 34.3 (2.0) / 34.5 (1.9) 51.6 (3.8)

RoBERTa-base-Classic 38.2 (1.9) / 38.6 (2.2) 53.1 (2.4)

RoBERTa-large-Classic 38.0 (1.7) / 39.0 (3.1) 51.4 (3.7)

BERT-base-Prompt 44.7 (2.4) / 45.7 (2.4) 52.6 (4.0)

RoBERTa-base-Prompt 53.6 (2.4) / 55.0 (3.0) 61.0 (4.7)

RoBERTa-large-Prompt 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2)

LiST 73.5 (2.8) / 75.0 (3.7) 71.0 (2.4)

|K| = 100
BERT-base-Classic 41.6 (3.5) / 42.8 (3.3) 54.0 (3.4)

RoBERTa-base-Classic 45.3 (0.9) / 46.8 (0.8) 55.6 (5.0)

RoBERTa-large-Classic 49.1 (6.6) / 51.5 (6.7) 56.8 (4.9)

BERT-base-Prompt 47.7 (1.9) / 49.8 (1.7) 52.0 (3.3)

RoBERTa-base-Prompt 59.7 (1.3) / 61.3 (1.4) 64.3 (2.2)

RoBERTa-large-Prompt 69.5 (1.7) / 70.9 (2.0) 72.3 (2.9)

LiST 78.6 (2.4) / 79.9 (1.6) 74.3 (2.2)

|K| = 500
BERT-base-Classic 52.4 (3.7) / 53.9 (3.6) 59.2 (2.3)

RoBERTa-base-Classic 61.3 (2.1) / 63.4 (1.8) 62.7 (7.5)

RoBERTa-large-Classic 73.9 (1.8) / 75.6 (1.5) 66.8 (4.9)

BERT-base-Prompt 54.9 (0.8) / 57.6 (1.1) 57.0 (1.6)

RoBERTa-base-Prompt 69.3 (0.6) / 70.3 (0.5) 69.5 (2.1)

RoBERTa-large-Prompt 78.8 (0.8) / 80.0 (0.6) 78.2 (0.5)

LiST 81.9 (0.6) / 82.8 (0.6) 81.9 (1.1)

|K| = 1000
BERT-base-Classic 57.4 (2.6) / 59.3 (2.2) 60.4 (3.2)

RoBERTa-base-Classic 68.9 (0.9) / 70.2 (0.8) 66.8 (2.9)

RoBERTa-large-Classic 79.0 (0.9) / 80.2 (0.8) 77.0 (1.7)

BERT-base-Prompt 58.9 (1.0) / 61.2 (1.0) 60.5 (1.7)

RoBERTa-base-Prompt 73.5 (0.9) / 74.4 (1.1) 73.9 (1.1)

RoBERTa-large-Prompt 81.6 (1.0) / 82.6 (0.5) 78.5 (1.8)

LiST 83.9 (0.8) / 84.6 (0.5) 82.9 (1.5)

Table 9: Average performance and standard deviation of different encoders with Classic and Prompt-
tuning strategies with various training labels |K|.

17

Under review as a conference paper at ICLR 2022

Labels Tuning #Params Avg MNLI (m/mm) RTE QQP SST-2 Subj MPQA
(acc) (acc) (acc) (acc) (acc) (acc)

|K| = 10

Full 355M 69.3 54.8 (3.7) / 55.6 (4.6) 60.0 (4.4) 58.7 (4.6) 89.5 (1.7) 84.5 (8.6) 67.8 (6.9)

Embedding 53M 62.3 53.3 (1.1) / 53.7 (1.2) 56.1 (3.5) 50.9 (6.4) 84.4 (3.6) 70.3 (6.0) 58.8 (7.0)

Attention 101M 68.0 55.1 (3.0) / 55.8 (4.0) 57.9 (3.9) 57.8 (7.0) 90.3 (1.5) 82.0 (6.6) 64.3 (6.6)

FF-output 102M 69.0 55.7 (3.3) / 56.4 (4.0) 60.4 (4.3) 59.1 (5.7) 90.2 (1.5) 82.2 (7.1) 66.2 (8.1)

FF-intermediate 102M 67.1 55.0 (2.8) / 55.7 (3.7) 57.7 (3.5) 57.0 (7.2) 89.3 (2.1) 80.7 (6.1) 62.7 (6.9)

|K| = 20

Full 355M 75.4 60.3 (2.0) / 61.6 (2.7) 64.3 (2.4) 67.8 (4.2) 90.6 (1.8) 88.3 (2.2) 80.6 (7.5)

Embedding 53M 65.6 53.2 (1.3) / 53.1 (1.5) 58.1 (0.9) 55.7 (5.2) 86.0 (1.7) 78.0 (2.0) 62.7 (3.2)

Attention 101M 74.6 59.2 (1.7) / 60.2 (2.4) 61.4 (2.2) 66.8 (2.6) 91.7 (1.1) 88.6 (1.5) 79.3 (5.5)

FF-output 102M 75.7 60.2 (1.8) / 61.4 (2.6) 65.2 (2.5) 67.7 (3.4) 91.4 (1.4) 88.5 (1.3) 80.3 (5.2)

FF-intermediate 102M 73.5 58.3 (1.6) / 59.3 (2.0) 60.8 (2.3) 66.2 (3.2) 90.5 (1.3) 87.4 (2.3) 77.4 (5.8)

|K| = 30

Full 355M 77.6 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8)

Embedding 53M 67.0 54.1 (1.1) / 54.0 (1.2) 59.0 (2.7) 56.7 (4.5) 85.8 (0.9) 82.2 (2.6) 64.2 (2.1)

Attention 101M 77.0 61.6 (2.2) / 62.7 (2.9) 65.8 (3.2) 70.1 (2.2) 91.7 (0.9) 90.4 (0.7) 82.1 (2.5)

FF-output 102M 77.6 62.3 (2.1) / 63.5 (3.0) 67.3 (2.6) 70.8 (1.7) 91.8 (0.8) 90.2 (1.3) 82.5 (3.4)

FF-intermediate 102M 75.9 60.4 (1.9) / 61.4 (2.5) 64.0 (3.9) 69.0 (2.7) 91.0 (1.2) 90.0 (1.3) 80.7 (2.7)

Table 10: Average performance and standard deviation on tuning different modules of RoBERTa-
large with varying amount of training labels |K|.

Tuning #Params MNLI (m/mm) RTE QQP SST-2 Subj MPQA

Head-only 1M 54.1 (1.1) / 54.1 (1.3) 58.8 (2.6) 56.7 (4.5) 85.6 (1.0) 82.1 (2.5) 64.1 (2.1)

Bias-only 1M 54.4 (1.3) / 54.4 (1.5) 59.8 (3.5) 58.6 (4.4) 87.3 (1.1) 83.9 (2.3) 65.8 (1.8)

Prompt-only 1M 47.3 (0.2) / 47.7 (0.1) 53.0 (0.6) 39.9 (0.7) 75.7 (1.7) 51.5 (1.4) 70.9 (2.4)

LiST Adapter (2) 1M 56.3 (3.8) / 57.1 (4.7) 63.7 (4.9) 68.2 (2.4) 89.2 (0.9) 90.2 (0.8) 68.4 (3.0)

Houlsby Adapter 14M 35.7 (1.1) / 36.2 (2.0) 51.0 (3.0) 62.8 (3.0) 57.0 (6.2) 83.2 (5.4) 57.2 (3.5)

LiST Adapter (128) 14M 62.4 (1.7) / 63.7 (2.5) 66.6 (3.9) 71.2 (2.6) 91.7 (1.0) 90.9 (1.3) 82.6 (2.0)

Full tuning 355M 62.8 (2.6) / 64.1 (3.3) 66.1 (2.2) 71.1 (1.5) 91.5 (1.0) 91.0 (0.5) 82.7 (3.8)

Table 11: Average performance and standard deviation of several lightweight parameter-efficient
prompt-tuning strategies with |K| = 30 training labels. The best performance is shown in bold
along with the number (#) of adapter parameters of total encoder parameters.

Backbone Approach Average Acc

BERT-base Prompt FN 66.0
BERT-base MetaST 60.2
BERT-base PromptST 66.1
BERT-base LiST 68.6

BERT-large Prompt FN 67.0
BERT-large MetaST 60.1
BERT-large PromptST 67.6
BERT-large LiST 70.6

RoBERTa-base Prompt FN 73.0
RoBERTa-base MetaST 62.9
RoBERTa-base PromptST 73.1
RoBERTa-base LiST 76.4

RoBERTa-large Prompt FN 77.6
RoBERTa-large MetaST 62.6
RoBERTa-large PromptST 77.2
RoBERTa-large LiST 82.0

Table 12: Average performance over various backbones with with training labels |K| = 30 (with
unlabeled data). MetaST, PromptST and LiST are semi-supervised approaches.

18

Under review as a conference paper at ICLR 2022

Backbone Approach Average Acc

BERT-base Prompt FN 64.4
BERT-base MetaST 57.7
BERT-base PromptST 64.9
BERT-base LiST 66.5

BERT-large Prompt FN 64.8
BERT-large MetaST 57.7
BERT-large PromptST 65.6
BERT-large LiST 68.5

RoBERTa-base Prompt FN 71.2
RoBERTa-base MetaST 59.8
RoBERTa-base PromptST 71.5
RoBERTa-base LiST 75.1

RoBERTa-large Prompt FN 75.4
RoBERTa-large MetaST 58.9
RoBERTa-large PromptST 74.8
RoBERTa-large LiST 79.5

Table 13: Average performance over various backbones with with training labels |K| = 20 (with
unlabeled data). MetaST, PromptST and LiST are semi-supervised approaches.

Backbone Approach Average Acc

BERT-base Prompt FN 58.2
BERT-base MetaST 52.4
BERT-base PromptST 59.6
BERT-base LiST 60.9

BERT-large Prompt FN 59.4
BERT-large MetaST 53.8
BERT-large PromptST 59.6
BERT-large LiST 62.1

RoBERTa-base Prompt FN 66.8
RoBERTa-base MetaST 54.1
RoBERTa-base PromptST 66.5
RoBERTa-base LiST 69.4

RoBERTa-large Prompt FN 69.3
RoBERTa-large MetaST 53.8
RoBERTa-large PromptST 68.2
RoBERTa-large LiST 72.8

Table 14: Average performance over various backbones with with training labels |K| = 10 (with
unlabeled data). MetaST, PromptST and LiST are semi-supervised approaches.

MNLI RTE

LIST 73.5(2.8) / 75.0(3.7) 71.0(2.4)
w/o re-init 66.7(2.8) / 68.3(4.3) 69.0(4.9)
w/o re-weighting 72.9(3.4) / 74.2(4.5) 69.7(4.1)
w/o warmup 67.9(12.9) / 69.0(13.1) 69.2(4.5)
w/ hard pseudo-labels 71.7(3.8) / 73.0(5.4) 69.5(4.2)

w/o Adapter (Full Model) 73.6(2.7) / 74.8(2.7) 71.2(2.3)

Table 15: Ablation analysis of LiST with # of training data = 30.

19

Under review as a conference paper at ICLR 2022

MNLI RTE

LiST 71.8(2.3) / 73.0(3.1) 69.0(3.5)
w/o re-init 65.6(2.6) / 66.9(3.4) 66.5(3.7)
w/o re-weighitng 70.7(4.1) / 71.8(4.6) 67.1 (5.6)
w/o warmup 66.9(5.4) / 68.3(5.7) 67.4(5.1)
w/ hard pseudo labels 69.9(3.6) / 71.4(3.7) 67.7(3.5)

w/o Adapter (Full Model) 66.6 (3.2) / 68.1 (3.6) 69.69 (5.29)

Table 16: Ablation analysis of LiST with # of training data = 20.

MNLI RTE

LiST 65.0(4.5) / 66.3(4.9) 64.2(2.8)
w/o re-init 58.7(4.4) / 59.4(5.5) 58.8(4.0)
w/o re-weighting 63.8(5.8) / 64.5(6.6) 61.7(2.6)
w/o warmup 62.7(5.2) / 63.3(6.2) 61.7(4.8)
w/ hard pseudo labels 60.8(6.6) / 61.8 (6.8) 60.8(3.1)

w/o Adapter (Full model) 60.0 (3.7) / 61.1 (4.8) 62.4 (6.79)

Table 17: Ablation analysis of LiST with # of training data = 10.

Labels Models Avg #Tunable MNLI (m/mm) RTE QQP SST-2 Subj MPQA
Params (acc) (acc) (acc) (acc) (acc) (acc)

|K| = 30 Classic FN 60.9 355M 38.0 (1.7) / 39.0 (3.1) 51.4 (3.7) 64.3 (8.1) 65.0 (11.5) 90.2 (2.2) 56.1 (5.3)

|K| = 30 +Unlabeled Data LIST w/ Classic FN 66.7 14M 39.9 (5.6) / 41.7 (7.6) 54.9 (1.4) 67.4 (7.0) 73.6 (9.9) 92.3 (1.1) 71.4 (4.7)

Table 18: Performance comparison of classic FN with RoBERTa-large as the encoder with standard
deviation in parantheses. The best performance is shown in bold.

of Training data Approach Average Acc (Six Tasks)

30 Full tuning 77.6
30 LiST Adapter 77.7

20 Full tuning 75.4
20 LiST Adapter 75.2

10 Full tuning 69.3
10 LiST Adapter 68.9

Table 19: Average Accuracy of Adapter w/ various number of training labels (No Semi-supervised
Setting).

20

	Introduction
	Background on Model Tuning
	Lite Self-Training: LiST Methodology
	Overview
	Lightweight Prompt Adapter Tuning
	Re-weighting Noisy Prompt Labels
	Knowledge Distillation For Student Warmup
	Student Adapter Re-initialization

	Lite Self-training: Summary

	Experiments
	Experimental Setup
	Key Result
	Few-shot Supervision with Varying Model Sizes and Labels
	Adapter Analysis
	Ablation Analysis

	Related Works
	Conclusions and Future Work
	Reproducibility Statement
	Datasets
	Prompts

	Algorithm Flow
	Few-shot Task Adaptation v.s. True Few-shot NLU
	Experimental Details
	Hyper-parameters
	Experimental result details

