
Proceedings of Machine Learning Research vol 120:1–10, 2020

Constraint Management for Batch Processes Using Iterative Learning
Control and Reference Governors

Aidan Laracy AIDAN.LARACY@UVM.EDU
College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT USA

Hamid Ossareh HAMID.OSSAREH@UVM.EDU

College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT USA

Abstract
This paper provides a novel combination of Reference Governors (RG) and Iterative Learning Control
(ILC) to address the issue of simultaneous learning and constraint management in systems that perform a
task repeatedly. The proposed control strategy leverages the measured output from the previous iterations
to improve tracking, while guaranteeing constraint satisfaction during the learning process. To achieve
this, the plant is modeled by a linear system with uncertainties. An RG solution based on a robust
Maximal Admissable Set (MAS) is proposed that endows the ILC algorithm with constraint management
capabilities. An update law on the MAS is proposed to further improve performance.
Keywords: Iterative Learning Control, Reference Governor, Constraint Management, Batch Processes,
Maximal Admissible Sets

1. Introduction

Initially proposed in Arimoto et al. (1984), Iterative Learning Control (ILC) is a method of control used for
systems that perform the same task repeatedly. Similar to how humans learn from previous experiences,
ILC controllers use information from previous iterations, or batches, of the task to improve tracking
performance. Its applications have been explored in high speed trains Yu et al. (2018), hard disk drives J.
Xu et al. (2001), robotics Marchal et al. (2014), and numerous other systems performing a repetitive task.

One of the major challenges with ILC is enforcing input, output, or state constraints. To provide exam-
ples of such constraints, consider a robotic arm on an assembly line. Typical constraints for this example
are actuator saturation, position and angle constraints, and constraints on power consumption. Clearly,
constraint violation could lead to the injury of factory workers, damaged machinery in the surrounding
area, or damaged components of the arm.

Several schemes have been proposed in the literature to handle constraint management of systems
controlled by ILC. In Zhang et al. (2016), a data-driven ILC scheme is used for systems with unknown
models that have input, output, and rate of change of input constraints. A quadratic program is used to
optimize the control signal, and input-output data is used to estimate system matrices as the ILC learns.
Sebastian et al. (2018) uses ILC for linear time-varying systems with input and output constraints, where an
output feedback loop based on barrier functions is used for output constraint management. In Ruikun and
Ronghu (2017), input saturation is considered for nonlinear MIMO systems. To do this, a P-type ILC is used
containing a saturated control term, a feedback term, and a system uncertainty estimate term. Jin et al. (2014)
uses a convex optimization-based ILC for iteration-varying systems with output constraints. This is done by
defining a cost function to optimize the learning term of the ILC algorithm. The above papers either do not
consider output or state constraints, or use nonlinear or quadratic programming to update the control signal.
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In this paper, we propose an alternative solution for constraint management of systems controlled by
ILC. The solution is based on the Reference Governor (RG) algorithm, and is motivated by the fact that
the traditional RG for linear systems, as described in Gilbert and Kolmanovsky (1995b); Kolmanovsky
et al. (2014); Osorio and Ossareh (2018); Liu et al. (2018); Ossareh (2019); Li et al. (2019), can naturally
handle input, output, and state constraints, and it does so by solving a simple linear program with an
explicit solution. This leads to a much more computationally-efficient algorithm compared to other existing
optimization-based methods.

The main novelty of the proposed solution is that we apply RG in the iteration (batch) domain instead
of the time domain; in other words, we treat the batch number as the independent variable, instead of the
timestep within each batch. Furthermore, instead of assuming no knowledge of the model of the system, as
is the case in ILC, or assuming perfect knowledge of the model, as is the case with RG, we assume an uncer-
tain model of the system, wherein the system matrices are not known exactly. We use this modeling uncer-
tainty to create a robust Maximal Admissible Set (MAS), and propose an RG based on this MAS to endow
the ILC controller with constraint management capabilities. Since the robust MAS may lead to a conserva-
tive response, a method is provided to update the MAS as the system learns to further improve performance.

Finally, note that a variation of RG has been previously proposed in Tan et al. (2011) to handle input
saturation in systems with ILC controllers. The RG proposed in Tan et al. (2011) reduces either the
amplitude or the frequency of the reference signal so that it can be realized within the saturation bounds of
the system. While the RG described in said paper does eventually compute an optimal input signal which
enforces the constraints, there may be violations as the system learns. Our paper differs from Tan et al.
(2011) in that it handles state and output constraints in addition to input saturation, and it can guarantee
constraint satisfaction during the learning process.

2. Preliminaries

This section reviews the basics of ILC as seen in Arimoto et al. (1984); J. Xu et al. (2001); Yu et al. (2018);
Moore (1998), and RG as it appears in Gilbert and Kolmanovsky (1995b); Kolmanovsky et al. (2014).

2.1. Iterative Learning Control (ILC)

ILC is a control method used for systems that perform a repeated task, e.g., a robotic arm in an assembly
line, where the arm is to track some reference trajectory. Consider the discrete-time linear model describing
the dynamics of the system:

xk(t+1)=Axk(t)+Buk(t)

yk(t)=Cxk(t)
(1)

where t∈Z+ is the discrete time index, k∈Z+ is the iteration or batch number, xk(t)∈Rn is the state
of the system in batch k at time t, uk(t)∈Rm is the input, and yk(t)∈Rm is the output. A, B, and C
are system matrices of appropriate dimensions. For simplicity, we assume that the system starts from
zero initial conditions at every iteration, i.e., xk(0)=0 for all k. To illustrate the above variables with an
example, consider a robotic manipulator whose end effector needs to follow a given path. The batch number
k would represent one full run of the robot attempting to follow the path, and t represents the discrete-time
(e.g., sampled time) during that run. The state xk(t) would be the internal states of the robot at a given
time in a given batch, be that the torque being applied to a joint, or the angle and angular velocity of a joint.

Let r(t) be a desired reference trajectory, defined on the time interval from t=0 to some finite time
t=T . The goal of ILC is to update the input uk(t) so that yk(t) converges to r(t) as k tends to infinity
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Figure 1: Reference governor block diagram.

(i.e., the goal is to make the system learn from the previous iterations). This can be achieved, for example,
using a simple Arimoto ILC update law:

uk+1(t)=uk(t)+γek(t+1) (2)

where ek(t) = r(t)−yk(t) is the tracking error in iteration (or batch) k, and γ ∈ R+ is the “learning
coefficient”. A larger γ will lead to faster convergence to the reference signal, but can cause the system to
become unstable. For stability and convergence criteria of this algorithm, please see Moore (1998). Note
that many variations of the ILC algorithm have been proposed, including those that use different learning
coefficients for each input channel, and those with more complex update laws. For the sake of simplicity,
we only consider the update law (2) in this paper.

As a final remark, note that ILC has traditionally been a “model-free” control technique in that, akin to
classical controllers (e.g., PID), a model of the plant is not required inside the controller for implementation.

2.2. Reference Governors (RG)

RG is a method of constraint management that modifies the reference signal to a closed-loop control
system, and is an add-on scheme to a traditional feedback control system. Since the inner loop dynamics
of the system are not modified, RG is ideal for constraint management of “black-box” systems or systems
with legacy controllers.

Consider Figure 1, in which the “closed-loop system” is described by the multi-input multi-output
discrete-time stable linear system:

x(t+1)=Ax(t)+Bv(t) (3)

where the state x is subject to the following polytopic constraints:

x(t)∈X,{x :Sx≤s} (4)

Vector inequalities here and throughout the paper are to be interpreted element-wise. Note that constraints
on states, outputs, and actuator commands can all be expressed using (4).

The RG employs the so-called maximal admissible set (MAS), denoted byO∞, which is the set of
all initial conditions and constant control inputs that satisfy (4) for all time:

O∞={(x0,v0):x(0)=x0, v(t)=v0, x(t)∈X, ∀t∈Z+} (5)

As seen in (5), v(t)=v0 is held constant for all t. Using this assumption, the evolution of the state x(t)
can be expressed explicitly as a function of x(0)=x0 and v0:

x(t)=Atx0+(I−At)(I−A)−1Bv0 (6)

Therefore, MAS in (5) can be characterized by a polytope defined by an infinite number of inequalities:

O∞={(x0,v0):SAtx0+S(I−At)(I−A)−1Bv0≤s, ∀t∈Z+} (7)
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It is shown in Gilbert and Kolmanovsky (1995b); Gilbert and Tan (1991) that, to make this set finitely
determined (i.e., be described by a finite number of inequalities), the steady-state value of x(t), denoted
by x(∞):=(I−A)−1Bv0, must be constrained to the interior of the constraint set, i.e.,

S(I−A)−1Bv0≤(1−ε)s (8)

where ε∈R+ is a small number. After introducing (8) in (7), it can be shown that there exists a finite
prediction time j∗, where the inequalities corresponding to all future prediction times (t>j∗) are redundant.

Combining (7) and (8),O∞ can be represented by a polytope of the form:

O∞={(x0,v0):Gxx0+Gvv0≤g} (9)

where the matricesGx,Gv, and g are finite dimensional.
The above MAS is computed offline. In real-time, RG employs the MAS to select an optimal control

input that will not cause a constraint violation at any future time. The RG update law that achieves this is:

v(t)=v(t−1)+λ(r(t)−v(t−1)) (10)

where λ∈ [0,1]. To select λ, the RG solves the following linear program at every timestep:

maximize
λ∈[0,1]

λ

s.t.
(
x(t), v(t−1)+λ(r(t)−v(t−1)

)
∈O∞

(11)

where x(t), r(t), and v(t−1) are known parameters at time t. If the reference r(t) is feasible, then the
solution to (11) is λ=1 and, therefore, v(t)=r(t). If, however, the reference r(t) is not feasible, then λ<1.

A few important properties of RG are as follows. First, if the initial condition (x(0),v(0)) is inside
O∞, then the solution λ=0 is always feasible in the optimization problem, and the constraints will never
be violated. Thus, the RG formulation is recursively feasible. Second, for a bounded reference r(t), v(t)
is a convex combination of r(t) and v(t−1), which implies that v(t) is bounded as well. Lastly, for a
constant r(t), v(t) converges in finite time.

3. Main Results

3.1. Control Method

As mentioned in the Introduction, this paper investigates a method of control that combines ILC and RG
to enforce the constraints during the ILC learning process. Recall from Section 2.2 that the traditional RG
algorithm governs the reference signal to a closed-loop system to enforce the constraints (see Figure 1).
In this paper, this idea is preserved, but instead of governing the reference at each discrete time-step, the
entire reference signal is governed at each iteration. In other words, the RG is implemented on the iteration
(i.e., k) domain, as opposed to the time (i.e., t) domain.

To elaborate, a high-level block diagram of the proposed control strategy in shown in Figure 2, where
the “Plant” is described by system (1), and the signals r, xk, yk, and uk in the figure represent the lifted
versions of r(t), xk(t), yk(t), and uk(t) as defined below:

r=

r(1)...
r(T)

, xk=
xk(1)...
xk(T)

, yk=
yk(1)...
yk(T)

, uk=
 uk(0)

...
uk(T−1)

 (12)
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Figure 2: A block diagram of the proposed strategy. All signals are lifted signals as defined in (12). The plant is
given by yk=Hyuk, whereHy is given in (13). Note: z−1 denotes a one-step delay in the iteration (i.e., k) domain.

Here, r, yk, uk ∈RmT and xk ∈RnT , where m is the number of inputs/outputs of the plant, n is the
number of states, and T is the number of discrete time steps in each batch. Lifting system (1) with this
notation, yk and xk can be expressed as yk=Hyuk and xk=Hxuk, whereHy andHx are given by:

Hy=


CB 0 ... 0
CAB CB ... 0

...
CAT−1B CAT−2B ... CB

, Hx=


B 0 ... 0
AB B ... 0

...
AT−1B AT−2B ... B

 (13)

Now consider the ILC law in (2), with the reference r(t) replaced by the governed reference vk(t). After
lifting this update law and a handful of algebraic manipulations, a state-space model for the closed-loop
iteration-domain dynamics of the ILC algorithm can be formulated as:

uk+1=(I−γHy)uk+γvk

xk=Hxuk, yk=Hyuk
(14)

where vk∈RmT is the lifted version of vk(t). Next, suppose the goal is to enforce the constraint xk(t)∈X
on system (1). Using the relation xk=Hxuk, we recast this constraint in terms of the lifted system:

Hxuk∈X×X×···×X︸ ︷︷ ︸
T terms

(15)

where× denotes the Cartesian product. The iteration-domain RG proposed in this paper is designed based
on the lifted system (14) (treating uk as the state) with constraint (15). This requires the computation of
the MAS,O∞⊂R2Tm, for (14), (15). Note that, as explained in Section 2.2, computing the MAS requires
tightening the constraint on the steady-state value of the state. It can be shown that this is possible for
system (14) if the eigenvalues of I−γCB are inside the unit disk. In situations where this condition fails
because CB=0 (e.g., the relative degree of the system is greater than 1), the definition of the lifted output
yk in (12) can be slightly modified to overcome this issue (see Moore et al. (1993) for details).

Finally, the iteration-domain RG update law is as follows:

vk=vk−1+λ(r−vk−1)

where λ∈ [0,1] is obtained by solving the following linear program after every iteration:

maximize
λ∈[0,1]

λ

s.t.
(
uk, vk−1+λ(r−vk−1)

)
∈O∞

(16)
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Since the proposed RG algorithm is essentially a standard RG applied to the lifted system, it enjoys
the properties described in the following proposition.

Proposition 1 Suppose the initial condition of the system satisfies (u0,v0)∈O∞. Then, formulation (16)
is recursively feasible, guarantees constraint satisfaction for all t and k, and guarantees convergence of
vk and, hence, yk as k tends to infinity.

Note that the iteration-domainO∞ has a much higher dimension than a time-domainO∞, because
it has to account for the entire time-history of the signal in a given iteration. One may be led to believe
that this would cause large computation times, but due to the structure of the linear program used in the
RG, this computation is still tractable, as illustrated in Section 3.2.

3.2. Robust RG/ILC Formulation

As mentioned in Section 2.1, ILC has traditionally been a model-free control technique. The RG, on the
other hand, is a model-based technique that requires a faithful model of the plant in order to enforce the
constraints. To resolve this apparent discrepancy, we now present a modification of the strategy presented
in Section 3.1 to account for uncertainties.

To deal with modeling uncertainties using RG, a robust MAS, denoted byOrobust∞ , must be created.
To accomplish this, the methods outlined in Pluymers et al. (2005) and Gilbert and Kolmanovsky (1995a)
may be used. Specifically, Pluymers et al. (2005) presents a method for generating MAS robust to systems
with “polytopic uncertainties”, where the actual system matrices are unknown but lie inside the convex
hull of known matrices. Certain aspects of this method make it rather computationally expensive, and
considering the dimension of the matrices we will be dealing with, this method is intractable. Gilbert and
Kolmanovsky (1995a) presents an alternative, more computationally-tractable method for creating the
robust MAS, by assuming that the system is affected by set-bounded disturbances. The main idea is to
“shrink” the MAS to account for the worst case realization of the disturbances at any given time.

We take a simpler approach in our paper to create the robust MAS. Specifically, suppose a nominal
(possibly inaccurate) model of the system is given. We construct an O∞ for this nominal model using
the approach presented in Section 2.2. This leads to a characterization of a “non-robust”O∞ with the form
shown in (9). To robustify this set, we radially shrink it as follows:

Orobust∞ ={(x,v):Gxx+Gvv≤βg} (17)

where 0<β<1 is a parameter that adjusts the amount of shrinking that the MAS experiences. It must be
chosen small enough to capture the effects of modeling uncertainties and disturbances, but not too small so
as to avoid making the response overly conservative (we call this “over-governing”, as described below).

To illustrate the above ideas with a numerical example, consider system (1) with known B and C
matrices, and an uncertainAmatrix. Below are the nominalA,B, and C used to createO∞, as well as
the actualAmatrix,Aactual.

A=

[
0.0438 −0.4387
0.4387 0.7018

]
,Aactual=

[
0.0438 −0.4000
0.4387 0.8000

]
,B=

[
0.4387
0.2982

]
, C=

[
0.5 0.5

]
Using the above matrices, the robust MAS,Orobust∞ , is created as discussed above with an output constraint
of −1≤yk(t)≤1, and a β of 0.8. For this Orobust∞ , the Gx, Gv, and g matrices are 960×30, 960× 30,
and 960×1, respectively. The RG/ILC algorithm in Section 3.1 is then implemented with this robust
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Figure 3: Simulation results. Left: system output, yk(t), for various iterations. The dashed constant lines show
the imposed constraints. Right: The control input, uk(t), for each iteration respectively.

MAS and the ILC learning coefficient of γ=2. A numerical simulation is performed in MATLAB using a
laptop computer equipped with an Intel Core i7 CPU and 16 GB of RAM. The desired reference trajectory
for the simulation is assumed to be r(t)=1.3sin3(0.2t). Figure 3 shows the output and control input of
the simulated system. As can be seen in the figure, in each iteration, the constraints are satisfied for all
t. Also, after k=10 iterations, the output has converged (i.e., does not change significantly with further
iterations) and the learning is complete. Note that the RG linear program in (16) was implemented using
an explicit algorithm (similar to Liu et al. (2018)). The mean computation time of this algorithm was 4.5
ms for this example, which shows that the proposed scheme is computationally tractable.

Notice that the output response is overly conservative, as evidenced by the gap between the output
and the constraint, even at higher iterations. This implies that optimal tracking has not been achieved.
The reason for this is that the Orobust∞ is too conservative (i.e., the system has been made too robust to
modeling errors). We refer to this phenomenon as “over-governing”, which occurs when the RG predicts
that constraints will be violated when, in fact, the system is safe. We provide a solution to remedy this
issue in the next subsection.

3.3. Addressing the issue of over-governing

Recall that the robust MAS,Orobust∞ , was created by radially shrinking a MAS created using a nominal
model of the system. Thus, to overcome the issue of over-governing described above, we reverse this
operation and gradually enlarge (i.e., radially expand)Orobust∞ as follows: after everyN iterations, with
N being a tunable parameter that will be discussed later, the value of β in (17) is incremented towards 1.
To be more specific, recall that the constraint that we wish to impose on the system is given by xk(t)∈X,
where X,{x :Sx≤s}. Now, let us introduce the following two parameters: let esk be the smallest distance
of the state from the constraint in iteration k, that is esk=mintmini(si−Sixk(t)), where the subscript
i denotes the i-th row. As an illustration, the constraint, s, is visualized by the constant dashed lines in
Figure 3 and esk can be viewed as the smallest gap between the output and the constraint. Let erk be the
maximum value of the tracking error in iteration k, that is erk =maxtmaxi |ri(t)−yki(t)|, where i as
before denotes the i-th row. Using this notation, β is updated after everyN-th iteration as follows:

if esk>α then
if erk>ξ then

β←β+ρ
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Figure 4: Left: The output yk of the simulated system at various iterations. Right: The input uk of the simulates
system at various iterations.

where ξ and α are user-defined threshold values, and ρ is the user-defined incremental update ofOrobust∞ .
As mentioned previously, N is the number of iterations between updates of Orobust∞ . This is selected
sufficiently large to allow the transient of the learning response to die out before making an update to the
MAS. As can be seen in Figure 3, the transient of the learning response dies out around k=10, so it is
advised to chooseN>10. AnN smaller than this may lead to constraint violation, as the learning may
not be completed. AnN larger than this will ensure that learning is complete, but overly large values of
N will slow down the MAS updates.

To further explain the rationale behind the above algorithm, we note that over-governing is determined
by the distance of the output from the constraint (i.e., esk is large) in situations in which the output does
not track the reference (i.e., erk is large). In these situations, the update algorithm above will continually
update β to reduce the effect of over-governing. Note that the condition esk>α is required to ensure that
the updates of β do not lead to an over-relaxation of the set, and the condition erk>ξ is introduced to
ensure that the set is not relaxed when the tracking performance is already within an acceptable level.

Note that larger values of ρ could lead to over-relaxation of the robust MAS and, hence, constraint
violation. To prevent this, we recommend to select ρ as follows: ρ≤ α

‖s‖∞ .
Finally, we recommend to select the parameters α and ξ to be 1 to 5% of ‖s‖∞ (i.e. the value of the

constraint). Smaller values would lead to smaller updates and therefore slower convergence (since ρ is
recommended to be less than α

‖s‖∞ ). Larger values of α and ξ will lead to faster convergence, but may
lead to over-relaxation and therefore constraint violation. Thus, a trade-off must be made.

Figure 4 shows the over-governed system in Section 3.2 implemented with the MAS updating algorithm
from above. For this simulation,N is set to 15 iterations, γ is set to 2, and α=ρ=ξ=0.03. At iteration
15, the system is being over-governed, but eventually is within α of the constraint as the MAS is updated.

4. Conclusion

In this paper, a novel combination of ILC and RG was formed to pose a solution to constraint manage-
ment for ILC. Specifically, the standard RG formulation was modified to govern the iteration domain
dynamics of an ILC algorithm. The RG was endowed with robustness properties through a robust maximal
admissible set. As the algorithm learns, this set is updated to allow better tracking of the reference signal
inside constraint boundaries. Future work includes a data-driven approach to estimating the system being
controlled as the algorithm learns, and extending the work to other constraint management schemes such
as command governors.
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