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ABSTRACT

During language model decoding, it is known that using higher temperature sam-
pling gives more creative responses, while lower temperatures are more factually
accurate. However, such models are commonly applied to general instruction
following, which involves both creative and fact-seeking tasks, using a single
fixed temperature across all examples and tokens. In this work, we introduce
Adaptive Decoding, a layer added to the model to select the sampling temperature
dynamically at inference time, at either the token or example level, in order to
optimize performance. To learn its parameters we introduce Latent Preference
Optimization (LPO), a general approach to train discrete latent variables such as
choices of temperature. Our method outperforms all fixed decoding temperatures
across a range of tasks that require different temperatures, including UltraFeedback,
Creative Story Writing, and GSM8K.

1 INTRODUCTION

Large language models (LLMs) are powerful generalist models that can be used on a wide variety of
tasks, ranging from fine-grained reasoning to open-ended creative writing (OpenAI, 2023; Dubey
et al., 2024). Yet, early works showed that after training, the decoding method still has a large effect
on performance across these tasks, leading to the proposal of various temperature sampling techniques
(Holtzman et al., 2019; Welleck et al., 2019; Fan et al., 2018). In current LLMs, temperature (Ackley
et al., 1985) is a key post-training parameter for generation. Temperature is used to scale the next
token probabilities to be either more uniform or more sharp. Lower temperature leads to less creative,
more factual generations, and higher temperature leads to more creative and original generations.
Certain tasks, such as math problems or factual question answering, require the model to optimize
accuracy of a single correct solution, and benefit from a low temperature, or greedy decoding (Shi
et al., 2024). Others, like story generation, benefit from diverse and creative outputs, and a high
decoding temperature. Intuitively, a complex task involving a number of these requirements might
thus benefit from an adaptive temperature for different parts of its solution.

Existing LLM evaluation pipelines often rely on a fixed choice of temperature which is therefore sub-
optimal on some tasks, or else manual tuning is used to control the level of diversity in LLMs, which
can be time-consuming, task-specific, and limited in its ability to adapt to changing requirements
and prompts. To overcome this limitation, we introduce Adaptive Decoding, which consists of a new
learnable layer, as well as a novel method to train it. The new learnable neural layer, which we call the
ADAPTIVEDECODER, is added to the final layers of the transformer architecture, enabling the LLM
to dynamically adjust its output diversity based on context (i.e, the task at hand). Specifically, the
ADAPTIVEDECODER allows the model to select an ideal temperature for decoding the next token by
adding a new decoder head attached to the last hidden state. We can either apply this at the example
(sequence) level where a single temperature is predicted for all generated tokens, or the token level
where a new temperature is predicted for each generated token.

Training the ADAPTIVEDECODER layer requires discrete optimization over latent variables (i.e.,
the choice of temperature). In order to make this feasible, we introduce a general method for such
training, called Latent Preference Optimization (LPO). LPO involves sampling multiple responses
from the model, where the ADAPTIVEDECODER layer will select temperatures (latent variables) that
will affect the final token choices. Those responses are then evaluated by a reward model in order to
build chosen and rejected preference pair examples. Given these pairs, we use the LPO loss to learn
the optimal parameters of the ADAPTIVEDECODER layer for selecting temperatures during decoding.
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Figure 1: The ADAPTIVEDECODER. This learned module is added to the standard transformer
in order to select decoding hyperparameters. It consists of a new decoder head attached to the last
hidden state which assigns probabilities to different hyperparameter choices per token (right) or
sequence (left), and the highest probability choice is selected in each case. This allows the LLM to
select low temperatures for tokens requiring factual consistency, and higher temperatures for tasks
requiring creativity and diversity. For the token level adaptive decoder, a different temperature can be
selected for different parts of the response given a single instruction.

Our approach thus learns the hyperparameters of generating text across diverse tasks, allowing the
model to balance exploration and exploitation in a task-aware manner.

To validate our method, we experiment on a diverse set of tasks, ranging from math reasoning to
creative writing and general instruction following. We show that the decoder learns to select low
temperatures for reasoning tasks like math, higher temperatures for creative writing, and somewhere
in between for general prompts. We find that when the training data includes all types of tasks, the
model adaptively adjusts the temperature to the ideal value for each task by conditioning output token
temperature choices on the input context. This enables the ADAPTIVEDECODER to be incorporated
as part of the standard post-training pipeline to produce a model that can adjust its diversity adaptively
depending on the task at hand for general instruction following, and even use different decoding
parameters within a single response for the best outcome. Additionally, our proposed approach is
general, it could be potentially used to convert other hyperparameters (e.g. top-p, top-k) effectively
into model parameters. Furthermore, we show that LPO is also a general tool to train discrete latent
variables that can be used for other architecture choices that contain discrete decisions.

2 RELATED WORK

Fixed Decoding Strategies. Various methods have proposed different fixed decoding strategies that
often depend on one or more hyperparameters. Holtzman et al. (2019) introduced nucleus sampling,
Fan et al. (2018) introduced top-k sampling, and since then further sampling approaches have been
proposed (Nguyen et al., 2024). Shi et al. (2024) showed that different decoding strategies work
better for different tasks. Zhang et al. (2020) evaluates different decoding strategies including fixed
temperature, top-k, and top-p. They find that when diversity is the priority, all methods perform
similarly, but when quality is the priority, top-p is best. Using different temperatures for different tasks
has also cemented itself as common wisdom for prompting LLMs (Achiam et al., 2023). Commercial
LLM API guides even recommend using a low temperature for analytical tasks and a temperature
close to 1.0 for creative tasks 1 .

Adaptive Decoding. Prior work studied the adaptive change of decoding parameters under different
criteria such as based on the target task, approximate reward of the desired output, or the target
likelihood score. Zhu et al. (2024) developed a decoding strategy that can adapt based on the
probability distribution of the previous token while Zhu et al. (2023) uses a rule-based method to
predict a temperature value for each token. Basu et al. (2020) uses the desired perplexity value to
predict the optimal top-k hyper-parameter for each token. Finlayson et al. (2023) proposes basis-
aware sampling that finds the optimal support over the next token distribution by addressing the
softmax bottleneck issue. Unlike our approach, none of these methods learn to predict an adaptive
decoding strategy, but rather use various test time heuristics. Li et al. (2024) propose a method
to learn sample specific diversity values on dialogue tasks using an MSE loss, where the diversity

1
https://docs.anthropic.com/en/api/complete, https://ai.google.dev/gemini-api/docs/text-generation

2

https://docs.anthropic.com/en/api/complete
https://ai.google.dev/gemini-api/docs/text-generation


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Latent VariableLatent Variable

RM( Generated Response1 )         RM( Generated Response2 )

𝜏 𝜏

Generated Response1

LM Adaptive Decoder Module

AD

Generated Response2

LM Adaptive Decoder Module

AD

Prompt

 x1  x2  x3  x4  x5 

Prompt

 x1  x2  x3  x4  x5  y6  y7  y8 …  y6  y7  y8 …

≻

Figure 2: Latent Preference Optimization (LPO) Training Mechanism. We demonstrate
how preference pairs are constructed for training the LPO loss (we show a Sequence-Level
ADAPTIVEDECODER, but the procedure remains the same for Token-Level). Here we have N=2
generated response samples for a single prompt, and the Reward Model (RM) scores Response1
better than Response2. Therefore, we use τ = 0.6 as the chosen temperature, and τ = 0.2 as the
rejected temperature, and then apply the loss to prefer the chosen temperature over the rejected one
for the given context (prompt).

values are then mapped to temperatures using a mapping function. Zhang et al. (2024) dynamically
select a temperature as a function of the entropy where the parameters of the function are treated as
hyperparameters which they tune for each different task. Ad-hoc temperature prediction has been
commonly used for calibration, as explored by Kumar & Sarawagi (2019) and Xie et al. (2024).
Veličković et al. (2024) propose an adaptive temperature, where they vary the temperature for all
softmax functions in the network depending on the entropy in the input coefficients. Xie et al. (2024)
propose Adaptive Temperature Scaling to mitigate calibration errors, where they use a supervised loss
which adapts targets depending on the correctness of the original model. To the best of our knowledge,
we propose the first method to predict the temperature directly using preference optimization, allowing
the model to learn task dependent temperatures at both the sequence and token levels.

Preference Optimization. Reinforcement Learning from Human Feedback (RLHF) has emerged
as a major ingredient of LLM training (Ouyang et al., 2022). DPO (Rafailov et al., 2024) and other
preference optimization methods (Xu et al., 2023; Meng et al., 2024) have significantly simplified
the RLHF process. While many of these methods improve performance and generalization they can
also negatively affect diversity and calibration (Achiam et al., 2023; Kirk et al., 2023). In particular,
RLHF methods optimize the final reward which does not take diversity into account, so it has become
common practice to add a KL regularization term to maintain some of the model’s original diversity
(Ziegler et al., 2019; Rafailov et al., 2024). To the best of our knowledge, our method is the first to
use preference optimization for training latent variables instead of word tokens.

3 METHOD

The goal of our method is to make the language model itself choose an ideal temperature for
generating tokens depending on the current context. To achieve this, we add a small differentiable
module to an existing LLM that predicts a temperature value to be used for decoding word tokens,
which we call the ADAPTIVEDECODER. For training an ADAPTIVEDECODER module, we develop
a preference optimization method, LPO, that is designed for learning such hyperparameters. In the
following subsections we describe the ADAPTIVEDECODER module and LPO loss in more detail.

3.1 ADAPTIVEDECODER MODULE

Here we introduce the ADAPTIVEDECODER module, which is a small neural network that can be
attached on top of any existing LLM. It takes as an input latent representations of the last hidden layer
and outputs a probability distribution over possible temperature choices. Let M be a transformer core
(Vaswani, 2017) that maps a sequence of tokens {xt} to a latent representation, ht, at the last layer.
This latent representation is then usually converted to token probabilities using an un-embedding
matrix W followed by a softmax. Thus, a regular LLM generates the next token xt+1 as follows:

ht = M(x1, . . . xt), xt+1 ∼ SOFTMAX(Wht). (1)
A fixed temperature value, τ , can be used to scale the softmax distribution in the following way:

xt+1 ∼ SOFTMAX(Wht/τ), (2)

3
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where small temperature values (toward 0) make the distribution sharper, and high temperature values
(toward 1) will result in the original distribution.

Adaptive Decoding works by predicting the optimal τ value for a specific input {xt}. To use Adaptive
Decoding, we also feed the LLM’s hidden state ht to an ADAPTIVEDECODER module that maps it
to a categorical probability distribution over a set of pre-defined temperature values τ1, . . . , τK :

P (τk|ht) = ADAPTIVEDECODER(ht), where
∑
k

P (τk|ht) = 1. (3)

We can then straightforwardly make use of this distribution for generating a given output token, xt+1,
by selecting the τ with the highest probability, and then use that for decoding the next token:

τ = argmaxτkP (τk|ht), xt+1 ∼ SOFTMAX(Wht/τ). (4)

Alternatively, one can sample a temperature from the distribution and then sample a token with it:

τ ∼ P (τk|ht), xt+1 ∼ SOFTMAX(Wht/τ). (5)

This latter approach can also be written as a single sampling operation:

xt+1 ∼
∑
k

P (τk|ht)SOFTMAX(Wht/τk). (6)

While the last two operations are identical, the second version will allow us to develop a new loss
function for training as we will see in the next section.

Any neural network architecture can be used for the internals of the ADAPTIVEDECODER module,
but we use a multi-layer perceptron (MLP) with a softmax output for simplicity (details in Sec-
tion 4.1). Note that it is also straightforward to generalize the ADAPTIVEDECODER to other decoding
hyperparameters such as top-k by simply modifying Equation 2 to the corresponding operation. In
addition, M can be another neural model besides a transformer, such as a recurrent neural network.

3.2 TOKEN VS SEQUENCE LEVEL ADAPTIVEDECODER.

We propose two variants of the ADAPTIVEDECODER, as demonstrated in Figure 1. Let x =
{x1, . . . , xT } be the sequence of given input prompt tokens, and y = {yT+1, . . . , yT ′} be the gener-
ated response tokens. In the token level variant, ADAPTIVEDECODERtok (ADseq), a temperature is
predicted for each new token to be decoded. This is achieved by applying the ADAPTIVEDECODER
at every step of generation and using the selected temperature for sampling the following token:

τt ∼ ADAPTIVEDECODER(ht), yt+1 ∼ SOFTMAX(Wht/τt) for T ≤ t < T ′. (7)

Such fine-grained temperature adjustment allows the model to learn an individual temperature value
for each token.

In the sequence level variant ADAPTIVEDECODERseq (ADseq), a single temperature is predicted for
the entire response. Unlike the token level, the ADAPTIVEDECODER module is used only once per
input prompt, applied at the last token xT of the prompt to predict a temperature value τ to be used
for the entire response generation:

τ ∼ ADAPTIVEDECODER(hT ), yt+1 ∼ SOFTMAX(Wht/τ) for T ≤ t < T ′. (8)

Such a coarse-grained temperature adjustment may be sufficient for most applications where the task
requires either conciseness or creativity, but not both, and is still potentially much more flexible than
the classical approach of choosing a single fixed temperature for all input prompts.

3.3 LATENT PREFERENCE OPTIMIZATION

To learn the ADAPTIVEDECODER parameters, we employ a preference optimization training where
we generate multiple responses from the model and label some of them as chosen and others rejected.
The overall goal of the training is to make the likelihood of generating chosen responses higher than
the rejected ones, similar to the existing preference optimization methods such as DPO (Rafailov
et al., 2024). However, those existing methods are designed to train token probabilities, not latent
variables within the model. Thereby, we propose a generalization of DPO, which we call Latent

4
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Preference Optimization (LPO), that is a general approach to train discrete latent variables, such as
the choices of temperature2.

To use LPO to learn optimal temperatures, we first generate multiple responses {y1, . . . ,yN} for
each prompt x by sampling temperatures from the ADAPTIVEDECODER output, which then affect
how tokens are sampled. Let τn = {τnT+1, . . . , τ

n
T ′} be the temperatures used when generating

tokens in response yn = {ynT+1, . . . , y
n
T ′}. The responses are then scored, either using an external

reward model, or measuring the correctness of their answer, depending on the task. The highest and
lowest scoring responses become our chosen and rejected response pair (yc,yr). This process is
depicted in Figure 2. Regular DPO training would optimize the token probabilities of these response
pairs, but our goal is to learn the corresponding chosen and rejected temperature values (τ c, τ r) that
are used when sampling the response tokens. For this, there are multiple ways to adapt the DPO loss,
which we outline below.

Temperatures as tokens. The simplest formulation is to treat the temperature selection just like
another token. In this view, the model generates two tokens per step: a temperature token τt and a
word token yt. The temperature tokens have a different vocabulary, consisting of possible temperature
values, but that does not complicate training. Similar to how the previous word token choice affects
the next word token, the temperature token also affects the following word token probabilities. Since
the model is generating a single sequence of “tokens”, ŷn = (yn, τn), we can apply the usual DPO
loss to this joint token sequence:

LLPO = − log σ

[
β log

P (ŷc)

Pref(ŷc)
− β log

P (ŷr)

Pref(ŷr)

]
= − log σ

[
β log

P (yc, τ c)

Pref(yc, τ c)
− β log

P (yr, τ r)

Pref(yr, τ r)

]
,

where Pref are reference model probabilities. Since our reference model does not have an
ADAPTIVEDECODER module, we omit it for the temperature tokens3, and the loss therefore be-
comes:

LLPO = − log σ

[
β log

P (yc)

Pref(yc)
− β log

P (yr)

Pref(yr)
+ β logP (τ c)− β logP (τ r)

]
. (9)

The advantage of this loss is that it takes into account both token and temperature probabilities,
allowing for training both using a single loss. Here β is a hyperparameter of DPO that controls the
KL term.

Temperatures as tokens (separate). Like the previous formulation, we view the temperatures
as tokens, but treat the word token generation as an external mechanism and focus only on the
ADAPTIVEDECODER. In this view, the ADAPTIVEDECODER module generates a token τt, which is
a temperature value in this case, that is then fed to an external mechanism that generates the word
token yt. This framing makes things simpler because we have the ADAPTIVEDECODER generating
two sequences of temperature values (τ c, τ r) where one is preferred over the other. So we can
directly apply the DPO loss with only the temperature tokens τt:

LLPO = − log σ [β logP (τ c)− β logP (τ r)] . (10)

Again we omit the reference probabilities for the temperature tokens. This loss is simple and does
not take account of token probabilities, but one can also use a separate DPO loss for the word tokens.

Temperatures as latents. In this version, we utilize the fact that the chosen and rejected labels are
only conditioned on word tokens, and the temperature values that are used do not directly affect this
ranking. The real objective we want to optimize is the probability of sampling chosen and rejected
word sequences. Therefore, we treat the ADAPTIVEDECODER as an internal mechanism of the model
and the temperature values as latent variables. This way, the model only outputs token probabilities
like normal LLMs, but those probabilities are altered by the ADAPTIVEDECODER, as follows:

yt ∼ P ′(y) =
∑
τ

P (y|τ)P (τ).

2While temperature is a continuous value, we are focusing on discrete temperature options in this paper. This
also makes it easy to generalize our method to other discrete variables, such as top-k.

3This is the same as assuming the reference model has always uniform probabilities over possible temps.
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Figure 3: UltraMathStories Results. UltraMathStories is a superset of UltraFeedback, GSM8K,
and Stories. The Adaptive Decoding models are trained on all 3 subtasks simultaneously. Winrates
are shown as the average winrate across the test sets of the 3 subtasks in UltraMathStories. (left)
ADAPTIVEDECODERseq vs Fixed Temperature Winrates. (right) ADAPTIVEDECODERtok vs Fixed
Temperature Winrates. In both cases, Adaptive Decoding outperforms all fixed temperatures.

Table 1: ADAPTIVEDECODERseq Predicted Temperatures (τ ) on UltraFeedback. Examples of
UltraFeedback test prompts where the ADAPTIVEDECODERseq model predicted τ ∈ {0.0, 1.0}. Our
model predicts the top prompt requires a factual deterministic response (τ = 0.0), while the bottom
prompt requires a creative, stochastic response (τ = 1.0). More examples are shown in Table 13.

Prompt Predicted τ

Detailed Instructions: In this task, you are given a country name and you need to return the
capital city of the given country\n Problem:Guinea-Bissau\n Solution:

0.0

Write a compelling short story about a bitter and intense rivalry between two individuals,
where one must have an advantage in terms of their socioeconomic status or physical ability.
The story must also incorporate a surprising twist that leads to an unforeseen outcome.

1.0

Now we can apply the DPO loss to token probabilities where the temperature is marginalized out

LLPO = − log σ

[
β log

P ′(yc)

P ′
ref(y

c)
− β log

P ′(yr)

P ′
ref(y

r)

]
= − log σ

[
β
∑
t

log
P ′(yc

t )

P ′
ref(y

c
t )

− β
∑
t

log
P ′(yr

t )

P ′
ref(y

r
t )

]

= − log σ

[
β
∑
t

log

∑
τ P (yc

t |τ)P (τ)∑
τ Pref(yc

t |τ)Pref(τ)
− β

∑
t

log

∑
τ P (yr

t |τ)P (τ)∑
τ Pref(yr

t |τ)Pref(τ)

]
. (11)

Note that the actual temperatures used in generation are irrelevant here, thus reducing the noise
caused by sampling temperatures during training. The reference temperature probabilities Pref(τ) are
uniform if that is the initialization.

4 EXPERIMENTS

4.1 SETUP

For all experiments, we train an ADAPTIVEDECODER on top of a Llama 3.0-8B-Instruct model
(Dubey et al., 2024). The ADAPTIVEDECODER module is a 3-layer MLP with hidden dimension
2048, and SiLU (Hendrycks & Gimpel, 2016) activations. We freeze the weights of the Llama
model to better understand the effect of sampling temperature in isolation from finetuning the whole
model. We use NVIDIA A100s for training and evaluation. For LPO training, by default we use
the loss in Equation 10 for its simplicity, unless otherwise specified. During training, responses are
generated using Equation 5 where temperatures are sampled, but we use greedy temperature selection
at inference time using Equation 4, unless otherwise specified.

4.2 REWARD MODEL

We use an off-the-shelf reward model to score and rank generations for questions without ground-truth
answers. We use the Armo Reward Model (ArmoRM) (Wang et al., 2024), a state-of-the-art model
trained on diverse human preference data. ArmoRM outputs a scalar score, which we use during both

6
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training and evaluation. At the time of our experiments, it ranked at the top of the RewardBench
leaderboard (Lambert et al., 2024), with judgments closely aligned with human evaluations.

4.3 ULTRAMATHSTORIES

To test if, in realistic general instruction following settings, ADAPTIVEDECODER can learn to select
different temperatures depending on the given prompt query. We thus deliberately consider a dataset
that is a mixture of the following subtasks that require both formulaic, as well as creative responses:

• Math (GSM8K). When solving math reasoning problems, LLMs require greedy, or low-
temperature sampling to produce accurate and reliable results (Kojima et al., 2022). The model
should not deviate from high-likelihood tokens in this setting since factuality is crucial for finding
the correct answer. GSM8K (Cobbe et al., 2021) is a common math reasoning dataset used to
evaluate such capabilities. Since we have the ground truth answers, we use them to score responses
to select training pairs, and for final test evaluation. We explain training details in Section A.2.

• Creative Writing (Stories). In contrast, when solving open-ended creative writing problems,
LLMs benefit from high temperature sampling to write more interesting and original responses.
We introduce a creative story writing task, which we call “Stories”, to evaluate the creativity and
coherence of a model on open ended prompts. We prompt the model to write a short story of a
given title, where we use a language model to create the initial task titles. We use ArmoRM for
scoring responses and use the highest and lowest scoring generations as preference pairs. See
Section A.5 for more details on creating the dataset, and constructing the preference pairs.

• General Instructions (UltraFeedback). Finally, many real-world prompts lie somewhere in
between structured reasoning and open-ended creativity or contain a mixture of both. We therefore
consider the UltraFeedback (Cui et al., 2023) dataset, which covers a wide variety of real user
prompts, ranging from rigid reasoning tasks to open-ended writing. We use the same ArmoRM for
constructing and evaluating training preference pairs.

We combine 2,000 training samples from UltraFeedback, 1,000 training samples from GSM8K, and
1,000 training samples from the Stories dataset, and call it the “UltraMathStories” dataset. We train a
single model on the preference pairs from this dataset to test if Adaptive Decoding can adapt to each
subtask. We evaluate on each subtask’s test set individually and take the average winrate across the 3
test sets. Further details of each subtask, including how the LPO pairs are created, are described in
Section A.4. We experiment with both a sequence level and token level ADAPTIVEDECODER, and
provide each with 6 temperature options: τ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

ADAPTIVEDECODER can learn to use the ideal temperature adapted for each subtask. In
Figure 3, we directly compare our method against fixed temperature decoding. The winrate in
each subtask is computed (shown in Section B.1 and Section B.2) and their average is plotted. We
observe the ADAPTIVEDECODER outperforming all of the fixed temperatures, which indicates that
the decoder has learned to choose an ideal decoding temperature suited to each subtask. In fact,
Figure 5 demonstrates this clearly with the predicted temperature distributions for each subtask.
As expected, the ADAPTIVEDECODER predicts low temperature for math prompts (GSM8K), high
temperature for creative writing prompts (Stories), and a mix of temperatures which are mostly in
between for general instruction prompts (UltraFeedback). The latter has the biggest temperature
variance, which makes sense given that it has more diverse prompts.

Sequence-level vs. Token-level ADAPTIVEDECODER. In this task, ADAPTIVEDECODERseq

showed a stronger performance compared to ADAPTIVEDECODERtok as shown in Figure 3, even
though both outperform fixed temperatures. There are several reasons why this can be the case. First,
the subtasks in UltraMathStories themselves might not require fine-grained temperature adjustment.
Secondly, learning a single temperature value per sample is much easier, thus likely to require fewer
training samples (we only train on 4000 samples in total). However, we will explore the advantage of
ADAPTIVEDECODERtok in subsequent sections.

4.4 CONSTRAINED CREATIVE WRITING (CONSTRAINEDSTORIES)

When given rigid instructions such as solving a math problem, the model needs to be greedy, but when
given open-ended instructions such as writing a creative story, the model needs to be non-greedy.
However, certain instructions can contain both rigid and open-ended instructions. We consider the
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Table 2: ADAPTIVEDECODERtok accuracy for majority voting (N = 8 samples) on the GSM8K
dataset. ADAPTIVEDECODERtok learns to assign appropriate temperatures at different parts of
the generation which allows for more accurate sampled reasoning chains which results in a higher
accuracy than using a single tuned temperature for the dataset. We also include the accuracy for
N = 1 response, which underperforms majority voting.

Decoding Method Accuracy ↑
(N=8)

Accuracy ↑
(N=1)

Best Fixed Temperature 87.46 81.59
ADAPTIVEDECODERtok 87.70 80.47
ADAPTIVEDECODERtok (with τ 1.2) 87.95 80.51

problem of constrained creative writing, which requires the model to be both greedy and non-greedy
at different tokens of a single response.

We construct a dataset based on the Stories dataset from the previous subsection, and call it “Con-
strainedStories”. Similar to the Stories task, we prompt the model to write a creative story of a given
title, but with an extra instruction saying that each sentence must start with a specific substring, “Ab”
in this case. Intuitively, one would expect the ideal model should be greedy when generating the
start of each sentence to satisfy the constraint, and non-greedy everywhere else for better creativity.
The LPO preference pairs are created using both ArmoRM scores and constraint satisfaction rates.
During evaluation, a higher constraint satisfaction wins, but ties are broken by the ArmoRM score.
More details can be found in Section A.6.
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Figure 4: Constrained Creative Writ-
ing (ConstrainedStories) Results. Here
we show a quantitative analysis of the
ADAPTIVEDECODER on the constrained cre-
ative writing task, ConstrainedStories –
ADAPTIVEDECODERtok winrates vs fixed
temperatures. The high fixed temperatures
perform worse because they fail to fol-
low the constraint. Fixed greedy decoding
works well at following the constraint, but
ADAPTIVEDECODERtok outperforms it by us-
ing higher temperatures when possible.

ADAPTIVEDECODERtok can learn to dynam-
ically adjust the temperature at the token-
level. Figure 4 shows the winrates of
ADAPTIVEDECODERtok compared to fixed tem-
perature decoding. The ADAPTIVEDECODERtok

always outperforms fixed temperature decoding.
When a high fixed temperature is used on all to-
kens, it fails to follow the constraint, resulting in a
low winrate. The greedy decoding performs well as
it satisfies the constraint more often, but the story
quality is lowered by the lack of diversity. Table 11
shows the individual winrates for constraint satis-
faction and Armo score. As shown in Figure 7, the
ADAPTIVEDECODERtok manages to have the best
of both worlds. The average temperature for the first
token of each sentence is τ = 0.21, and the average
temperature for all other tokens is τ = 0.55. This
shows that the model is mostly greedy on the con-
straint tokens (in order to generate an “Ab” word at
the start of each sentence), and mostly non-greedy
on all other tokens (in order to generate a creative
and coherent story).Figure 6 shows an example of
the ADAPTIVEDECODERtok predicted temperatures
for a test sample prompt in this task.

4.5 MAJORITY VOTING

Wang et al. (2022) propose self-consistency, a method to improve the reliability of answers generated
by language models by generating N multiple independent reasoning chains and selecting the answer
that appears most frequently. We explore whether the ADAPTIVEDECODER can learn to ascertain
which parts of the reasoning chain should be sampled more stochastically and which should be
decoded greedily. We explain further details about this experiment in Section A.3.

Generally, we find that increasing the fixed temperature above 1.0 can cause the LLM’s genera-
tion to start to degrade and this can also hurt the performance of majority voting. However, the
ADAPTIVEDECODERtok learns to assign temperatures appropriately and we observe that the higher
temperature options help the model’s performance, as shown in Table 2. This demonstrates that the
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Table 3: GSM8K accuracy training a sequence-level ADAPTIVEDECODER (ADseq) with different
loss functions. We compare two different LLPO loss functions, outlined in Section 3.3, as well as
negative log likelihood, LNLL, trained on the chosen responses from preference pairs.

Fixed Temperature ADAPTIVEDECODERseq

τ = 0 τ = 0.6 τ = 1.0
LLPO

(Equation 10)
LLPO

(Equation 11) LNLL

81.59 79.15 78.32 81.59 81.59 78.92
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Figure 5: ADAPTIVEDECODERseq predicted temperature distributions. Distribution of predicted
temperatures on the test set of each subtask in UltraMathStories. As expected, the model predicts low
temperatures for GSM8K, high temperatures for Stories, and in between for UltraFeedback.

ADAPTIVEDECODERtok trained by LPO can result in a model that can perform well on both single
responses (see Table 3 for single response accuracy) and majority voting setups at the same time.

4.6 ABLATIONS

LPO Loss Type As described in Section 3.3, there are several variations of the LPO loss that
we can use. Here we compare two different LPO variants on the GSM8K math reasoning task:
temperatures as tokens (separate) (Equation 10) and temperatures as latents (Equation 11). Table 3
shows the winrates of the ADAPTIVEDECODERseq model trained with the two different losses on
the GSM8K math reasoning task. We see that both losses work well and match the greedy decoding
(optimal) baseline. We also compare to a negative log-likelihood loss (LNLL), which is trained on
only the chosen responses. This performs worse than both LPO losses since it tends to predict the
most frequently chosen temperature, which is not necessarily the best temperature, as demonstrated
in the training sample distribution plots in Figure 8.

ADAPTIVEDECODER Temperature Selection The objective of the ADAPTIVEDECODER is to
predict the best temperature that is then used to scale the token probabilities for sampling a token.
However, the LPO training learns a distribution of temperatures, not just a single value. Therefore, at
inference time we can either greedily select the top temperature as in Equation 4, or sample from the
temperature distribution following Equation 5, as we do for sampling from the token distribution.
We compare these two different ways of selecting temperatures. Table 12 shows the winrates on
UltraFeedback of the ADAPTIVEDECODERseq model trained on UltraMathStories (Section 4.3).
Both methods outperform all fixed decoding temperatures, and we see a marginal difference between
the two sampling methods.

5 CONCLUSION

As large language models continue to advance, users face important hyperparameter decisions,
especially sampling temperature, which can balance exploration (generating creative and novel
text) vs exploitation (generating conventional and factual text). In this paper, we introduce the
ADAPTIVEDECODER, a neural module trained using our proposed Latent Preference Optimization
(LPO) method, to dynamically predict decoding temperatures at inference time. Our experiments
show that this adaptive approach consistently outperforms fixed temperatures, eliminating the need for
manual tuning per task. In this work, we only experiment with adapting to the decoding temperature,
however, Adaptive Decoding is general and can extend beyond temperature to other decoding
hyperparameters such as top-p or top-k. By treating these hyperparameters as learnable parameters,
our approach simplifies tuning and enables their optimization directly from the data.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R. Varshney.
Mirostat: A neural text decoding algorithm that directly controls perplexity, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish Sabharwal.
Closing the curious case of neural text degeneration, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Aviral Kumar and Sunita Sarawagi. Calibration of encoder decoder models for neural machine
translation. arXiv preprint arXiv:1903.00802, 2019.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Yiwei Li, Fei Mi, Yitong Li, Yasheng Wang, Bin Sun, Shaoxiong Feng, and Kan Li. Dynamic stochas-
tic decoding strategy for open-domain dialogue generation. arXiv preprint arXiv:2406.07850,
2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Minh Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. arXiv preprint
arXiv:2407.01082, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
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A TASK DETAILS

A.1 REDUCING N-GRAM REPETITIONS

We start with a simple first experiment where we know temperature choice matters. It is understood
that LLMs are prone to erroneous repetitions, particularly when greedy decoding (τ=0) is used
(Holtzman et al., 2019). We therefore sought to validate whether the ADAPTIVEDECODER can learn
to pick higher temperatures for specific tokens to avoid repeats. We use an ADAPTIVEDECODERtok

and provide it with 5 temperature options: τ ∈ {0.0, 0.1, 0.2, 0.4, 0.6}. We feed text from Wikitext-
2 (Merity et al., 2016) to the model and ask it to complete it. We use 3-gram-repeats to rank
the responses and create preference training pairs (see Section A.1 for details). We find that the
ADAPTIVEDECODERtok effectively learns to reduce repeats by 42% compared to greedy decoding on
the Wikitext-2 test set (Table 4). We also note that in around 94% of cases ADAPTIVEDECODERtok

learns to pick a non-greedy temperature. This serves as a proof of concept that LPO can successfully
optimize the temperature values in the right direction at the token level.

We use the Wikitext-2 benchmark. We use a 50 tokens prefix as the prompt, allowing the LLM to
continue generating. After generating N = 10 completions per prompt, we rank these completions
by 3-gram-repeats. We then constructed LPO preference pairs where the sequences with the lowest
and highest 3-gram-repeats are selected as the ‘chosen’ and ‘rejected’ sequences respectively. We
then use LPO to train the ADAPTIVEDECODERtok model.

Table 4: Reducing Repeats using the ADAPTIVEDECODER. We feed text from Wikitext-2 to the
model and ask it to complete it. When completing a text, ADAPTIVEDECODERtok learns to avoid
greedy decoding in order to reduce repeats. In 94% of samples, ADAPTIVEDECODERtok learns to
pick a non-greedy temperature.

Method 3-gram-repeats ↓ % of non-greedy
Greedy Decoding 0.36% 0%
ADAPTIVEDECODERtok 0.22% 94%

A.2 MATH (GSM8K)

For this task, we use the GSM8K math reasoning dataset (Cobbe et al., 2021). We use chain-of-
thought prompting (Wei et al., 2022), where the model is instructed to explain its reasoning before
writing a final answer. We train on a random 1,000 sample subset of the full 7,473 samples. We
evaluate on the full 1,319 test samples.

The LPO preference pairs for this dataset are constructed by generating N = 16 response samples
per prompt, where each generation samples a temperature from the original ADAPTIVEDECODER
distribution (roughly uniform), and then selecting a chosen and rejected sample based on the oracle
GSM8K training labels.

We evaluate the performance of ADAPTIVEDECODERseq compared to 6 different fixed temperature
decodings: τ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We measure the winrate of each test sample using the
ground truth labels from the GSM8K test set. The winrate is computed by comparing the correctness
of each method’s response. If one method gets it correct and the other does not, the correct method
gets awarded 1 point. If both methods generated a correct or incorrect response, then each method
gets 0.5 points.

A.3 MAJORITY VOTING

We first train a ADAPTIVEDECODERtok model on GSM8K to optimize the single response accuracy.
We do this by sampling N = 8 responses and creating preference pairs using the ground-truth
answers provided and apply LPO (Equation 10). Then we evaluate this model in a majority voting
setting and compare it to the best fixed temperature decoding (tuned on the train set). We experiment
with two categories of possible temperatures: {0.0, 0.4, 0.8, 1.0} and {0.0, 0.4, 0.8, 1.0, 1.2}. To find
the best-fixed temperature, we use line search. We find τ = 0.8 works best for N = 8 while τ = 0.0
works best for N = 1 sample.
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A.4 GENERAL INSTRUCTION FOLLOWING (ULTRAFEEDBACK)

The full UltraFeedback dataset contains 64k samples. We train on a random subset of 2,000 samples,
and test on another random subset of 1,000 samples.

The training preference pairs for this dataset are constructed by generating N = 16 samples per
prompt, where each generation samples a temperature from the original ADAPTIVEDECODER distri-
bution (roughly uniform), and selecting a chosen and rejected sample using the best and worst Armo
reward model (ArmoRM) (Wang et al., 2024) scores, respectively.

We measure the winrate of ADAPTIVEDECODERseq generations compared to each the 6 fixed
temperature (τ={0.0, 0.2, 0.4, 0.6, 0.8, 1.0}) generations using ArmoRM scores.

A.5 CREATIVE WRITING (STORIES)

For this task, we consider a simple creative writing task where the model is prompted to write a short
story of a given title. Each prompt in this dataset has the following structure: “Write a short 200 word
story with the following title.\n\nTitle:[TITLE]”. We call this the “Stories” task. Each of the 1,000
training and test titles were generated with Llama3.0-70B.

We use the same method as UltraFeedback for constructing training preference pairs and evaluating.

A.6 CONSTRAINED CREATIVE WRITING (CONSTRAINEDSTORIES)

Each sample has the following structure: “Write a creative and coherent story with the following title.
You must begin each sentence with a word that starts with “Ab”.\n\nTitle: [TITLE]”.

The preference pairs are generated as follows. For each prompt, we first generate N = 16 response
samples. To select the chosen response, we consider the top 4 ArmoRM scored responses, and then
take the one of those that satisfy the constraint the best (has the highest percentage of sentences that
start with “Ab”). Similarly, for the rejected response, we consider the bottom 4 ArmoRM scored
responses and take the one of those that least satisfies the constraint.

Winrates are computed in the following way. If a response satisfies the constraint better (i.e., a higher
percentage of “Ab” start sentences), then it wins. If there is a tie and both responses have the same
constraint satisfaction rate, then it is decided by whichever response has a higher ArmoRM score,
where the Armo reward model is run using the prompt without the constraint (i.e. “Write a creative
and coherent story with the following title.\n\nTitle: [TITLE]”).

B WINRATE VALUES

B.1 ULTRAMATHSTORIES ADAPTIVEDECODERseq WINRATE VALUES

Tables 5, 6 and, 7 show ADAPTIVEDECODERseq winrate values on each of the 3 UltraMathStories
subtasks.

Table 5: ADAPTIVEDECODERseq vs Fixed Temperatures Winrates on the UltraFeedback Task.

Fixed Temp ADAPTIVEDECODERseq

Winrate
Fixed Temp

Winrate

τ = 0.0 53.10 46.90
τ = 0.2 53.35 46.65
τ = 0.4 50.80 49.20
τ = 0.6 52.15 47.85
τ = 0.8 52.78 47.22
τ = 1.0 54.89 45.11
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Table 6: ADAPTIVEDECODERseq vs Fixed Temperatures Winrates on the Stories Task.

Fixed Temp ADAPTIVEDECODERseq

Winrate
Fixed Temp

Winrate

τ = 0.0 58.75 41.25
τ = 0.2 57.25 42.75
τ = 0.4 57.05 42.95
τ = 0.6 56.65 43.35
τ = 0.8 54.55 45.45
τ = 1.0 52.10 47.90

Table 7: ADAPTIVEDECODERseq vs Fixed Temperatures Winrates on the GSM8K Task.

Fixed Temp ADAPTIVEDECODERseq

Winrate
Fixed Temp

Winrate

τ = 0.0 50.68 49.32
τ = 0.2 51.10 48.90
τ = 0.4 51.14 48.86
τ = 0.6 51.40 48.60
τ = 0.8 51.42 48.58
τ = 1.0 51.82 48.18

B.2 ULTRAMATHSTORIES ADAPTIVEDECODERtok WINRATE VALUES

Tables 8, 9 and, 10 show ADAPTIVEDECODERseq winrate values on each of the 3 UltraMathStories
subtasks.

Table 8: ADAPTIVEDECODERtok vs Fixed Temperatures Winrates on the UltraFeedback Task.

Fixed Temp ADAPTIVEDECODERtok

Winrate
Fixed Temp

Winrate

τ = 0.0 49.60 50.40
τ = 0.2 50.70 49.30
τ = 0.4 48.75 51.25
τ = 0.6 49.60 50.40
τ = 0.8 49.25 50.75
τ = 1.0 52.75 47.25

Table 9: ADAPTIVEDECODERtok vs Fixed Temperatures Winrates on the Stories Task.

Fixed Temp ADAPTIVEDECODERtok

Winrate
Fixed Temp

Winrate

τ = 0.0 54.40 45.60
τ = 0.2 53.40 46.60
τ = 0.4 54.20 45.80
τ = 0.6 52.30 47.70
τ = 0.8 51.10 48.90
τ = 1.0 47.25 52.75
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Color Key: 𝜏=0.0, 𝜏=0.2, 𝜏=0.4, 𝜏=0.6, 𝜏=0.8, 𝜏=1.0

Figure 6: ADAPTIVEDECODERtok predicted temperatures for Constrained Creative Story
Writing. We demonstrate an example of ADAPTIVEDECODERtok predicted temperatures (τ ) on the
constrained creative story writing task for the prompt “Write a creative and coherent story with the
following title. You must begin each sentence with a word that starts with “Ab”.\n\nTitle: The Village
of the Blindfolded”. We can see that the model is more greedy (τ close to 0.0) when generating the
constraint tokens (All sentences must begin with words that start with “Ab”), and less greedy (τ close
to 1.0) on all other tokens.
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Figure 7: Constrained Creative Writing (ConstrainedStories) Results. Here we show a quantita-
tive analysis of the ADAPTIVEDECODER on the constrained creative writing task, ConstrainedStories.
Mean temperature predicted by the ADAPTIVEDECODERtok for the first 50 tokens of each sentence.
This plot confirms our hypothesis that the first token of each sentence should be low temperature
in order to follow the constraint, and all other tokens should be high temperature in order to write
a good story. The average temperature for the first token is τ = 0.21, and the average temperature
for all other tokens is τ = 0.55, showing a more greedy decoding for the constraint, and less greedy
everywhere else.
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Table 10: ADAPTIVEDECODERtok vs Fixed Temperatures Winrates on the GSM8K Task.

Fixed Temp ADAPTIVEDECODERtok

Winrate
Fixed Temp

Winrate

τ = 0.0 49.66 50.34
τ = 0.2 50.08 49.92
τ = 0.4 50.11 49.89
τ = 0.6 50.38 49.62
τ = 0.8 50.49 49.51
τ = 1.0 51.55 48.45

Table 11: ADAPTIVEDECODERtok Constrained Creative Writing Individual Winrates. Here
we show the individual winrates of the ADAPTIVEDECODERtok for both constraint following and
ArmoRM score. The ADAPTIVEDECODERtok learns to follow the constraint better than all fixed
temperatures, but as we compare to higher fixed temperatures, the story winrate goes down because it
follows the constraint better.

Fixed Temp ADAPTIVEDECODERtok

Constraint Winrate
ADAPTIVEDECODERtok

ArmoRM Winrate
ADAPTIVEDECODERtok

Avg Winrate

τ = 0.0 50.95 52.55 51.75
τ = 0.2 53.70 49.50 51.60
τ = 0.4 58.05 48.25 53.15
τ = 0.6 68.05 41.05 54.55
τ = 0.8 77.85 36.45 57.15
τ = 1.0 87.80 31.50 59.65

C STATEMENTS
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C.3 LLM USAGE

We did not use LLMs for ideation or writing.

16

https://iclr.cc/public/CodeOfEthics


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 12: ADAPTIVEDECODER Temperature Selection Methods on UltraFeedback. The
ADAPTIVEDECODER outputs a distribution over temperature values τ , so we can either sample τ from
that distribution or greedily select the highest probability τ . Here we show winrates against the fixed
temperature decoding in the left column, using the ADAPTIVEDECODERseq model trained on Ultra-
MathStories (Section 4.3). All the winrates are above 50%, which means the ADAPTIVEDECODER
always outperforms the fixed temperature. Also, we do not observe a significant difference between
the two temperature selection methods.

Temperature Selection
Greedy (Equation 4) Sample (Equation 5)

Fixed
Temp.

τ = 0.0 53.10 52.80
τ = 0.2 53.35 53.15
τ = 0.4 50.80 51.75
τ = 0.6 52.15 52.50
τ = 0.8 52.78 53.65
τ = 1.0 54.89 53.95
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Figure 8: ADAPTIVEDECODERseq Training Preference Distributions. Here we show the percent-
age of samples in the training set that are chosen or rejected for each of the 6 different temperateure
(τ ) values. The LPO loss uses both chosen and rejected responses, and the ratio of chosen to rejected
is an important factor for learning the right temperature. A vanilla negative log-likelihood loss only
uses the chosen responses, which leads to suboptimal temperature predictions since high-temperature
values are the most chosen regardless of the task.
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Table 13: Examples of ADAPTIVEDECODERseq Predicted Temperatures (τ ) on UltraFeedback.
Here we show examples of UltraFeedback test prompts where the ADAPTIVEDECODERseq model
predicted τ ∈ {0.0, 1.0}. We can see that the τ = 0.0 prompts require factual, deterministic
responses, and the τ = 1.0 prompts require creative, stochastic responses. This shows generalization
outside of the GSM8K and Stories subtasks to specific prompts within UltraFeedback.

Predicted τ = 0.0

In this task, given a sentence in the English language, your task is to convert it into the Thai
language.
Problem:The secondary principals’ association head, Graham Young, said: T̈he NCEA system
put pressure on schools to accumulate credits - and the easiest way to do that was to encourage
students into internally assessed unit standards.
Solution:
You are given a math word problem and you are supposed to apply multiple mathematical operators
like addition, subtraction, multiplication, or division on the numbers embedded in the text to
answer the following question and then only report the final numerical answer.

Input: Consider Input: debby makes 67 pancakes . she adds blueberries to 20 of them and bananas
to 24 of them . the rest are plain . how many plain pancakes are there ?
You have been tasked with arranging a group of travelers, each with different preferences and
needs, onto various modes of transportation. There are four modes of transportation available:
A, B, C, and D. Each mode has its own unique features and limitations. The travelers and their
preferences are as follows:
1. Alice: Is afraid of flying and prefers to take mode C or D
2. Bob: Can only travel by mode A due to motion sickness
3. Charlie: Wants to take mode B because it has the shortest travel time
4. Dave: Needs to take mode D because he has a lot of luggage
5. Ellie: Wants to take mode A because she enjoys the scenic route
Your task is to assign each traveler to the mode of transportation that best suits their needs and
preferences. Keep in mind that each mode of transportation can only accommodate a certain
number of people, and some modes may have already reached their capacity. Can you solve this
puzzle and successfully group the travelers onto their preferred modes of transportation?”

Predicted τ = 1.0

Write a 70,000 word fantasy novel about a hidden world of magic and mythical creatures. The
main character must be a human who discovers this world and becomes involved in a conflict
between the magical creatures. The novel should have a fast-paced plot with plenty of action and
suspense. The style should be descriptive and immersive, with detailed descriptions of the magical
world and its inhabitants. The novel should also explore themes such as the nature of power and
the importance of loyalty and friendship.
Write me a 1000 word ghost story in a campfire setting
Write a story about Ego Must, a prominent innovator with technology who leverages his vast
wealth to communicate his views. However, despite being exceptionally smart he seems to not
understand the basics when it comes to the ’us and them’ problem that is at the root of a lot of
human conflict.
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