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ABSTRACT

Fine-tuning large-scale Transformers has led to the explosion of many Al applica-
tions across Natural Language Processing and Computer Vision tasks. However,
fine-tuning all pre-trained model parameters becomes impractical as the model
size and number of tasks increase. Parameter-efficient transfer learning (PETL)
methods aim to address these challenges. While effective in reducing the number
of trainable parameters, PETL methods still require significant energy and compu-
tational resources to fine-tune. In this paper, we introduce REcurrent ADaption
(READ) — a lightweight and memory-efficient fine-tuning method — to overcome
the limitations of the current PETL approaches. Specifically, READ inserts a small
RNN network alongside the backbone model so that the model does not have
to back-propagate through the large backbone network. Through comprehensive
empirical evaluation of the GLUE benchmark, we demonstrate READ can achieve
a 56% reduction in the training memory consumption and an 84% reduction in the
GPU energy usage while retraining high model quality compared to full-tuning.
Additionally, the model size of READ does not grow with the backbone model
size, making it a highly scalable solution for fine-tuning large Transformers.

1 INTRODUCTION

Large-scale transformers architecture
have achieved state-of-the-art results
in several Natural Language Process-
ing (NLP) tasks |Bao et al| (2021);
Brown et al.|(2020);|Liu et al.|(2019);
Lu et al.| (2019); [Raffel et al.|(2020);
Wei et al.[(2021). Scaling up the size
of these models has been shown to
confer various benefits, such as im-
proved model prediction performance
and sample efficiency |Chung et al.
(2022); Howard and Ruder| (2018);
Wei et al.|(2023). The conventional Figure 1: The normalized energy consumption relative to
paradigm is to pre-train large-scale full-tuning on GLUE tasks.

models on generic web-scale data and

fine-tune the models to downstream tasks. However, fine-tuning these models has become pro-
hibitively expensive.
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Since 2018, the model size has increased by almost two orders of magnitude faster than GPU
memory |Lialin et al.|(2023), resulting in prohibitively high cost to advance Al technologies|Wu
et al.|(2022). Only a few well-funded institutions have the resources to fine-tune these models.
Parameter-efficient transfer learning (PETL)|Aghajanyan et al.|(2020);|Houlsby et al.|{(2019);|Hu
et al.|(2021); Karimi1 Mahabadi et al.|(2021);|Lester et al.| (2021b); |L1 and Liang|(2021);|Zaken
et al.|(2022) has emerged as a promising solution to overcome the challenges of full fine-tuning.
Parameter-efficient transfer learning techniques aim to address these challenges by leveraging smaller
and more task-specific models to efficiently adapt the pre-trained model’s parameters to the target
task.
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However, all these methods either come with additional inference latency [Houlsby et al.|(2019)) or
reduces only a small amount of memory requirement during training — the primary motivation of
PETL. Figure|l|illustrates that parameter-efficient methods, while tuning only a small percentage of
the overall parameters, still consume significant energy to fine-fine. Since the updated parameters are
inside the backbone language models, to calculate gradients for these parameters for backpropagation,
PETL methods need to run the backward pass through the sizeable pre-trained language models.
This prevents PETL methods from being applied to many real-world applications with limited
computational resources.

Recent works of Side-Tuning|Zhang et al.|(2020a) and Ladder-Side Tuning (LST)|Sung et al.[(2022)
propose to use a side network that takes intermediate activations from the backbone networks to
reduce the need to backpropagate through the large backbone layer. It thus reduces training memory
requirement. However, both Side-Tuning and LST have significant drawbacks. In Side-Tuning, the
side network only consumes the original inputs, leaving the informative intermediate results from the
backbone unused. LST overcomes this problem by using a side Transformer. However, Transformers
are challenging to train|Liu et al.[{(2020). Moreover, LST requires an extra pretraining stage to extract
a sub-Transformer from the backbone and use it to initialize the side network, increasing the cost of
fine-tuning. Additionally, the size of the side-Transformer and the backbone increase, making this
approach hard to scale (Figure.

To overcome these challenges, we introduce REcurrent ADaption (READ), a lightweight parameter
and memory efficient fine-tune method that inserts a small RNN network to the side backbone model.
We show that READ can achieve comparable model quality to fine-tuning while saving more than
84% on energy consumption.

Our contributions The key contributions of this work are summarized as follows:
* We overcome the limitations of PETL and side-tuning methods by proposing REcurrent

ADaptation (READ), a simple yet effective side-tuning design that requires no pretraining
of the side network — a prerequisite of prior side-tuning techniques.

* We conduct thorough experiments on various NLP benchmarks, showcasing the strong
performance and high efficiency of READ. On the GLUE benchmark, READ achieves
competitive accuracy compared to a range of fine-tuning approaches while reducing the
model training memory consumption by 56% and GPU energy usage by 84% relative to
full-tuning (Figure, at almost no costs of inference latency and memory (Figure@).

* We demonstrate that READ is a highly scalable solution to fine-tune large transformers and
is independent of the backbone model size (Figure.

* We provide theoretical justification on why READ utilizes the backbone hidden state to
perform side-tuning (Section|2.1).

2 BREAKING DOWN RECURRENT ADAPTATION (READ)

2.1 WHATI1s READ?

Figure demonstrates the mechanism of READ fine-tuning on an encoder-decoder transformer
backbone 7. We freeze 7 throughout training, and initialize a trainable neural network named READ
at both encoder and decoder. The major component of READ is a standard RNN, together with a
Joiner network where multiple sources of information join to produce the inputs for RNN. During a
forward pass, we first run through 7 independently from READ, and cache necessary intermediate
results at every transformer layer. Next, we iteratively compute the RNN hidden states at encoder and
then decoder. Lastly, we add the outputs of RNN and 7 to obtain the new final state.

We summarize the following key properties of the proposed READ network as follows:
* Forward pass is completely separated from the backbone 7. This way, backward propagation

will never flow through 7, hence reducing the training memory needed for caching non-
linear activations of 7 [Sung et al.|(2022).
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Figure 2: Comparing READ and other fine-tuning methods over GLUE tasks on training energy
and peak training memory relative to full-tuning. The y-axis is the average metric over 7 GLUE
tasks. (left) The x-axis is the cumulative training energy in KWh. (right) The x-axis is the GPU peak
training memory during training.
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Figure 3: READ Fine-Tuning Mechanism.

* Only RNNs and feed-forward networks (FFNs) are involved, with no attention mechanism.
This improves usability and training efficiency because it requires no pre-training or pruning.
READ is ready to be plugged and used.

* Because of the recurrent nature of READ, the number of trainable parameters does not
increase with backbone layers. The number of trainable model parameters grows sub-linearly
along with the backbone size.

» Consumes without modifying the intermediate results from backbone

!One advantage, which is beyond the scope of this paper, is that we can multi-task with multiple READ
networks but only needs one pass through the backbone, reducing training costs and inference time.
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2.2 How DOES READ WORK?

Let us begin by understanding what READ actually learns. To simplify our terminologies, let
Ly, -+, Ly be transformer layers in the backbone 7, and ¢; = (¢}, - - - , ¢) be the output hidden
states at £, for given inputs X of length m. Many fine-tuning methods directly modify ¢;, either
through updating the backbone weights, such as full tuning and partial tuning, or via injecting
learnable parameters into the middle of the backbone, like Adapter, LoORA, Prompt tuning, etc. On

the other hand, READ learns the correction to ¢; needed for a new task.

Definition 2.1 (Correction). Let T’ be a perturbation of 7, and ¢ be the hidden states at layer £} of
T'. We define ¢} — ¢; to be a correction to ¢;, and denote it by §¢;.

+6, ’
¢ bi
L c
+6¢,_
d)i -1 1 d);—l

Figure 4: Commuting diagram for correction.

By Deﬁnition the diagram in Figure commutes. Indeed, we will show under appropriate
assumptions that if 7 is a fine-tuned (e.g. with Adapter or LoRA) version of 7T, then the following
equation systems gives the first order approximation h; of the true correction 6 ¢;:

U= @i Ry + Y5 0] Fh
{I?,‘ix = [¢§‘T7¢?T]T (1)
he = Gi(Miad + hey)

fora=1,---, Here, o' A and ¢ are cached attention scores and hidden states, F;, G;, H; are
(non-linear) transformations on R?, and ®;, ¥; are matrix-valued linear functions taking only cached
values from £;. Most importantly, (1) does not involve attention mechanism, as all operations only
act on the column space of ¢. The major step of deriving (1) is to extract an inductive formula for the
corrections )¢ from the following identity, an equivalent form of Figure

Li($pi—1) +6¢i = Li(di—1 + 0i—1). )

We leave the math details to Appendix

In practice, we rely on a neural network — READ — to model the equation system (1) (i.e. Figure
3), which

* uses a simple Joiner network (combining the first two equations of|1)) to compute x;; we
substitute F;, G;, H;, ®;, ¥, in with either FFNSs or linear layers and fuse the learnable
parameters across all indices is for parameter efficiency and scalability;

* adopts RNN to model the last equation of @

Layer normalization is omitted as READ uses already normalized hidden states. The down-projection
matrix connects the transformer’s outputs to the RNN’s inputs and is within the RNN. The RNN’s
outputs are up-projected and added to the backbone’s last hidden state (see Algorithm 1). The final
loss function is cross-entropy between logits and gold labels. For further modeling details in READ
experiments and a comprehensive forward algorithm of READ, refer to Appendixand

The equation system (I} only applies to self-attention, and we will derive a similar formula for decoder
where cross-attention is present in Appendix
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3 EXPERIMENT SETUP

3.1 BASELINE AND OTHER STATE-OF-THE-ART DESIGNS

We compare READ against full tuning and other commonly-used PETL methods.
Full tuning is not an efficient fine-tuning method but serves as a strong baseline for performance.
BitFit Ben-Zaken et al.|(2021) tunes only bias terms of the model during training.

Prompt-tuning|Lester et al. (2021a) inserts trainable prompt vectors to the inputs’ embedding
vectors.

AdaptersHoulsby et al.|(2019) appends a small residual MLP after every attention and feed-forward
layer. We experiment with the sequential adapter version by|Houlsby et al.|(2019).

LoRA Hu et al.|(2021) inserts trainable low-rank matrices into each layer of the backbone Trans-
former model to parameterize the weights’ changes.

LST|Sung et al.|(2022) hierarchically adds multiple side networks, with each side network responsible
for modulating the activations of a specific layer in the pre-trained model.

For all PETL methods and READ, we keep the backbone transformer frozen throughout the training
and only update the new parameters.

3.2 DATASETS

We evaluate READ and the baselines on the GLUE |Wang et al.|(2018) benchmarks. These benchmarks
cover a variety of NLP tasks, including linguistic acceptability (CoLA |Warstadt et al.| (2018)),
paraphrase detection (MRPC|Dolan and Brockett|(2005), QQP|Chen et al.|{(2017), STS-B|Cer et al.
(2017)), natural language inference (MNLI|Williams et al. (2017), QNLI|Rajpurkar et al.|(2016)),
and sentiment classification (SST-Zﬂ In GLUE, the original test set labels are not publicly available.
Instead, we follow Zhang et al.|(2020b) and |Karimi Mahabadi et al.|(2021) to create a test set for
each task as follows: if the training set contains less than 10k samples, we equally split the original
validation set into two subsets and treat them as new validation and test sets; otherwise, we use the
original validation set as the test set, and split 1k from the training set as the new validation set. For
MNLI, we use the mismatched set as the validation set and the matched set as the test set. We report
the dataset sizes in Appendix|C.2]

3.3 MODEL SPECIFICATION AND EXPERIMENTAL DETAILS

We adopt the encoder-decoder T5 Raffel et al.|(2019) model as our backbone transformer. We
use T5pasg for all of our experiments, and also use TS5 argg for READ experiments, which we
denote by READ-large. We perform fine-tuning on each dataset for up to 30 epochs and do an
early stop once validation metric stops improving. For READ, we experiment with {128,256} as
RNN hidden dimensions, {RNN, LSTM, GRU} as RNN architectures. For PETL baselines, we
experiment with {32, 64} as Adapters’ bottleneck sizes, {8, 32} as LoRA’s ranks, and {10, 20, 30}
as Prompt-tuning’s prompt sizes. For all experiments, we conduct a grid search for learning rates in
between [1 x 1075, 3 x 10~2] on log scale for up to 32 rounds. We choose the hyperparameters that
achieve the best validation scores and report their test scores. Complete setup and hyperparameters

detail are in Appendix

3.4 ENERGY CONSUMPTION MEASUREMENT

Higher training efficiency translates to lower energy consumption. To demonstrate the training
efficiency benefit of READ, we measure and report the training GPU energy consumption (in kWh)
for every experiment. We adopt the following commonly-used methodology to measure and estimate
the model training energy consumption. We take the GPU resource utilization into account when
computing the corresponding energy consumption by assuming a simple linear relationship between
GPU utilization and its power consumption. Assume a training experiment endures H hours on

3We exclude RTE from GLUE due to its small size compared to other tasks
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GPUs, with power consumption of py kW, at the GPU utilization level (summed over all GPU nodes)
u(t) (in percent). Then the total energy consumption (in kWh) is given by

) B I Po

In practice, we sample u(t) at the granularity of minutes throughout training using NVIDIA’s System

Management Interface (smi). We then calculate its cumulative sum U = 2?211{ u;, thereby we can
approximate the right hand side of Equation (3) by

60H
H‘M.&:ﬁ. Po )
60H 100 6000

When reporting the energy consumption analysis for READ and other designs (see Section , we
use pg = 0.25 kW for a NVIDIA V100 32 GB GPUfor Equation (4).

4 EVALUATION RESULTS

We train and evaluate each method on all the GLUE tasks. We take the cumulative energy consumption
and measure the peak GPU during training. In this section, we report and analyze the results on the
GLUE Benchmarks. Every method other than READ in this Section is not memory-efficient, and we
postpone the comparison with LST to Appendix ?? due to its memory-efficient nature.

READ outperforms other methods while consuming significantly lower energy: Figure (left)
shows that READ can reduce GPU energy consumption by up to 90% compared to full-tuning.
READ lowers the GPU memory footprint by 56% while retaining the same model accuracy when
retraining. While other parameter-efficient transfer learning (PETL) methods like LoRA, BitFit or
Adapter reduce the number of trainable parameters, they do not reduce the compute cost required to
fine-tune. We believe the underlying optimization objective for PETL is to reduce this compute cost.
Table[T]|shows the performance of all methods on GLUE with TSBASE. Excluding Adapter, READ
outperforms all parameter-efficient methods while consuming at least 68% less energy. Compared
to Adapter, READ achieves nearly the same model accuracy (less than 0.1% lower) while using
70% less energy. More interestingly, READ with TSLARGE (i.e. READ-large) achieves better
performance than all other methods and consumes similar or less energy compared to other methods.
For example, READ-large outperforms Full-tuning and Adapter by 1.4% and 0.8% with 69% and 5%
less energy, respectively. These results show that by using READ, we can scale up the model size
while keeping the same hardware and memory constraints.

READ consumes less training memory: Figure (right) shows the design space trade-off between
model quality performance and memory footprint. READ improves the training memory requirement
by at least 25% compared to all the other baselines while achieving similar or better performance.
READ with T5; arge consumes similar amount of memory as full-tuning with T5gasg. As the
backbone size increases, the memory savings achieved by READ become increasingly significant in
comparison to the other PETL methods, as depicted in Figure(right). Notably, at the T535 backbone
level, these savings reach as high as 43%. This observation suggests that READ is remarkably
effective in the regime of fine tuning large Transformers.

READ is scalable: As shown in Figure (left), the number of trainable parameters of READ scale
more slowly as compared to the other PETL methods. READ’s number of parameters exhibits a
log-linear growth pattern as the TS backbone model size increases. In fact, the recurrent nature of
READ makes its tunable size independent from the number of backbone layers, making READ a
more suitable choice for fine-tuning large Transformers in practice.

READ achieves competitive inference latency and memory efficiency: As Figure [6](left) and
Tableindicate, READ achieves comparable inference latency and memory requirement as the other
PETL methods. To assess the inference memory impact of READ more comprehensively, we use
Figure [6](right) to demonstrate that, as the backbone size increases, the inference memory growth
(relative to Full-tuning) of READ becomes less noticeable and decays to a similar extent as the other
methods at T5; ArRGE.

4250W comes from the datasheet on NVIDIA’s website
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Table 1: Performance and energy consumption results of all methods on GLUE tasks. We report the
accuracy for SST-2, MNLI, QNLI, and Matthew’s Correlation for CoLA. For STS-B we report the
average of Pearson correlation and Spearman correlation. For MRPC and QQP, we report the average
of F1 score and accuracy. For all tasks, we report the average score on 3 different seeds. Bold fonts
indicate the best results of that column.

Trainable |Power Energy
Method Params (%) | (kW) (kWh) CoLA MNLI QNLI MRPC QQP SST-2 STS-B| Avg.
Baselines
Full-tuning 100 0.77 1252 | 53.97 86.17 90.87 86.88 89.71 92.89 88.19 |84.52
Adapter 0.96 0.50 699 |52.56 85.68 92.89 87.84 8895 93.12 87.51 |85.04
LoRA 0.48 0.68 10.58 | 51.70 85.20 92.72 88.07 88.92 93.46 86.97 |84.89
BitFit 0.06 047 7.68 |50.92 8528 92.58 86.32 838.70 94.15 86.94 |84.43
Prompt-tuning 0.01 0.50 6.45 |[4271 79.38 91.73 86.04 88.74 93.12 84.96 |82.38
LST 2.00 0.44 10.59 | 53.38 84.53 9243 87.38 88.31 92.09 87.37 |84.58
Our method
READ 0.80 043 2.06 |52.59 85.25 9293 87.09 89.10 93.80 87.77 |84.97
READ-large 0.32 0.62 6.62 |54.05 87.29 93.68 87.70 89.34 93.92 88.58 |85.73
Table 2: READ with and without recurrency
Method CoLA MNLI QNLI MRPC QQP SST-2 STS-B Avg. Trainable Params (%)
READ (with Recurrency) 5259 8525 9293 87.09 89.10 93.80 87.77 84.97 0.8
READ (w/o. Recurrency) 5324 84.10 91.51 89.02 89.18 94.04 87.10 85.15 9.6
READ-large (with Recurrency) 54.05 8729 93.68 87.70 89.34 9392 88.58 85.73 0.32
READ-large (w/o Recurrency)  50.17  86.90 93.00 87.61 89.12 94.15 8746 85.02 6.4

The importance of recurrency We perform ablation analysis on the importance of recurrence in
READ in Table We find that the removal of recurrence does not significantly enhance READ
quality and even diminishes quality for the TS5 large backbone. However, without recurrence leads to
over 12 times more trainable parameters, compromising scalability.

Comparison with Ladder-Side-Tuning (LST) We compare our methods with Ladder-Side-Tuning
(LST), another memory efficient fine-tuning approach |Sung et al.|(2022). We follow the pruning
method introduced in|Sung et al.|(2022) to extract a smaller transformer from the backbone trans-
former and use it to initialize the side transformer, and re-implement LST. Table ?? lists the results of
LST (using T5gasg) on GLUE benchmarks and its energy efficiency.The results indicate that READ
(base) outperforms LST (base) on most tasks (except for a tiny task MRPC), using 80% less energy
consumption and 60% less trainable parameters. While LST consumes 15% less peak training
memory relative to READ, it takes 40% more inference memory and 77% longer inference time
than READ, a consequence of its attention-based side-network architecture. It is also noteworthy
that when compared to LST even READ-large saves 38% GPU energy and yields a similar inference
latency, with 1.4% relative gain on the averaged GLUE score. Furthermore, the "pre-training stage"
refers to the process described in LST paper section 2.2, where distillation is performed with T5
pre-training objective. It is important to note that caching the attention outputs does not involve
updating any model parameters and should not be considered as a form of training.

Table 3: Average inference memory consumption (GB) for every method with different backbones on
GLUE benchmark.

READ LST  Adapter LoRA Prompt Bias Full

TS5smaL 0317  0.427 0.303 0.302 0.301 0.301  0.300
T5gAsE 0.966 1.358 0.952 0.948 0.948 0.945  0.943
TS5iarce 2943 4.597 2.936 2.925 2.925 2914 2912

T53p 10.885 11.400 10.878 10.866 10.894 10.855 10.853
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Figure 6: (left) Inference latency as backbone model size increases. (right) Inference memory growth
(relative to full-tuning) in percentage as backbone model size increases (all methods have very similar
inference memory and we have to use a percentage plot to distinguish them). In both figures, we use

TSSMALL, T5BASE7 TSLARGEa and T53B as backbones.

5 RELATED WORK

Parameter-efficient Transfer Learning. There has been an explosion of generative Al applications

in recent months|Biderman et al.|(2023); [Rombach et al.| (2022); [Touvron et al.|(2023);|Wei et al.|

(2021). However, the ability to fine-tune large transformers is primarily limited by the growing
compute cost required to adapt and serve these models. Parameter-efficient transfer learning (PETL)

|Aghajanyan et al.|(2020); Houlsby et al.|(2019);|Lester et al.| (2021b); Li and Liang|(2021); Lialin et al.
(2022

(2023);/Sung et al.|(2022);|Zaken et al.|

aims to solve this problem by training only a small set

of parameters. There are many PETL methods which we defer the reader to|Lialin et al.|(2023) for a
more comprehensive overview. In this section, we will summarize the most popular PETL methods

which we used as baselines. Adapter-based approachesHe et al.|(2021);[Houlsby et al.|(2019) insert

small learnable modules between pre-trained model layers and only update these adapters during
fine-tuning, reducing computational cost and memory requirements. Low-Rank Adaptation (LoRA)
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Hu et al.|(2021) injects trainable rank decomposition matrices into each layer of the Transformer
model. BitFit|Zaken et al.|(2022) fine-tunes only the biases of the model. Prompt-tuning|Lester et al.
(2021b) is a successor of Prefix-Tuning|Li and Liang|(2021), which adds a continuous task-specific
prompt to the input. In contrast, current PETL approaches aim to minimize the number of parameters
trained. These approaches do not lead to memory efficiency, a more meaningful objective than
parameter efficiency. This work proposes READ, simple memory-efficient methods by inserting a
small recurrent network into the backbone.

Memory-Efficient Training. Memory-efficient training reduces memory consumption by reducing
the storage of intermediate activations Sung et al.|(2022). Gradient checkpointing|Chen et al.| (2016)
reduces memory consumption during backpropagation by storing a subset of intermediate activations
and recomputing them as needed, trading time for memory. Reversible layers/ Gomez et al.|(2017)
reconstruct each layer’s activations from the next layer’s activations. ZeRO [Rajbhandari et al.[(2020)
partitions model states, gradients, and optimizer states across multiple devices for distributed training,
significantly reducing memory redundancy. Layer-wise Adaptive Rate Scaling (LARS)|You et al.
(2017) dynamically scales learning rates for different layers, reducing memory overhead associated
with large gradients and enabling the training of large models with limited memory.

Sidenet Tuning. Side-tuning|Zhang et al.|(2020a) adds a lightweight side network alongside the
pre-trained model. During training, the side network and the task-specific head are updated while the
pre-trained model’s parameters are kept fixed. The side network learns to modulate the pre-trained
model’s activations, allowing it to adapt to the new task without altering the base model. Ladder
side-tuning |Sung et al.|(2022) hierarchically adds multiple side networks, with each side network
responsible for modulating the activations of a specific layer in the pre-trained model. While READ
takes inspiration from Side-Tuning and LST, we would like to highlight significant differences
between READ and prior works. First, READ only contains a single RNN block which takes in the
hidden state of the backbone network in a recurrent manner. This way, the number of parameters to
fine-tune does not increase with the size of the backbone, whereas LST attaches multiple transformer
blocks to the backbone network. When the backbone gets larger, the size of the LST network also
gets larger. Secondly, Side-Tuning uses an additive side network to sum its representation with the
backbone network in only the last layer. READ consumes the backbone’s hidden state at every
layer to iteratively calculate its RNN states. The recurrence nature of RNN allows information to
flow from one layer to the next, which is why READ outperforms other PETL methods. Last, our
fine-tuning is transformer-free as only RNN and Feed-Forward Network (FNN) structures are used
in READ and require no transformer or attention mechanism. We may use a randomly initialized
READ network without going through pre-training like in LST or exploiting any subtle tricks for
training a transformer.

6 CONCLUSION AND LIMITATIONS

Limitations. Due to our limited computing resources, we could not scale the backbone to an even
larger scale. A future direction is to fine-tune READ on Llama-7B [Touvron et al.|(2023) or even
larger variants. Another direction can be studied if READ can generalize well in a low-data regime.
A drawback of READ is its tendency to require more epochs to converge on small datasets than
other PETL methods. Consequently, although READ is more efficient in per-unit time computations,
it may not yield significant overall consumption gains when a task has few data points. We leave
investigating READ on the low-data regime as future work.

Conclusion. In this paper, we propose REcurrent ADaption (READ), a lightweight and efficient pa-
rameter and memory-efficient fine-tuning method, for large-scale transformers. We show that READ
achieves comparable accuracy to full fine-tuning while saving more than 84% of energy consumption
and reducing training memory consumption by 56% relative to full-tuning. We demonstrate the
scalability of READ because READ is independent of backbone model size. We hope that READ can
make fine-tuning large models more accessible to a broader range of researchers and applications.
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