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Abstract

Confidence calibration in LLMs, i.e., align-
ing their self-assessed confidence with the ac-
tual accuracy of their responses, enabling them
to self-evaluate the correctness of their out-
puts. However, current calibration methods
for LLMs typically estimate two scalars to
represent overall response confidence and cor-
rectness, which is inadequate for long-form
generation where the response includes mul-
tiple atomic facts and may be partially confi-
dent and correct. These methods also overlook
the relevance of each fact to the query. To
address these challenges, we propose a Fact-
Level Calibration framework that operates at
a finer granularity, calibrating confidence to
relevance-weighted correctness at the fact level.
Furthermore, comprehensive analysis under
the framework inspired the development of
Confidence-guided Fact-level self-correction
(ConFact), which uses high-confidence facts
within a response as additional knowledge to
improve low-confidence ones. Extensive ex-
periments across four datasets and six mod-
els demonstrate that ConFact effectively miti-
gates hallucinations without requiring external
knowledge sources such as retrieval systems'.

1 Introduction

Large Language Models (LLMs) have re-
cently achieved notable breakthroughs in various
tasks (Brown et al., 2020), demonstrating their
ability to comprehend and generate language that
bears a striking resemblance to human communica-
tion (OpenAl, 2023). Nonetheless, a major obstacle
to their reliability is the prevalence of hallucina-
tions (Lin et al., 2021; Zhang et al., 2023; Li et al.,
2023a; Golovneva et al., 2022; Bang et al., 2023), a
phenomenon where the models generate incorrect
and unreliable outputs. This issue not only under-
mines user trust but also restricts the application of
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Figure 1: Motivation of our fact-level confidence cali-
bration and confidence-guided self-correction.
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LLMs in domains where reliability is crucial, such
as in the legal, financial, and educational fields.

Echoing the ancient adage that “7o know what
you know and what you do not know, that is true
wisdom”, confidence calibration in LLMs emerges
as an effective approach to mitigate the issue of hal-
lucinations (Li et al., 2024; Liu et al., 2023; Huang
et al., 2024). By confidence calibrating, models
can better align their self-assessed confidence with
the actual accuracy of their responses, empowering
them to self-evaluate the correctness of their out-
puts. This mechanism offers an effective way to
identify hallucinations by using the model’s confi-
dence as a basis for users to either trust or question
the model’s response.

However, current confidence calibration meth-
ods for LLMs (Guo et al., 2017a; Nguyen and
O’Connor, 2015) typically estimate two scalars to
represent the overall confidence and correctness for
the entire response. This approach is unreasonable
for long-form generation, where responses may
contain multiple atomic facts (illustrated in Fig.1).
In such cases, considering the varying of facts
in one response, the confidence and correctness
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should also be diverse, capable of reflecting higher
certainty in some facts and greater uncertainty in
others. Furthermore, within long-form responses,
certain facts exist that may indeed be correct but
lack relevance to the query. Previous calibration
methodologies predominantly focus on assessing
correctness while neglecting to incorporate consid-
erations of relevance.

To address these challenges, we propose a novel
framework for confidence calibration operating at a
finer fact-level granularity. Within this framework,
the confidence assessment of each fact incorpo-
rates two key aspects: correctness and relevance.
Correctness indicates the factual accuracy of the
fact, while relevance measures the extent to which
the fact is related to the query. Calibration of a
response is defined as the degree of alignment be-
tween confidence and correctness weighted by rele-
vance across all facts. This framework endows the
model with the capability to exhibit partial confi-
dence and correctness in individual facts. Extensive
analysis based on the aforementioned framework
yields three interesting findings: (1) fact-level cali-
bration imposes a stricter standard than response-
level calibration. (2) fact-Level can mitigate over-
confidence issues. (3) the variance in confidence
distribution among different facts within the same
response is considerable.

The aforementioned three observations inspire
the development of Confidence-Guided Fact-Level
Self-Correction (ConFact) to enhance the gen-
eration and mitigate hallucinations (illustrated
in Fig.1). For a response, ConFact first leverages
the aforementioned framework to segment the re-
sponse into multiple facts and evaluate their confi-
dence vector. It then uses the high-confidence facts
and their associated confidence score as additional
knowledge to augment low-confidence facts, with
the aim of all facts within the response achieving
high confidence. ConFact can self-enhance to mit-
igate hallucinations without the need for external
knowledge sources such as retrieval systems. Ex-
periments with ConFact across four datasets and
six models reveal that it can significantly reduce
the occurrence of hallucinations, thereby increasing
the models’ reliability and enabling their practical
application in real-world scenarios.

Our main contributions include:

* Fact-Level Calibration Framework: The
proposed fact-level calibration framework op-
erates at a finer level of granularity to align the

confidence with the correctness weighted by
relevance across all facts. This framework en-
dows the model with the capability to exhibit
partial confidence and correctness in individ-
ual facts.

* Insightful Observations: We uncover insight-
ful observations regarding the model’s scale
and its calibration capability.

* Self-Correction Method: We propose
ConFact method based on the fact-level cali-
bration framework to enhance the generation
and reduce hallucinations without relying on
external knowledge sources.

2 Preliminary and Problem Formulation

2.1 Preliminary

Consider a dataset defined as D =
{x1,%X2,...,xn}, where x; denotes the i-th
query, with a total count of NV queries. Let the
model’s responses to queries be represented as
A={y1,y2,...,Yn}, where each (x;,y;) forms
a query-answer pair. The confidence conf, signi-
fies the model’s degree of certainty in its answer y;
to the query x;. The correctness corr; measures
the objective truthfulness of the response y; to
the query x;. The aim of confidence calibration
is to ensure that, for every confidence interval,
the average confidence of the query-answer pairs
within that interval aligns with their average
correctness.

2.2 Problem Formulation

Considering the long-form generation nature of
LLMs, our proposed confidence calibration is de-
fined at a fact-level granularity, where both the
correctness and relevance of each fact will be con-
sidered. We define the problem as follows: dif-
ferent from the traditional definition of confidence
calibration, we assume the response y; contains
M; facts represented as { f/ };‘/[:’1 Each fact f/ will
be evaluated with a relevance value relg and a cor-
rectness value corr’g . Meanwhile, this fact is also
associated with a confidence score conf f represent-
ing the LLM’s level of uncertainty regarding that
fact. The goal of fact-level calibration is to align
the confidence with the relevance-weighted correct-
ness in terms of the response y; across M; facts.
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Figure 2: An illustration of our fact-level confidence calibration framework for fine-grained LLM calibration.

3 Fact-Level Confidence Calibration

In this section, we begin by presenting our moti-
vation and offering a detailed introduction to the
architecture of Fact-Level Confidence Calibration
framework. Subsequently, we delve into three in-
triguing observations within our framework. Fi-
nally, we summarize how these observations in-
spire our approach to self-correction.

3.1 Motivation

Compared to the confidence calibration for short-
form generation or traditional classification prob-
lems, a significant challenge in calibrating long-
form text generation is that a response may contain
multiple facts, making it unreasonable to assign a
single correctness measure and a single confidence
score to the entire response. The reason is that the
answer might be partially correct, and the model
might also be partially confident in only a subset
of the facts of a response. Meanwhile, some facts
in response are irrelevant to the query, so the cali-
bration based solely on correctness is insufficient.

Based on the above motivation, our proposed cal-
ibration framework aims to calibrate the confidence
to relevance-weighted correctness on the fact level,
which leads to the following two advantages: (1)
Finer Granularity: we assign a confidence vec-
tor rather than a scalar to a response, where each
item represents confidence for a single fact. This
fine-grained framework allows for more nuanced
and precise calibration. (2) Relevance Awareness:
we assess both the correctness and the relevance of
each fact, which ensures that the confidence score
attributed to each fact can reflect its significance
and appropriateness within the given context.

3.2 Architecture

To calibrate the confidence with the relevance-
weighted correctness on the fact level, our frame-
work includes four components as illustrated
in fig. 2: fact extraction, correctness and relevance
evaluation, confidence estimation, and evaluation
based on fact-level calibration metric.

Fact Extraction Given a query-answer pair
(x4, y;) from a model to be calibrated, we first dis-
sect the response to identify the contained facts.
This process can be performed by a powerful ex-
ternal language model (e.g., GPT-4 (Brown et al.,
2020)), resulting in a set of facts { f/ }j\i’l for the

response y;.

Correctness and Relevance Evaluation After
extracting facts, this component aims to assess
the correctness and relevance of each fact to the
query. The correctness of each fact is evaluated
for its factuality using GPT models in conjunction
with retrieval methods based on search engines
and the ground truth answers in datasets to obtain
{corr] };wzll The relevance {rel! };‘4:11 of each fact
is also obtained based on GPT models, represent-
ing its pertinence to the query within the context of
the response.

Confidence Estimation The confidence estima-
tion measures the confidence of the targeted LLM
for each fact, considering both its correctness
and relevance. To obtain a confidence vector
{conf{ }j\ill for each response, a verbalization-
based method (Tian et al., 2023) is employed,
where the model is prompted to provide a confi-
dence score for each fact within response. Confi-



dence of a fact factg can be represented as:
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where p, is the prompt, which includes: (1) A clear
task description. (2) The criteria to give confidence
scores. (3) Several instances containing the input
query, the complete response, one extracted fact,
the associated confidence score with an explana-
tion. (4) The task containing the input query, the
complete response, and the target fact. The model
is expected to output its confidence for the target
fact in a verbalization manner, accompanied by an
explanation. For a detailed prompt template, please
refer to Appendix C.

Evaluation based on Fact-level Calibration Met-
ric We define F-ECE (Fact-Level Expected Cal-
ibration Error) as the evaluation metric that quan-
tifies the discrepancy between confidence and
the relevance-weighted correctness across all re-
sponses and their respective facts. For each fact
within a response, we compute the relevance-
weighted correctness as the product of the fact’s
correctness score and its relevance score. Response-
level relevance-weighted correctness and confi-
dence are then determined by averaging these
relevance-weighted correctness scores and the con-
fidence scores across all facts within each response,
as shown in eq. (2).
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where recorr denotes the relevance-weighted cor-
rectness and conf denotes the confidence.

F-ECE is finally calculated by the average
relevance-weighted correctness and confidence
of responses in bin k, where B is the number
of bins for grouping confidence scores, and By
is the set of responses in the k-th bin. Let
Te-CoTT}, ﬁZieBk corr; and conf, =

1
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3.3 Key Observations

This section discusses three important phenom-
ena observed under our fact-level calibration.These
findings not only demonstrate the superiority of
our framework over traditional response-level
calibration, but also inspire the development
of a confidence-guided fact-level self-correction
method based on these insights.

Observation 1: Fact-level calibration imposes a
stricter standard than response-level calibration.
As illustrated in fig. 3, by comparing the histogram
between the left side and right side, it is evident
that our fact-level framework can accentuate the
differences in calibration performance across differ-
ent scale models with various capabilities. Specif-
ically, the models (e.g., Llama-2-7b) that appear
well-calibrated under traditional response-level per-
form worse in fact-level calibration. This capabil-
ity stems from fact-level calibration, which takes
into account the fine-grained correctness at the fact
level and considers the relevance of each fact to
the query, highlighting the importance of utilizing
a more granular calibration assessment to uncover
hidden deficiencies in model performance.

Observation 2: Fact-Level Can Mitigate Over-
Confidence Issue The distribution of confidence
across datasets is illustrated in fig. 4. The response-
level calibration assigns a single confidence value
to the entire response, shown in gray. In contrast,
our fact-level method assigns a confidence value
to each fact within the response, resulting in a con-
fidence vector for one response. We calculate the
mean, minimum, and maximum values of each
confidence vector, and depict the statistical distribu-
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Figure 3: Comparison of calibration measures between
fact-level and response-level based on models with three
different scales: Llama-7B, Llama-13B, and GPT-3.5.
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Figure 5: Confidence distribution within responses at
the fact level, the red bar is the response-level score.

tions of these values across all responses via violin
plot (Hintze and Nelson, 1998). Two intriguing
phenomena can be observed: (1) The confidence
distribution of the response-level is narrow and
centered around a high confidence value. Our dis-
tribution of mean confidence values, on the other
hand, is wider and shows a lower response level.
(2) The distribution of the response-level is highly
similar to the distribution of the maximum confi-
dence values in our fact-level method.

These two phenomena suggest that response-
level confidence is dominated by the fact in the
response with implicitly highest confidence, which
can lead to over-confidence. Our framework, by
breaking down the facts and evaluating confidence
individually, can explicitly emphasize less confi-
dent aspects within the response, thereby mitigat-
ing the over-confidence issue.

Observation 3: High Variance exists in Fact-
level Confidence within a Response fig. 5 illus-
trates the distribution of confidence levels for facts
within specific responses, depicted by the green
box plots. The red dots represent the response-level
confidence for the entire response. Two phenomena
can be observed: (1) Fact-level confidence varies
significantly within individual responses, while
response-level confidence is relatively concentrated
at a higher level. (2) Outlier facts tend to exhibit
lower confidence levels. The numerous white dots
in the box plots indicate the presence of these out-
liers, which typically correspond to facts with sig-
nificantly lower confidence scores, generally falling
below the overall distribution. This suggests that

certain facts within a response are generated with
considerably less confidence by the model.

4 ConFact: Confidence-Guided
Fact-Level Self-Correction

In this section, we introduce the motivation and
architecture of Confidence-guided Fact-level self-
correction, dubbed ConFact. ConFact utilizes
facts with high confidence as references to revise
facts with low confidence, thereby enhancing the
generation process and mitigating hallucinations.
ConFact operates in real-time during the gener-
ation process, avoiding the need for fine-tuning
or training, thereby lowering costs and increasing
flexibility. Moreover, it does not rely on external
knowledge, significantly enhancing its universality.

4.1 Motivation

The development of Confidence-Guided LLM Self-
Correction is inspired by the aforementioned three
observations. The rationale behind these observa-
tions supporting Self-Correction lies in: (1) Our
observations 1 and 2 show that even under strict
conditions, the fact-level framework can reduce
over-confidence and improve the model’s calibra-
tion, aligning confidence more closely with accu-
racy. This improved calibration is essential for ef-
fective confidence-guided self-correction. (2) Our
observation 3 shows that high-confidence and low-
confidence facts often coexist within the same re-
sponse. Even when confidence levels are generally
consistent, outliers tend to be lower confidence
facts. This allows high-confidence facts to pro-
vide the necessary knowledge to correct the low-
confidence ones.

4.2 Architecture

The overall architecture of ConFact is illustrated
in fig. 6. As can be seen, ConFact includes three
steps: fact extraction and confidence estimation,
factor extraction and fact correction, and fact confi-
dence re-estimation.

Step 1: Fact Extraction and Confidence Estima-
tion Given a response y;, ConFact first conducts
fact extraction and confidence estimation for each
extracted fact, following the same process as de-
scribed in section 3.2. After obtaining the facts
{ fij }j‘/[:’l for y; and their corresponding confidence
scores {conf? };VI:H we then split the facts into
two groups: high-confidence and low-confidence,
based on a confidence threshold 7.
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Figure 6: An illustration of our confidence-guided fact-level self-correction framework.

The high-confidence group in eq. (4) is used as a
form of internal knowledge base, whose knowledge
is leveraged to reinforce and augment facts within
the low-confidence group in eq. (5),

fo=1{f] | conf] > 7}
fi={f]| conf] <7},

where the threshold is defined as the mean confi-
_ 1 M; J
dence score across facts T = 75 > ;7Y conf;.

C))
(&)

Step 2: Factor Extraction and Fact Correction
To ensure that only the erroneous parts of the low-
confidence facts are modified without changing the
overall meaning, we restrict the modifiable parts.
Specifically, we first parse the key factors through

. ik K7 i
factor extraction. Let {fa/*}, represent the K/
factors extracted from the target fact f/ € f;,

(al*YS = FEIMO)ps (7). (6)

where py is the prompt, which includes: (1) A
clear task description. (2) Several instances. (3)
The task containing the input sentence. The model
is expected to output its extracted factors.

After extracting factors, we then perform fact
correction, targeting only the extracted factors for
modification. This process can be represented as,

= RULME), o Y 1) )

where p, is the prompt, which includes: (1) A clear
task description. (2) Several instances. (3) The task
containing the input target fact, the extracted fac-
tors and the high-confidence reference facts. The

model is expected to output the modified target fact,
noting that the model allows for returning “NoEr-
ror”’ to make no modifications to the input.

Step 3: Fact Confidence Re-Estimation Finally,
the modified facts undergo the confidence estima-
tion process again to obtain new confidence scores:

conf] = C(LLM(-), pe(F, %0, y1), (8

where coAnfg represents the confidence score of the
modified fact ff . Finally, if cohfg > confg , the
modification is deemed successful and is accepted.
Otherwise, ConFact will repeat the process of fac-
tor extraction, fact correction, and confidence re-
estimation. This iterative process continues until
either a satisfactory confidence score is achieved or
a predetermined maximum number of iterations N
is reached, where the model return “NoError” and
make no modifications to the input.

5 Experiment

5.1 Experiment Setup

This section outlines the experimental setups, in-
cluding the datasets, models, and evaluation.

Datasets We employ two datasets: (1) Long-
Fact (Wei et al., 2024): A dataset consisting of
prompts designed to assess a model’s factuality
in long-form responses created by GPT-4. (2)
ASQA (Stelmakh et al., 2022): A dataset designed
for long-form question answering that uniquely
centers on ambiguous factoid questions.



Models We use five models from different fam-
ilies and scales to validate our method, including:
(1) Llama (Touvron et al., 2023): include Llama-
7b-chat and Llama-13b-chat. (2) Vicuna (Chiang
et al., 2023): include Vicuna-7b and Vicuna-13b.
(3) GPT (Brown et al., 2020): GPT-3.5-turbo.

Correctness and Relevance Evaluation For cor-
rectness and relevance evaluation, we use the
Search-Augmented Factuality Evaluator (SAFE),
which is a pipeline proposed by (Wei et al., 2024)
that employs LLMs as agents to automatically eval-
uate the factuality of long-form responses. It uti-
lizes a multi-step reasoning process that includes
sending search queries to Google Search (Hillis
et al., 2012) to verify the information provided.
For the fact correction evaluation, we use GPT-4
for zero-shot pair-wise evaluation (see prompts in
Appendix C).

Evaluation Metrics For calibration evaluation,
we use Expected Calibration Error (ECE) (Guo
et al., 2017a; Naeini et al., 2015) at the response-
level, and our F-ECE at the fact-level as introduced
in section 3.2. For self-correction evaluation, the
evaluation metrics are twofold. Firstly, we use Ac-
curacy, Precision, and Recall (Powers, 2020) to
evaluate error detection. Then, we use improve-
ment ratio, same ratio, and regression ratio to eval-
uate self-correction.

5.2 Results for Fact-Level Calibration

This section provides detailed implementation and
comprehensive experiment results of our fact-level
calibration framework. As introduced in sec-
tion 3.3, we have three key observations.

Table 1: Comparison of response-level and our fact-
level calibration performance of five base models in
terms of (F-)ECE under ASQA and LongFact datasets.

Base Model Method ASQA  LongFact
Llama-2-7b ReS;(C);se 8521 8?4111
Lams 2130 2610131
Vel e 032 01n
Vel 02 010
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Calibration Comparison for Observation 1 For
Observation 1, we compare our fact-level and
response-level calibration in accordance with the
protocol in (Guo et al., 2017a). We illustrate relia-
bility histograms and compute the summary statis-
tics of ECE and our F-ECE to evaluate calibration.
The procedures are implemented as follows: For
fact-level, we evaluate confidence, correctness, and
relevance as described in section 3.2. For response-
level, we use a verbalization-based method follow-
ing the procedure in (Huang et al., 2024), where
the model is prompted to provide a single confi-
dence score for the whole response. For a detailed
prompt template, please refer to Appendix C. For
the reliability histogram, we divided the model’s
predictions into ten bins based on the confidence
score and calculated the average accuracy for each
bin. From the perspective of the histogram, an opti-
mally calibrated model should have its bar graph in
a diagonal shape to achieve the smallest gap area.
The results are depicted in fig. 3 and table 1.

Across-Responses Confidence Distribution for
Observation 2 For Observation 2, we examine
how our fact-level calibration can mitigate the
over-confidence issue by analyzing the distribution
of confidence scores. The procedures are imple-
mented as follows: For the response-level, we use
a verbalization-based method to obtain a score for
each response and visualize its distribution across
the entire dataset using violin plots. For the fact-
level, since the confidence for a single response is
represented as a vector rather than a scalar, we com-
pute three different statistical measures: the mean,
maximum, and minimum of the vector. We then
visualize these measures as three separate violin
plots. The results are depicted in fig. 7.

Within-Responses Confidence Distribution for
Observation 3 For Observation 3, we investigate
the variance in fact-level confidence within indi-
vidual responses. The procedures are implemented
as follows: For each response, we obtain its confi-
dence vector and visualize its distribution using box
plots. Due to space limitations, we have visualized
10 responses for each model in each dataset in fig. 8,
whereas this number is 50 in fig. 5. The red bar
is the confidence score of the whole response at
response-level.

5.3 Results for Self-Correction

Error Detection table 2 presents the error detec-
tion results of our proposed method based on five
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Figure 7: Comparison of confidence distribution across different responses between fact-level and response-level.
The purple are our fact-level distribution under different statistical metrics, the gray is the response-level distribution.
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Figure 8: Confidence distribution within responses at the fact level, the red bar is the response-level score.

different base models. It can be seen that, in terms
of Accuracy and Precision, larger models perform
better than smaller models, i.e., GPT > 13b > 7b.
However, all models somewhat fall short in Recall,
indicating that many erroneous facts are not being
detected. This suggests that all models exhibit a
certain degree of overconfidence, often considering
incorrect answers to be correct.

Error Correction table 3 presents the error cor-
rection results of our proposed method based on
five different base models. It can be seen that,
among the three outcomes "improve," "same," and
"regress," our method achieves the highest propor-
tion of "improve" for all models except LLaMA.
This indicates that our method effectively enables
the models to self-correct and achieve better gener-
ation results.

6 Conclusion

This paper introduces a novel fact-level calibration
framework to address hallucination issues in long-
form responses generated by LLMs. Traditional
single-estimate confidence methods are inadequate
for complex outputs with multiple facts. By eval-

Table 2: Acc., Precision and Recall of error-detection.

Base Model  Accuracy (%) Precision (%) Recall (%)
GPT-3.5-turbo 83.29 87.89 13.71
Vicuna-7b 60.06 99.90 0.15
Vicuna-13b 74.81 77.68 8.46
Llama-2-7b 64.26 67.86 13.35
Llama-2-13b 70.45 77.45 30.62

Table 3: GPT-4 evaluation of the self-correction.

Base Model  Improved (%) Same (%) regressed (%) #revised
GPT-3.5-turbo 46.30 24.07 29.63 108
Vicuna-7b 50.00 50.00 0.00 2
Vicuna-13b 49.40 28.92 21.69 83
Llama-2-7b 6.76 12.56 80.68 207
Llama-2-13b 53.35 19.59 27.07 418

uating each fact’s correctness and relevance indi-
vidually, both externally and internally, our frame-
work enables fine-grained confidence assessments.
It sets a higher standard than response-level ap-
proaches, mitigates over-confidence, and reveals
significant confidence variance among facts within
responses. Leveraging high-confidence facts for in-
context learning effectively mitigates hallucination,
as validated across multiple datasets and models.



7 Limitations and Broader Impacts

In this work, we propose a fact-level calibration
framework and, based on this framework, intro-
duce a confidence-guided fact-level self-correction
method. However, for this self-correction method
to be effective, the model itself must possess a cer-
tain level of calibration ability. In our paper, we
discuss how our calibration framework can allevi-
ate over-confidence. In future work, we will further
explore ways to enhance calibration ability within
the calibration framework, paving the way for more
effective confidence-guided self-correction.
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A Datasets

LongFact (Wei et al., 2024): A dataset consist-
ing of prompts designed to assess a model’s fac-
tuality in long-form responses created by GPT-4.
This dataset includes a diverse range of topics and
ensures that the prompts require detailed and nu-
anced answers, making it a robust benchmark for
evaluating the factual accuracy of language models
in generating extended text. The dataset is partic-
ularly valuable for testing the capabilities of mod-
els in maintaining factual consistency over longer
passages, which is crucial for applications such
as content creation, summarization, and complex
question answering.

ASQA  (Stelmakh et al., 2022): A dataset
designed for long-form question answering that
uniquely centers on ambiguous factoid questions.
ASQA provides a challenging testbed for models
as it includes questions that can have multiple valid
answers depending on the interpretation of the am-
biguity. This dataset emphasizes the need for mod-
els to not only retrieve accurate information but
also to handle the inherent uncertainty and provide
comprehensive responses. ASQA is instrumental
in pushing the boundaries of model performance in
scenarios where clarity and precision are essential,
such as in education and interactive Al systems.

B Models

Llama-7b-chat & Llama-13b-chat (Touvron
et al., 2023): These models are part of the LLaMA
family, known for their strong performance in
various natural language processing tasks. The
“chat” versions are particularly fine-tuned for con-
versational contexts, making them suitable for gen-
erating coherent and contextually appropriate re-
sponses in dialogue settings. LLaMA models are
designed to balance performance and computa-
tional efficiency, making it a popular choice for
research and application in interactive Al systems.

Vicuna-7b and Vicuna-13b  (Chiang et al.,
2023) Vicuna is an open-source chatbot trained by
fine-tuning LLaMA on user-shared conversations
collected from ShareGPT. Preliminary evaluation
using GPT-4 as a judge shows Vicuna-13B achieves
more than 90% quality of ChatGPT and Bard while
outperforming other models like LLaMA and Stan-
ford Alpaca (Li et al., 2023b; Dubois et al., 2024,
2023) in more than 90% of cases.
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GPT-3.5-turbo  (Brown et al., 2020) This model

is part of OpenAl’s well-known GPT series. GPT-
3.5-turbo is an enhanced version of GPT-3, offer-
ing improved performance and efficiency. It is
designed to handle a wide range of language tasks,
from text generation to comprehension and trans-
lation. The "turbo" variant is optimized for faster
inference and lower latency, making it ideal for
real-time applications where quick response times
are crucial. GPT-3.5-turbo is widely used in both
research and industry due to its versatility and high-
quality output.

C Prompts

C.1 Prompt for Fact-Level Confidence
Estimation

The specific prompts used for fact-level confidence
estimation are detailed below.

Instructions:

1. The following STATEMENT has been extracted
from the broader context of the given RESPONSE to
the given QUESTION.

2. Indicate how confident you are in the accuracy
of the STATEMENT when answering the QUESTION,
based on your knowledge.

3. The confidence evaluation should be a value
between @ and 1 (with two decimal places retained),
based on the following scoring criterion:
{Criterion} 4. Your task is to do this for the
STATEMENT, RESPONSE and QUESTION under "Your
Task"”.

Some examples have been provided for you to learn
how to do this task.

{Some Examples}

Your Task:
QUESTION:
{Question}

RESPONSE :
{Response}

STATEMENT :
{Statement}

Table 4: Prompt for fact-level confidence estimation
{Criterion}, {Question}, {Response} and {Statement}
are placeholders.

C.2 Prompt for Response-Level Confidence
Estimation

The specific prompts used for response-level confi-
dence estimation are detailed below.



Instructions:

1. The following RESPONSE is the answer to the
given QUESTION.

2. Indicate how confident you are in the accuracy
of the RESPONSE when answering the QUESTION,
based on your knowledge.

3. The confidence evaluation should be a value
between @ and 1 (with two decimal places retained),
based on the following scoring criterion:
{Criterion}

4. Your task is to do this for the RESPONSE and
QUESTION under "Your Task”.

Some examples have been provided for you to learn
how to do this task.

{Some Examples}

Your Task:
QUESTION:
{Question}

RESPONSE :
{Response}

Table 5: Prompt for response-level confidence estima-
tion {Criterion}, {Question}, {Response} and {State-
ment} are placeholders.

C.3 Prompt for Factor Extraction

The specific prompts used for factor extraction are
detailed below.

Instructions:

You are to read a sentence and identify the key
factors within it.

The task involves pinpointing the essential
elements or aspects that significantly influence
or characterize the situation, event, or subject
described.

Return the identified key factors using the format
<[factorl, factor2, ...]1>

Some examples have been provided for you to learn
how to do this task.

{Some Examples}
Your Task:

SENTENCE :
{Sentence}

Table 6: Prompt for factor extraction {Sentence} is
placeholders.

C.4 Prompt for Fact Correction

The specific prompts used for fact correction are
detailed below.

C.5 GPT-4 Judgments for Self-Correction

For the self-correction, we utilize GPT-4 for zero-
shot pair-wise evaluation. We use gpt-4-0314 for
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Instructions:

You have been provided with a sentence and some
reference knowledge.

The sentence has been analyzed,
have been identified.

However, it is acknowledged that there may be
errors or inaccuracies in the identified factors.
Your task is to first review the identified
factors and check for any errors or inaccuracies.
If there are no errors, simply return "NoError”
to indicate that no corrections are needed.

If errors are present, proceed to make the
necessary corrections.

Ensure that the corrections are limited to the
existing factors without adding new content.

Use the format <old factor -> new factor> for
each correction.

and its factors

{Some Examples}

Your Task:
SENTENCE :
{Sentence}

FACTORS:
{Factor}

REFERENCE :
{Reference?}

Table 7: Prompt for fact correction {Sentence}, {Factor}
and {Reference} are placeholders.

all our experiments. The specific prompts used for
GPT-4 evaluation are detailed below.

D Related Work

The concept of confidence calibration was first in-
troduced to nerual networks by (Guo et al., 2017a)
to prevent logits from making incorrect classifi-
cations with high probability. This concept has
since been extended to NLP models (Desai and
Durrett, 2020; Dan and Roth, 2021; Hu et al., 2023).
Common methods for estimating confidence scores
include logit-based methods, consistency-based
methods, and verbalization-based methods. Logit-
based methods (Guo et al., 2017b; Cheng et al.,
2023; Kadavath et al., 2022) assess model confi-
dence by examining the logits predicted by the
model. Consistency-based methods (Wang et al.,
2023; Kuhn et al., 2023) rely on the principle that
language models tend to produce similar outputs
consistently when they are confident. Recently, re-
search has indicated that verbalization-based meth-
ods (Tian et al., 2023) might offer superior confi-
dence estimation.



You will be provided with a QUESTION, its
RESPONSE, and all facts extracted from the
RESPONSE under the heading "ALL FACTS". You will
also be provided with a specific fact under the
heading "TARGET FACT 1", which is included in ALL
FACTS. Additionally, you will be given a modified
version of this target fact under the heading
"TARGET FACT 2".

Based on your knowledge, evaluate whether
the modification of the target fact 1is an
improvement, the same, or a regression.

An improvement implies:

1. More accurate information.

2. Greater relevance to the question.

3. Minimal overlap with other facts in ALL FACTS.
A regression implies: 1. Introduction of

erroneous or inaccurate information.

2. Lower relevance to the question.

3. Repetition or introduction of information
that is already provided with other facts in ALL
FACTS.

QUESTION:
{Question}

RESPONSE :
{Response}

ALL FACTS:
{All Facts}

TARGET FACT 1:
{Original Fact}

TARGET FACT 2:
{New Fact}

First, provide a one-sentence comparison of
the two facts and explain whether you think the
modification is an improvement, the same, or a
regression. Second, on a new line, the state only
"IMPROVED", "SAME", or "REGRESSED"” to indicate

the effectiveness of the modification. Your
response should use the following format:
COMPARISON: <one-sentence comparison and
explanation>

REVISION: <"IMPROVED", "SAME", or "REGRESSED">

Table 8: Prompt for GPT-4 evaluation for the self-
correction {Question}, {Response}, { All Facts}, { All
Facts}, {Original Facts} and {New Fact} are placehold-
ers.
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