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Abstract—Accurate detection of human stress levels is crucial
for mental health monitoring and has wide-ranging applications
in workplace wellness and healthcare. While Photoplethysmog-
raphy (PPG) signals have been increasingly utilized to analyze
physiological states, most existing studies are limited to controlled
experimental settings. This paper addresses this gap by collecting
PPG data from employees during real-world work conditions
using a wearable device, thereby enhancing the validity and
applicability of stress detection systems. We propose a novel
stress classification method based on a multi-head attention
transformer model, capturing both temporal and frequency-
domain features in the PPG signal. We apply Short-Time Fourier
Transform (STFT) to extract spectral representations of the PPG
data. A transformer architecture is then employed to model
complex dependencies and subtle variations in physiological
signals via self-attention mechanisms and stacked encoder layers.
Experimental evaluation demonstrates that our proposed method
achieves a classification accuracy of 76.17% and an F1-Score
of 76.42% in stress detection task, outperforming machine
learning baselines and state-of-the-art methods. These findings
highlight the effectiveness of transformer-based approaches in
stress classification and reveal the substantial performance gap
between laboratory-controlled results and real-world outcomes.

Index Terms—Attention mechanism, biomedical signal pro-
cessing , photoplethysmography (PPG) , real-world data, stress
detection

I. INTRODUCTION

Workplace stress is becoming increasingly common, af-
fecting employee health, productivity, and the economy [1].
Challenging tasks, rapid digital changes, and constant connec-
tivity can lead to mental fatigue, poor decision-making, and
lower performance, often resulting in increased absences and
staff turnover. Digitalization plays a central role in this shift.
While it fosters innovation and creates new job opportunities,
about 40% of new employment in Organisation for Economic
Cooperation and Development (OECD) countries occurs in
sectors with high levels of digital activity [2]. This transfor-
mation also brings increased workloads, emotional exhaustion,
technostress [3], digital stress, and telepressure, which refers
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to the pressure to respond instantly to digital communication
[4]–[7]. These psychological pressures contribute to larger
systemic challenges. Stress is the second most common work-
related health problem in Europe after musculoskeletal disor-
ders, which are often stress-induced themselves [8]. High work
intensity and tight deadlines are leading causes, with 80% of
managers acknowledging stress in their teams [9].

Generally, two types of stress can potentially contribute
to the development of different diseases: chronic and acute.
Persistent stress is connected to the onset of sudden events,
and there was a tendency indicating that a higher level of
acute stress is more strongly correlated with depression in
individuals experiencing high chronic stress compared to those
with low chronic stress [10]. In addition to depression, chronic
stress exerts a notable impact on the immune system [11],
increasing heart attacks and strokes, and eventually leading to
the development of various illnesses [12].

Recent technological advances have enabled the develop-
ment of sensors that monitor physiological states in real-
time [13]. These sensors can be invasive, requiring implan-
tation or attachment to specific body areas, which limits their
practicality. Non-invasive alternatives, such as those embedded
in wristbands, headbands, or rings, offer greater accessibility
and user acceptance [14].

Photoplethysmography (PPG), as a non-invasive optical
sensor, quantifies alterations in skin hue linked to changes in
blood volume within subcutaneous vessels during the cardiac
cycle [15]. It employs light pulses emitted by a source and
captures the reflected signal using a photodetector [16].

In response to the growing importance of monitoring and
controlling stress in real-world work environments, recent
research has explored how continuous feedback from physio-
logical sensors, such as PPG, can support improved well-being
and performance [17], [18]. However, most existing studies
are conducted in laboratory settings or rely on predefined
scenarios within controlled environments [19]–[22]. While
those studies offer important insights, they often miss the un-
predictable and dynamic nature of real work environments. In
this study, we collect PPG data directly from a real workplace,
without setting up specific scenarios, asking participants to
follow scripted tasks, or any intervention. This allows us to
observe stress as it naturally evolves during the workday. Real-
world signals often include significant noise and variability,



which represents one of the most critical differences between
real-world and lab-acquired data. This gap arises due to
various factors such as motion artifacts, inconsistent sensor
placement, or users wearing the wristband loosely, conditions
that are typically controlled or absent in laboratory settings.

This paper aims to evaluate and improve the performance
of detecting stress using PPG sensor data in real-world en-
vironments. To address the challenges of noisy, real-world
physiological data, we first apply advanced signal process-
ing techniques to remove noise and artifacts. We then use
a hybrid deep learning model that combines Convolutional
Neural Networks (CNNs) for local feature extraction, attention
mechanisms to emphasize or prioritize informative segments
of the input, and positional encoding to preserve temporal
structure. This approach improves robustness and accuracy in
stress detection under natural workplace conditions.

The remainder of this paper is organized as follows. Sec-
tion II provides a detailed explanation of the dataset and
data collection process. Section III presents our methodology,
including preprocessing steps and the model architecture.
Section Section IV details the experimental results, including
performance evaluation, comparisons, and key findings. Fi-
nally, Section Section V concludes the paper with a summary
of our contributions and outlines directions for future research.

II. DATASET

In this study, we collected a PPG signal dataset in real-
world office environments to investigate stress state recog-
nition methods in natural workplace settings. A total of 25
healthy participants (18 females and 7 males) took part in the
experiment, with an average age of 39 years, ranging from
24 to 55 years. Data collection spanned a continuous two-
week period, during which participants wore the Empatica E4
wristband throughout their regular working hours. The device
recorded their PPG signals in an unobtrusive manner, closely
reflecting their actual working conditions. The complete data
collection process is illustrated in Fig. 1.

Fig. 1. Schematic diagram of dataset collection process

To obtain stress state labels, participants were instructed
to report their current stress level (yes/no) via our custom-
developed mobile application every two hours. This applica-
tion was directly connected to the Empatica E4 wristband,
receiving physiological data via Bluetooth and storing it lo-
cally on the mobile device as well as securely transmitting it
to our dedicated server. Importantly, the system was designed

Fig. 2. Stress and non-stress labels per participant (scheduled and manual
entries).

to function independently without relying on third-party cloud
services, ensuring complete data privacy and control.

In addition to these scheduled prompts, the application
also allowed participants to manually report stress at any
moment by tapping a designated button. To ensure accurate
temporal alignment with physiological signals, the system
recorded the exact timestamp of both scheduled responses and
manual entries directly on the server. These timestamps were
critical in linking subjective stress reports with corresponding
physiological data segments.

During data processing, for each stress label—whether
scheduled or manually entered- a 10-minute segment of PPG
data was extracted, spanning 5 minutes before and 5 minutes
after the recorded timestamp. This segment was treated as the
physiological signal window corresponding to the reported
stress state. To provide an overview of labeling behavior
across participants, we include Fig. 2, which illustrates the
total number of stress reports recorded by each participant,
separated into manually and prompted entries. The figure also
distinguishes between stress and non-stress responses, offering
insight into the distribution and frequency of reported stress
states across the cohort.

Due to the real-world workplace setting without controlled
lab conditions, participants were occasionally unable to re-
spond to the scheduled prompts, whether due to being occu-
pied, missing the notification, or forgetting to check the app.
As a result, some participants contributed fewer labels than
others, as shown in the figure.

Physiological signal acquisition was performed using
the Empatica E4, a research-designed wristband shown in
Fig. 3. This device’s advantages include wearing comfort,
lightweight, easy deployment, long battery life, on-device data
storage, and secure data transmission, making it particularly
suitable for long-term monitoring in naturalistic environments.

All participants signed informed consent forms prior to the
study. The experimental protocol was approved by the Ethics
Committee of the University of Vienna. To ensure participant
privacy, all data were anonymized during both collection
and storage. Each participant was assigned a random, non-
reversible identifier, and no personally identifiable information,
such as names, contact details, or device IDs, was collected.



III. OUR PROPOSED METHOD

A. Signal Filtering

We employed the noise detection method for PPG signals
proposed by Khooyooz et al. in 2024 [23]. This approach
used a machine learning model to automatically identify and
exclude noisy segments from PPG recordings, ensuring that
only clean signals are used for subsequent analysis. The
detailed denoising process is as follows:

1) Model Selection and Pretraining: Among the various
classifiers evaluated in the original work, the Extremely
Randomized Tree (ERT) model demonstrated the highest
classification performance, achieving F1-scores ranging from
89.3% to 99.4% in multi-class tasks. Therefore, ERT was
selected for this study. To train the noise detection model,
we utilized an external dataset containing PPG recordings
with sensor specifications and sampling rates similar to those
used in our study. Specifically, we used the PPG data from
the publicly available dataset introduced by Gao et al. [24]
and synthetically added noise to generate corresponding noisy
segments.

Two types of features were extracted from each signal
window for model training:

a) Morphological Features:
• Peak locations were identified using the vital-sqi open-

access Python toolbox [25];
• The intervals between successive peaks were calculated;
• To standardize feature vector lengths, the following pro-

cedure was applied:
– Sort all intervals in descending order;
– Calculate the mean (µ) and standard deviation (σ );
– Set the final vector length as l = ⌊µ⌋+ ⌊σ⌋;
– Apply zero-padding for shorter vectors or truncation

for longer ones.
b) Statistical Features: The following statistical metrics

were computed for each raw PPG signal segment:
• Mean, variance, kurtosis, skewness;
• Energy, entropy, maximum autocorrelation;
• Histogram mean, variance, and maximum value.
All features were normalized before feeding the model.
2) Application to the Target Dataset: Once the ERT model

was trained, it was applied to our target dataset. We divided the
PPG signals into fixed-length and non-overlapping windows.

Fig. 3. Empatica E4 smart watch

Fig. 4. Spectrogram representation of a 20-second noise-free PPG signal.

The window size was set to 1280 samples (equivalent to 20
seconds at 64 Hz). The same morphological and statistical
features were extracted from each segment and fed into the
trained ERT model, which predicted whether the segment was
clean, corrupted by motion artifact, or affected by baseline
wander.

3) Noisy Segment Removal: Finally, we removed all signal
windows classified as either motion artifact or baseline wander
from the dataset. Only segments classified as clean were
retained for further analysis.

B. Spectrogram-Based 2D Conversion of PPG Segments

Following signal filtering, each segment was treated as an
individual instance, allowing us to isolate and analyze fixed-
duration portions of the PPG signal. To capture both the
temporal dynamics and frequency content within each window,
we applied the Short-Time Fourier Transform (STFT) to
produce corresponding spectrograms. As illustrated in Fig. 4,
each spectrogram offers a visual representation of how signal
frequency components evolve over time, formatted as a 2D
array with dimensions 128 × 128, frequency bins along one
axis and time bins along the other. This preprocessing strategy
was designed to reshape the signal into a form suitable for
CNN, enabling them to learn spatial patterns from the spec-
trogram data effectively. The following subsection outlines our
method, which utilizes both CNN and transformer architecture
to achieve accurate stress detection.

C. Proposed Convolutional-Attention Network

We present a deep learning model designed to detect stress
using PPG signals collected in real-world workplace settings.
We derived spectrograms from the raw PPG signals, providing
a time-frequency representation of cardiovascular dynamics.
Stress is known to affect autonomic nervous system activity,
which in turn influences heart rate variability, pulse amplitude,
and rhythm changes that can manifest as distinct patterns
in the time-frequency domain. Our model architecture com-
bines convolutional layers with Transformer-based attention
mechanisms [26], enabling the extraction of both fine-grained
local features and long-range temporal dependencies from the
spectrograms. The model architecture is illustrated in Fig. 5.

Our network begins with three convolutional blocks that
process the input spectrograms (1×128×128), progressively



Fig. 5. Hybrid CNN-Transformer architecture for processing 128×128 spectrogram images.

learning higher-level features related to physiological stress
markers. Early layers focus on lower-frequency rhythms, while
deeper layers capture more complex spatiotemporal structures.
We used Max-pooling to downsample the feature maps and
reduce computational demands. To capture the temporal dy-
namics of stress, we reshaped the convolutional output into
a sequence of tokens and passed it through a Transformer
module. Sinusoidal positional encoding ensures that the model
can differentiate between earlier and later time segments in
the sequence, while multi-head self-attention models interact
across the entire signal duration. We applied sinusoidal posi-
tional encoding, defined as:

PE(pos,2i) = sin
(

pos
100002i/dmodel

)
, (1)

PE(pos,2i+1) = cos
(

pos
100002i/dmodel

)
,

where dmodel = 64 and pos denotes the token position in the
sequence.

The attention mechanism computes interactions across the
full sequence using multi-head self-attention with 4 heads:

Attention(Q,K,V ) = softmax
(

QK⊤
√

dk

)
V, (2)

where Q, K, and V are learned projections of the token
embeddings.

After the attention layer, the sequence is aggregated using
mean pooling and passed through two fully connected layers

(64 → 32 → 2) to predict binary stress levels. This hybrid
architecture leverages CNNs for extracting localized physio-
logical features and Transformers for capturing the broader
temporal context, offering a robust representation of stress
patterns in real-world settings.

We implemented our model in PyTorch [27] and trained it
on real-world data using the Adam optimizer. Training was
conducted for 100 epochs on an NVIDIA RTX A2000 GPU
with a batch size of 16, using mixed-precision to improve
efficiency.

D. Evaluation

To evaluate the performance of our binary stress classifica-
tion model, we used four common metrics: accuracy, precision,
recall, and F1-score. These are calculated as follows:

Accuracy =
TP+TN

TP+FP+TN+FN
(3)

Precision =
TP

TP+FP
(4)

Recall =
TP

TP+FN
(5)

F1-Score =
2 ·Precision ·Recall
Precision+Recall

(6)

These metrics offer a comprehensive assessment of model
performance, capturing both correctness and the balance be-
tween false positives and false negatives in stress detection.



 

Fig. 6. Clean vs. noisy 20-second PPG signals highlighting real-world
challenges.

IV. RESULTS AND COMPARISION

We conducted stress detection on our real-world PPG
dataset as a binary classification problem (stress vs. no stress).
After applying the noise detection and filtering pipeline, we re-
moved segments identified as noisy. Fig. 6 illustrates a model-
predicted clean segment versus a noisy one, demonstrating the
distinctions the noise detection model effectively identified and
used to classify signal quality. Across all sessions in which
the 25 subjects provided at least one self-reported label, we
applied our noise detection and filtering pipeline. Following
the removal of segments identified as noisy, an average of 886
± 728 clean segments remained per subject, out of an original
average of 997 ± 766 segments, resulting in a mean reduction
of 13.002% ± 15.28%. Fig. 7 illustrates the distribution of
total and clean segments across subjects. All segments were
20 seconds long, and from the remaining clean data, we
selected 30 segments (equivalent to 10 minutes of recording)
per subject for the classification task.

We converted each clean segment into a spectrogram repre-
sentation, resulting in 10,620 distinct samples. We divided the
dataset into 70% for training (7,434 samples) and 30% for test-
ing (3,186 samples), while maintaining the class balances to
ensure consistency. To improve the reliability of our evaluation
and minimize overfitting, we performed 5-fold cross-validation
within the training data. In this process, the training data was
split into five equal parts; Each fold used 80% of the data
for training and 20% for validation, rotating across subsets
to provide a more generalized view of model performance.

Fig. 7. Total vs. clean segments per subject after noise filtering.

TABLE I
PERFORMANCE COMPARISON OF PROPOSED MODEL WITH BASELINE

CLASSIFIERS

Model Accuracy Precision Recall F1-Score
Logistic Regression 57.35% 57.36% 57.35% 57.36%
Random Forest 65.05% 64.35% 65.05% 63.00%
KNN 62.98% 64.09% 62.98% 63.52%
SVM 61.57% 61.68% 61.57% 61.54%
XGBoost 65.10% 64.44% 65.10% 62.96%
CNN (Baseline) 73.62% 73.49% 73.62% 73.49%
Proposed Method 76.17% 75.67% 77.19% 76.42%

Once the model was tuned, we evaluated it on the independent
held-out test set to reflect real-world deployment conditions.
Table I summarizes the performance of our proposed hybrid
CNN-Transformer model using key metrics such as accuracy,
precision, recall, and F1-score. In this table, we also compare
our model’s results with several commonly used baseline
methods, including K-Nearest Neighbors (KNN), Support Vec-
tor Machine (SVM), logistic regression, XGBoost (XGB),
and a CNN without attention modules. Except CNN, each
baseline model was trained on a comprehensive feature set
derived from the raw PPG signals. These features contained
widely used time-domain descriptors, such as mean, standard
deviation, variance, interquartile range, and Hjorth parameters,
along with frequency-domain characteristics, including Fast
Fourier Transform (FFT) statistics, spectral entropy, spectral
centroid, and dominant frequency components. Additionally,
we extracted band power measures using Welch’s method
across standard frequency ranges, as well as peak-based met-
rics, such as average peak height and peak intervals. This
combination of features ensured that the traditional machine
learning classifiers had access to both temporal and spectral
dynamics of the signal for a fair comparison with our model.
The configuration of the baseline models was as follows:
KNN with k = 9, selected as the best from a range of 5
to 15 using Euclidean distance; SVM with a Radial Basis
Function (RBF) kernel and default regularization parameter
C = 1.0; logistic regression with L2 regularization using the
lbfgs solver; XGB configured with a learning rate of 0.1, a
maximum tree depth of 3, and 100 estimators; and a baseline
CNN composed of three convolutional layers with 16, 32, and
64 filters respectively, each followed by ReLU activation and
max-pooling, and concluding with a fully connected layer and
a sigmoid activation function for binary classification. Our
hybrid approach consistently outperforms all these baselines
across every evaluation metric, demonstrating its capability
to capture both local and global patterns in PPG signals for
accurate stress detection.

To further assess the generalizability of our model and
address subject-independent evaluation, we performed a leave-
one-out evaluation. In this setup, each subject’s data was used
once as the test set, while the model was trained on the
remaining participants. This evaluation provides a more re-
alistic estimate of performance in real-world scenarios, where
inter-individual variability is significant. Our model achieved
an average accuracy of 74.58%, precision of 75.28%, recall



TABLE II
PERFORMANCE OF THE PROPOSED MODEL UNDER LEAVE-ONE–OUT

CROSS VALIDATION

Metric Accuracy Precision Recall F1-Score
Mean 74.58% 75.28% 75.34% 74.31%
Standard Deviation 13.78% 15.48% 14.24% 14.55%

of 75.34%, and F1-score of 74.31% across the participants.
Table II presents the mean and standard deviation of the
evaluation metrics computed across all subjects.

Compared to the 70/30 train-test split, the performance
under LOO evaluation is slightly lower. This drop is primarily
due to demographic variability, particularly age-related dif-
ferences in PPG signal morphology. PPG signals from older
participants, who are underrepresented in the dataset, often
show characteristics that differ from those of the younger
majority. When such individuals are used solely for testing, the
model may encounter unfamiliar patterns, leading to reduced
accuracy and higher standard deviation. These findings under-
line the importance of diverse and balanced data in developing
robust physiological signal classification systems.

To compare our model’s performance with existing ap-
proaches, we evaluated it against three existing approaches
that were originally developed and evaluated on controlled
laboratory datasets named Wearable Stress and Affect De-
tection (WESAD) [19]. Schmidt et al. [19] extracted time-
and frequency-domain features from PPG signals collected in
lab settings, achieving the highest stress detection accuracy of
85.83% using Linear Discriminant Analysis (LDA). Jahanjoo
et al. [29] utilized PPG signals from the WESAD dataset.
They applied novel denoising techniques, segmentation meth-
ods, and extracted a combination of seven key features from
the PPG signals. Using a SVM classifier, they achieved a
stress detection accuracy of 95.55%. Similarly, Heo et al. [28]
reported a high accuracy of 95.07% also using WESAD
PPG data. Their approach involved a robust preprocessing
pipeline combining wavelet filtering and statistical techniques
to reduce motion artifacts and baseline noise. Multiple peak
detection methods were then used in parallel, and a voting
mechanism to improve heart rate feature extraction. While
these results are impressive, they reflect idealized conditions
where signals are clean and variability is minimal. To as-
sess the robustness and generalizability of these methods,
we re-implemented them and evaluated their performance
on our real-world dataset, which includes natural noise and
variability despite preprocessing efforts. Under these realistic

TABLE III
COMPARISON OF MODEL PERFORMANCE ON REAL-WORLD PPG DATA FOR

DETECTING STRESS

Model Accuracy Precision Recall F1-Score
Schmitz et al. [19] 57.61% 57.64% 57.61% 57.61%
Heo et al. [28] 66.73% 68.96% 64.63% 66.73%
Jahanjoo et al. [29] 70.03% 71.62% 67.35% 69.04%
Proposed Method 76.18% 75.67% 77.20% 76.43%

conditions, all three methods showed a significant decrease in
accuracy. Our proposed hybrid model, specifically designed
to handle real-life signals, consistently outperformed these
baselines when evaluated on our dataset. Although the absolute
performance remains modest (76.17% accuracy), our results
indicate the importance of designing models tailored to real-
world data complexities and demonstrate the practical value
of our approach for real-life stress detection.

V. CONCLUSION

In this study, we presented a hybrid deep learning frame-
work for robust stress detection using PPG signals col-
lected in real-world workplace environments. We addressed
the challenges of daily-life monitoring, where signals are
subject to noise, motion artifacts, and non-stationarity. This
study combines STFT with a multi-head attention Transformer
model to precisely capture the time-frequency dependencies
in physiological signals, achieving superior stress detection
performance compared to existing methods in complex real-
world environments.

To evaluate the effectiveness of our model, we compared
its performance against classic machine learning classifiers,
including KNN, SVM, logistic regression, XGB, Random
Forest (RF), and a baseline CNN. We also re-implemented
three state-of-the-art methods. Although these methods re-
ported accuracies exceeding 85% in controlled lab settings,
their performance dropped substantially on our dataset. In
contrast, our proposed model achieved an accuracy of 76.18%,
outperforming both classical baselines and the state-of-the-art
lab-based approaches. To further validate our model’s gener-
alizability, we conducted an LOO evaluation. This approach
better simulates real deployment scenarios by training on all
but one subject and testing on the held-out individual. Our
model maintained performance under this setting, achieving
an average accuracy of 74.58% with a standard deviation of
13.78%. While slightly lower than the random-split evalua-
tion, this result highlights the model’s robustness in subject-
independent settings and reveals the natural variation in phys-
iological signals across individuals. In particular, differences
in age distributions influenced the results.

While this result demonstrates the model’s ability to han-
dle noisy, non-stationary data and outperforms state-of-the-
art, it also underscores a critical insight: the substantial gap
between lab-based and real-world performance is not merely
technical, but foundational. Future research will focus on
deployment adaptability in real-world settings, particularly
whether common wearing positions, such as the wrist, are
suitable for acquiring high-quality physiological signals and
accurate stress recognition. Further evaluation of the match
between sensor types and placement sites will help improve
the system’s robustness and practical performance.
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