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Abstract

Human-like large language models (LLMs), especially the most powerful and popular ones
in OpenAI’s GPT family, have proven to be very helpful for many natural language pro-
cessing (NLP) related tasks. Therefore, various attempts have been made to apply LLMs to
information extraction (IE), which is a fundamental NLP task that involves extracting infor-
mation from unstructured plain text. To demonstrate the latest representative progress in
LLMs’ information extraction ability, we assess the information extraction ability of GPT-4
(the latest version of GPT at the time of writing this paper) from four perspectives: Per-
formance, Evaluation Criteria, Robustness, and Error Types. Our results suggest a visible
performance gap between GPT-4 and state-of-the-art (SOTA) IE methods. To alleviate
this problem, considering the LLMs’ human-like characteristics, we propose and analyze
the effects of a series of simple prompt-based methods, which can be generalized to other
LLMs and NLP tasks. Rich experiments show our methods’ effectiveness and some of their
remaining issues in improving GPT-4’s information extraction ability.

1 Introduction

The rapidly evolving field of natural language processing (NLP) witnesses the rise of large language models
(LLMs), such as GPT-3(Brown et al., 2020), LaMDA(Thoppilan et al., 2022), PaLM(Chowdhery et al.,
2023), etc., which have revolutionized various downstream tasks with in-context learning (ICL) (Brown
et al., 2020) and chain-of-thought (COT) prompting (Wei et al., 2022c). Excitingly, just by providing
appropriate instructions (Sanh et al., 2022; Ouyang et al., 2022) or chain-of-thought prompts (Wei et al.,
2022c), LLMs can achieve amazing performance on the zero-shot and few-shot scenarios of unseen tasks,
even without updating parameters.

Currently, one of the most popular and powerful LLM series is OpenAI’s GPT series, which is best known
for its two latest members, GPT-3.5 and GPT-4 (OpenAI, 2023a), by which ChatGPT is powered (OpenAI,
2023b). These two models have exhibited powerful dialogue ability and stimulated the research boom for
investigating the capabilities of LLMs. For example, Jiao et al. (2023) evaluate the machine translation
capability of ChatGPT, and Bang et al. (2023) assess the reasoning capability of ChatGPT. As a fundamental
natural language understanding task, Information extraction (IE) aims to identify structured information
of interest from unstructured plain text. Its results directly affect the subsequent downstream tasks, such
as question-answering (Fei et al., 2022; Cao et al., 2022) and knowledge graph construction (Wang et al.,
2022a). Besides, the LLMs’ ability to recognize target information can directly reflect their performance in
understanding task instructions to generate responses. This paper, therefore, aims to conduct an empirical
study on information extraction using LLMs and to demonstrate the latest representative progress in LLMs’
capabilities in information extraction. As the latest GPT version when writing this paper, GPT-4 has shown
powerful capabilities beyond previous LLMs, including GPT-3.5. Hence, it is reasonable to select GPT-4 as
a representative case of LLMs for research.

In this paper, we evaluate GPT-4’s capabilities on IE tasks in terms of four perspectives, including Per-
formance, Evaluation Criteria, Robustness, and Error Types. In response to the performance gaps

1



Under review as submission to TMLR

revealed in the evaluation, we also proposed three prompt-based performance Improvement Methods
considering the human-like characteristics of GPT-4.

Performance We evaluate the performance of GPT-4 on 16 datasets with 14 IE sub-tasks under 3 settings:
zero-shot prompts, few-shot ICL prompts, and few-shot COT prompts. We also evaluate the performance
of GPT-3.5 on these settings for more comparison, which reveals the performance improvement of the GPT
series on IE tasks1. The results indicate the following conclusions:

• There is a significant performance gap between the two GPT models and SOTA methods. The
harder the task, the larger the gap. However, the two GPT models can equal or exceed SOTA
methods on a few simple tasks.

• The performance of GPT-4 is better than that of GPT-3.5 in most tasks.

• Using few-shot ICL prompts generally leads to significant improvements, but still visibly lags behind
SOTA results, while the chain-of-thought prompting cannot guarantee further gains compared to
few-shot ICL prompts.

Evaluation Criteria Through the manual checking, we find that GPT-3.5 and GPT-4 tend to identify
spans that contain or are contained by the annotated ones, i.e., the recognized spans usually contain qualifiers
such as crowns, quantifiers, adjectives, time, place, etc. Thus, the previous span hard-matching strategy is
not suitable for the evaluation of LLMs like GPTs that generate human-like responses. We propose a soft-
matching strategy to solve this problem and display evaluation results for LLMs more accurately.

Robustness We conduct comparisons and analysis on three dimensions: Invalid Output, Frequency of
Target Types, and The Order of Entities. We find that:

• GPT-4 rarely outputs invalid responses in most cases.

• The frequency of target types has a significant impact on GPT-4’s performance.

• GPT-4 is sensitive to the order of entities, and can understand the subject-object relationships of
entities better than GPT-3.5, but still needs further improvement.

Error Types We summarize 7 types of errors on IE tasks by manually checking ChatGPT’s responses,
including Missing spans, Missing types, Unmentioned spans, Unannotated spans, Incorrect span offsets,
Undefined types, and Incorrect types. We find that “Missing spans” and “Unannotated spans” are the most
dominant error types, accounting for more than 60% of errors in most cases. The widespread presence of
“Unannotated spans” also raises concerns about the quality of the annotated data. Maybe using GPT-4 to
assist in annotating data is a better solution.

Improvement Methods As a generative large language model, GPT-4’s mode in solving NLP tasks
including IE is similar to that of humans. It outputs answers token by token based on the requirements
specified by the instruction and input text given in the prompt, during which the rich knowledge learned from
the pre-training corpus will be used. Therefore, we can consider unfine-tuned GPT-4 as a knowledgeable
information extraction layman, whose IE ability can be made more proficient by designing prompts in the
same way as to inspire human laymen, and this method should also apply to fine-tuned models. Based on
the above analysis, we propose the following three prompt design methods:

• Task-related Knowledge Informing: Inform the model of the task-related knowledge required
to perform the task, including The meanings of task-related terms such as “trigger” and “argument”
in IE tasks.

1We use gpt-3.5-turbo-0314 and gpt-4-0125-preview for research, the latter being the latest GPT version when writing this
paper.
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• Methodology Specifying: Give a specific operation methodology to make the model more profi-
cient in information extraction.

• Sufficient Extraction Reminder: When the amount of information extracted is insufficient,
explicitly remind the model to extract all the required information in the text it can.

The effectiveness of these methods has been verified via rich experiments. Since the first method is the most
basic one for performing tasks, it is directly applied to the performance evaluation part, and we will evaluate
the performance without this method in this part for comparison.

2 Related Work

Large Language Models Based on the highly parallelizable Transformer architecture (Vaswani et al.,
2017), pre-trained language models (PLMs) such as BERT (Devlin et al., 2019), BART (Lewis et al., 2020),
etc., have shown powerful capabilities to solve a wide variety of NLP tasks. Some researchers find that scaling
PLMs by increasing model size or data size often leads to more powerful capabilities, as long as the scaling
law is followed (Kaplan et al., 2020; Hoffmann et al., 2022). Thus, numerous large-size models have been
proposed, such as GPT-3 (Brown et al., 2020), LaMDA (Thoppilan et al., 2022), MT-NLG (Smith et al.,
2022), PaLM (Chowdhery et al., 2023) and GPT-4 (OpenAI, 2023a), which typically have more than 100
billion parameters. The NLP community refers to these large-size PLMs as large language models (LLMs).
Unlike small-sized PLMs, LLMs usually exhibit amazing emergent abilities (Wei et al., 2022b; Schaeffer
et al., 2023) that enable them to achieve good performance in zero-shot and few-shot scenarios of unseen
tasks, as long as the appropriate instructions (Wei et al., 2022a; Kojima et al., 2022; Wang et al., 2022b) or
chain-of-though prompts (Wei et al., 2022c) are provided.

GPT Series One of the best-known examples of LLMs is OpenAI’s GPT (Generative Pre-Training Trans-
former) series, including GPT-1 (Radford et al., 2018), GPT-2 (Radford et al., 2019), GPT-3 (Brown et al.,
2020), GPT-4 (OpenAI, 2023a), etc. A key milestone in the development process is InstructGPT (Ouyang
et al., 2022), a framework for instruction fine-tuning based on reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017). The framework allows a large language model to be adapted to a large
number of NLP tasks simultaneously, and leverages human feedbacks to align the model output with human
preferences in order to generate responses more consistent with human expectations. As the successor of
InstructGPT, ChatGPT, powered by GPT-3.5 and GPT-4, has exploded the field of artificial intelligence
(AI), and attracted an unprecedented wave of enthusiasm. It can interact with humans through multiple
turns of dialogue, understand user intent, accomplish instructions, and return human-like responses. Shocked
by ChatGPT’s performance, some papers already consider GPT-4 as an early version of artificial general
intelligence (AGI) (Altman, 2023; Bubeck et al., 2023).

Information Extraction As a popular and fundamental task, information extraction (IE) aims to extract
structured knowledge of interest from unstructured plain text. The output mainly includes entities, relations
between entities, event arguments, opinions, human sentiments, etc. Due to the different target information,
IE mainly involves 4 tasks, including named entity recognition (NER) (Li et al., 2020; Wang et al., 2021;
Ding et al., 2021; Yang et al., 2023), relation extraction (RE) (Nan et al., 2020; Zhao et al., 2021; Han et al.,
2022; Zhan et al., 2022; Li et al., 2023b; Peng et al., 2022; Wang et al., 2024), event extraction (EE) (Lin
et al., 2020; Lee et al., 2021a; Hsu et al., 2022) and aspect-based sentiment analysis (ABSA) (Chen & Qian,
2020; Yan et al., 2021; Feng et al., 2021; Zhang et al., 2022c;b; Yu et al., 2023). Since the result of IE directly
affects the performance of subsequent higher-level applications, the importance of IE cannot be overstated.
This paper intends to evaluate the performance of GPT-4 on IE, in detail.

Evaluation of ChatGPT ChatGPT’s powerful dialog capability has triggered widespread research inter-
est in the fields of NLP and LLM. Since ChatGPT is based on two closed models and no training details are
provided, researchers are exploring its concerns and capabilities. The concerns involve ethical risks (Haque
et al., 2022; Krügel et al., 2023), patient privacy (Tang et al., 2023), fabricated misinformation (Jeblick et al.,
2022; Chen et al., 2023), education integrity (Malinka et al., 2023) and legal challenges (Sun, 2023). For its
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capabilities, researchers evaluate the performance of ChatGPT on different tasks, including stance detection
(Zhang et al., 2022a), question-answering (Guo et al., 2023), machine translation (Jiao et al., 2023), sentiment
analysis (Susnjak, 2023) and other general NLP tasks (Qin et al., 2023; Zhong et al., 2023; Bian et al., 2024;
Bang et al., 2023). In addition, for the information extraction task, Wei et al. (2023) propose a two-stage
framework, ChatIE, to use ChatGPT for zero-shot information extraction, and evaluate its performance in
detail. Li et al. (2023a) measure the performance, explainability, calibration, and faithfulness of ChatGPT
on IE tasks. Following these works, this paper focuses on demonstrating the latest progress in LLMs’ capa-
bilities in information extraction represented by ChatGPT-related models. we measure the performance of
the latest version of GPT-4 on multiple datasets of 14 IE subtasks, explore the impact of in-context learning
(ICL) and chain-of-thought (COT) prompts on performance, evaluate robustness by scenario, and analyze
error types. Following Wei et al. (2023), we also propose three novel improvement methods for GPT-4’s
IE performance based on its human-like characteristics. Our perspective differs significantly from Li et al.
(2023a), and we evaluate more IE sub-tasks on more benchmarks.

3 Experimental Protocol

3.1 Tasks

In this paper, we consider 4 well-representative IE tasks, including Named Entity Recognition (NER),
Relation Extraction (RE), Event Extraction (EE), and Aspect-based Sentiment Analysis (ABSA). Since
each task contains several sub-tasks or scenarios, we conduct evaluations and analysis on the following 14
sub-tasks:

• Flat Entity Recognition (NER-Flat): Recognizing all entities within the text. Each entity is identi-
fied as a separate entity, without any hierarchical relationship between them.

• Nested Entity Recognition (NER-Nested): Recognizing all entities within the text. Each entity can
be nested inside other entities, i.e., an entity may contain other sub-entities.

• Relation Classification (RE-RC): Determining the relationship between a given subject-object pair
of entities within the text.

• Relational Triplet Extraction (RE-Triplet): Identifying entities and their relationships simultane-
ously in the form of (subject entity, relation, object entity) triplets.

• Event Detection (EE-Trigger): Identifying the word or phrase that indicates the occurrence of an
event, and categorizing its corresponding event type.

• Event Argument Extraction (EE-Argument): Recognizing the entities involved in the given event,
and classifying their corresponding roles.

• Trigger-Argument joint Extraction (EE-Joint): Identifying event trigger, event type, and all argu-
ments with their roles simultaneously.

• Aspect Extraction (ABSA-AE): Extracting all the aspect terms from a review.

• Opinion Extraction (ABSA-OE): Extracting all the opinion terms from a review.

• Aspect-level Sentiment Classification (ABSA-ALSC): Predicting the sentiment polarities for every
given aspect term in a review.

• Aspect-oriented Opinion Extraction (ABSA-AOE): Extracting the paired opinion terms for every
given aspect term in a review.

• Aspect Extraction and Sentiment Classification (ABSA-AESC): Extracting the aspect terms as well
as the corresponding sentiment polarities simultaneously.
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• Pair Extraction (ABSA-Pair): Extracting the aspect terms as well as the corresponding opinion
terms simultaneously.

• Triplet Extraction (ABSA-Triplet): Extracting all aspects terms with their corresponding opinion
terms and sentiment polarity simultaneously.

3.2 Datasets

We select at least three datasets for each IE task, with a total of 16 datasets as follows:

• For NER task, the datasets include CoNLL03 (Sang & Meulder, 2003), FewNERD(Ding et al., 2021),
ACE04(Doddington et al., 2004), ACE05-Ent(Walker et al., 2006), and GENIA(Ohta et al., 2002).

• For RE task, the datasets include CoNLL04 (Roth & Yih, 2004), NYT-multi (Zeng et al., 2018),
and SemEval 2010 (Hendrickx et al., 2010).

• For EE task, the datasets include ACE05-Evt (Walker et al., 2006), ACE05+ (Lin et al., 2020),
CASIE (Satyapanich et al., 2020), and Commodity News EE (Lee et al., 2021b).

• For ABSA task, the datasets include D17 (Wang et al., 2017), D19 (Fan et al., 2019), D20a (Peng
et al., 2020), and D20b (Xu et al., 2020), which are all originated from the SemEval Challenges
(Pontiki et al., 2014; 2015; 2016).

3.3 Prompts

The prompts designed in this paper all consist of five main elements: task instruction, candidate target
labels, output format description, demonstration examples, and input text. The task instruction describes the
specific IE sub-task, candidate target labels are the types of target information, such as entity types, relation
types, etc. The output format description specifies the format of outputs to facilitate the distinguishing of
target information. The demonstration examples exist under the few-shot In-context Learning setting, which
can also provide the chain-of-thought explanation. The input text is a text or review from which target
information is to be extracted. An example of prompts for the NER-Flat sub-task is shown in Figure 1.

An example of NER-Flat sub-task prompts

Considering 4 types of named entities including “organization”, “person”, “location” and “miscellaneous”,
recognize all named entities in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any
explanation. If no entity exists, then just answer “[]”.
Sentence:
“Rapid Wien 5 0 5 0 3 3 5”
Answer:
[“organization”, “Rapid Wien”]
... (More examples are omitted here.)
Sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”
Answer:

Expected Output:
[“miscellaneous”, “Mahindra International”]

Figure 1: An example of prompts for NER-Flat sub-task on CoNLL03 dataset. See the Appendix B for more
prompts.
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For the demonstration examples, we randomly select them from the training set of each dataset in Section 3.2.
To obtain the chain-of-thought prompts, we construct them manually with the help of ChatGPT to generate
explanations.

3.4 Setup

To conduct a thorough evaluation of GPT-4’s capabilities, for each IE sub-task, we first measure the per-
formance of the zero-shot scenario. Then, we investigate the impact of few-shot in-context learning (ICL)
and few-shot chain-of-thought (COT) prompting on the performance. For the construction of few-shot ICL
prompts, we use the zero-shot prompt as the basic component and add randomly selected samples from the
corresponding training set. For few-shot COT prompts, we add the chain-of-thought explanations to the
few-shot ICL prompts, where the chain-of-thought explanations are manually constructed via dialog with
ChatGPT. To eliminate the randomness of selected samples, we select three different groups of samples for
construction and report their mean performance.

We use the official API to generate all outputs from GPT-4. To prevent the influence of dialogue history, we
generate the response separately for each testing sample. Unlike other work where only 30-50 samples are
selected for evaluation (Jiao et al., 2023; Wei et al., 2023), we use the entire deduplicated test set of most
datasets in Section 3.2 for evaluation. Too few samples will lead to low coverage and high randomness of
results, too many samples are limited by the rate and expense of accessing OpenAI’s API. Since most of the
datasets we use have a test set with less than 2000 samples, we limit the number of samples to a maximum
of 2000 through random sampling.

Besides, we compare GPT-4, GPT-3.5, and the state-of-the-art result for each sub-task. Since calling the
API of GPT-3.5 costs much less than that of GPT-4, we set its test set length limit to 3000 and select five
groups of samples for few-shot ICL and COT. For the metric, we use Micro-F1 for all sub-tasks. The detailed
specifications for each sub-task are as follows:

• ABSA-AE, ASBA-OE: An aspect/opinion is correct if its span matches the reference aspect/opin-
ion mention.

• ABSA-ALSC: A sentiment polarity is correct if it matches the reference polarity of the given aspect
term.

• ABSA-AOE: An opinion is correct if its span matches the reference opinion of the given aspect
term.

• ABSA-AESC: An aspect-sentiment pair is correct if its aspect span and corresponding sentiment
polarity are all correct.

• ABSA-Pair: An aspect-opinion pair is correct if its aspect span and opinion span all match the
reference pair.

• ABSA-Triplet: A triplet is correct if its aspect span, opinion span, and corresponding sentiment
polarity are all correct.

• Flat-NER, Nested-NER: A predicted entity is correct if its offsets and type match a reference
entity.

• RE-RC: A predicted relation is correct if its relation type matches the reference type.

• RE-Triplet: A predicted relational triplet is correct if its relation type is correct and the subject
and object entity spans are all correct. We only report the F1 value of relational triplets.

• EE-Trigger: A predicted event trigger is correct if its span and event type all match the reference
trigger.

• EE-Argument: For a given event type, a predicted argument is correct if its span and role type
all match the reference argument mention of this event.
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• EE-Joint: A predicted argument is correct if its span, role type, and event type all match the
reference argument mention. We only report the F1 value of the (event type, event argument, role)
triplets contained in the output.

4 The Performance

In this section, we report the performance of GPT-4 and GPT-3.5 on 14 different sub-tasks, as shown in
Table 1.

Table 1: The performances of GPT-4 and GPT-3.5 on different datasets over multiple standard IE tasks.
“∆ F1 (%)” indicates the zero-shot performance improvement rate of GPT-4 compared to GPT-3.5, and
“Ratio@SOTA” indicates the percentage value of GPT-4 performance vs. SOTA in the zero-shot scenario.

Task Dataset SOTA Zero-shot ICL COT Ratio@SOTAGPT-4 (3.5) ∆ F1 (%) GPT-4 (3.5) GPT-4 (3.5)

ABSA-AE
D17-14lap 85.3 (Lv et al., 2023) 46.06 (43.03) 7.04% 52.85 (48.19) 55.92 (54.50) 54.0%
D17-14res 87.4 (Lv et al., 2023) 64.74 (55.65) 16.34% 73.84 (70.99) 75.71 (72.41) 74.1%
D17-15res 79.4 (Lv et al., 2023) 48.71 (40.33) 20.78% 57.81 (53.49) 58.37 (59.27) 61.3%

ABSA-OE
D17-14lap 84.4 (Lv et al., 2023) 51.44 (48.45) 6.17% 57.34 (57.89) 39.26 (50.78) 60.9%
D17-14res 88.9 (Lv et al., 2023) 62.68 (59.48) 5.38% 70.24 (71.61) 61.92 (58.74) 70.5%
D17-15res 82.7 (Lv et al., 2023) 49.49 (46.39) 6.69% 57.04 (53.96) 50.77 (47.11) 59.8%

ABSA-ALSC
D17-14lap 76.8 (Yan et al., 2021) 79.82 (74.56) 7.05% 80.58 (76.76) 79.92 (75.35) 103.9%
D17-14res 82.0 (Mao et al., 2021) 86.46 (81.16) 6.53% 85.16 (81.85) 87.37 (79.77) 105.4%
D17-15res 74.9 (Chen & Qian, 2020) 87.06 (88.13) -1.21% 87.49 (86.47) 88.60 (75.23) 116.2%

ABSA-AOE

D19-14lap 82.2 (Feng et al., 2021) 56.57 (57.60) -1.78% 62.17 (64.83) 56.14 (55.43) 68.8%
D19-14res 86.4 (Feng et al., 2021) 67.02 (67.67) -0.96% 71.69 (71.60) 62.45 (66.42) 77.6%
D19-15res 81.6 (Feng et al., 2021) 60.57 (67.03) -9.64% 64.83 (70.29) 55.74 (59.60) 74.2%
D19-16res 89.2 (Feng et al., 2021) 65.13 (73.27) -11.10% 71.64 (78.23) 60.09 (68.44) 73.0%

ABSA-AESC

D20a-14lap 70.1 (Yu et al., 2023) 44.77 (45.48) -1.56% 52.70 (49.50) 50.88 (48.87) 63.9%
D20a-14res 79.7 (Yu et al., 2023) 59.94 (59.08) 1.45% 65.93 (65.98) 63.69 (64.82) 75.2%
D20a-15res 71.6 (Yu et al., 2023) 61.33 (53.91) 13.77% 65.71 (63.66) 64.74 (66.07) 85.7%
D20a-16res 77.5 (Yu et al., 2023) 56.51 (55.40) 2.01% 63.38 (63.11) 65.88 (65.93) 72.9%

ABSA-Pair

D20a-14lap 69.1 (Lv et al., 2023) 38.20 (31.76) 20.29% 42.80 (41.59) 40.91 (35.75) 55.3%
D20a-14res 77.8 (Zhang et al., 2021) 48.15 (50.05) -3.79% 59.70 (58.88) 55.42 (49.82) 61.9%
D20a-15res 69.4 (Yu et al., 2023) 50.05 (44.41) 12.69% 55.52 (53.76) 51.77 (49.62) 72.1%
D20a-16res 78.2 (Lv et al., 2023) 49.91 (50.20) -0.58% 57.93 (58.88) 57.52 (51.64) 63.8%

ABSA-Triplet

D20b-14lap 61.7 (Zhang et al., 2022b) 35.49 (33.17) 6.99% 40.18 (39.01) 36.30 (33.18) 57.5%
D20b-14res 74.4 (Zhang et al., 2022b) 53.20 (41.50) 28.20% 56.66 (54.89) 52.66 (48.90) 71.5%
D20b-15res 66.1 (Zhang et al., 2022b) 51.26 (38.89) 31.82% 51.31 (47.88) 46.63 (46.55) 77.6%
D20b-16res 72.3 (Zhang et al., 2022b) 54.82 (47.67) 15.00% 57.70 (56.55) 54.49 (51.84) 75.8%

NER-Flat CoNLL03 94.6 (Wang et al., 2021) 72.30 (60.10) 20.30% 78.50 (70.53) 76.19 (74.63) 76.4%
FewNERD 67.1 (Ding et al., 2021) 47.84 (31.56) 51.59% 49.15 (36.87) 50.61 (46.55) 71.3%

NER-Nested
ACE04 88.5 (Yang et al., 2023) 31.43 (27.80) 13.05% 43.35 (38.52) 46.03 (40.57) 35.5%
ACE05-Ent 87.5 (Yang et al., 2023) 24.68 (23.38) 5.54% 44.68 (36.17) 41.46 (33.98) 28.2%
GENIA 81.5 (Yang et al., 2023) 46.22 (38.09) 21.36% 56.97 (48.82) 54.57 (50.89) 56.7%

RE-RC
CoNLL04 - 82.07 (59.21) 38.61% 92.92 (55.32) - -
NYT-multi 93.5 (Zhan et al., 2022) 47.79 (30.96) 54.36% 54.47 (26.88) - 51.1%
SemEval2010 91.3 (Zhao et al., 2021) 44.80 (39.27) 14.09% 44.98 (39.44) - 49.1%

RE-Triplet
CoNLL04 78.8 (Lou et al., 2023) 26.53 (17.84) 48.68% 37.28 (24.30) 35.88 (11.09) 33.7%
NYT-multi 86.8 (Wang et al., 2024) 12.74 (3.48) 266.23% 19.55 (12.24) 13.41 (2.33) 14.7%
SemEval2010 73.2 (Wang et al., 2023) 5.09 (5.82) -12.55% 16.80 (12.85) - 7.0%

EE-Trigger

ACE05-Evt 77.1 (Wang et al., 2023) 41.62 (17.55) 137.18% 47.30 (27.33) 27.40 (7.81) 54.0%
ACE05+ 72.8 (Lin et al., 2020) 43.24 (18.22) 137.34% 47.17 (29.17) 26.59 (9.06) 59.4%
CASIE 72.0 (Liu et al., 2023) 24.98 (7.24) 245.03% 27.17 (18.23) 16.92 (3.95) 34.7%
Commodity News EE 94.0 (Lee et al., 2021a) 47.61 (17.90) 165.98% 54.53 (37.79) 27.63 (12.75) 50.6%

EE-Argument

ACE05-Evt 73.5 (Hsu et al., 2022) 29.43 (25.09) 17.31% 34.40 (31.62) - 40.0%
ACE05+ 73.0 (Hsu et al., 2022) 29.72 (25.80) 15.19% 36.32 (32.02) - 40.7%
CASIE - 30.99 (17.31) 79.01% 31.32 (27.35) - -
Commodity News EE - 16.57 (12.06) 37.38% 24 (15.08) - -

EE-Joint

ACE05-Evt 57.3 (Liu et al., 2023) 3.70 (8.74) -57.62% 25.52 (13.82) - 6.5%
ACE05+ 56.8 (Hsu et al., 2022) 3.51 (10.12) -65.28% 26.19 (13.33) - 6.2%
CASIE 63.5 (Wang et al., 2023) 16.78 (14.24) 17.81% 27.75 (18.96) - 26.4%
Commodity News EE 90.0 (Lee et al., 2021a) 2.14 (8.46) -74.67% 20.77 (14.02) - 2.4%
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4.1 Performance Gap in Zero-shot Scenario

From the zero-shot result of Table 1, we can draw the following conclusions:

(1) There is a significant performance gap between the two GPT models and SOTA methods.
This seems obvious and reasonable since all SOTA methods are trained on corresponding datasets. In other
words, they are fully supervised models and are not zero/few-shot ones.

(2) The harder the task, the larger the performance gap. From the perspective of the four IE tasks
of NER, RE, EE, and ABSA, it can be seen that ABSA tasks perform significantly better than RE and EE
tasks. Almost all sub-tasks of ABSA for GPT-3.5 can reach more than 50% of SOTA, while all sub-tasks of
RE and EE rarely exceed 30% of SOTA. For GPT-4, these two percentages are respectively 60% and 50%.
One reason is that ABSA tasks involve only aspect and opinion terms and are much simpler, While RE and
EE tasks involve many target types and are much harder. For example, there are 24 relation types in the
NYT-multi dataset.

(3) The harder the scenario, the larger the performance gap. Each IE task has several scenarios.
For NER tasks, the NER-Flat scenario is intuitively simpler than NER-Nested, and the performance of
NER-Flat is significantly better than NER-Nested. For other tasks, including RE, EE, and ABSA, we can
observe similar results.

(4) On a few simple cases, the two GPT models can equal or exceed the performance of SOTA
methods. We can find that both models can achieve comparable performance with SOTA methods on the
ABSA-ALSC sub-task, and can even surpass SOTA results, reaching up to 117.7% (GPT-3.5) and 116.2%
(GPT-4) of SOTA. The sub-task is a simple sentiment classification, and the candidate polarities include
“positive”, “neutral” and “negative”.

(5) The performance of GPT-4 is better than GPT-3.5 in most tasks. For 36 out of all 48 cases, the
zero-shot scores of GPT-4 are higher than that of GPT-3.5. For the EE-Trigger sub-task, the improvement
rates are even higher than 100%. Results prove the surprising progress achieved by the GPT series in recent
times.

4.2 Mitigate the Gap

The observed performance gap in the above subsection is not consistent with our actual experience with
ChatGPT, no matter powered by GPT-3.5 or GPT-4. To mitigate the gap, we add a few randomly selected
demonstration examples to construct few-shot ICL prompts and few-shot COT prompts. We report the
means of the selected example groups in Table 1.

For the few-shot ICL setting, it can be seen that “using few-shot ICL prompts generally leads to significant
improvements (about 3.0∼13.0 F1 value), but still obviously lags behind SOTA results”. This seems to be
inconsistent with the conclusion of Wadhwa et al. (2023) that ChatGPT can achieve performance equivalent
to SOTA methods by providing some demonstration examples. One reason may be that Wadhwa et al. (2023)
provide more demonstration examples, i.e., almost 20 examples, while we only provide 5 demonstration
examples. So, with a smaller number of demonstration examples, the few-shot ICL prompts cannot radically
eliminate the performance gap.

For the few-shot COT setting, we can find that “the use of few-shot COT prompts cannot guarantee further
gains compared to few-shot ICL prompts, sometimes it is worse than the performance of few-shot ICL
prompts”. The possible reasons are that the quality of constructed chain-of-thought prompts is not good
enough and GPT-3.5 and GPT-4 are too sensitive for the few-shot COT prompts.

To sum up, we conclude that both GPT-3.5 and GPT-4 struggle to achieve comparable perfor-
mance to the corresponding SOTA methods in both zero-shot and few-shot scenarios, even if
the chain-of-thought explanations are provided.
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5 Rethink the Gap

In this section, we rethink the performance gap from the perspective of evaluation criteria. Following the
evaluation method of previous work (Lu et al., 2022; Lou et al., 2023; Liu et al., 2023), we strictly match
the start and end indices of the predicted target text span (e.g., entity spans, opinion spans). This method
may not be suitable for the evaluation of LLMs like GPTs that generate human-like responses.

We manually check ChatGPT’s responses, and find that GPT-3.5 and GPT-4 tend to identify spans
that contain annotated spans or are contained by annotated spans, to get closer to humans. All
sub-tasks in Section 3.1 involve four types of span: entities, event triggers, aspect terms, and opinion terms.
For each type of span, we select several typical annotated spans and their corresponding predicted spans
and show them in Table 2. It can be seen that the annotated spans usually do not contain qualifiers such
as quantifiers, articles, adjectives, time, place, etc, while the spans predicted usually contain these qualifier
parts, which are also correct target information. For example, “University of Michigan” and “The University
of Michigan” indicate the same target information, although the offsets are different.

Table 2: The selected annotated spans and their corresponding predicted spans.
Type Annotated Spans Predicted Spans

Entity
PGA Europro Tour 2021 PGA Europro Tour
University of Michigan The University of Michigan
Australia Western Australia

Event Trigger
war move toward war
fighting commit fighting forces
killed marines killed

Aspect Term
USB ports multiple USB ports
application application crash
cable extender cable

Opinion Term
fast super fast
well worth well worth it
not handle does not handle

Therefore, to incorporate this case, we propose a soft-matching approach to obtain more accurate evaluation
results, as shown in Algorithm 1, where GetSimilarity(·) indicates a method to calculate the similarity, for
which we use the SequenceMatcher.ratio(·) method in the python package difflib. The similarity calculated
takes the value from 0 to 1. For the threshold γ, we set it to 0.5 by default, since this process can be seen
as the binary classification problem. We assume that when the predicted span and the annotated span are
only different in offset (ensured by Line 6 in the algorithm), the predicted span is reasonable and meaningful
if the similarity value is higher than 0.5.

We compare the evaluation results between the default hard-matching strategy and the soft-matching strat-
egy for related sub-tasks and show them in Table 3. For space reasons, we only report the results of one
dataset for each sub-tasks. From Table 3, it can be seen that the soft-matching strategy delivers consis-
tent and significant performance gains, with up to 16.50 F1 value. Interestingly, the improvement
on simple sub-tasks is much more noticeable, i.e., ABSA tasks have generally higher overall performance
gains than EE tasks. Further, although the soft-matching strategy brings significant gains, it does not reach
a comparable level with SOTA methods. This is still consistent with the conclusions of Section 4.

6 Robustness Analysis

6.1 Invalid Output

Since GPT-4 is a generative model, the output responses may be irrelevant information that does not meet
the task requirements. In this subsection, we investigate how many invalid responses GPT-4 returns for
different IE tasks. Here invalid responses refer to responses with incorrect format or unexpected content not
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Algorithm 1 Soft-Matching Strategy
Input: the sentence s, the list of annotated spans LA in sentence s, a predicted span p, the similarity
threshold γ.
Output: Return True if one of the two spans (p and the annotated span t with the highest similarity with
p) contains the other and the similarity is greater than γ, otherwise return False.
Begin:

0. Similarity ← [ ]
1. for t in LA :
2. score← GetSimilarity (t, p)
3. Similarity.append (score)
4. score, max_index← max (Similarity)
5. t← LA[max_index]
6. if p contains t or t contains p :
7. if score > γ :
8. return True.
9. return False.

End.

Table 3: Comparison of results between default hard-matching strategy (Hard) and soft-matching strategy
(Soft). ∆ indicates the performance change caused by the soft-matching strategy. ABSA-ALSC and RE-RC
sub-tasks are not included in this table because their required output contains no span.

Task Dataset SOTA Hard Soft ∆F1 (%)
ABSA-AE D17-14lap 85.3 46.06 52.36 +6.30 (13.69%)
ABSA-OE D17-14lap 84.4 51.44 65.35 +13.91 (27.03%)
ABSA-AOE D19-14lap 82.2 56.57 73.07 +16.50 (29.17%)
ABSA-AESC D20a-14lap 70.1 44.77 52.55 +7.79 (17.39%)
ABSA-Pair D20a-14lap 69.1 38.20 53.7 +15.49 (40.55%)
ABSA-Triplet D20b-14lap 61.7 35.49 47.60 +12.11 (34.11%)
NER-Flat CoNLL03 94.6 72.30 74.29 +1.99 (2.75%)
NER-Nested ACE05-Ent 87.5 24.68 33.51 +8.83 (35.80%)
RE-Triplet CoNLL04 78.8 26.53 34.75 +8.22 (31.00%)
EE-Trigger ACE05-Evt 77.1 41.62 45.94 +4.31 (10.37%)
EE-Argument ACE05-Evt 73.5 29.43 41.20 +11.77 (40.00%)
EE-Joint ACE05-Evt 57.3 3.70 6.17 +2.47 (66.67%)

generated as required by task-specific prompts, which make it impossible to recognize parts of or all of the
response content. The frequency and ratio of recognizable error types are analyzed in Section 7. For each
sub-task, we report the ratio of invalid responses under the zero-shot setting in Table 4. For convenience,
we select one dataset for each sub-task as Table 3. From the results, it can be that in most cases, GPT-4
rarely outputs invalid responses. However, on the EE-Joint sub-task, invalid responses account for up
to 11.97%, which may result from its sophisticated format description and the difficulty of the sub-task itself.

6.2 Frequency of Target Types

The real-world data usually exhibits a long-tailed distribution, i.e., the frequency of target types varies
greatly, causing the models to perform much worse on uncommon/tail types than on common/head ones.
Here target types include entity types, relation types, event types, etc. In this subsection, we investigate
the impact of the “frequency of target types” on GPT-4’s performance on all IE sub-tasks. We select one
dataset for each sub-task with the phenomenon of frequency differences and report the result of zero-shot
prompts on the head types and tail types. For each dataset, We use a threshold K to determine its head
and tail types. The head types are those with more than K training instances in the training set, while tail
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Table 4: The ratio of invalid responses for each IE sub-task under the zero-shot setting. “#Prompt” is the
number of test prompts. “#Invalid” indicates the number of test prompts with invalid responses under the
zero-shot setting. “Ratio (%)” denotes the percentage of “#Invalid” in “#Prompt”.

Task Dataset #Prompt #Invalid Ratio (%)
ABSA-AE D17-14lap 800 0 0.00%
ABSA-OE D17-14lap 800 0 0.00%
ABSA-ALSC D17-14lap 654 0 0.00%
ABSA-AOE D19-14lap 482 3 0.62%
ABSA-AESC D20a-14lap 339 0 0.00%
ABSA-Pair D20a-14lap 339 0 0.00%
ABSA-Triplet D20b-14lap 328 0 0.00%
NER-Flat CoNLL03 2000 0 0.00%
NER-Nested ACE05-Ent 1050 5 0.48%
RE-RC SemEval2010 2000 4 0.20%
RE-Triplet CoNLL04 287 1 0.35%
EE-Trigger ACE05-Evt 284 3 1.06%
EE-Argument ACE05-Evt 403 0 0.00%
EE-Joint ACE05-Evt 284 34 11.97%

Table 5: The threshold (K), number of head types (#Head), and number of tail types (#Tail) on different
datasets.

Dataset K #Head #Tail
CoNLL03 8000 2 2
ACE05-Ent 1000 3 4
SemEval2010 600 4 6
NYT-multi 500 11 13
Commodity News EE 100 7 12
CASIE 1200 2 3

Table 6: Performance comparison of GPT-4 between head and tail types for each IE sub-task. Note that
the sub-tasks not listed have no long-tail distribution. “Ratio (%)” indicates the percentages of tail types’
results with respect to head types’ results.

Task Dataset Head Tail Ratio (%)
NER-Flat CoNLL03 83.94 55.12 65.67%
NER-Nested ACE05-Ent 27.58 12.01 43.54%
RE-RC SemEval2010 51.28 45.18 88.09%
RE-Triplet NYT-multi 14.50 2.30 15.89%
EE-Trigger Commodity News EE 53.01 37.62 70.97%
EE-Joint CASIE 15.73 17.61 111.89%

types are those with less than K training instances. Take the entity type “Person” as an example, if the
number of “Person” entities in the training set is more than the threshold K, then “Person” is a head type,
and vice versa, it is a tail type. The values of K corresponding to each dataset used in this section are listed
in Table 5. No datasets related to ABSA are shown here since ABSA tasks involve no types.

The results are shown in Table 6. It can be seen that the performance of tail types is generally significantly
worse than that of head types, with the only exception of EE-Joint where their performances are close. For
RE-Triplet, the performance of tail types is even lower than 16% of head types’ performance. Thus, GPT-4
also suffers from the long-tail problem.
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6.3 Subject-object Orders

In this subsection, we explore whether GPT-4 can distinguish the order of two entities in the RE-RC sub-
task, i.e., which entity is the subject and which entity is the object. Since most relation types are not
symmetric, the order of two entities is very critical. For example, the sentence “Steven Paul Jobs was born
in San Francisco on February 24, 1955.” expresses the relational triplet 〈Steven Paul Jobs, born_in, San
Francisco〉, not the triplet 〈San Francisco, born_in, Steven Paul Jobs〉, where the subject entity should take
the first place while the object entity takes the last. For each instance of the asymmetric relation types,
we swap the order of entities and check the change in prediction results. After exchanging the order, the
prediction result should be changed to an empty string, which indicates no relation.

Table 7: Statistics of changes in predicted results after swapping the order of entities. “Changed (%)”
denotes the percentage of predictions changed to empty strings when swapping subject entity and object
entity. ∆ means the increase of GPT-4 compared to GPT-3.5.

Dataset Changed (%)
GPT-3.5 GPT-4 ∆

CoNLL04 28.11% 84.77% +56.66%
NYT-multi 12.56% 46.03% +33.47%
SemEval2010 18.02% 49.05% +31.03%

Table 7 shows zero-shot prompted results for this subsection. Our experiments found that GPT-4 has made
large progress in identifying subject-object order over GPT-3.5, so we list the performances of both GPT-3.5
and GPT-4 in this scenario for comparison. It can be seen that only a small amount of GPT-3.5’s predictions
(less than 30%) can tell the difference between subject and object entities, which is denoted by the ratio of
swapped predictions changed to no relation. For GPT-4, however, this ratio becomes much higher on all
three datasets, with up to 84.77% on the CoNLL04 dataset, yet still not satisfying enough on the other two
datasets. Therefore, it can be concluded that for the RE-RC sub-task, GPT-4 is more sensitive to
the order of entities compared to GPT-3.5, but still needs further improvement to understand
their subject-object relationships accurately.

7 Analysis of Error Types

In this section, we analyze GPT-4’s errors on all IE sub-tasks. Here we use “span” to denote the target
information to be extracted, and “types” to indicate the types of target information such as entity types,
relation types, event types, sentiment polarity, etc. Through manual checking, we find that the errors mainly
include:

1. Missing spans: Missing one or more annotated target spans.

2. Missing types: The annotated target span is correctly answered, but its corresponding type isn’t.

3. Unmentioned spans: Answering the spans that do not exist within the given input text.

4. Unannotated spans: Answering the spans that are not annotated in the test set.

5. Incorrect span offsets: The offsets of the answered spans are incorrect.

6. Undefined types: Answering the types beyond the pre-defined types when the corresponding span
is correct.

7. Incorrect types: The answered span is correct, while the corresponding type comes from the set
of pre-defined types, but does not match the annotated type.

Here, the first two error types form the false negative samples, and error types 3 to 7 form the false positive
ones. Since these error types are suitable for all sub-tasks in Section 3.1, for convenience, we take ABSA-
AESC, NER-Flat, RE-Triplet, and EE-Trigger as examples (one for each task) and statistically analyze each
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error type under the zero-shot setting. The ABSA tasks involve no types, so we treat the sentiment polarities
of the aspects as types when analyzing ABSA-AESC. The results are shown in Table 8 and Figure 2.

Table 8: Statistical analysis of various error types for ABSA-AESC, NER-Flat, RE-Triplet, and EE-Trigger
sub-tasks on D20a-14lap, CoNLL03, CoNLL04, and ACE05-Evt datasets respectively. “Num.” indicates the
occurrence number of corresponding error type, while “Ratio (%)” denotes the corresponding percentage.

Error Type ABSA-AESC NER-Flat RE-Triplet EE-Trigger
Num. Ratio (%) Num. Ratio (%) Num. Ratio (%) Num. Ratio (%)

Missing spans 112 16.45% 443 22.74% 294 53.07% 215 46.74%
Missing types 102 14.98% 546 28.03% 27 4.87% 24 5.22%
Unmentioned spans 11 1.62% 3 0.15% 24 4.33% 0 0.00%
Unannotated spans 330 48.46% 227 11.65% 188 33.94% 178 38.70%
Incorrect span offsets 80 11.75% 204 10.47% 0 0.00% 23 5.00%
Undefined types 2 0.29% 44 2.26% 2 0.36% 0 0.00%
Incorrect types 44 6.46% 481 24.69% 19 3.43% 20 4.35%
Total 681 100.00% 1948 100.00% 554 100.00% 460 100.00%
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Figure 2: Percentage of error types for ABSA-AESC, NER-Flat, RE-Triplet, and EE-Trigger sub-tasks on
D20a-14lap, CoNLL03, CoNLL04, and ACE05-Evt datasets respectively.

It can be seen that “Missing spans” and “Unannotated spans” are the two main types of errors,
accounting for more than 60% in most cases. In particular, “Unannotated spans” accounts for more
than 1/3 of all errors in ABSA-AESC, RE-Triplet, and EE-Trigger sub-tasks, which raises concerns about
the quality of annotated data.

8 Human-like Improvement Methods

In the previous sections, we conduct a comprehensive performance evaluation and robustness analysis on
the information extraction ability of GPT-4. The results suggest a significant gap between the performance
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of GPT-4 and the SOTA methods of IE tasks. Although GPT-4’s performance has improved significantly
compared to GPT-3.5, the above issues, especially its performance on difficult sub-tasks such as EE-Joint,
restrict its application value in IE tasks. In this section, we propose three novel prompt-based methods for
improving the IE performance of human-like LLMs like GPT-4 in the same way as to make human lay-
men more proficient: Task-related Knowledge Informing, Methodology Specifying, and Sufficient
Extraction Reminder. The corresponding modified prompts are listed in B for more references.

8.1 Task-related Knowledge Informing

Compared with ordinary people, LLMs like GPT-3.5 and GPT-4 have the advantage of learning extensive
knowledge from pre-training corpora (covering knowledge resources such as Wikipedia) and therefore have
the potential to be used as knowledge bases (Tan et al., 2023). However, given the professional nature
of information extraction, completing these tasks may require some task-related knowledge that is rarely
seen in the corpus or easily confused with other knowledge, such as the meaning of words like “trigger”
and “argument” that have a large semantic difference in the context of information extraction and other
times. For a layman participating in information extraction for the first time, no matter if it is a human or
an unfine-tuned LLM, informing it of the task-related knowledge in the instructions should be a basis for
performing the task, without which the performance may be affected. Considering this, all prompts used in
Section 4 contain the task-related knowledge required for the corresponding sub-tasks, including:

• For NER Tasks: Instead of giving the abbreviations of entity types, provide the model with their
verbose, e.g., provide “geographical political entities” instead of “GPE”.

• For EE Tasks: The meanings of “trigger” and “argument” in the context of EE tasks.

• For ABSA Tasks: The meanings of “aspect” and “opinion” in the context of ABSA tasks.

To demonstrate the effect of this prompt design method, Table 9 shows the results of the zero-shot prompt
without task-related knowledge. Providing task-related knowledge does come into effect in some cases,
especially in recognizing subject-object orders. Surprisingly, however, half of the presented cases witness a
performance increase without task-related knowledge, especially EE-joint, where the performance increases
by 13.37 F1 value. We speculate that this is because GPT-4’s ability to process long texts is limited even if
the text length is within its working range, which results in a decrease in its ability to understand prompts
after adding additional knowledge, especially when working on complex tasks like EE-joint that require long
prompts to express. In addition, GPT-4 probably can understand the type abbreviations involved in the two
NER subtasks well (i.e., it may have frequent contact with them in pretraining) to correctly classify spans to
these abbreviations. Therefore, it can be concluded that providing task-related knowledge to LLMs
like GPT-4 may not improve their IE performance in some cases. The LLMs’ long text processing
ability and understanding of relevant knowledge should be considered when deciding whether to add it to
prompts for performance improvement.

8.2 Methodology Specifying

In addition to informing laymen of the relevant task-related knowledge in performing IE tasks, another
common way to improve performance is to specify for them a methodology to solve IE problems. In (Wei
et al., 2023), the execution of IE tasks is divided into two stages, each invoked by a prompt and responsible
for part of the task, and the result of the first stage paves the way for the solution of the second stage.
Inspired by that, the prompt of our method is also divided into two stages with such characteristics, but we
only need to send the prompt once to let the LLM solve both stages. The prompt first requires the LLM
to check whether each given type of information to be extracted exists in the given text. Then, the prompt
demands the LLM to output all information belonging to each existing type. Following (Wei et al., 2023),
this method is not applied to ABSA tasks either, because their target information has no type.

Table 9 shows the results of the improvement method in this section on the zero-shot prompt. For most tasks,
this method brings significant performance gains, with up to 16.82 F1 value on the EE-Joint sub-task. It is
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Table 9: Statistical analysis of the effect of three performance improvement methods. “Base” denotes the
result of the basic zero-shot prompt used in Section 4, “No TKI.” indicates the result without Task-related
Knowledge Informing, and “MS.” and “SER.” denotes the result of Methodology Specifying and Sufficient
Extraction Reminder respectively. ∆ denotes the performance gains and losses caused by the methods
compared to “Base”.

Task Dataset Base No TKI. MS. SER.
Result ∆ Result ∆ Result ∆

ABSA-AE D17-14lap 46.06 47.01 0.95 - - 47.38 1.32
ABSA-OE D17-14lap 51.44 45.59 -5.85 - - 50.2 -1.24
ABSA-ALSC D17-14lap 79.82 78.75 -1.07 - - 78.59 -1.22
ABSA-AOE D19-14lap 56.57 52.87 -3.7 - - 57.69 1.11
ABSA-AESC D20a-14lap 44.77 44.63 -0.14 - - 44.73 -0.04
ABSA-Pair D20a-14lap 38.2 41.16 2.96 - - 39.46 1.26
ABSA-Triplet D20b-14lap 35.49 33.47 -2.02 - - 35.4 -0.09
NER-Flat CoNLL03 72.3 74.38 2.09 67.25 -5.05 69.23 -3.06
NER-Nested ACE05-Ent 24.68 29.96 5.28 28.98 4.3 25.81 1.13
RE-RC SemEval2010 44.80 - - 43.87 -0.93 44.44 -0.37
RE-Triplet CoNLL04 26.53 - - 28.57 2.05 24.87 -1.65
EE-Trigger ACE05-Evt 41.62 41.99 0.36 41.16 -0.46 41.12 -0.51
EE-Argument ACE05-Evt 29.43 27.25 -2.19 28.52 -0.91 29.03 -0.4
EE-Joint ACE05-Evt 3.7 17.07 13.37 20.52 16.82 18.88 15.18

worth noting that this method generally improves more in difficult tasks, but may reduce scores on simple
tasks like the NER-Flat sub-task. To conclude, this method can be used to improve performance on
difficult tasks with inspiring results.

8.3 Sufficient Extraction Reminder

It can be found in Section 7 that “missing spans” is one of the major error types in GPT-4’s output.
Therefore, explicitly reminding the model in the prompt to extract all the required information in the text
it can is a fairly obvious human-like way to improve performance. Table 9 shows the results of this method
under the zero-shot setting. This method achieves a significant performance gain on EE-Joint with a 15.18
F1 value increase but has a relatively small effect on other sub-tasks. Therefore, it can be concluded that
this method is effective but narrowly adaptable and may only be suitable for very difficult
tasks.

9 Conclusion

In this paper, we assess the capabilities of GPT-4 from four perspectives including Performance, Evaluation
Criteria, Robustness, and Error Types. We then proposed three prompt-based human-like Improvement
Methods to enhance the models’ performance. The details and conclusions are as follows:

Performance We first evaluate GPT-4’s performance on 16 datasets with 14 IE sub-tasks under the zero-
shot, few-shot, and chain-of-thought scenarios, and find a visible improvement over GPT-3.5 and a significant
performance gap compared to SOTA results.

Evaluation Criteria We rethink the performance gap and find that the span hard-matching strategy is
not suitable for the evaluation of GPT-4, because GPT-4 generates human-like responses. We propose a
soft-matching strategy for evaluation to reflect GPT-4’s performance more accurately.

Robustness We analyze the robustness of ChatGPT on 14 IE sub-tasks from three perspectives, including
invalid output, frequency of target types, and error types. We draw the following conclusions: 1) GPT-4
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rarely outputs invalid responses; 2) Long-tail target types greatly affect GPT-4’s performance; 3) GPT-4
can understand the subject-object relationships in the RE-RC sub-task better than GPT-3.5, but still needs
further improvement.

Error Types Through manual checking, we analyze the errors of GPT-4 and summarize 7 types of errors,
including Missing spans, Missing types, Unmentioned spans, Unannotated spans, Incorrect span offsets,
Undefined types, and Incorrect types. We find that “Missing spans” and “Unannotated spans” are the most
dominant error types. The widespread presence of “Unannotated spans” also raises concerns about the
quality of previously annotated data and indicates the possibility of annotating data with GPT-4.

Improvement Methods We propose three methods to improve the IE performance of LLMs like GPT-4,
namely Task-related Knowledge Informing, Methodology Specifying, and Sufficient Extraction Reminder.
Among them, Methodology Specifying achieves the most significant performance gains. Rich experiments
prove the effectiveness of these methods, while also showing the necessity to consider the model capability,
task difficulty, and characteristics when deciding whether or not to adopt these methods.

Broader Impact Statement

In the rapidly evolving field of artificial intelligence, it’s crucial to understand that models like GPT are under
continuous development and refinement. The version of GPT in use today may present certain limitations
or shortcomings that are an active area of research for improvement. Consequently, any tests performed
or flaws discovered might only be applicable to the current iteration of the model. As time progresses and
further updates are implemented, many of these initially identified issues may be addressed and corrected.
Therefore, feedback and results obtained from the current usage of GPT should be contextualized as part of
an ongoing development process, rather than a fixed representation of the model’s performance.
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A More Performance Results

We report more performances of GPT-4 for all 14 sub-tasks in Section 3.1. Under few-shot and chain-of-
thought scenarios, we design three different prompts and show their mean and respective results. The results
are shown in Table 10.

Table 10: More performance results.

Task Dataset Zero-shot ICL COT
prompt 1 prompt 2 prompt 3 mean prompt 1 prompt 2 prompt 3 mean

ABSA-AE D17-14lap 46.06 55.82 48.66 54.06 52.85 55.78 56.95 55.04 55.92
D17-14res 64.74 72.53 73.17 75.80 73.84 76.67 76.08 74.38 75.71
D17-15res 48.71 58.71 60.19 54.53 57.81 59.02 58.13 57.96 58.37

ABSA-OE D17-14lap 51.44 61.72 53.47 56.82 57.34 41.92 34.00 41.86 39.26
D17-14res 62.68 62.05 74.79 73.86 70.24 57.26 61.22 67.28 61.92
D17-15res 49.49 57.50 54.88 58.75 57.04 45.99 55.06 51.27 50.77

ABSA-ALSC D17-14lap 79.82 80.28 79.51 81.96 80.58 79.05 80.73 79.97 79.92
D17-14res 86.46 85.49 85.84 84.16 85.16 87.52 88.23 86.37 87.37
D17-15res 87.06 87.99 87.43 87.06 87.49 89.65 88.17 87.99 88.60

ABSA-AOE D19-14lap 56.57 55.69 60.13 70.68 62.17 55.77 56.64 56.02 56.14
D19-14res 67.02 74.08 67.76 73.22 71.69 59.38 62.44 65.53 62.45
D19-15res 60.57 63.28 65.11 66.09 64.83 54.30 56.44 56.49 55.74
D19-16res 65.13 70.03 74.32 70.57 71.64 60.97 60.21 59.08 60.09

ABSA-AESC D20a-14lap 44.77 53.44 51.74 52.92 52.70 53.92 50.14 48.59 50.88
D20a-14res 59.94 65.29 66.13 66.38 65.93 65.21 62.23 63.61 63.69
D20a-15res 61.33 64.59 65.75 66.80 65.71 64.75 64.32 65.14 64.74
D20a-16res 56.51 61.58 65.48 63.07 63.38 66.67 65.39 65.57 65.88

ABSA-Pair D20a-14lap 38.20 41.83 42.25 44.31 42.80 42.35 39.78 40.61 40.91
D20a-14res 48.15 58.11 60.40 60.60 59.70 52.89 51.90 61.47 55.42
D20a-15res 50.05 56.62 54.29 55.66 55.52 52.70 50.95 51.66 51.77
D20a-16res 49.91 54.38 62.08 57.33 57.93 57.79 57.51 57.25 57.52

ABSA-Triplet D20b-14lap 35.49 41.30 40.31 38.93 40.18 37.90 34.91 36.08 36.30
D20b-14res 53.20 53.58 58.03 58.37 56.66 51.44 50.30 56.23 52.66
D20b-15res 51.26 50.43 50.80 52.71 51.31 47.22 46.17 46.50 46.63
D20b-16res 54.82 58.66 57.96 56.46 57.70 54.53 56.26 52.69 54.49

NER-Flat CoNLL03 72.30 77.10 78.91 79.48 78.50 76.83 73.93 77.81 76.19
FewNERD 47.84 50.90 50.41 46.15 49.15 52.09 50.05 49.70 50.61

NER-Nested ACE04 31.43 43.38 42.46 44.21 43.35 45.96 45.98 46.14 46.03
ACE05-Ent 24.68 44.60 40.51 48.93 44.68 41.45 39.12 43.83 41.46
GENIA 46.22 57.66 57.32 55.94 56.97 55.87 54.59 53.24 54.57

RE-RC CoNLL04 82.07 92.31 92.53 93.93 92.92 - - - -
NYT-multi 47.79 54.33 55.84 53.24 54.47 - - - -
SemEval2010 44.80 44.26 44.61 46.07 44.98 - - - -

RE-Triplet CoNLL04 26.53 35.26 33.05 43.53 37.28 34.66 35.14 37.84 35.88
NYT-multi 12.74 23.82 15.44 19.40 19.55 14.26 11.75 14.21 13.41
SemEval2010 5.09 15.82 16.02 18.56 16.80 - - - -

EE-Trigger ACE05-Evt 41.62 50.75 46.61 44.54 47.30 25.03 26.93 30.24 27.40
ACE05+ 43.24 47.25 47.58 46.69 47.17 23.20 28.50 28.08 26.59
CASIE 24.98 33.12 24.33 24.04 27.17 19.78 15.38 15.61 16.92
Commodity News EE 47.61 47.58 59.03 56.98 54.53 20.47 33.20 29.23 27.63

EE-Argument ACE05-Evt 29.43 33.27 33.40 36.55 34.40 - - - -
ACE05+ 29.72 34.47 39.39 35.09 36.32 - - - -
CASIE 30.99 31.62 31.82 30.52 31.32 - - - -
Commodity News EE 16.57 24.94 18.48 28.59 24.00 - - - -

EE-Joint ACE05-Evt 3.70 24.37 25.37 26.81 25.52 - - - -
ACE05+ 3.51 22.44 29.51 26.61 26.19 - - - -
CASIE 16.78 28.53 28.83 25.89 27.75 - - - -
Commodity News EE 2.14 18.49 17.84 25.99 20.77 - - - -

B Example of input prompts

We show the zero-shot prompts, few-shot ICL prompts, few-shot COT prompts, and the prompts modified
by the three improvement methods of the NER-Flat sub-task on the CoNLL03 dataset. Prompts for other
datasets/tasks are similar.
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NER-Flat zero-shot prompt on the CoNLL03 dataset

prompt:
Considering 4 types of named entities including “organization”, “person”, “location” and “miscellaneous”, recognize
all named entities in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any
explanation. If no entity exists, then just answer “[]”.
Given sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”

Expected Output:
[“miscellaneous”, “Mahindra International”]

Example NER-Flat few-shot ICL prompt on the CoNLL03 dataset

prompt:
Considering 4 types of named entities including “organization”, “person”, “locationänd “miscellaneous”, recognize
all named entities in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any
explanation. If no entity exists, then just answer “[]”.
Sentence:
“Rapid Wien 5 0 5 0 3 3 5”
Answer:
[“organization”, “Rapid Wien”]
Sentence:
“Iran accuses Iraq of ceasefire violations .”
Answer:
[“location”, “Iran”], [“location”, “Iraq”]
... (More examples are omitted here.)
Sentence:
“The team is as follows :”
Answer:
[]
Sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”
Answer:

Expected Output:
[“miscellaneous”, “Mahindra International”]
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Example NER-Flat few-shot COT prompt on the CoNLL03 dataset

prompt:
Considering 4 types of named entities including “organization”, “person”, “location” and “miscellaneous”, recognize
all named entities in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’. If no entity
exists, then just answer “[]”. Now let’s think step by step. Focus your answers at the end of your response and
don’t print them out during your thinking. If there are multiple possible types of an entity, answer the one with
the highest probability.
Sentence:
“Rapid Wien 5 0 5 0 3 3 5”
Answer:
The sentence comes from the scoreline of a soccer match. “Rapid Wien” refers to the soccer team “SK Rapid
Wien”, which corresponds to the “organization” in the given entity types. So, answer: [“organization”, “Rapid
Wien”]
Sentence:
“Iran accuses Iraq of ceasefire violations .”
Answer:
The “Iran” and “Iraq” are all countries. The country corresponds to the “location” in the given entity types. So,
answer: [“location”, “Iran”], [“location”, “Iraq”]
... (More examples are omitted here.)
Sentence:
“The team is as follows :”
Answer:
The sentence does not involve any entity of the given entity type. So, answer: []
Your sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”
Answer:

Expected Output:
“Mahindra International” is a sports event, which fits into “miscellaneous” since it cannot be categorized into any
other given types. So, answer: [“miscellaneous”, “Mahindra International”]

NER-Flat zero-shot prompt with no Task-related Knowledge Informing on CoNLL03

prompt:
Considering 4 types of named entities including “ORG”, “PER”, “LOC” and “MISC”, recognize all named entities
in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any
explanation. If no entity exists, then just answer “[]”.
Given sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”

Expected Output:
[“miscellaneous”, “Mahindra International”]

27



Under review as submission to TMLR

NER-Flat zero-shot prompt with Methodology Specifying on CoNLL03

prompt:
For each of the following entity types, consider whether there are some entities of this entity type that are present
in the given sentence. If present, output all entities belonging to this type in the sentence in the format of
’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any explanation, otherwise
output nothing. Your answer for each existing type should take one line in response.
Given sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :¨
Given entity types: “[“organization”, “person”, “location”, “miscellaneous”]”

Expected Output:
[“miscellaneous”, “Mahindra International”]

NER-Flat zero-shot prompt with Sufficient Extraction Reminder on CoNLL03

prompt:
Considering 4 types of named entities including “organization”, “person”, “location” and “miscellaneous”,
recognize all named entities in the given sentence.
Answer in the format of ’[“entity_type 1”, “entity_name 1”], [“entity_type 2”, “entity_name 2”], ...’ without any
explanation. If no entity exists, then just answer “[]”. Please find all possible entities for each entity type as you
can. If an entity appears multiple times in the text, answer it for the same number of times.
Given sentence:
“Results of semifinals in the Mahindra International squash tournament on Friday :”

Expected Output:
[“miscellaneous”, “Mahindra International”]
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