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ABSTRACT

Adversarial robustness has become a major concern as machine learning models
are increasingly deployed in security-sensitive applications. Evaluating adversar-
ial robustness remains a challenging task, as current metrics are heavily affected
by various factors, including attack methods, attack intensities, and model ar-
chitecture. In this paper, we propose Steady and Fair Robustness Evaluation, a
novel framework designed to mitigate the impact of these factors and provide a
more stable evaluation of a model’s robustness. Our key insight is based on the
strong correlation between the standard deviation (SD) of Shapley values, which
measures the importance of individual neurons, and adversarial robustness. We
demonstrate that models with lower SD of Shapley values are more robust to ad-
versarial attacks, regardless of the attack method or model architecture. Extensive
experiments across various models, training objectives, and attack scenarios show
that our approach offers more consistent and interpretable robustness evaluation.
We further introduce a new training strategy that incorporates the minimization of
the SD of Shapley values for improving the robustness of the model. Our findings
suggest that analysis based on Shapley value can provide a principled and efficient
alternative to conventional robustness evaluation techniques.

1 INTRODUCTION

Adversarial robustness, the ability of machine learning models to resist adversarial attacks, has
become increasingly crucial as deep learning is applied in security-sensitive domains. Numerous
defense mechanisms have been developed to address adversarial vulnerabilities, yet the evaluation of
these defenses remains limited in assessing accuracy (Wang et al., 2019; Rade & Moosavi-Dezfooli,
2022; Xu et al., 2023; Sehwag et al., 2020). While adversarial accuracy provides valuable insights
when comparing models on the same attack method or the same architecture, it can introduce a
bias towards the specific adversarial attacks used in the evaluation. To avoid this issue, a model
needs to be tested against various adversarial attacks to evaluate its robustness. However, while
this evaluation strategy that tests the adversarial accuracy of the network across multiple adversarial
attacks can verify the robustness of the model, it sometimes leads to confusion.
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Figure 1: The performance of 11 defense strate-
gies under three adversarial attack methods. It
shows that the rank of models for adversarial ro-
bustness is highly dependent on the adversarial
attack.

Different adversarial attacks leverage different
mechanisms to fool neural networks (Madry,
2018; Croce & Hein, 2020; Carlini & Wagner,
2017), which leads the models to show varying
adversarial accuracy depending on the specific at-
tack. This raises a fundamental question: Which
adversarial attacks should we trust for a fair eval-
uation?

Many studies (Wang et al., 2019; Rade &
Moosavi-Dezfooli, 2022; Xu et al., 2023; Sehwag
et al., 2020) assess adversarial accuracy through
extensive experiments using various attack strate-
gies, which are complex and time-consuming.
Also, Figure 1 demonstrates that evaluation re-
lying on various attack strategies can lead to un-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

stable or sometimes inaccurate order for defense strategies. Figure 1 shows the performance of 11
different defense algorithms (Zhang et al., 2021a; Wang et al., 2019; Gowal et al., 2021; Pang et al.,
2022; Rade & Moosavi-Dezfooli, 2022; Xu et al., 2023; Wu et al., 2020; Sridhar et al., 2022; Car-
mon et al., 2019; Wang et al., 2023; Sehwag et al., 2020) under PGD (Madry, 2018), CW (Carlini
& Wagner, 2017), and AutoAttack (Croce & Hein, 2020). It shows that current adversarial accuracy
highly depends on the types of adversarial attacks. On PGD and AutoAttack, Difusion-augmented
AT (Wang et al., 2023) shows the highest performance among the compared methods. However, it
shows vulnerability to CW attack, allowing it to be surpassed by DyART (Xu et al., 2023). On PGD
and CW, DyART demonstrates a performance advantage over IRUGD (Gowal et al., 2021), with a
gap exceeding 4%. However, when evaluated using AutoAttack, this difference shrinks to less than
0.5%. This discrepancy complicates the assessment of the models’ adversarial robustness.

To address this challenge, we propose a Steady and Fair Robustness evaluation framework (SF Ro-
bustness) that does not rely on types of adversarial attacks or the architecture of the model. The
fundamental idea of SF robustness is that the model is adversarially vulnerable if it heavily relies
on a few predictive neurons for its decisions (i.e., the importance score of individual neurons is
unevenly distributed such that only a small number of predictive neurons score high importance
while the majority of neurons are regarded redundant), and the model is adversarially robust if it
makes use of its internal neuron altogether (i.e., the importance score of internal neurons are evenly
distributed). In this paper, we provide a theoretical demonstration of this relationship and experi-
mental results supporting this tendency across a wide range of networks on different architectures
on various datasets.

Based on this, we assess the robustness of models by examining the importance scores of internal
neurons. Specifically, the reliance of the model on a few predictive neurons is reflected in the distri-
bution of the importance score of each neuron. In this work, we adopt the Shapley value (Shapley,
1997; Kuhn & Tucker, 1953; Lundberg & Su-In, 2017; Sundararajan & Najmi, 2020) to measure the
importance of internal neurons. Shapely value is a concept from Game Theory, which evaluates each
property’s individual and combining effects (Shapley, 1997; Kuhn & Tucker, 1953; Lundberg & Su-
In, 2017; Sundararajan & Najmi, 2020). However, calculating the Shapley value in a neural network
by definition is almost impossible due to the computational complexity. SF Robustness leverages
Taylor approximation of the Shapley value introduced in Khakzar et al. (2021). By examining the
distribution of the Shapley value, we can interpret the model’s reliance on important neurons, which
gives an important hint for evaluating the adversarial robustness of a neural network.

Section 2.1 provides a theoretical foundation for the correlation between adversarial robustness and
Shapley value. In Section 2.2, we empirically demonstrate this correlation. Based on our analysis in
Section 2, we introduce SF robustness in Section 3. In Section 4, we present extensive experiments
to demonstrate a correlation between the SF Robustness and the performance of various defense
strategies. Additionally, Section 5 discusses the relation between SF robustness and the performance
of various models trained with data augmentation strategies under a one-step adversarial attack. In
summary, our key contributions are:

• We establish a strong correlation between the standard deviation of Shapley values and
adversarial robustness.

• We demonstrate that the standard deviation of Shapley values can be used as a proxy for
evaluating adversarial robustness without relying on complex attacks. This gives an ad-
vantage for stable evaluation of adversarial robustness, which was varied by the attack
selection.

• We introduce a novel add-on defense strategy that optimizes the standard deviation of Shap-
ley values, achieving competitive performance with baseline defense methods.

2 ANALYSIS OF ADVERSARIAL ROBUSTNESS AND SHAPLEY VALUE

2.1 THEORATICAL ANALYSIS BETWEEN ROBUSTNESS AND SHAPLEY VALUE

Let ali, w
l
i, b

l
i denote the activation, weight, bias of a neuron i in layer l, respectively. f denotes the

activation function. Then, the activation can be calculated as

ali = f(zli), (1)
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where, zli = wl
i · a

l−1
i + bli denotes pre-activated feature of neuron i in layer l. The change in the

activation of a neuron to adversarial perturbation can be written as

∆ali = ali(x
adv)− ali(x). (2)

Adversarial training aims to reduce the Eq. 2 during training time. Since the adversarial perturbation
δ is small, we can approximate the change in ali using a first-order Taylor expansion around x. The
first-order approximation of the change in activation is given by

∆ali ≈
∂ali
∂x

· δ. (3)

Let L as the final layer of the model (i.e., classification layer), first-order Taylor approximation of
the penultimate layer Shapley value sL−1

i can be written as

SL−1
i ≈ aL−1

i ∇aL−1
i

f(Zl
i). (4)

From Eq. 1, Eq. 4 can be written as follows:

SL−1
i ≈ aL−1

i ∇aL−1
i

aLi , (5)

SL−1
i ≈ aL−1

i · ∂aLi
∂aL−1

i

. (6)

From Eq. 3, activation difference in last layer L is:

∂aLi
∂x

≈ ∆aLi · 1
δ
. (7)

By using the chain rule,
∂aLi
∂x

=
∂aLi

∂aL−1
i

· ∂a
L−1
i

∂x
. (8)

From Eq. 6,
∂aLi

∂aL−1
i

≈ SL−1
i

aL−1
i

. (9)

Then, Eq. 8 can be written as follows:

∆aLi · ≈ SL−1
i · δ

aL−1
i

· ∂a
L−1
i

∂x
. (10)

It can be interpreted that neurons with higher Shapley values experience larger changes in activation
due to adversarial perturbations.

Eq. 10 indicates that minimizing SL−1
i can achieve less activation difference, referring to more

adversarial robustness. However, the total Shapley value of a layer cannot be zero due to the nature
of the Shapley value. Zero Shapely value means zero contribution to the output, which cannot
happen in the neural network’s layer unless it returns the same value to the next layer. Consequently,
in the robust model, the importance of individual neurons should be more evenly distributed, with
Shapley values clustering closer to zero. This reduces the model’s reliance on any single neuron,
making it more robust to adversarial attacks.

2.2 EMPIRICAL ANALYSIS BETWEEN ROBUSTNESS AND SHAPLEY VALUE

In standard training (i.e., training with non-adversarial inputs), models often rely on specific neurons
that are highly predictive (Ilyas et al., 2019). Also, recent studies showed robust and non-robust
features in the model contribute to the model’s robustness (Ilyas et al., 2019; Kim et al., 2021).
White-box attacks exploit this reliance by targeting these non-robust feature neurons to compromise
the model’s performance.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) ST - FGSM (b) ST - PGD

(c) AT - FGSM (d) AT - PGD

Figure 2: Comparison between the standard trained (ST) model and adversarial trained (AT)
model (Wang et al., 2019). We computed the activation difference between the clean and adver-
sarial samples generated by FGSM and PGD. The neurons are sorted based on Shapley value in
descending order. Important neurons (i.e., neurons with high Shapley value) in ST models are much
more targeted for adversarial attacks than those of AT models.

Accordingly, we analyze what happens in standard training. In a standard trained model, some
neurons (i.e., non-robust neurons) might respond extremely to adversarial perturbations, causing
ali(x

adv) to be far from ali(x). On the other hand, other neurons (i.e., robust neurons) might respond
weakly or be unaffected by adversarial perturbation.

Figure 2 illustrates the activation differences in the penultimate layer of standard-trained models
and adversarially trained models, denoted by ST and AT, respectively. In standard trained models,
neurons with high importance (i.e., neurons with high Shapley values) show larger activation differ-
ences under adversarial attack. The result matches the correlation between the Shapley value and
activation difference in Eq. 10, also suggesting that white-box adversarial attacks target important
neurons more. This results in large variations in neuron activations across entire neurons because
some neurons exhibit significant changes in activation while others show little to no change. This
variability contributes to a higher standard deviation of Shaple value across neurons.

In contrast, neurons of adversarially trained models show smaller changes in activation under adver-
sarial attack, which leads to more consistent activations across neurons when comparing the clean
and adversarial inputs. In other words, the activations across neurons become more uniform, which
directly reduces the standard deviation of the neuron activations across i. This means that in ad-
versarial training, the model shifts away from over-relying on a few important neurons and instead
distributes its focus across a broader set of neurons that are more stable under adversarial perturba-
tions. Consequently, the importance of individual neurons in adversarially trained models is more
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(a) FGSM (b) PGD

(c) CW (d) Autoattack

Figure 3: SF robustness and accuracy drop of various defense methods. We display two differ-
ent architectures, WRN28-10 and WRN34-10, in the CIFAR-10 dataset with 21 different defense
strategies. Accuracy drop computed on four different attacks (FGSM (Goodfellow et al., 2015),
CW (Carlini & Wagner, 2017), PGD (Madry, 2018), and AutoAttack (Croce & Hein, 2020)). 28
and 34 refers model architecture, WRN28-10 and WRN34-10, respectively.

evenly distributed, with Shapley values clustering closer to zero. This balance reduces the model’s
reliance on any single neuron, making it more robust to adversarial attacks.

3 SF ROBUSTNESS

Let target model g, input x ∈ Dtrain, the number of images in Dtrain as n, Taylor approximation of
Shapley value for i-th neuron in the penultimate layer cLi (x) is calculated as

cL−1
i (x) = aL−1

i ∇aL−1
i

g(x). (11)

However, cL−1
i (x) can only capture the Shapley value of a single input. We calculate the average of

the Shapley value over the training set to interpret the global response of the target model. A global
Shapley value CL−1

i can be defined as

CL−1
i =

1

n

∑
x∈Dtrain

(cL−1
i (x)). (12)

Note that the global Shapley value is calculated only with the clean sample. From the calculated
global Shapley value CL

i , SF Robustness of a model g is calculated as follows:

SF(g) =

√∑k
i=1(C

L−1
i −m)2

k
, (13)

where k denotes the number of neurons in a penultimate layer of the target model, and m denotes
the mean of the global Shapley values CL−1 = {CL−1

1 , CL−1
2 , · · · , CL−1

k }.
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(a) CIFAR-100 (b) ImageNet

Figure 4: SF Robustness and accuracy drop calculated from various defense methods. In (a), we
display two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100 dataset with 13
different defense strategies. 28 and 34 refers model architecture, WRN28-10 and WRN34-10, re-
spectively. In (b), we show ResNet50 and ViT-B in the ImageNet dataset, with four different defense
strategies. Accuracy drop is computed as an average drop from four different attacks (FGSM (Good-
fellow et al., 2015), CW (Carlini & Wagner, 2017), PGD (Madry, 2018), and AutoAttack (Croce &
Hein, 2020)).

4 EXPERIMENTS

In this section, we assess various adversarially trained models by evaluating their SF Robustness
and adversarial accuracy on CIFAR-10, CIFAR-100, and ImageNet. We define accuracy drop
∆Acc = 1 − adv acc

clean acc as the ratio of the adversarial performance (adv acc) compared to the clean
sample performance (clean acc). Accuracy drop assesses the amount of performance drop due to
the adversarial attack by considering the original clean sample performance.

For this study, we leverage a total of 38 available pre-trained weights for WRN28-10 and WRN34-
10 trained on CIFAR-10, CIFAR-100, and ResNet50, ViT-B trained on ImageNet released by Croce
et al. (2021). Detailed information on pre-trained models is provided in Appendix A.3.1. Through-
out the experiments, we have found a strong correlation between SF Robustness and the adversarial
robustness of the model. This indicates SF robustness can serve as a powerful metric for evaluating
adversarial robustness within different architectures and defense strategies.

4.1 MODEL COMPARISON BASED ON SF ROBUSTNESS

4.1.1 EVALUATION ON CIFAR BENCHMARK

CIFAR-10. In Figure 3, we evaluated the effectiveness of SF Robustness regarding the four differ-
ent attacks: FGSM, PGD, CW, and AutoAttack. Enlarged figures are provided in Appendix A.3.2.
On CIFAR-10, we used two model architectures (WRN28-10 and WRN34-10) with 21 different
defense strategies. Detailed information on pre-trained weights is provided in Appendix A.3.1. The
X-axis of the figure illustrates the accuracy drop rate. Lower values on this axis correspond to mod-
els with higher robustness. The Y-axis of the figure is SF Robustness (i.e., the standard deviation of
the Shapley values), and the lower value indicates a smaller standard deviation (SD) of the Shapley
values. Red series colors indicate WRN28-10 models and blue series colors indicate WRN34-10
models. Experimental results showed that models with low SF robustness tend to score high adver-
sarial robustness on all four attack methods. Despite figure 3 displaying different architectures in one
figure, it still shows a strong correlation between the SF Robustness and the adversarial robustness
of the model.

Overall, we can observe a positive correlation between SF robustness and adversarial robustness
(i.e., a model with a low SF robustness tends to be more robust to adversarial attacks). This tendency
suggests that SF robustness can function as a proxy metric to evaluate the adversarial robustness of
the networks without relying on the choice of adversarial attack.
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Table 1: Base loss for PGDAT and MART. CE and BCE denote cross-entropy and boosted cross-
entropy loss, respectively. x is clean example, x′ is adversarial example, and y is the label. KL
represents Kullback-Leibler divergence.

Defense Method Base Loss

PGDAT CE(g(x′), y)
MART BCE(g(x′), y) + λm · KL(g(x) ∥ g(x′)) · (1− gy(x))

Table 2: Comparison between model training with and without standard deviation(SD) of Shapley
value as regularization. ↓ denotes smaller is better.

Method SD ↓ PGD CW AutoAttack

PGDAT 0.01476 54.25 48.20 49.82
PGDAT + SF (Ours) 0.01297 55.18 49.34 50.73

MART 0.01293 56.17 49.45 50.92
MART + SF (Ours) 0.01153 56.78 49.95 51.07

CIFAR-100. Evaluation on CIFAR-100 tells a similar story. Figure 4 (a) shows SF robustness
and corresponding adversarial accuracy averaged over four adversarial attacks (FGSM, PGD, CW,
and AutoAttack). Experimental results on individual attack strategies are given in Appendix A.3.3.
We used two model architectures (WRN28-10 and WRN34-10) with 13 different defense strategies.
Detailed information on pre-trained weights is provided in Appendix A.3.1. Experimental results
show that SF robustness and adversarial robustness are closely related.

4.1.2 EVALUATION ON IMAGENET BENCHMARK

In Figure 4 (b), we verified SF Robustness on ImageNet under four adversarial attacks (FGSM, PGD,
CW, and AutoAttack). Results of each adversarial attack method are provided in Appendix A.3.4.
We used ResNet50 and ViT-B with four different defense strategies on the ImageNet dataset. On
ImageNet, we found a similar tendency observed in Section 4.1.1. Detailed information on pre-
trained weights is provided in Appendix A.3.1.

4.2 CAN SF ROBUSTNESS MAKE THE MODEL MORE ROBUST?

So far, we have demonstrated the positive correlation between SF robustness and adversarial robust-
ness of the model. Then, a natural question arises: can we build an adversarially robust network by
minimizing SF robustness of the network?

In this subsection, we use SF robustness as an additional defense strategy and show that minimizing
the SD of the Shapley value leads to robustness improvement. We define SF robustness constraints
as below

Ls = SF(g), (14)

where SF(g) is determined by Eq. 13 where global Shapley value CL−1
i are calculated by Eq. 12

with respect to Dminibatch. Then, the overall training objective can be formulated by

L = Lbase + λ · Ls, (15)

where Lbase is the base loss. λ is a hyperparameter to balance the base loss and SF robustness
constraints. In this work, we verify the effectiveness of SF robustness as a training objective with
three different adversarial training base losses defined by PGDAT (Madry, 2018) and MART (Wang
et al., 2019) and the base loss for PGDAT and MART is summarized in Table 1.

We train 20 additional epochs with SF robustness on the adversarially pre-trained WRN28-10 on
CIFAR-10. λ is set to 1. Detailed training conditions are provided in Appendix A.1. Table 2 shows
that SF robustness introduces adversarial robustness of the network on PGD, CW, and AutoAttack.

5 DISCUSSION

7
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(a) CIFAR-10 (b) CIFAR-100

Figure 5: Comparison of models trained with various data augmentation strategies. We com-
pared two different architectures, WRN28-10 and WRN34-10, in (a) CIFAR-10 and (b) CIFAR-100
datasets with three different data augmentation strategies. There is a positive correlation between
SF Robustness and accuracy drop rate under FGSM (Goodfellow et al., 2015).
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Figure 6: Distribution of Shapley value of models
trained with baseline augmentation, Mixup, and
CutMix. The neurons are sorted based on Shap-
ley value in descending order. Mixup, which ex-
hibits the best performance under FGSM and best
SF robustness, shows the smoothed distribution of
Shapley values.

SF Robustness and the performance of mod-
els trained with data augmentation. Data
augmentations such as CutMix and Mixup are
known to boost the adversarial robustness of
a model when applied with adversarial train-
ing (Rebuffi et al., 2021). Also, they have
shown effectiveness in performance improve-
ment on single-step adversarial robustness such
as FGSM on standard training (Zhang et al.,
2021b; Yun et al., 2019; Lamb et al., 2019). In
this section, we show that the performance gain
of these augmentation strategies under FGSM
attack can be explained by SF robustness.

We assess WRN28-10 and WRN34-10 trained
on CIFAR-10 and CIFAR-100 with CutMix
(Yun et al., 2019), Mixup (Zhang, 2018) and
baseline augmentation strategies. Detailed
training setting is provided in the Appendix
A.2. Figure 5 shows the SF robustness and per-
formance under FGSM attack including Base-
line (a model trained with baseline data aug-
mentation such as resizing, cropping, and flip-
ping), CutMix, and Mixup. As with adversar-
ially trained models, we observe a high correlation between SF robustness and the accuracy drop
rate. The baseline WRN28-10 trained with baseline data augmentation showed the highest shapley
value among the compared models and the biggest accuracy drop rate. CutMix outperforms base-
line on both SF robustness and accuracy drop under FGSM. The model trained with Mixup shows
the best performance under FGSM than its counterparts, which is also reflected in the smallest SF
robustness.

The performance improvement under FGSM on models trained with CutMix and Mixup can be
explained by the smoothed distribution (i.e., small SD) of the Shapley value of internal neurons.
Figure 6 shows the distribution of Shapley values of WRN28-10 trained with baseline augmentation,
Mixup, and CutMix on CIFAR-10. Mixup, which performs best under FSGM shows the most
smoothed distribution of Shapley values, resulting in the smallest SF robustness. On the other hand,
the vulnerability of the baseline under FGSM can be explained by its distribution of Shapley values
with high standard deviation.

8
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Furthermore, we observe that WRN28-10 and WRN34-10 show similar performance under FGSM
when trained with the same training strategies, and this tendency is also reflected in a small gap
of SF robustness within the same training methods on different architecture. We also present our
analysis on ImageNet in Appendix A.3.5.

6 RELATED WORKS

6.1 NEURON-WISE ANALYSIS ON ADVERSARIAL EXAMPLES

Kim et al. (2021) divided features (neurons) into two groups: robust features and non-robust features.
They utilized an information bottleneck for the feature distillation. The noise is inserted in the
intermediate layer to control the information flow. The noise is optimized in a way that minimizes
the mutual information between the input and layer-inserted intermediate layer and maximizes the
information between the prediction and the ground truth. This is in line with our work as they
analyze the robustness of individual neurons. However, their approach is unsuitable for a model
assessment because the noise is optimized to output the ground truth label. Therefore, it is not
appropriate to quantify the properties of the network itself.

Zhang et al. (2020a) defined neuron sensitivity as the activation difference on adversarial and clean
samples. They found that sensitive neurons (i.e., neurons that undergo significant changes on adver-
sarial attack) play important roles in causing misclassification. This work is in line with our work
in that their definition of sensitive neurons is associated with important neurons. However, neuron
sensitivity requires adversarial attacks, and the extent to which each attack affects neuron activation
is different. On the other hand, SF robustness does not rely on the types of adversarial attacks, which
makes the evaluation process simple and stable.

6.2 EVALUATION OF ADVERSARIAL ROBUSTNESS

There are several adversarial robustness metrics other than adversarial robustness. Minimal Per-
turbation is the smallest perturbation added to and input that changes the model prediction which
is also utilized in Carlini & Wagner (2017). Probabilistic Accuracy (Robey et al., 2022) is calcu-
lated by the proportion of correctly classified adversarial examples where the predicted probability
is above a certain tolerance level. Robustness w.r.t. predictions (Ding et al., 2019) calculates accu-
racy on adversarial examples in which the perturbations are produced to perturb the model’s original
prediction on the clean examples instead of the true label. While they provide more fine-grained
measurement than adversarial accuracy, they still highly depend on adversarial attacks and do not
provide neuron-level inspection. Adversarial Sparsity (Olivier & Raj, 2023) shares a similar con-
cept with local intrinsic dimensionality (Ma et al., 2018) where they characterize the dimensional
properties of adversarial subspaces. Adversarial Sparsity considers the number of adversarial re-
gions around the sample to quantify adversarial robustness. Their approach is based on the latent
space, whereas our metric focuses on the internal responses of individual neurons.

7 CONCLUSION

In this paper, we introduced the Steady and Fair Robustness Evaluation (SF Robustness) frame-
work, which addresses the challenges of inconsistencies in adversarial robustness evaluation caused
by varying hyperparameters, model architectures, and attack methods. By leveraging the standard
deviation of Shapley values as a key metric, we demonstrated a strong correlation between neu-
ron importance variability and adversarial robustness. This finding allows for a more principled
and interpretable evaluation of robustness, independent of attack specifics or model configurations.
Through extensive experimentation, we showed that SF Robustness provides a reliable indicator of
adversarial robustness, with models exhibiting lower SF Robustness demonstrating stronger resis-
tance to attacks. Furthermore, we proposed a novel attack and defense strategy that optimizes the SD
of Shapley values, outperforming the baseline defenses. Our results validate that SF Robustness can
serve as an effective tool for both evaluating and improving adversarial robustness. This work opens
the door for further exploration of interpretability-driven robustness strategies, ultimately contribut-
ing to more secure and reliable machine learning systems in adversarial settings.
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A APPENDIX

A.1 TRAINING DETAILS FOR ADVERSARIAL TRAINING

In experiments in Section 4.2, PGDAT is pre-trained with batch size 128 for 150 epochs with an
initial learning rate 0.1. Pre-trained MART is trained with batch size 128 for 90 epochs with an
initial learning rate of 0.1 decayed by 0.0035 at every 30 epochs.

On top of this, we run 20 additional epochs with SD of Shapley value regularization. Batch size,
learning rate, and λ are set to 128, 1e-5, and 1, respectively.

A.2 TRAINING DETAILS FOR STANDARD TRAINING

We trained WRN28-10 and WRN34-10 on CIFAR-10 and CIFAR-100 with batch size 64 for 300
epochs. The initial learning rate is set to 0.25 and decayed by 0.1 at 150 and 225 epochs.

We use pre-trained ResNet-50 model weights released by Yun et al. (2019). The models are trained
with batch size 256 for thirty epochs. The initial learning rate is 0.1 and decayed by a factor of 0.1
at 75, 150, and 225 epochs. Models trained with Mixup and CutMix are trained along with standard
data augmentation strategies such as flipping, cropping, and resizing.

A.3 DETAILED EXPERIMENT RESULTS

A.3.1 PRETRAINED WEIGHTS.

For this study, we leverage a total of 38 available pre-trained weights for WRN28-10 and WRN34-
10 trained on CIFAR-10, CIFAR-100, and ResNet50, ViT-B trained on ImageNet released by Croce
et al. (2021). The works are listed below:

WRN28-10, CIFAR-10. DyART (Xu et al., 2023), MART (Wang et al., 2019), SCORE (Pang
et al., 2022), diffusion-augmented AT (Wang et al., 2023), HAT (Rade & Moosavi-Dezfooli, 2022),
AWP (Wu et al., 2020), RST (Carmon et al., 2019), GAIRAT (Zhang et al., 2021a), RLPE (Sridhar
et al., 2022), IRUGD (Gowal et al., 2021), HYDRA (Sehwag et al., 2020)
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Figure 7: SF robustness and accuracy drop of various defense methods on FGSM in CIFAR-10.
We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-10 with 21
different defense strategies. Accuracy drop computed on FGSM (Goodfellow et al., 2015). 28 and
34 refers model architecture, WRN28-10 and WRN34-10, respectively.

WRN28-10, CIFAR-100. SCORE (Pang et al., 2022), diffusion-augmented AT (Wang et al., 2023),
IKL (Cui et al., 2024), FDA (Rebuffi et al., 2021)

WRN34-10, CIFAR-10. FAT (Zhang et al., 2020b), DefEAT (Chen & Lee, 2024), DAJAT (Ad-
depalli et al., 2022b), OA-AT (Addepalli et al., 2022a), SAT (Huang et al., 2020), HAT (Rade &
Moosavi-Dezfooli, 2022), AWP (Wu et al., 2020), LBGAT (Cui et al., 2021), YOPO (Zhang et al.,
2019a), TRADES (Zhang et al., 2019b)

WRN34-10, CIFAR-100. LBGAT (Cui et al., 2021), OA-AT (Addepalli et al., 2022a), IKL (Cui
et al., 2024), Proxy (Sehwag et al., 2022), LAS-AT (Jia et al., 2022)

RN50, Imagenet. Salman et al. (Salman et al., 2020), Engstrom et al. (Engstrom et al., 2019),
Cheap-AT (Wong et al., 2020)

Transformers, Imagenet. (ViT-B) Mo et al. (Mo et al., 2022)

RN50, Imagenet, Discussion Baseline (He et al., 2016), Mixup (Zhang, 2018), Cutmix (Yun et al.,
2019)

A.3.2 EVALUATION ON CIFAR-10 BENCHMARK

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.25 0.30 0.35 0.40 0.45
Accuracy drop

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

SF
 R

ob
us

tn
es

s

RST_28
IRUGD_28
SCORE_28
HAT_28
HYDRA_28
RLPE_28
MART_28
diffusion-augmented AT_28
AWP_28
DyART_28
GAIRAT_28
OA-AT_34
DAJAT_34
DefEAT_34
LBGAT_34
SAT_34
HAT_34
AWP_34
TRADES_34
YOPO_34
FAT_34

Figure 8: SF robustness and accuracy drop of various defense methods on PGD in CIFAR-10.
We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-10 with 21
different defense strategies. Accuracy drop computed on PGD (Madry, 2018). 28 and 34 refers
model architecture, WRN28-10 and WRN34-10, respectively.
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Figure 9: SF robustness and accuracy drop of various defense methods on CW in CIFAR-10. We
compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-10 with 21 dif-
ferent defense strategies. Accuracy drop computed on CW (Carlini & Wagner, 2017). 28 and 34
refers model architecture, WRN28-10 and WRN34-10, respectively.
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Figure 10: SF robustness and accuracy drop of various defense methods on Autoattack in CIFAR-
10. We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-10 dataset
with 21 different defense strategies. Accuracy drop computed on Autoattack (Croce & Hein, 2020).
28 and 34 refers model architecture, WRN28-10 and WRN34-10, respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42
Accuracy drop

0.002

0.004

0.006

0.008

0.010

SF
 R

ob
us

tn
es

s

IKL_28
SCORE_28
FDA_28
diffusion-augmented AT_28
OA-AT_34
DAJAT_34
LTD_34
LBGAT_34
LBGAT_34
IKL_34
IKL_34
LAS-AT_34
Proxy_34

Figure 11: SF robustness and accuracy drop of various defense methods on FGSM in CIFAR-100.
We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100 with 13
different defense strategies. Accuracy drop computed on FGSM (Goodfellow et al., 2015), CW (Car-
lini & Wagner, 2017), PGD (Madry, 2018), and Autoattack (Croce & Hein, 2020)). 28 and 34
refers model architecture, WRN28-10 and WRN34-10, respectively.

A.3.3 EVALUATION ON CIFAR-100 BENCHMARK
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Figure 12: SF robustness and accuracy drop of various defense methods on PGD in CIFAR-100.
We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100 with 13
different defense strategies. Accuracy drop computed on PGD (Madry, 2018). 28 and 34 refers
model architecture, WRN28-10 and WRN34-10, respectively.
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Figure 13: SF robustness and accuracy drop of various defense methods on CW in CIFAR-100.
We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100 with 13
different defense strategies. Accuracy drop computed on CW (Carlini & Wagner, 2017). 28 and
34 refers model architecture, WRN28-10 and WRN34-10, respectively.
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Figure 14: SF robustness and accuracy drop of various defense methods on Autoattack in CIFAR-
100. We compared two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100
dataset with 13 different defense strategies. Accuracy drop computed on Autoattack (Croce & Hein,
2020). 28 and 34 refers model architecture, WRN28-10 and WRN34-10, respectively.
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Figure 15: SF robustness and accuracy drop of various defense methods on FGSM in ImageNet. We
compared two different architectures(ResNet50 and ViT-B), in ImageNet dataset, with 4 different
defense strategies. Accuracy drop computed on FGSM (Goodfellow et al., 2015).
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Figure 16: SF robustness and accuracy drop of various defense methods on PGD in ImageNet. We
compared two different architectures(ResNet50 and ViT-B), in ImageNet dataset, with 4 different
defense strategies. Accuracy drop computed on PGD (Madry, 2018).

A.3.4 EVALUATION ON IMAGENET BENCHMARK

A.3.5 DISCUSSION RESULTS
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Figure 17: SF robustness and accuracy drop of various defense methods on CW in ImageNet. We
compared two different architectures(ResNet50 and ViT-B), in ImageNet dataset, with 4 different
defense strategies. Accuracy drop computed on CW (Carlini & Wagner, 2017).
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Figure 18: SF robustness and accuracy drop of various defense methods on FGSM in ImageNet. We
compared two different architectures(ResNet50 and ViT-B), in ImageNet dataset, with 4 different
defense strategies. Accuracy drop computed on Autoattack (Croce & Hein, 2020).
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Figure 19: Comparison on models trained with various data augmentation strategies. We compared
two different architectures, WRN28-10 and WRN34-10, in the CIFAR-10 dataset with three differ-
ent data augmentation strategies. There is a positive correlation between SD of Shapley values and
accuracy drop rate under FGSM (Goodfellow et al., 2015)
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Figure 20: Comparison on models trained with various data augmentation strategies. We compared
two different architectures, WRN28-10 and WRN34-10, in the CIFAR-100 dataset with three differ-
ent data augmentation strategies. There is a positive correlation between SD of Shapley values and
accuracy drop rate under FGSM (Goodfellow et al., 2015)
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Figure 21: Comparison on models trained with various data augmentation strategies. We compared
ResNet-50 in ImageNet dataset with three different data augmentation strategies. There is a positive
correlation between SD of Shapley values and accuracy drop rate under FGSM (Goodfellow et al.,
2015)
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