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ABSTRACT

Class imbalance is prevalent in real-world node classification tasks and poses great
challenges for graph machine-learning models. Most existing studies are rooted
in a class-rebalancing (CR) perspective and aim to address class imbalance with
class-wise reweighting or resampling. In this work, we approach the root cause of
class-imbalance bias from an orthogonal topological paradigm. Specifically, we
theoretically reveal and empirically observe two fundamental phenomena in the
underlying graph topology that can greatly exacerbate the predictive bias stem-
ming from class imbalance. In light of these findings, we devise a lightweight
topological augmentation framework called TOBE to mitigate the class-imbalance
bias without class rebalancing. Being orthogonal to CR, the proposed TOBE is a
model-agnostic and efficient solution that can be seamlessly combined with and
further boost existing CR techniques. Systematic experiments on real-world im-
balanced graph learning tasks show that TOBE can deliver up to 46.27% perfor-
mance gain and up to 72.74% bias reduction over existing techniques. Code is
available at https://anonymous.4open.science/r/ToBE/.

1 INTRODUCTION

Node classification stands as one of the most fundamental tasks in graph machine learning, holding
significant relevance in various real-world applications (Akoglu et al., 2015; Tang & Liu, 2010).
Graph Neural Networks (GNNs) have demonstrated great success in tackling related tasks due to
their robust representation learning capabilities (Song et al., 2022b). However, real-world graphs are
often inherently class-imbalanced, i.e., the sizes of unique classes vary significantly, and a few ma-
jority classes have overwhelming numbers in the training set. In Class-Imbalanced Graph Learning
(CIGL), GNNs are prone to suffer from severe performance degradation on minority class nodes (Shi
et al., 2020; Zhao et al., 2021b; Park et al., 2022). This results in a pronounced predictive bias char-
acterized by a large performance disparity between the majority and minority classes.

Traditional imbalance-handling techniques rely on class rebalancing (CR) such as class reweight-
ing and resampling (Chawla et al., 2002; Cui et al., 2019), which works well for non-graph data.
Recent studies propose more graph-specific CR strategies tailored for CIGL, e.g., neighborhood-
aware reweighting (Li et al., 2022; Huang et al., 2022) and oversampling (Zhao et al., 2021b; Park
et al., 2022). Nonetheless, these works are restricted to the class-rebalancing paradigm. Parallel to
class imbalance, another emerging line of research studies topology imbalance, i.e., “the asymmetric
topological properties of the labeled nodes” (Chen et al., 2021). Inspired by this, we theoretically
identify a fundamental cause of class-imbalance bias in terms of topological differences between mi-
nority and majority classes (Theorems 1 & 2). Our findings reveal an unexplored avenue in CIGL:
mitigating class-imbalance bias without traditional class rebalancing but instead, with purely topo-
logical manipulation. Following this novel perspective, we devise a lightweight practical solution
for CIGL that can be seamlessly combined with and further boost existing CR techniques.

Specifically, we theoretically show and empirically observe two fundamental topological phenom-
ena that impose great challenges in CIGL: (i) ambivalent message-passing (AMP), i.e., high ratio
of non-self-class neighbors in the node receptive field, and (ii) distant message-passing (DMP), i.e.,
poor connectivity with self-class labeled nodes. Intuitively, AMP leads to a higher influx of noisy
information from other classes, and DMP leads to poor reception of effective supervision signals
from the same class. Both result in lower signal-to-noise ratios and thus induce higher classification
errors. Our theoretical finding further reveals that the minority class is inherently more susceptible
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(a) L: concept of AMP. R: relative performance loss
with respect to the non-self-class neighbor ratio.

(b) L: concept of DMP. R: relative performance loss
w.r.t. distance to the nearest same-class labeled node.

Figure 1: Concepts of ambivalent message-passing (AMP) and distant message-passing (DMP)
and their impact in real-world imbalanced node classification tasks (Park et al., 2022). Both factors
lead to a substantial increase in prediction errors, and further, a larger performance disparity/bias
(i.e., the gap between the blue and orange curves) between the majority and minority classes.

to both AMP and DMP, which leads to a more pronounced predictive bias. Such bias induced by
the graph topology escalates as the level of class imbalance increases. Fig. 1 visually illustrates
the concepts of AMP and DMP, highlighting their distinct impacts on the predictive performance of
majority and minority classes.

These findings raise the question: how to tame the errors and biases induced by graph topology in
CIGL? To answer this, we devise TOBE (Topological Balanced augmEntation), a model-agnostic
and efficient technique to handle the topological challenges in class-imbalanced node classification.
Guided by the theoretical and empirical findings, TOBE dynamically locates and rectifies nodes
critically influenced by AMP and DMP during learning, thereby effectively reducing the errors and
biases in CIGL. Being orthogonal to class rebalancing, our solution is able to work hand-in-hand
with existing techniques based on reweighting (Japkowicz & Stephen, 2002; Chen et al., 2021) and
resampling (Chawla et al., 2002; Zhao et al., 2021b; Park et al., 2022) and further boost their per-
formance. Systematic experiments on real-world CIGL tasks show that TOBE delivers significant
performance boost (up to 46.27%) and bias reduction (up to 72.74%) over various CIGL baselines
with diverse GNN architectures.

Our contributions: (i) Novel Perspective. We demonstrate the feasibility of taming class-imbalance
bias without class rebalancing, which provides a new avenue that is orthogonal to the predominant
class-rebalancing practice in CIGL. (ii) Theoretical Insights. We theoretically show the differ-
ences in graph topology between minority and majority classes and investigate the effect of these
differences in shaping predictive bias, shedding light on future CIGL research. (iii) Practical Solu-
tion. We devise a lightweight topological augmentation technique TOBE for class-imbalanced node
classification. As a model-agnostic, effective, and efficient solution, it can be seamlessly combined
with and further boost existing class-rebalancing techniques. (iv) Empirical Study. We empirically
validate our theoretical findings and methodological designs. Systematic experiments and analy-
sis across a diverse range of real-world tasks and GNN architectures show that TOBE consistently
demonstrates superior performance in both promoting classification and mitigating predictive bias.

2 CLASS IMBALANCE AND LOCAL TOPOLOGY

In this section, we delve into the impact of graph topology on the predictive bias in class-imbalanced
node classification. We theoretically unveil that compared to the majority class, the minority class is
inherently more susceptible to both Ambivalent Message Passing (AMP) and Distant Message Pass-
ing (DMP). This significantly worsens minority-class performance and leads to a more pronounced
predictive bias stemming from class imbalance. After that, we present an empirical analysis to val-
idate our theoretical findings, and to provide insights on how to mitigate the bias induced by AMP
and DMP in practice. Detailed proofs can be found in Appendix A.

Theoretical analysis on local topology. Consider a graph G : (V, E) generated from a stochastic
block model (Holland et al., 1983) SBM(n, p, q), where n is the total number of nodes, p and q are
the intra- and inter-class node connection probability. To facilitate analysis, we call node u homo-
connected to node v if there is a path [u, v1, ..., vk, v] where v1, ..., vk, v are of the same class, and let
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H(u, k) denote the set of k-hop homo-connected neighbors of u. For binary node classification, we
denote the number of nodes of class i as ni (n1 + n2 = n); without loss of generality, let class 1/2
be the minority/majority class (thus n1 ≪ n2). We denote class i’s node set as Vi and labeled node
set as VL

i (⊂ Vi). For asymptotic analysis, we adopt conventional assumptions: n1 · p = β +O
(
1
n

)
(i.e., β is the average intra-class node degree of class 1); p/q = O(1) (Decelle et al., 2011).

We now give formal definitions of AMP and DMP. For a node u from class i, we define its (i) k-hop
AMP coefficient αk(u) ∈ [0,∞) as the ratio of the expected number of non-self-class nodes to self-
class nodes in its k-hop neighborhood H(u, k), i.e., αk(u) := |{v|v/∈Vi,v∈H(u,k)}|

|{v|v∈Vi,v∈H(u,k)}| ; (ii) k-hop DMP
coefficient δk(u) ∈ {0, 1} as the indicator of whether all labeled nodes in its k-hop neighborhood
are NON-self-class, i.e., δk(u) := 1(Lk

i (u) = 0,ΣjL
k
j (u) > 0), where Lk

j (u) = |{v|v ∈ VL
j , v ∈

H(u, k)}|. For an intuitive example, the target node (marked by the dashed box) in Fig. 1(a) has
α1(u) = 3/1, δ1(u) = 0 and node in Fig. 1(b) has α1(u) = 1/1, δ1(u) = 1. Further, to characterize
the level of AMP/DMP for different class, for class i we define αk

i :=
Eu∈Vi

[|{v|v/∈Vi,v∈H(u,k)}|]
Eu∈Vi

[|{v|v∈Vi,v∈H(u,k)}|]

and δki := P(δk(u) = 1), where u is a node of class i. Intuitively, a higher αi or δi indicates that
class i is more susceptible to AMP or DMP. Building on these metrics, we analyze the disparities in
α and δ between minority and majority classes, thereby providing insights into how the underlying
graph topology induces additional class-imbalance bias.

We provide a k-hop analysis here. To facilitate drawing conclusions, we define imbalance ratio
ρ := n2/n1. The larger the ρ is, the more imbalanced the dataset is. Then for AMP, we have the
following Theorem 1.
Theorem 1 (AMP-sourced bias). For a large n, the ratio of AMP coefficients α for the minority
class to the majority class grows polynomially with the imbalance ratio ρ and exponentially with k:

αk
1

αk
2

=

(
ρ ·

∑k
t=1(ρβ)

t−1∑k
t=1 β

t−1

)2

+O
( 1

n

)
. (1)

Theorem 1 shows that the same-class neighbor proportion of minority-class nodes is significantly
smaller than that of majority-class nodes, i.e., the minority class is more susceptible to AMP. As the
imbalance ratio ρ increases, this issue becomes even more pronounced and introduces a higher bias
into the learning process. Moving on to DMP, we have the following Theorem 2.

Theorem 2 (DMP-sourced bias). Let rL
i :=

|VL
i |

|Vi| denote the label rate of class i. For a large n, the
ratio of DMP coefficients δ of the minority class over the majority class grows exponentially with ρ:

δk1
δk2
≈ 1− rL

1

1− rL
2

e(ρ−1)β +O
( 1

n

)
. (2)

Similarly, the result shows that the minority class exhibits a significantly higher susceptibility to
DMP than the majority class. Theorem 2 also has several interesting implications: (i) The imbalance
ratio greatly affects the bias induced by DMP, as δk1/δ

k
2 grows exponentially with ρ. (ii) Labeling

more minority-class nodes can mitigate, but hardly solve the problem. Enlarging the minority-class
label rate rL

1 can linearly shrink δk1/δ
k
2 , but it can hardly eliminate the bias induced by DMP (i.e., to

have δk1 ≤ δk2 ) as e(ρ−1)β is usually very large in practice. Take the Cora dataset (Sen et al., 2008) as
an example (let class 1/class 2 denote the smallest/largest class): eliminating the DMP bias requires
the minority-class label rate rL

1 ≥ 1− 1−rL
2

e(ρ−1)β > 1− 5.05× 10−8, which is practically infeasible.

A closer look at AMP & DMP in practice. Our theoretical findings show that both AMP and DMP
affect the minority and majority classes differently, and the difference is primarily determined by the
imbalance ratio ρ. However, directly manipulating ρ is tricky in practice as it requires sampling new
nodes and edges from an unknown underlying graph generation model, or at least, simulating the
process by oversampling. To verify the theoretical results, and to provide more insights on how to
mitigate the bias brought about by AMP and DMP in practice, we conduct a fine-grained empirical
analysis on a real-world task1. Results are detailed in Fig. 2.

Starting from Fig. 2(a), we can first observe that the minority class 1 has a larger proportion of nodes
with high α or δ than the majority class 2. This naturally leads to a significantly higher average α

1Results obtained by training a GCN on the PubMed dataset (minority class 0 vs. the rest, ρ = 3.81).
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(a) Distribution of node AMP/DMP coefficients. (b) Impact of AMP/DMP on predictive performance.

Figure 2: Node-level distribution of AMP and DMP coefficients and their impact on learning.

and δ for class 1 than for class 2 (specifically, α1/α2 = 1.357/0.179, δ1/δ2 = 0.040/0.004), which
is consistent with our theoretical findings. Further, Fig. 2(b) shows that both AMP and DMP signif-
icantly reduce the prediction accuracy, especially for the minority class. This can be explained from
a graph signal denoising perspective (Nt & Maehara, 2019): AMP introduces additional noise from
dissimilar nodes, and DMP leads to less efficient label propagation/denoising, thus their impact is
particularly significant on minority classes that are more susceptible to noise (Johnson & Khoshgof-
taar, 2019) due to poor representation in the feature space. Taken together, we note an intriguing
fact that the impact of AMP/DMP is concentrated on a small fraction of “critical” minority nodes
with large α or δ (e.g., the α ≥ 1 / δ = 1 part in Fig. 2(a)). In other words, one can surrogate the
tricky manipulation of ρ and directly mitigate the impact of AMP/DMP by locating and rectifying a
small number of critical nodes, and this exactly motivates our subsequent studies.

3 HANDLING CLASS IMBALANCE VIA TOPOLOGICAL AUGMENTATION

Armed with the findings from Section 2, we now discuss how to devise a practical strategy to miti-
gate the error and bias induced by graph topology in CIGL. Earlier analyses have shown that this can
be achieved by identifying and rectifying the critical nodes that are highly influenced by AMP/DMP.
This naturally poses two challenging questions: (i) How can critical nodes be located as the direct
calculation of α/δ using ground-truth labels is not possible? (ii) Subsequently, how can critical nodes
be rectified and minimize the negative impact caused by AMP and DMP?

In answering the above questions, we devise a lightweight framework TOBE (Topological Balanced
augmEntation) for handling the topology-sourced errors and biases in CIGL. Specifically, for locat-
ing the misclassified nodes, ToBA leverages model-based prediction uncertainty to assess the risk of
potential misclassification caused by AMP/DMP for each node (§ 3.1). Then to rectify a misclassi-
fied node, we estimate a posterior likelihood of each node being in each class (§ 3.2) and dynamically
augment the misclassified node’s topological context based on our risk scores and posterior likeli-
hoods (§ 3.3) thereby mitigating the impact of AMP and DMP. An overview of the proposed TOBE
framework is shown in Fig. 3.
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Figure 3: The proposed TOBE framework, best viewed in color.

3.1 NODE MISCLASSIFICATION RISK ESTIMATION

We now elaborate on the technical details of TOBE. As discussed earlier, our first step is to locate
the critical nodes that are highly influenced by AMP/DMP. Given the unavailability of ground-truth
labels, direct computation of AMP/DMP coefficient is infeasible in practice. Fortunately, recent
studies have shown that conflicting or lack of information from the neighborhood can disturb GNN
learning and the associated graph-denoising process for affected nodes (Nt & Maehara, 2019; Wu
et al., 2019; Ma et al., 2021). This further yields high vacuity or dissonance uncertainty (Stadler
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et al., 2021; Zhao et al., 2020) in the prediction. This motivates us to exploit the model prediction
uncertainty to estimate nodes’ risk of being misclassified due to AMP/DMP.

Uncertainty quantification. While there exist many techniques for uncertainty quantification (e.g.,
Bayesian-based (Zhang et al., 2019; Hasanzadeh et al., 2020), Jackknife sampling (Kang et al.,
2022a)), they often either have to modify the model architecture, and/or impose additional compu-
tational overhead. In this study, we aim to streamline the design of TOBE for optimal efficiency
and adaptability. To this end, we employ an efficient and highly effective approach to uncertainty
quantification. Formally, let C be the number of classes. For a node v, consider model F (·; Θ)’s
predicted probability vector p̂v = F (A,X; Θ)v , i.e., p̂(j)v = P(yv = j|A,X,Θ). Let ŷv be the
predicted label. We measure the uncertainty score UΘ(v) by the total variation (TV) distance:

UΘ(v) := dTV(p̂v,1ŷv
) = 1

2

∑C
j=1 |p̂

(j)
v − 1(j)ŷv

| ∈ [0, 1]. (3)

Intuitively, a node has higher uncertainty if the model is less confident about its current prediction.
We remark that this metric can be naturally replaced by other uncertainty measures (e.g., information
entropy or more complex ones) with additional computation cost, yet the impact on performance is
marginal. Please refer to the ablation study provided in Appendix D.1 for more details.

Imbalance-calibrated misclassification risk. Due to the lack of training instances, minority classes
generally exhibit higher uncertainty. Therefore, using UΘ(·) directly as the risk score would treat
most minority-class nodes as high-risk, which is contrary to our intention of rectifying the false
negatives (i.e., minority nodes wrongly predicted as majority-class) that cause bias in CIGL. To
cope with this, we propose imbalance-aware calibration for risk scores. For each class i, let V̂i :=
{u ∈ V|ŷu = i} and V̂L

i := {u ∈ VL|yu = i}. For node v with predicted label ŷv , we define its risk
rv as:

rv := UΘ(v)

maxC
j=1 |VL

j |/|VL
ŷv

| ∈ [0, 1]. (4)

Intuitively speaking, Eq. (4) calibrates v’s prediction uncertainty by a label imbalance score
maxCj=1 |VL

j |/|VL
ŷv
|. Minority classes with smaller labeled sets VL

i will be discounted more.

Figure 4: The negative corre-
lation between the estimated
node risk (x-axis) and the pre-
diction accuracy (y-axis). We
apply 10 sliding windows to
compute the mean and devia-
tion of the accuracy.

Empirical validation. We validate the effec-
tiveness of the proposed node risk assessment
method, as shown in Fig. 4. The results indicate
that our approach can accurately estimate node
misclassification risk across various real-world
CIGL tasks while enjoying computational effi-
ciency.

3.2 POSTERIOR LIKELIHOOD ESTIMATION

With the estimated risk scores of being affected by AMP/DMP, we move to the next question:
how to rectify high-risk nodes with topological augmentation? As high-risk nodes are prone to
misclassification, their true labels are more likely to be among the non-predicted classes j ̸= ŷv . This
motivates us to investigate schemes to harness information from these non-predicted classes. Since
uniformly drawing from all classes probably introduces noise to learning, we propose to estimate the
posterior likelihood ŝ

(j)
v that a high-risk node v belongs to each class j after observing the current

predictions. To estimate ŝ
(j)
v , we introduce a zeroth-order scheme and a first-order scheme with

O(|V|C) and O(|E|C) time complexity, respectively. Please refer to §4 for a practical complexity
analysis. We do not employ higher-order schemes due to theO(|V|k−1|E|C) time complexity of the
kth-order scheme.

Zeroth-order estimation. A natural approach is to utilize the predicted probabilities p̂
(j)
v . As we

have shown, the predicted label ŷv of a high-risk node v is very likely to be wrong. Thus, we define
the posterior likelihood ŝ

(j)
v as the conditional probability given that the class is not ŷv , i.e.,

ŝ
(j)
v := Py∼p̂v

[y = j|y ̸= ŷv] =

{
p̂
(j)
v /(1− p̂

(ŷv)
v ), if j ̸= ŷv,

0, if j = ŷv.
(5)

Intuitively, the posterior likelihoods ŝ
(j)
v are consistent with the predicted probabilities p̂

(j)
v except

for the wrongly predicted label j = ŷv . This can be computed efficiently on GPU in matrix form.
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First-order estimation via random walk. We further explore the local topology for ŝ(j)v estimation.
Since neighboring nodes on a homophily graph tend to share labels, we consider a 1-step random
walk starting from node v. LetN (v) be the neighboring node set of v, and let v′ ∼ N (v) denote the
ending node of the random walk. We define ŝ(j)v as the conditional probability that v′ is predicted as
class j given that v′ is not predicted as class ŷv , i.e.,

ŝ
(j)
v := Pv′∼N (v)[ŷv′ = j|ŷv′ ̸= ŷv] =

{
|{v′∈N (v)|ŷv′=j}|

|N (v)|−|{v′∈N (v)|ŷv′=ŷv}| , if j ̸= ŷv,

0, if j = ŷv.
(6)

Intuitively, ŝ(j)v is proportional to the label frequency among adjacent nodes. Different from the
zeroth-order scheme, this scheme relies on both node-level predictions and local connectivity pat-
terns. The computation can be done via sparse matrix operation withO(|E|C) time complexity. As a
remark, although this scheme can extend to k-step random walks, we do not employ them due to the
O(|V|k−1|E|C) complexity of exact computation and the high variance of stochastic computation.

Figure 5: The minority-class
accuracy of model prediction
ŷv = F (A,X; Θ), and max-
likelihood-based candidate
selection ŷsv = argmax(ŝv),
on PubMed dataset.

Empirical validation. Figure 5 compares the
two schemes in practice. Results show that all
high-risk (rv > 0) minority nodes are misclas-
sified, and both schemes can effectively find al-
ternatives with significantly higher chances to
be the ground truth class for high-risk nodes2.

3.3 VIRTUAL TOPOLOGY AUGMENTATION

Finally, we discuss how to mitigate AMP and DMP via topology augmentation using our node risk
scores and the posterior likelihoods. The general idea is to augment the local topology of high-risk
nodes so as to integrate information from nodes that share similar patterns (mitigate AMP), even
if they are not closely adjacent to each other in the graph topology (mitigate DMP), thus achieving
less-biased CIGL. A straightforward way is to connect high-risk nodes to nodes from high-likelihood
classes in the original graph. However, this can be problematic in practice as a massive number of
possible edges could be generated, greatly disturbing the original topology structure.

To achieve efficient augmentation without disrupting the graph topology, we create virtual nodes
(one per class) as “shortcuts” connecting to high-risk nodes according to posterior likelihoods. These
shortcuts aggregate and pass class information to high-risk nodes from nodes that exhibit similar
patterns (even if they are distant in the original graph), thus mitigating both AMP and DMP.

Formally, for each class j, we build a virtual node v∗j with feature xv∗
j
:=

∑
v∈V̂j

xv/|V̂j | and label

yv∗
j
:= j, and compute the average risk r̄j :=

∑
v∈V̂j

rv/|V̂j |. Then for each node v, we connect a
virtual edge between v and virtual node v∗j with probability proportional to the posterior likelihood

ŝ
(j)
v . However, if the connection probability is exactly ŝ

(j)
v , there will be many unnecessary virtual

edges for low-risk nodes. Hence, we introduce a discount factor γv based on risk scores and connect
the virtual edge with probability q

(j)
v := γv ŝ

(j)
v . To design the optimal γv , we propose to solve the

following constrained quadratic program:

min
γ≥0

(
−
∑
v∈V

(rv − r̄ŷv )γv +
1

2
∥γ∥22

)
, (7)

where the first term encourages virtual edges for high-risk nodes, and the second term is to minimize
the number of virtual edges. The closed-form solution is γv = max(rv− r̄ŷv

, 0) (Antoniadis & Fan,
2001), which avoids virtual edges for low-risk nodes as we desire.

Final Remarks. Our algorithm scales linearly with the number of nodes/edges with 0th/1st-order
estimation (hasO(|V|C)/O(|E|C) complexity), and can be executed in parallel on matrix form. This
makes TOBE highly efficient and allows dynamically graph augmentation in each training step. A
detailed complexity analysis is provided in the next section (see Table 3), and we discuss the further
speedup in D.2. The procedure of TOBE is summarized in Algorithm 1 in Appendix B.

2Note that Fig. 5 is just an illustrative example using argmax(ŝv). In practice, we consider the whole ŝv

when sampling virtual edges, as described in Section 3.3.
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Table 1: Performance of TOBE in real-world IGL tasks. We report metrics for both classification
performance (Balanced Accuracy, Macro-F1) and bias (PerfStd), as well as the absolute gain after
applying TOBE. Due to space limitation, we omit the error bar and only report the results of the best
IGL technique for most settings, full results can be found in Appendix E. For each baseline’s three
settings, i.e., Base, + TOBE0, + TOBE1, we mark the best/second-best results in bold/underlined.

Dataset (IR=10) Cora CiteSeer PubMed

Metric: BAcc.↑ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

G
C

N

Vanilla 61.56 65.54+3.98 69.80+8.24 37.62 52.65+15.03 55.37+17.75 64.23 68.62+4.39 67.57+3.34

Reweight 67.65 70.97+3.32 72.14+4.49 42.49 57.91+15.41 58.36+15.87 71.20 74.19+2.98 73.37+2.16

ReNode 66.60 71.37+4.77 71.84+5.25 42.57 57.47+14.90 59.28+16.70 71.52 73.20+1.68 72.53+1.02

Resample 59.48 72.51+13.03 74.24+14.76 39.15 57.90+18.75 58.78+19.63 64.97 72.53+7.56 72.87+7.90

SMOTE 58.27 72.16+13.89 73.89+15.62 39.27 60.06+20.79 61.97+22.71 64.41 73.17+8.77 73.13+8.73

GSMOTE 67.99 68.52+0.53 71.55+3.56 45.05 57.68+12.63 57.65+12.60 73.99 73.09-0.90 76.57+2.58

GENS 70.12 72.22+2.10 72.58+2.46 56.01 60.60+4.59 62.67+6.65 73.66 76.11+2.45 76.91+3.25

Best 70.12 72.51+2.39 74.24+4.11 56.01 60.60+4.59 62.67+6.65 73.99 76.11+2.12 76.91+2.92

GAT Best 69.76 72.14+2.38 73.29+3.53 51.50 60.95+9.44 63.49+11.99 73.13 75.55+2.42 75.65+2.52

SAGE Best 68.84 71.31+2.47 73.02+4.18 52.57 64.36+11.78 66.35+13.77 71.55 75.89+4.34 77.38+5.83

APPNP Best 73.74 75.02+1.28 73.78+0.05 50.88 66.62+15.74 65.57+14.69 72.76 73.37+0.62 74.90+2.14

GPRGNN Best 73.38 74.01+0.63 74.89+1.51 54.66 64.16+9.51 63.89+9.23 73.56 75.69+2.13 77.49+3.93

Metric: Macro-F1↑ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

GCN Best 69.96 71.62+1.66 72.82+2.86 54.45 59.89+5.43 62.46+8.01 71.28 75.77+4.49 76.86+5.58

GAT Best 69.96 70.87+0.91 72.31+2.35 48.34 60.04+11.70 62.55+14.21 71.78 75.13+3.35 74.96+3.17

SAGE Best 68.23 70.40+2.17 71.71+3.48 51.05 63.87+12.82 65.91+14.86 70.06 75.33+5.27 76.92+6.86

APPNP Best 73.67 73.67+0.00 73.22-0.45 45.25 66.18+20.93 65.20+19.95 70.65 72.55+1.91 74.61+3.96

GPRGNN Best 73.08 72.89-0.18 73.54+0.47 50.34 63.59+13.25 63.12+12.78 71.45 75.47+4.03 77.62+6.17

Metric: PerfStd↓ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

GCN Best 20.04 14.43-5.61 15.25-4.79 16.95 13.82-3.13 13.93-3.02 11.93 3.35-8.58 5.15-6.78

GAT Best 20.08 15.05-5.03 17.32-2.76 25.21 10.68-14.53 13.24-11.97 10.29 3.01-7.28 4.58-5.71

SAGE Best 19.81 13.32-6.49 14.87-4.94 19.76 13.17-6.59 12.78-6.98 11.76 3.35-8.41 4.09-7.68

APPNP Best 18.09 16.87-1.22 18.46+0.37 25.95 14.91-11.04 19.19-6.75 14.49 8.04-6.45 3.95-10.54

GPRGNN Best 18.84 16.78-2.06 17.89-0.95 24.14 19.84-4.30 22.83-1.31 14.40 9.75-4.65 6.61-7.79

*TOBE0/TOBE1: TOBE with 0th /1st-order posterior likelihood estimation. We report the average score of 5 independent runs to eliminate randomness.

4 EXPERIMENTS
We carry out systematic experiments and analysis to validate TOBE in the following aspects: (i)
Effectiveness in both promoting imbalanced node classification and mitigating the prediction bias
between different classes. (ii) Versatility in cooperating with and further boosting various CIGL
techniques and GNN backbones. (iii) Robustness to extreme class imbalance. (iv) Efficiency in
real-world applications. We refer the reader to Appendix for reproducibility details (§C), ablation
study, limitations and more discussions of TOBE (§D), and full empirical results (§E).

Experiment Setup. We validate TOBE on five benchmark datasets for semi-supervised node clas-
sification, including the Cora, CiteSeer, PubMed from Plantoid graphs (Sen et al., 2008), and larger-
scale CS, Physics from co-author networks (Shchur et al., 2018) with high-dimensional features.
Following the same setting as prior studies (Park et al., 2022; Song et al., 2022a; Zhao et al., 2021b),
we select half of the classes as minority. The imbalance ratio ρ = nmax/nmin ≥ 1 is the ratio be-
tween the size of the largest class to the smallest class, i.e., more imbalance⇔ higher IR. Detailed
data statistics and class distributions can be found in Appendix C.1. We test TOBE with six CIGL
techniques (Park et al., 2022; Chen et al., 2021; Zhao et al., 2021b; Chawla et al., 2002; Japkow-
icz & Stephen, 2002) and five popular GNN backbones (Chien et al., 2020; Gasteiger et al., 2018;
Veličković et al., 2018; Hamilton et al., 2017; Welling & Kipf, 2016) under all possible combina-
tions to fully validate TOBE’s effectiveness and versatility in practice. Note that although there are
other techniques available for CIGL (Hong et al., 2021; Kang et al., 2019; Shi et al., 2020), previous
studies (Park et al., 2022; Song et al., 2022a) have shown they are generally outperformed by the
baselines we use. Detailed settings can be found in Appendix C.2. To ensure a comprehensive eval-
uation, we employ three metrics to assess both the classification performance (Balanced Accuracy,
Macro-F1) and the model predictive bias (PerfStd, i.e., the standard deviation of accuracy scores
across all classes). Lower PerfStd indicates smaller performance gap between all majority and mi-
nority classes, and thus smaller predictive bias. See details in Appendix C.3. For clarity, we use ↑/↓
to denote larger/smaller is better for each metric.

On the effectiveness and versatility of TOBE (Table 1). We report the main results in Table 1.
In all 630 setting combinations (3 datasets×5 backbones×7 baselines×2 TOBE variants×3 met-
rics), TOBE achieves significant and consistent performance improvements over other CIGL tech-
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Table 2: Performance of TOBE under varying types and levels of class imbalance. We report the
best balanced accuracy score here due to space limitation, full results can be found in Appendix E.

Dataset Cora CiteSeer PubMed CS Physics

Step IR 10 20 10 20 10 20 10 20 10 20
Base 61.6 52.7 37.6 34.2 64.2 60.8 75.4 65.3 80.1 67.7

+ TOBE 69.8+8.2 71.3+18.5 55.4+17.7 51.3+17.1 68.6+4.4 63.3+2.5 82.6+7.2 79.9+14.5 87.6+7.5 88.0+20.2

BestIGL 70.1+8.6 66.5+13.8 56.0+18.4 47.2+13.0 74.0+9.8 71.1+10.3 84.1+8.7 81.3+15.9 89.4+9.3 85.7+18.0

+ TOBE 74.2+12.7 71.6+18.9 62.7+25.0 62.5+28.3 76.9+12.7 75.7+14.9 86.3+11.0 85.6+20.2 91.2+11.1 90.9+23.2

Natural IR 50 100 50 100 50 100 50 100 50 100
Base 58.1 61.8 44.9 44.7 52.0 51.1 73.8 71.4 76.0 77.7

+ TOBE 69.1+11.0 68.3+6.5 58.4+13.4 57.4+12.7 55.6+3.6 56.5+5.3 82.1+8.3 81.9+10.5 86.9+10.9 84.1+6.4

BestIGL 71.0+12.9 73.8+12.0 56.3+11.4 56.3+11.6 72.7+20.7 72.8+21.7 81.2+7.4 81.4+10.0 85.8+9.8 87.2+9.5

+ TOBE 73.1+15.0 76.9+15.1 62.1+17.1 61.3+16.6 75.8+23.8 75.9+24.8 85.0+11.2 84.5+13.2 88.6+12.6 89.7+12.0

*Base+TOBE: best TOBE variant score w/o other IGL methods; BestIGL: best IGL baseline w/o TOBE; BestIGL+TOBE: best IGL baseline w/ TOBE;

(a) TOBE mitigates AMP in multiple CIGL tasks. (b) TOBE mitigates DMP in multiple CIGL tasks.

Figure 6: TOBE alleviates the bias from both AMP and DMP via topological augmentation.

niques, which also yields new state-of-the-art performance. In addition to the superior performance
in boosting accuracy and macro-F1, TOBE also greatly reduces the model predictive bias. Specif-
ically, we notice that: (1) On the basis of the SOTA CIGL baseline, TOBE can handle the topo-
logical challenges in CIGL and further boost its performance by a large margin (e.g., for all CIGL
techniques with GCN, TOBE brings up to 26.81%/57.82%/13.71% improvement in balanced ac-
curacy on Cora/CiteSeer/PubMed datasets). (2) In addition to better classification performance, by
mitigating the AMP and DMP, TOBE also greatly reduces the predictive bias in CIGL, with up to
32.75%/57.62%/71.88% reduction in performance deviation on Cora/CiteSeer/PubMed. (3) TOBE1

generally demonstrates better classification performance, while TOBE0 performs better in terms of
reducing performance deviation. Detailed results can be found in Appendix E.

On the robustness of TOBE (Table 2). We further extend the results in Table 1 and test TOBE’s
robustness to varying types and levels of imbalance, as reported in Table 2. In this experiment,
we extend the step imbalance ratio from 10 (used in Table 1) to 20 to test TOBE under even more
challenging class imbalance scenarios. In addition, we consider the natural (long-tail) class im-
balance (Park et al., 2022) that is commonly observed in real-world graphs with IR of 50 and 100.
Datasets from (Shchur et al., 2018) (CS, Physics) are also included to test TOBE on large-scale tasks.
Results show that: (1) TOBE is robust to extreme class imbalance, and it consistently boosts the best
performance by a significant margin under varying types and levels of imbalance. (2) The perfor-
mance drop from increasing IR is significantly lowered by TOBE, i.e., applying TOBE improves
model’s robustness to extreme class imbalance. (3) TOBE’s advantage is even more prominent un-
der higher class imbalance, e.g., on Cora with step IR, the performance gain of applying TOBE on
Base is 13.4%/35.2% with IR = 10/20, and similar patterns can be observed in other settings.

On mitigating AMP and DMP (Fig. 6). We further design experiments to verify to what extent
TOBE can effectively handle the topological challenges identified in this paper, i.e., ambivalent and
distant message-passing. Specifically, we investigate whether TOBE can improve the prediction ac-
curacy of minority class nodes that are highly influenced by AMP/DMP, i.e., with high heterophilic
neighbor ratio/long distance to supervision. Results are shown in Fig. 6 (5 independent runs with
GCN classifier, IR=10). As can be observed, TOBE effectively alleviates the negative impact of
AMP and DMP and helps node classifiers to achieve better performance in minority classes.

Complexity analysis (Table 3). TOBE introduces C (the number of class) virtual nodes withO(n)
edges. Because of the long-tail distribution of node uncertainty and the discount factor used to solve
Eq. (7), only a small portion of nodes have positive risks with relatively few (empirically around
1-3%) virtual edges introduced. For computation, TOBE0/TOBE1 has O(|V|C)/O(|E|C) space
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complexity. Since all the operations can be executed in parallel in matrix form, TOBE0/TOBE1

has O( |V|C
D )/O( |E|CD ) time complexity, where D is the number of available computational units.

Table 3: Efficiency results of TOBE0/TOBE1.
Dataset ∆ Nodes (%) ∆ Edges (%) ∆ Time (ms)
Cora 0.258% 2.842%/1.509% 4.50/4.65ms
CiteSeer 0.180% 3.715%/1.081% 4.72/4.97ms
PubMed 0.015% 3.175%/1.464% 6.23/6.64ms
CS 0.082% 1.395%/1.053% 16.97/18.61ms
Physics 0.014% 0.797%/0.527% 30.68/31.91ms

* Results obtained on an NVIDIA® Tesla V100 32GB GPU.

Note that D is usually large for modern GPUs,
thus the computation of TOBE is highly effi-
cient in practice. Table 3 reports the ratio of
virtual nodes/edges to the original graph intro-
duced and the running time of TOBE on differ-
ent datasets. We discuss how to further speed
up TOBE in practice in Appendix D.2.

5 RELATED WORKS
Imbalanced graph learning. Class imbalance is ubiquitous in many machine-learning tasks and
has been extensively studied (He & Garcia, 2008; Krawczyk, 2016). However, most of the existing
works focus on i.i.d. scenarios, which may not be tailored to the unique characteristics of graph data.
To handle imbalanced graph learning, several techniques have been proposed in recent studies (e.g.,
by adversarial training (Shi et al., 2020; Qu et al., 2021), designing new GNN architectures (Wang
et al., 2020; Liu et al., 2021) or loss functions (Song et al., 2022a)), we review the most closely
related model-agnostic CR methods here. One of the early works GraphSMOTE (Zhao et al., 2021b)
adopts SMOTE (Chawla et al., 2002) oversampling in the node embedding space to synthesize
minority nodes and complements the topology with a learnable edge predictor. A more recent work
GraphENS (Park et al., 2022) synthesizes the ego network through saliency-based ego network
mixing to handle the neighbor-overfitting problem. Most studies are rooted in a class-rebalancing
perspective and address the imbalance by node/class-wise reweighting or resampling.

Topology-imbalance in graphs. Another recent line of research focuses on the topology imbalance
issue, firstly discussed in ReNode (Chen et al., 2021). They found that “the unequal structure role
of labeled nodes” can cause influence conflict, and design a method to re-weight the labeled nodes
based on a conflict detection measure. Other works further discussed how to better address the
issue via position-aware structure learning (Sun et al., 2022), and handle topology-imbalance in
fake news detection (Gao et al., 2022) and bankruptcy prediction (Liu et al., 2023). These studies
discussed concepts related to “influence conflict/insufficient”, which motivated us to investigate
AMP/DMP in this work. It is worth mentioning that this line of research is not tailored for handling
class-imbalanced graph learning. In this work, we present the first principled study to approach the
source of the class-imbalance bias from graph topology, and show that the performance of existing
topology-imbalance algorithm (Chen et al., 2021) can be significantly boosted by our solution.

GNN with heterophilic/long-distance propagation. Numerous studies exist in the literature con-
cerning learning from heterophilic graphs (Zheng et al., 2022; Xu et al., 2023) and employing
multi-hop propagation in learning (Gasteiger et al., 2018; Zhao et al., 2021a). In particular, het-
erophilic GNNs often combine intermediate representations to derive more refined structure-aware
features (Zhu et al., 2020). The GPRGNN (Chien et al., 2020) takes a step further by introducing
learnable weights to adaptively combine representations from each layer. Meanwhile, in multi-hop
propagation, APPNP (Gasteiger et al., 2018) stands as a representative technique that leverages per-
sonalized PageRank for extracting information from a broader neighborhood. These works focus on
addressing global graph heterophily and long-distance propagation by modifying the GNN architec-
ture or aggregation operators, and are not specifically designed to address class imbalance. Empiri-
cal results show that our method can also significantly boost the performance of such GNNs (Chien
et al., 2020; Gasteiger et al., 2018) in various CIGL tasks.

6 CONCLUSION
In this paper, we study the class-imbalanced node classification problem from an under-explored
topological perspective. We theoretically reveal and empirically observe that two fundamental phe-
nomena in graph topology, i.e., ambivalent and distant message-passing, can greatly exacerbate the
predictive bias stemming from class imbalance. In light of this, we propose TOBE to identify the
nodes that are critically influenced by such challenges and rectify their learning by dynamic topolog-
ical augmentation. TOBE is a swift and model-agnostic framework that can seamlessly complement
other CIGL techniques, augmenting their performance and mitigating predictive bias. Systematic
experiments validate TOBE’s superior effectiveness, versatility, robustness, and efficiency across
various CIGL tasks. We hope this work provides a new perspective for handling class imbalance
and illuminates promising avenues for future research in imbalanced graph learning.
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Graph posterior network: Bayesian predictive uncertainty for node classification. Advances in
Neural Information Processing Systems, 34:18033–18048, 2021.

Qingyun Sun, Jianxin Li, Haonan Yuan, Xingcheng Fu, Hao Peng, Cheng Ji, Qian Li, and Philip S
Yu. Position-aware structure learning for graph topology-imbalance by relieving under-reaching
and over-squashing. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 1848–1857, 2022.

Lei Tang and Huan Liu. Community detection and mining in social media. Synthesis lectures on
data mining and knowledge discovery, 2(1):1–137, 2010.
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Figure 7: Distributions of Hk
ij . Simulated with n = 2000, ρ = 4, p = 0.01, q = 0.002, k = 2.

A PROOFS OF THEORETICAL RESULTS

Define random variables Hk
ij := |Vj∩H(u, k)| denote the number of class-j k-hop homo-connected

neighbors of a node u ∈ Vi. Note that the results of both Theorems 1 & 2 depend only on the
distributions of Hk

ij . Thus, we will first derive the limiting distributions of Hk
ij as a technical lemma,

and then give the proofs of Theorems 1 & 2.

A.1 LIMITING DISTRIBUTIONS OF Hk
ij

To count the number of homo-connected neighbors, consider the breadth-first search (BFS) tree
rooted at node u ∈ V1. By enumerating the numbers of 1, . . . , k-hop homo-connected neighbors in
the BFS tree respectively, we can calculate the exact joint distribution of (Hk

11, H
k
12):

P{Hk
11 = s,Hk

12 = s′} =
∑

a1+···+ak=s
b1+···+bk=s′

(
n1 − 1

a1, . . . , ak, n1 − 1− s

)(
n2

b1, . . . , bk, n2 − s′

)

pa1

( k∏
t=2

(1− p)at(1+a1+···+at−2)(1− (1− p)at−1)at

)
(1− p)(n1−1−s)(1+s−ak)

qb1
( k∏

t=2

(1− q)bt(1− p)bt(b1+···+bt−2)(1− (1− p)bt−1)bt
)
(1− q)n2−s′(1− p)(n2−s′)(s′−bk).
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Thus, Hk
11 and Hk

12 are independent, and their marginal distributions are:

P{Hk
11 = s} =

∑
a1+···+ak=s

(
n1 − 1

a1, . . . , ak, n1 − 1− s

)

pa1

( k∏
t=2

(1− p)at(1+a1+···+at−2)(1− (1− p)at−1)at

)
(1− p)(n1−1−s)(1+s−ak),

P{Hk
12 = s} =

∑
b1+···+bk=s

(
n2

b1, . . . , bk, n2 − s

)

qb1
( k∏

t=2

(1− q)bt(1− p)bt(b1+···+bt−2)(1− (1− p)bt−1)bt
)
(1− q)n2−s(1− p)(n2−s)(s−bk).

Now consider n→∞. Let

β11 := lim
n→∞

n1 · p = β,

β22 := lim
n→∞

n2 · p = ρβ,

β21 := lim
n→∞

n1 · q = β
q

p
,

β12 := lim
n→∞

n2 · q = ρβ
q

p
.

Then, the limiting distributions of Hk
11 and Hk

12 are:

P{Hk
11 = s} ∼

∑
a1+···+ak=s

ns
1

a1! · · · ak!
pa1

( k∏
t=2

(at−1p)
at

)
(1− p)n1(1+s−ak)

→ e−β11

∑
a1+···+ak=s

(β11e
−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!
,

P{Hk
12 = s} ∼

∑
b1+···+bk=s

ns
2

b1! · · · bk!
qb1

( k∏
t=2

(bt−1p)
bt

)
(1− q)n2(1− p)n2(s−bk)

→ e−β12

∑
b1+···+bk=s

(β12e
−β22)b1

b1!

( k−1∏
t=2

(bt−1β22e
−β22)bt

bt!

)
(bk−1β22)

bk

bk!
.

Figure 7 shows that the limiting distributions are indeed a good approximation for finite n.

A.2 PROOF OF THEOREM 1

Note that for any t′ = 1, . . . , k,

e−β11

∞∑
a1=0

· · ·
∞∑

ak=0

at′ ·
(β11e

−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!
= βt′

11.
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Thus,

lim
n→∞

E[Hk
11] =

∞∑
s=0

s · lim
n→∞

P{Hk
11 = s}

=

∞∑
s=0

s · e−β11

∑
a1+···+ak=s

(β11e
−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!

=

∞∑
s=0

e−β11

∑
a1+···+ak=s

s · (β11e
−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!

= e−β11

∞∑
a1=0

· · ·
∞∑

ak=0

(a1 + · · ·+ ak) ·
(β11e

−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!

=

k∑
t′=1

e−β11

∞∑
a1=0

· · ·
∞∑

ak=0

at′ ·
(β11e

−β11)a1

a1!

( k−1∏
t=2

(at−1β11e
−β11)at

at!

)
(ak−1β11)

ak

ak!

=

k∑
t′=1

βt′

11.

Similarly,

lim
n→∞

E[Hk
22] =

k∑
t=1

βt
22,

lim
n→∞

E[Hk
12] =

k∑
t=1

β12β
t−1
22 ,

lim
n→∞

E[Hk
21] =

k∑
t=1

β21β
t−1
11 .

It follows that

lim
n→∞

αk
1

αk
2

= lim
n→∞

E[Hk
12]/E[Hk

11]

E[Hk
21]/E[Hk

22]

=

∑k
t=1 β12β

t−1
22

/∑k
t=1 β

t
11∑k

t=1 β21β
t−1
11

/∑k
t=1 β

t
22

=
β12β22

β21β11
·
(∑k

t=1 β
t−1
22

)2(∑k
t=1 β

t−1
11

)2
=

(
ρ ·

∑k
t=1(ρβ)

t−1∑k
t=1 β

t−1

)2

.

A.3 PROOF OF THEOREM 2

For k = 2, note the identity:

∞∑
s=0

s∑
a=0

λa(µa)s−a

a!(s− a)!
=

∞∑
a=0

λa

a!

∞∑
b=0

(µa)b

b!
=

∞∑
a=0

λaeµa

a!
= eλe

µ

.
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It follows that (with λ = (1− rL
1)β11e

−β11 and µ = (1− rL
1)β11)

lim
n→∞

E[(1− rL
1)

H2
11 ] =

∞∑
s=0

(1− rL
1)

s · lim
n→∞

P{H2
11 = s}

=

∞∑
s=0

(1− rL
1)

s · e−β11

s∑
a=0

(β11e
−β11)a(β11a)

s−a

a!(s− a)!

= e−β11

∞∑
s=0

s∑
a=0

((1− rL
1)β11e

−β11)a((1− rL
1)β11a)

s−a

a!(s− a)!

= e−β11e(1−rL
1)β11e

−β11e(1−rL
1)β11

= e−(1−(1−rL
1)e

−rL
1β11 )β11

≈ e−β11 .

For k = 3, similarly,

lim
n→∞

E[(1− rL
1)

H3
11 ] = e−

(
1−(1−rL

1)β11e
−
(
1−(1−rL

1)β11e
−rL

1β11

)
β11

)
β11 ≈ e−β11 .

In general, the result for k has k nested exponentiations, but we still have:

lim
n→∞

E[(1− rL
1)

Hk
11 ] ≈ e−β11 .

Similarly,

lim
n→∞

E[(1− rL
2)

Hk
12 ] ≈ e−β12 ,

lim
n→∞

E[(1− rL
2)

Hk
22 ] ≈ e−β22 ,

lim
n→∞

E[(1− rL
1)

Hk
21 ] ≈ e−β21 .

By the law of total probability and the independence of Hk
i1 and Hk

i2,

δk1
δk2

=
E[(1− rL

1)
Hk

11+1(1− (1− rL
2)

Hk
12)]

E[(1− rL
2)

Hk
22+1(1− (1− rL

1)
Hk

21)]

=
(1− rL

1)E[(1− rL
1)

Hk
11 ](1− E[(1− rL

2)
Hk

12 ])

(1− rL
2)E[(1− rL

2)
Hk

22 ](1− E[(1− rL
1)

Hk
21 ])

.

It follows that

lim
n→∞

δk1
δk2
≈ (1− rL

1)e
−β11(1− e−β12)

(1− rL
2)e

−β22(1− e−β21)

≈ 1− rL
1

1− rL
2

eβ22−β11 =
1− rL

1

1− rL
2

e(ρ−1)β .
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B THE TOBE ALGORITHM

Algorithm 1 TOBE: Topological Balanced Augmentation
Require: G : {A,X} with imbalanced labeled set VL;

1: Initialize: node classifier F (·; Θ);
2: while not converged do
3: P̂ ← F (A,X; Θ);
4: ŷ ← argmaxaxis=1(P̂ );
5: r ← NodeRiskEstimation(P̂ , ŷ); ▷ Eq. (3) - (4)
6: Ŝ ← PosteriorEstimation(A, P̂ , ŷ); ▷ Eq. (5) - (6)
7: for class j = 1 to C do
8: xv∗

j
←

∑
v∈V̂j

xv/|V̂j |
9: yv∗

j
← j

10: v∗j : (xv∗
j
, yv∗

j
) ▷ Synthesize virtual node v∗j for each class j

11: V∗ ← {v∗j |1 ≤ j ≤ C} ▷ Get virtual node set V∗

12: Q∗ ← Ŝ ⊙ γ ▷ Get virtual link probabilities Q∗ by Eq. (7)
13: E∗ ∼ Q∗; ▷ Sample virtual edges E∗ w.r.t Q∗

14: Derive X∗,A∗ from V ∪ V∗, E ∪ E∗;
15: Update Θ with augmented graph G∗ : {A∗,X∗};
16: return a balanced classifier F (A,X; Θ);

C REPRODUCIBILITY

In this section, we describe the detailed experimental settings including (§C.1) data statistics, (§C.2)
baseline settings, and (§C.3) evaluation protocols. The source code for implementing and evaluating
TOBE and all the CIGL baseline methods will be released after the paper is published.

C.1 DATA STATISTICS

As previously described, we adopt 5 benchmark graph datasets: the Cora, CiteSeer, and PubMed
citation networks (Sen et al., 2008), and the CS and Physics coauthor networks (Shchur et al., 2018)
to test TOBE on large graphs with more nodes and high-dimensional features. All datasets are
publicly available3. Table 4 summarizes the dataset statistics.

Table 4: Statistics of datasets.
Dataset #nodes #edges #features #classes

Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
CS 18,333 163,788 6,805 15
Physics 34,493 495,924 8,415 5

We follow previous works (Zhao et al., 2021b; Park et al., 2022; Song et al., 2022a) to construct
and adjust the class imbalanced node classification tasks. For step imbalance, we select half of the
classes (⌊m/2⌋) as minority classes and the rest as majority classes. We follow the public split (Sen
et al., 2008) for semi-supervised node classification where each class has 20 training nodes, then
randomly remove minority class training nodes until the given imbalance ratio (IR) is met. The
imbalance ratio is defined as IR = #majority training nodes

#minority training nodes ∈ [1,∞), i.e., more imbalanced data has
higher IR. For natural imbalance, we simulate the long-tail class imbalance present in real-world
data by utilizing a power-law distribution. Specifically, for a given IR, the largest head class have
nhead = IR training nodes, and the smallest tail class have 1 training node. The number of training

3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html.
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nodes of the k-th class is determined by nk = ⌊nλk

head⌋, λk = m−k
m−1 . We set the IR (largest class to

smallest class) to 50/100 to test TOBE’s robustness under natural and extreme class imbalance. We
show the training data distribution under step and natural imbalance in Fig. 8.

Figure 8: Class distribution of training datasets under step and natural imbalance.

C.2 BASELINE SETTINGS

To fully validate TOBE’s performance and compatibility with existing CIGL techniques and GNN
backbones, we include six baseline methods with five popular GNN backbones in our experiments,
and combine TOBE with them under all possible combinations. The included CIGL baselines
can be generally divided into two categories: reweighting-based (i.e., Reweight (Japkowicz &
Stephen, 2002), ReNode (Chen et al., 2021)) and augmentation-based (i.e., Oversampling (Jap-
kowicz & Stephen, 2002), SMOTE (Chawla et al., 2002), GraphSMOTE (Zhao et al., 2021b), and
GraphENS (Park et al., 2022)).

• Reweight (Japkowicz & Stephen, 2002) assigns minority classes with higher misclassifi-
cation costs (i.e., weights in the loss function) by the inverse of the class frequency in the
training set.

• ReNode (Chen et al., 2021) measures the influence conflict of training nodes, and perform
instance-wise node reweighting to alleviate the topology imbalance.

• Oversample (Japkowicz & Stephen, 2002) augments minority classes with additional syn-
thetic nodes by replication-base oversampling.

• SMOTE (Chawla et al., 2002) synthesizes minority nodes by 1) randomly selecting a seed
node, 2) finding its k-nearest neighbors in the feature space, and 3) performing linear inter-
polation between the seed and one of its k-nearest neighbors.

• GraphSMOTE (Zhao et al., 2021b) extends SMOTE (Chawla et al., 2002) to graph-
structured data by 1) performing SMOTE in the low-dimensional embedding space of GNN
and 2) utilizing a learnable edge predictor to generate better topology connections for syn-
thetic nodes.

• GraphENS (Park et al., 2022) directly synthesize the whole ego network (node with its
1-hop neighbors) for minority classes by similarity-based ego network combining and
saliency-based node mixing to prevent neighbor memorization.

We use the public implementations456 of the baseline methods for a fair comparison. For ReN-
ode (Chen et al., 2021), we use its transductive version and search hyperparameters among the
lower bound of cosine annealing wmin ∈ {0.25, 0.5, 0.75} and upper bound of the cosine an-
nealing wmax ∈ {1.25, 1.5, 1.75} following the original paper. We set the teleport probability
of PageRank α = 0.15 as given by the default setting in the released implementation. As Over-
sample (Cui et al., 2019) and SMOTE (Chawla et al., 2002) were not proposed to handle graph
data, we adopt their enhanced versions provided by GraphSMOTE (Zhao et al., 2021b), which also
duplicate the edges from the seed nodes to the synthesized nodes in order to connect them to the

4https://github.com/victorchen96/renode
5https://github.com/TianxiangZhao/GraphSmote
6https://github.com/JoonHyung-Park/GraphENS
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graph. For GraphSMOTE (Zhao et al., 2021b), we use the version that predicts edges with binary
values as it performs better than the variant with continuous edge predictions in many datasets. For
GraphENS (Park et al., 2022), we follow the settings in the paper: Beta(2, 2) distribution is used to
sample λ, the feature masking hyperparameter k and temperature τ are tuned among {1, 5, 10} and
{1, 2}, and the number of warmup epochs is set to 5.

Since TOBE only manipulates the graph data and remains independent of the model architecture,
it seamlessly integrates with the aforementioned CIGL techniques. During each training epoch,
TOBE enhances the original graph G using the current model f and yields the augmented graph G∗.
Subsequently, other CIGL methods operate on the augmented graph G∗, specifically:

• Loss function engineering methods (Reweight and ReNode) perform loss computation and
backpropagation based on G∗.

• Data augmentation methods (Resampling, SMOTE, GSMOTE, GENS) carry out additional
class-balancing operations on G∗, generating new minority nodes based on its structure.

We use pytorch (Paszke et al., 2019) and torch geometric (Fey & Lenssen, 2019) to
implement all five GNN backbones used in this paper, i.e., GCN (Welling & Kipf, 2016),
GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), APPNP (Gasteiger et al., 2018),
and GPRGNN (Chien et al., 2020). Most of our settings are aligned with prevailing works (Park
et al., 2022; Chen et al., 2021; Song et al., 2022a) to obtain fair and comparable results. Specifically,
we implement all GNNs’ convolution layer with ReLU activation and dropout (Srivastava et al.,
2014) with a dropping rate of 0.5 before the last layer. For GAT, we set the number of attention
heads to 4. For APPNP and GPRGNN, we follow the best setting in the original paper and use
2 APPNP/GPR prop convolution layers with 64 hidden units. Note that GraphENS’s official im-
plementation requires modifying the graph convolution for resampling and thus cannot be directly
combined with APPNP and GPRGNN. The teleport probability = 0.1 and the number of power itera-
tion steps K = 10. We search for the best architecture for other backbones from #layers l ∈ {1, 2, 3}
and hidden dimension d ∈ {64, 128, 256} based on the average of validation accuracy and F1 score.
We train each GNN for 2,000 epochs using Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 0.01. To achieve better convergence, we follow (Park et al., 2022) to use 5e-4 weight
decay and adopt the ReduceLROnPlateau scheduler in Pytorch, which reduces the learning rate
by half if the validation loss does not improve for 100 epochs.

C.3 EVALUATION PROTOCOL

To evaluate the predictive performance on class-imbalanced data, we use two balanced metrics, i.e.,
balanced accuracy (BAcc.) and macro-averaged F1 score (Macro-F1). They compute accuracy/F1-
score for each class independently and use the unweighted average mean as the final score, i.e., BAcc.
= 1

m

∑m
i=1 Acc(ci), Macro-F1 = 1

m

∑m
i=1 F1(ci). Additionally, we use performance standard

deviation (PerfStd) to evaluate the level of model predictive bias. Formally, let Acc(ci) be the
classification accuracy of class ci, the PerfStd is defined as the standard deviation of the accuracy

scores of all classes, i.e.,
√

1
m

∑m
i=1(Acc(ci)− BAcc.)2. All the experiments are conducted on a

Linux server with Intel® Xeon® Gold 6240R CPU and NVIDIA® Tesla V100 32GB GPU.

D EXTENDED DISCUSSIONS

In this section, we present an ablation study (§D.1) validate the effectiveness and efficiency of the
key modules, then we discuss how to further speed up TOBE in practice (§D.2); how TOBE allevi-
ates overfitting (§D.3); the inductive capability of TOBE (§D.4); remarks on combining TOBE with
multi-step message-passing GNNs (§D.5); further comparison with other baselines (§D.6); how to
choose between TOBE0 and TOBE1 in practice (§D.7); and finally, the limitation and future works
(§D.8).

D.1 ABLATION STUDY

We present an ablation study to validate the effectiveness and efficiency of the key modules in
TOBE. Specifically, for node risk estimation, we compare our total-variation-distance-based uncer-
tainty with (i) the naı̈ve random assignment that drawn uncertainty score from a uniform distribution
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U(0, 1) and (ii) the information entropy H(Y ) = −
∑

y∈Y p(y) log2(p(y)). We substitute the orig-
inal uncertainty metric with these aforementioned methods in TOBE0, and assess their impact on
performance as well as the computational time required for uncertainty estimation. It is worth noting
that in practical implementation, the computation is parallelized on GPU (assuming sufficient GPU
memory). Therefore, the computational time of a given uncertainty measure remains consistent
across the three datasets we employed (Cora, CiteSeer, PubMed with IR=10). The detailed results
are presented in Table 5, revealing that: (i) Randomly assigned uncertainty scores significantly im-
pede the performance of TOBE, resulting in a large drop in both balanced accuracy and Marco-f1.
(ii) In comparison to our approach, employing information entropy as the node uncertainty score
necessitates ∼2.3x computation time, yet the influence on performance remains marginal.

Table 5: Ablation study on node risk estimation of TOBE.

Uncertainty Cora CiteSeer PubMed Computation
BAcc Macro-F1 BAcc Macro-F1 BAcc Macro-F1 Time(ms)

Random 61.64±1.89 59.44±1.71 46.59±2.29 44.37±3.23 61.60±1.69 58.13±1.81 0.0249
Information Entropy 65.18±1.68 63.11±1.91 51.87±2.96 50.36±3.43 67.72±1.27 67.19±1.57 0.1257
TVDistance (ours) 65.54±1.25 63.28±1.07 52.65±1.08 51.55±1.28 68.62±0.77 67.16±1.53 0.0543

Further, we conduct an ablation study for our posterior likelihood estimation strategy by compar-
ing our 0th-order (TOBE0) and 1st-order (TOBE1) likelihood estimation methods with the random
method that assigns (unnormalized) node-class likelihood by drawing from a uniform distribution
U(0, 1). Results are shown in Table 6. We can observe that the random method significantly wors-
ens the predictive performance on all CIGL tasks. Altogether, the ablation study results confirm the
effectiveness and efficiency of the design of TOBE, showcasing its ability to deliver strong perfor-
mance with minimal computational overhead.

Table 6: Ablation study on posterior likelihood estimation of TOBE.

Estimation Cora CiteSeer PubMed Computation
BAcc Macro-F1 BAcc Macro-F1 BAcc Macro-F1 Time(ms)

Random 63.85±2.17 61.94±2.68 46.51±3.27 41.70±4.33 64.32±1.23 53.58±2.48 0.0883
0th Order (TOBE0) 65.54±1.25 63.28±1.07 52.65±1.08 51.55±1.28 68.62±0.77 67.16±1.53 0.1251
1st Order (TOBE1) 69.80±1.30 68.68±1.49 55.37±1.39 54.94±1.44 67.57±3.22 64.40±3.68 0.3030

D.2 ON THE FURTHER SPEEDUP OF TOBE

As stated in the paper, thanks to its simple and efficient design, TOBE can be integrated into the
GNN training process to perform dynamic topology augmentation based on the training state. By
default, we run TOBE in every iteration of GNN training, i.e., the granularity of applying TOBE
is 1, as described in Alg. 1. However, we note that in practice, this granularity can be increased to
further reduce the cost of applying TOBE. This operation can result in a significant linear speedup
ratio: setting the granularity to N reduces the computational overhead of TOBE to 1/N of the
original (i.e., Nx speedup ratio), with minor performance degradation. This could be helpful for
scaling TOBE to large-scale graphs in practice. In this section, we design experiments to validate
the influence of different TOBE granularity (i.e., the number of iterations per each use of TOBE)
in real-world CIGL tasks. We set the granularity to 1/5/10/50/100 and test the performance of
TOBET with a vanilla GCN classifier on the Cora/CiteSeer/PubMed dataset with an imbalance ratio
of 10. Fig. 9 shows the empirical results from 10 independent runs. The red horizontal line in each
subfigure represents the baseline (vanilla GCN) performance. It can be observed that setting a larger
TOBE granularity is an effective way to further speed up TOBE in practice. The performance drop
of adopting this trick is relatively minor, especially considering the significant linear speedup ratio
it brings. The predictive performance boost brought by TOBE is still significant even with a large
granularity at 100 (i.e., with 100x TOBE speedup).

D.3 TOBE ALLEVIATES NODE AND NEIGHBOR OVERFITTING

Prior studies have demonstrated that the minority class is prone to overfitting due to limited training
samples (Johnson & Khoshgoftaar, 2019), and well-designed oversampling methods can address this
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(a) Influence of TOBE granularity on BAcc. (b) Influence of TOBE granularity on Macro-F1.

Figure 9: Influence of the TOBE granularity (i.e., the number of iterations per each use of TOBE).
Note that this brings a linear speedup ratio in practice, e.g., granularity = 100⇔ 100x speedup.

Table 7: The node replacing and neighbor replacing experiment results.
Dataset Cora CiteSeer PubMed
Setting Base +TOBE0 +TOBE1 Base +TOBE0 +TOBE1 Base +TOBE0 +TOBE1

Training Acc 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
w/ Node Rep. 0.403±0.203 0.755±0.207 0.839±0.160 0.600±0.203 0.970±0.070 0.858±0.243 0.547±0.367 0.934±0.172 0.926±0.181
w/ Neighbor Rep. 0.762±0.195 0.924±0.110 0.917±0.110 0.604±0.239 0.981±0.055 0.842±0.197 0.449±0.354 0.915±0.202 0.906±0.211

by synthesizing diverse minority samples (Gosain & Sardana, 2017). While TOBE doesn’t directly
synthesize samples, it dynamically augments the topological structure, enhancing the diversity of
neighbors for minority class nodes. Consequently, TOBE effectively mitigates node and neighbor
memorization issues (Park et al., 2022) (i.e., overfitting on the graph training data) induced by static
message-passing. To empirically demonstrate TOBE’s ability to prevent overfitting on the training
nodes, we conduct further experiments with node-replacing and neighbor-replacing:

• Node replacing: We replace the features of minority class training (seen) nodes with fea-
tures from unseen nodes of the same class. This test assesses the model’s vulnerability to
node feature overfitting.

• Neighbor replacing: In graph data, message-passing-based GNNs may overfit the neigh-
borhood of minority class nodes (neighbor memorization [4]). To address this, we retained
the features of minority training nodes but replaced their neighbors with unseen nodes. This
test evaluates the model’s susceptibility to neighbor set overfitting.

Following (Park et al., 2022), we adopt GraphSAGE (Hamilton et al., 2017) as the GNN backbone
and test its accuracy drop on the training set under different settings. We do the same test after adding
TOBE0 and TOBE1 to see whether TOBE can help prevent overfitting (i.e., has smaller accuracy
drop under node/neighbor replacing). The results are shown in Table 7. We can observe that While
GNN can attain 100% accuracy on the training set, its predictive performance on training nodes
significantly drops after node/neighbor replacing, indicating substantial overfitting to features and
neighbor sets. However, the same GNN trained with TOBE augmentation has significantly smaller
performance degradation, showcasing the effectiveness of TOBE in preventing overfitting.

D.4 THE INDUCTIVE CAPABILITY OF TOBE

Table 8: The inductive capability of TOBE.
Metric & Method PPI-1 (IR=2.054) PPI-2 (IR=3.051) PPI-3 (IR=3.835) PPI-4 (IR=3.010) PPI-5 (IR=6.963)

BA
cc

.↑ GCN 73.52±1.26 72.06±3.81 69.79±2.82 74.61±3.16 71.70±3.85
GCN+TOBE0 74.89±1.64 (+1.36) 75.47±2.34 (+3.41) 70.17±3.20 (+0.38) 77.64±2.76 (+3.03) 74.98±3.98 (+3.28)
GCN+TOBE1 73.97±1.44 (+0.44) 76.56±2.82 (+4.49) 73.43±3.14 (+3.63) 76.34±3.13 (+1.73) 75.12±3.74 (+3.42)

F1
↑ GCN 73.85±0.34 74.30±3.22 71.84±1.64 75.33±1.77 73.18±1.92

GCN+TOBE0 75.23±0.80 (+1.39) 77.07±1.07 (+2.77) 72.73±2.24 (+0.89) 76.85±1.34 (+1.51) 76.33±1.49 (+3.15)
GCN+TOBE1 74.86±0.91 (+1.01) 77.58±1.54 (+3.28) 74.90±1.62 (+3.06) 76.48±1.40 (+1.15) 76.28±1.76 (+3.11)

TOBE improves the ability of Graph Neural Networks (GNNs) to learn more effective representa-
tions for minority classes by addressing misclassifications induced by AMP/DMP. While we have
previously validated the superior performance of TOBE in transductive node classification, it is im-
portant to note that the enhanced representation facilitated by TOBE also aids GNNs in generalizing
more effectively to unseen graphs. In this section, we present additional experiments and analyses
to confirm the inductive learning capabilities of TOBE.
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We evaluate the inductive capabilities of TOBE on protein-protein interaction networks (PPI) (Zitnik
& Leskovec, 2017). The objective is to predict protein functions for unseen proteins (graphs). The
PPI dataset encompasses multiple distinct protein function targets, resulting in binary classification
tasks with varying class imbalance ratios. This configuration serves as a good testbed to assess
TOBE’s effectiveness in mitigating class imbalance specifically on unseen graphs. We select the
initial 5 protein functions as the prediction targets. Each task involves training on the first 5 graphs,
and testing the model on the remaining 15 graphs. Following the same procedure in reporting the
main results, we conduct 5 independent runs to eliminate randomness.

The results are presented in Table 8. It is evident that ToBE contributes to enhanced generalization
of GNN to unseen graphs, particularly in tasks with high class imbalance ratios (e.g., on PPI-5 with
IR=6.963, TOBE brings consistent 3+% improvement in both metrics). We attribute this improve-
ment to TOBE’s capacity to rectify misclassifications within minority classes, thereby facilitating
GNN in acquiring more effective representations for these minority classes.

D.5 REMARKS ON COMBINING TOBE WITH MULTI-STEP MESSAGE-PASSING GNNS

Table 9: Case study on the propagation steps k of multi-step message-passing GNNs.
Metric BAcc. Macro-F1

Model: APPNP

Setting Base +TOBE0 +TOBE1 Base +TOBE0 +TOBE1

K=10 73.74±1.12 75.02±1.54 72.15±0.76 73.67±0.98 73.67±1.18 69.79±0.72
K=5 72.64±1.00 75.43±1.46 73.35±1.06 72.86±1.06 74.22±1.35 72.66±0.76
K=3 71.82±0.86 74.43±1.30 74.73±1.06 71.80±0.84 75.50±1.07 74.10±1.00
K=1 64.69±1.57 72.62±1.18 73.51±1.24 64.34±2.07 73.64±1.14 73.33±1.30

Model: GPRGNN

Setting Base +TOBE0 +TOBE1 Base +TOBE0 +TOBE1

K=10 73.38±0.67 73.71±0.57 73.93±1.60 73.08±0.66 71.52±0.50 71.72±1.51
K=5 72.89±1.21 73.72±0.93 74.32±1.17 72.74±1.15 72.93±0.71 72.12±1.02
K=3 71.77±0.63 74.35±0.92 74.55±1.30 71.82±0.66 73.25±0.60 73.98±1.24
K=1 63.47±1.11 71.10±0.78 72.33±0.90 62.85±1.42 68.80±0.75 70.02±0.79

In this section, we present remarks on how to better integrate TOBE with multi-step message-
passing GNNs, particularly APPNP and GPRGNN. We observe that directly combining ToBE with
APPNP/GPRGNN may lead to over-smoothing issues. The underlying reason is that ToBE in-
troduces dynamic virtual nodes and edges to the graph and thus increase its connectivity. Addi-
tionally, both APPNP and GPRGNN involve multi-step message-passing based on Personalized
PageRank (PPR), which can potentially exacerbate over-smoothing on graphs with enhanced con-
nectivity. Therefore, we should use a smaller number of message-passing steps when incorporating
with TOBE.

As described in Appendix C.2, following the original papers’ settings, we set the number of propaga-
tion steps K for APPNP/GPRGNN to 10. However, when combined with ToBE, we should reduce
K to alleviate over-smoothing. We tested K = 10/5/3/1 with both APPNP and GPRGNN (results
are shown in Table 9) and observe that smaller K helps TOBE to achieve better performance. Gen-
erally, the vanilla APPNP and GPRGNN achieves the best performance at k = 10. When combining
with TOBE, the best performance is usually achieved at K = 3. Thus we suggest to set k to around
3 when incorporating TOBE to boost multi-step message-passing GNNs.

D.6 FURTHER COMPARISON WITH OTHER BASELINES

Given that our experiments require a comprehensive combination of existing CIGL techniques and
GNN backbones to test ToBE, we chose model-independent and efficient CIGL methods for a com-
prehensive evaluation in the main results. In this section, we compare TOBE with other represen-
tative CIGL techniques that are either model-dependent or with design constraints making them
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Table 10: Comparison between TOBE and additional representative CIGL baselines.
Metric BAcc. Macro-F1 PerfStd
Dataset Cora CiteSeer PubMed Cora CiteSeer PubMed Cora CiteSeer PubMed
GCN 0.619 0.376 0.642 0.607 0.281 0.551 0.275 0.299 0.347
BNE 0.651 0.515 0.654 0.674 0.497 0.613 0.204 0.155 0.245
GCN+TAM 0.620 0.381 0.671 0.610 0.290 0.607 0.296 0.324 0.308
GCN+GraphMixup 0.641 0.508 OOM 0.627 0.473 OOM 0.245 0.252 OOM

GCN+TOBE0 0.655 0.527 0.686 0.633 0.516 0.672 0.213 0.139 0.092
GCN+TOBE1 0.698 0.554 0.676 0.687 0.550 0.644 0.185 0.139 0.218

incompatible with TOBE. Specifically, we include BNE (Zhu et al., 2023), GraphMixup (Wu et al.,
2022), and TAM (Song et al., 2022a). BNE preprocesses graph data to derive independent features
and employs an MLP for prediction, making it incompatible with ToBE and existing GNNs. Graph-
Mixup and TAM rely on invariant graph topology. Further, the code implementation for Graph-
Mixup does not support the addition of virtual nodes to the original graph.

To ensure a fair comparison, we implemented these methods in a unified experimental framework,
employing the same data splitting strategy as in our paper and reporting the averages over five in-
dependent runs (i.e., ensuring comparability with the results reported in our paper). The results for
Imbalance Ratio=10/20 are reported in Table 10. We can observe that ToBE continues to demon-
strate a notable advantage compared to these methods. We also note that GraphMixup encounters
out-of-memory (OOM) issues due to the requirement of computing dense adjacency matrix on the
PubMed dataset with a Tesla V100 32GB GPU.

D.7 CHOOSING BETWEEN TOBE0 AND TOBE1

In this section, we summarize the strengths and limitations of TOBE0 and TOBE1, and give sug-
gestions for choosing between them in practice. In short, we recommend using TOBE1 to achieve
better classification performance. But in case that computational resources are limited, TOBE0 can
serve as a more efficient alternative. The reasons are as follows:

Performance. We observe a noticeable performance gap between ToBE0 and ToBE1, wherein
ToBE1 consistently demonstrates superior classification performance due to its incorporation of
local topological structure. Across the 15 scenarios outlined in Table 1 (the best scores for 3 datasets
x 5 GNN backbones): (1) ToBE1 outperforms ToBE0 significantly in 12 out of 15 scenarios for
BAcc/F1 scores, with an average F1 advantage of 1.692 in the 11 leading cases. (2) Conversely,
ToBE0 exhibits a less pronounced advantage in the instances where it outperforms ToBE1, with an
average advantage of 0.518 in the 4 leading scenarios7.

Efficiency. On the other hand, it’s worth noting that ToBE1 generally incurs higher time and space
complexity compared to ToBE0. Specifically, ToBE0 demonstrates linear complexity concerning the
number of nodes, whereas ToBE1 exhibits linear growth in complexity with the number of edges.
Given that real-world graph data often features a significantly larger number of edges than nodes,
ToBE0 is usually the more efficient option (especially for densely connected graphs).

D.8 LIMITATIONS AND FUTURE WORKS

One potential limitation of the proposed TOBE framework is its reliance on exploiting model predic-
tion for risk and likelihood estimation. This strategy may not provide accurate estimation when the
model itself exhibits extremely poor predictive performance. However, this rarely occurs in practice
and can be prevented by more careful fine-tuning of parameters and model architectures. In addition
to this, as described in Section 3, we adopt several fast measures to estimate node uncertainty, pre-
diction risk, and posterior likelihood for the sake of efficiency. Other techniques for such purposes
(e.g., deterministic (Liu et al., 2020; Zhao et al., 2020)/Bayesian (Zhang et al., 2019; Hasanzadeh
et al., 2020)/Jackknife (Kang et al., 2022a) uncertainty estimation) can be easily integrated into the
proposed TOBE framework, although the computational efficiency might be a major bottleneck.

7Despite ToBE1 holding a relative performance edge, both ToBE0 and ToBE1 substantially enhance the
performance of the best-performing CIGL baseline methods. Over the 15 scenarios, ToBE0 yields an average
improvement of 4.789/5.848 in the best BAcc/F1, while ToBE1 brings an average improvement of 5.805/6.950.
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Table 11: Balanced accuracy of combining TOBE with 6 IGL baselines × 5 GNN backbones.
Dataset (IR=10) Cora CiteSeer PubMed
Metric: BAcc.↑ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

G
C

N
Vanilla 61.56±1.24 65.54±1.25 69.80±1.30 37.62±1.61 52.65±1.08 55.37±1.39 64.23±1.55 68.62±0.77 67.57±3.22

Reweight 67.65±0.64 70.97±1.28 72.14±0.72 42.49±2.66 57.91±0.98 58.36±1.09 71.20±2.33 74.19±1.12 73.37±0.96

ReNode 66.60±1.33 71.37±0.62 71.84±1.25 42.57±1.05 57.47±0.62 59.28±0.59 71.52±2.16 73.20±0.71 72.53±1.62

Resample 59.48±1.53 72.51±0.68 74.24±0.91 39.15±2.05 57.90±0.33 58.78±1.44 64.97±1.94 72.53±0.85 72.87±1.16

SMOTE 58.27±1.05 72.16±0.53 73.89±1.06 39.27±1.90 60.06±0.81 61.97±1.19 64.41±1.95 73.17±0.84 73.13±0.77

GSMOTE 67.99±1.37 68.52±0.81 71.55±0.50 45.05±1.95 57.68±1.03 57.65±1.18 73.99±0.88 73.09±1.30 76.57±0.42

GENS 70.12±0.43 72.22±0.57 72.58±0.58 56.01±1.17 60.60±0.63 62.67±0.42 73.66±1.04 76.11±0.60 76.91±1.03

Best 70.12 72.51 74.24 56.01 60.60 62.67 73.99 76.11 76.91

G
AT

Vanilla 61.53±1.13 66.27±0.83 70.13±1.07 39.25±1.84 55.66±1.23 60.34±1.66 65.46±0.69 73.19±0.86 74.75±1.18

Reweight 66.94±1.24 71.80±0.48 71.61±0.85 41.29±3.39 59.33±0.51 61.23±0.99 68.37±1.41 75.30±1.07 74.52±1.14

ReNode 66.81±0.98 72.14±1.24 70.31±1.38 43.25±1.78 58.26±1.98 59.05±0.88 71.18±2.13 75.55±1.01 75.22±0.84

Resample 57.76±1.73 71.90±0.88 73.29±1.08 35.97±1.42 60.10±1.26 60.33±0.75 65.14±0.86 73.27±0.61 73.89±0.40

SMOTE 58.81±0.64 70.50±0.44 72.19±0.75 36.95±1.86 60.59±1.19 62.36±1.18 64.81±1.47 73.90±0.68 74.08±0.51

GSMOTE 64.68±1.02 69.29±1.82 71.14±0.96 41.82±1.14 56.11±1.23 57.71±2.58 68.72±1.69 74.65±0.65 74.41±1.57

GENS 69.76±0.45 70.63±0.40 71.02±1.22 51.50±2.21 60.95±1.51 63.49±0.75 73.13±1.18 74.34±0.35 75.65±0.82

Best 69.76 72.14 73.29 51.50 60.95 63.49 73.13 75.55 75.65

SA
G

E

Vanilla 59.17±1.23 66.24±0.92 66.53±0.80 42.96±0.28 54.99±2.51 53.18±2.90 67.56±0.84 75.31±0.93 77.38±0.68

Reweight 63.76±0.89 70.15±1.15 71.14±0.84 45.91±2.05 57.95±0.73 55.90±0.93 68.03±1.69 74.56±0.41 75.39±0.38

ReNode 65.32±1.07 71.31±1.29 71.54±0.85 48.55±2.31 56.32±0.40 56.49±1.73 69.08±2.04 74.24±0.20 75.28±0.69

Resample 57.77±1.35 71.24±1.08 73.01±1.02 39.37±1.40 61.41±1.11 61.93±1.40 69.22±1.28 74.91±1.09 75.80±0.39

SMOTE 58.81±1.97 70.31±1.35 73.02±2.29 38.42±1.69 64.14±0.75 66.35±0.70 64.96±1.56 74.59±0.96 77.31±0.45

GSMOTE 61.57±1.78 69.88±0.96 72.28±1.48 42.21±2.12 60.91±1.33 62.32±1.06 71.55±0.64 74.74±0.81 76.14±0.21

GENS 68.84±0.41 69.78±1.18 71.92±0.71 52.57±1.78 64.36±0.68 63.84±0.68 71.38±0.99 75.89±1.17 76.46±1.29

Best 68.84 71.31 73.02 52.57 64.36 66.35 71.55 75.89 77.38

A
PP

N
P

Vanilla 55.37±1.65 58.13±1.69 61.71±1.66 35.69±0.14 35.68±0.15 36.02±0.25 59.30±0.50 55.62±0.31 57.82±0.29

Reweight 72.62±0.47 73.62±0.89 72.51±0.87 50.88±3.64 63.54±1.02 65.57±1.11 72.00±0.81 72.15±0.60 71.22±1.10

ReNode 73.74±1.12 75.02±1.54 72.15±0.76 50.50±3.51 63.73±0.54 65.13±0.40 72.76±1.37 71.54±0.96 71.88±0.70

Resample 65.78±1.72 73.14±0.94 73.57±0.92 40.79±1.87 66.54±0.49 59.51±4.16 67.74±1.94 72.25±0.81 74.41±0.95

SMOTE 65.34±1.68 73.18±1.02 72.88±0.90 40.79±2.05 66.62±0.33 58.82±4.59 67.24±2.10 72.67±1.65 73.33±1.37

GSMOTE 71.13±0.72 73.37±0.82 73.78±0.71 45.37±2.75 64.95±0.11 62.95±2.58 69.57±2.20 73.37±0.95 74.90±1.27

Best 73.74 75.02 73.78 50.88 66.62 65.57 72.76 73.37 74.90

G
PR

G
N

N

Vanilla 67.97±0.51 71.99±1.14 73.38±1.18 42.31±2.16 55.85±0.89 58.82±1.91 67.04±1.82 57.92±0.45 77.49±1.15

Reweight 72.15±0.57 72.90±1.33 73.22±0.55 53.22±2.89 59.78±0.76 61.00±1.82 73.35±1.07 75.22±1.02 76.86±0.76

ReNode 73.38±0.67 73.71±0.57 73.93±1.60 54.66±2.82 59.69±0.73 60.34±1.31 73.56±0.98 75.69±1.10 76.25±0.67

Resample 67.00±1.33 72.94±1.02 74.89±0.86 42.27±2.15 64.16±0.62 63.89±0.98 70.42±1.51 73.79±0.83 75.31±0.54

SMOTE 66.99±1.33 74.01±1.51 74.41±1.05 40.97±2.02 63.88±0.55 62.60±1.72 70.29±1.47 73.89±0.69 75.48±1.02

GSMOTE 70.94±0.57 73.63±1.25 74.02±0.90 48.01±3.28 63.03±0.92 61.68±0.86 71.51±1.91 72.16±0.58 74.77±0.83

Best 73.38 74.01 74.89 54.66 64.16 63.89 73.56 75.69 77.49

How to exploit alternative uncertainty/risk measures while retaining computational efficiency is an
interesting future direction.

Further, beyond the class imbalance in the node label distribution, graph data can also exhibit multi-
facet skewness in other aspects. For instance, class imbalance may also exist in edge-level (e.g., in
edge classification/prediction) and graph-level (e.g., in graph classification). Beyond the quantity
imbalance among classes, skewness may also exists in the topological structure, such as degree
imbalance (Kang et al., 2022b), and motif-level imbalance (Zhao et al., 2022). How to jointly
consider the multi-facet node/edge/graph-level imbalance to benefit more graph learning tasks is an
exciting yet challenging future direction.

Finally, some recent studies (Zhou et al., 2022; Du et al., 2021) highlight the possibility of extract-
ing graph structures from i.i.d. tabular data and leveraging them to enhance representation learning.
It’s worth noting that the extracted graphs may also manifest class imbalance, potentially influ-
encing classification performance. The exploration of TOBE’s potential to transcend graph-centric
challenges and find applications in non-graph tasks represents an exciting avenue for further inves-
tigation.

E ADDITIONAL RESULTS

Due to space limitation, we report the key results of our experiments in Table 1 and 2. We now
provide complete results for all settings with the standard error of 5 independent runs. Specifically,
Table 11 & 12 & 13 complement Table 1, and Table 14 complements Table 2. The results indicate
that TOBE can consistently boost various CIGL baselines with all GNN backbones, performance
metrics, as well as different types and levels of class imbalance, which aligns with our conclusions
in the paper.
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Table 12: Macro-F1 score of combining TOBE with 6 IGL baselines × 5 GNN backbones.
Dataset (IR=10) Cora CiteSeer PubMed

Metric: Macro-F1↑ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

G
C

N

Vanilla 60.10±1.53 63.28±1.07 68.68±1.49 28.05±2.53 51.55±1.28 54.94±1.44 55.09±2.48 67.16±1.53 64.40±3.68

Reweight 67.85±0.62 69.41±1.01 70.31±0.82 36.59±3.66 56.84±1.06 57.54±1.08 67.07±3.42 72.94±0.81 73.24±0.90

ReNode 66.66±1.59 69.79±0.79 70.59±1.25 34.64±1.54 56.69±0.64 58.07±0.77 67.86±3.99 72.61±0.41 72.25±0.89

Resample 57.34±2.27 71.36±0.39 72.82±1.13 29.73±2.77 57.17±0.48 58.03±1.42 56.74±3.54 71.19±0.83 73.13±1.33

SMOTE 55.65±1.62 71.04±0.16 72.82±0.86 29.39±2.81 59.53±0.88 61.53±1.24 56.14±3.74 71.72±0.60 72.83±1.20

GSMOTE 68.01±1.67 67.60±1.00 70.28±0.48 40.07±3.02 56.64±1.09 56.25±1.50 70.60±1.17 72.95±1.39 75.70±0.35

GENS 69.96±0.29 71.62±0.64 72.28±0.65 54.45±1.69 59.89±0.68 62.46±0.43 71.28±1.84 75.77±0.55 76.86±0.93

Best 69.96 71.62 72.82 54.45 59.89 62.46 71.28 75.77 76.86

G
AT

Vanilla 60.71±1.61 64.27±0.95 68.93±0.79 31.12±3.15 54.71±1.18 59.42±1.55 57.32±1.55 71.27±1.11 74.03±1.08

Reweight 66.49±1.34 69.84±0.91 69.79±0.77 34.94±4.09 58.53±0.68 60.28±1.12 63.82±1.60 75.13±1.13 73.88±1.38

ReNode 67.27±1.23 70.61±0.83 68.24±1.48 37.72±2.61 57.64±2.11 58.57±0.75 67.38±3.22 74.88±0.99 74.96±1.18

Resample 55.36±2.47 70.87±0.94 72.31±1.07 25.71±1.97 59.77±1.31 59.66±0.95 57.24±1.54 72.53±0.66 73.09±0.83

SMOTE 57.49±0.60 69.68±0.66 71.74±1.03 26.05±2.30 59.83±1.33 61.75±1.30 55.66±2.76 73.33±1.00 73.30±0.16

GSMOTE 64.34±1.69 68.23±1.80 69.77±1.08 35.07±1.77 55.86±1.10 57.13±2.69 63.35±2.92 74.23±0.84 73.34±2.06

GENS 69.96±0.62 69.83±0.41 70.71±1.16 48.34±2.19 60.04±1.85 62.55±0.86 71.78±1.19 72.69±0.84 74.42±1.12

Best 69.96 70.87 72.31 48.34 60.04 62.55 71.78 75.13 74.96

SA
G

E

Vanilla 57.36±1.77 64.90±0.87 65.61±0.97 36.07±1.06 54.76±2.47 51.86±3.25 63.75±1.24 74.35±0.74 76.92±0.63

Reweight 63.72±1.10 69.06±0.90 69.59±0.53 39.64±2.57 57.17±0.76 54.83±0.74 62.83±2.57 73.88±0.40 75.42±0.48

ReNode 65.59±1.44 69.99±1.35 69.86±1.27 44.20±3.68 55.41±0.48 55.78±1.63 64.97±3.00 74.33±0.20 74.88±0.53

Resample 55.29±2.12 70.40±1.11 71.49±0.79 30.14±2.20 60.71±1.25 61.29±1.48 65.23±2.26 74.28±0.96 75.48±0.44

SMOTE 56.72±2.69 69.42±1.29 71.71±1.94 29.22±2.33 63.61±0.87 65.91±0.68 57.60±3.22 72.98±0.69 76.45±0.77

GSMOTE 59.44±2.25 69.10±0.95 71.30±1.47 34.86±3.46 60.53±1.27 61.96±1.12 67.23±0.61 74.36±1.02 75.68±0.31

GENS 68.23±0.72 69.76±0.95 71.11±0.81 51.05±2.03 63.87±0.82 63.41±0.57 70.06±0.86 75.33±1.46 76.01±1.14

Best 68.23 70.40 71.71 51.05 63.87 65.91 70.06 75.33 76.92

A
PP

N
P

Vanilla 50.39±2.81 54.19±2.58 59.99±2.49 22.21±0.13 22.54±0.25 22.89±0.22 44.50±0.21 44.67±0.07 44.59±0.06

Reweight 72.63±0.53 72.71±0.60 70.61±0.65 45.25±4.85 63.08±1.03 65.20±1.20 69.53±1.14 72.24±0.58 72.26±0.80

ReNode 73.67±0.98 73.67±1.18 69.79±0.72 44.91±4.99 62.97±0.78 64.47±0.40 70.65±1.66 72.33±0.90 72.18±0.55

Resample 65.20±2.08 72.25±0.82 72.72±0.97 31.04±2.76 66.06±0.54 54.57±6.08 62.42±3.62 72.32±0.93 74.27±1.08

SMOTE 64.70±2.06 72.90±0.83 72.31±0.94 30.90±2.86 66.18±0.37 53.90±6.26 61.83±3.65 72.55±1.61 73.87±1.37

GSMOTE 71.20±0.67 73.02±0.74 73.22±0.92 37.90±4.29 64.56±0.18 60.41±3.84 65.65±3.06 72.54±0.85 74.61±1.36

Best 73.67 73.67 73.22 45.25 66.18 65.20 70.65 72.55 74.61

G
PR

G
N

N

Vanilla 67.86±0.79 70.80±1.16 72.32±1.18 35.00±2.96 55.06±0.89 56.31±2.87 59.01±3.62 50.12±1.46 77.62±1.04

Reweight 71.66±0.85 70.46±0.98 71.24±0.49 49.19±3.61 59.11±0.73 60.30±2.04 71.18±0.95 75.47±0.90 77.01±0.52

ReNode 73.08±0.66 71.52±0.50 71.72±1.51 50.34±3.18 59.10±0.75 58.94±1.36 71.45±1.19 75.08±1.06 75.76±0.84

Resample 66.42±1.65 71.70±0.86 73.54±0.83 32.60±2.71 63.59±0.65 63.12±1.06 66.58±2.08 73.66±0.86 75.42±0.35

SMOTE 66.43±1.74 72.89±1.23 73.47±1.12 31.38±2.70 63.41±0.55 61.23±2.59 66.78±1.97 73.98±0.70 75.63±0.91

GSMOTE 70.87±0.53 72.53±0.85 73.12±0.95 42.82±4.52 62.09±1.04 60.82±0.88 67.93±3.01 72.72±0.72 74.66±0.74

Best 73.08 72.89 73.54 50.34 63.59 63.12 71.45 75.47 77.62
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Table 13: Performance deviation of combining TOBE with 6 IGL baselines × 5 GNN backbones.
Dataset (IR=10) Cora CiteSeer PubMed
Metric: PerfStd↓ Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1 Base + TOBE0 + TOBE1

G
C

N

Vanilla 27.88±1.79 21.27±1.76 18.49±2.68 29.93±1.38 13.82±2.06 13.93±0.80 34.73±2.14 9.23±2.78 21.81±4.51

Reweight 22.29±1.41 14.43±2.51 18.32±2.20 25.47±1.78 19.10±1.48 22.64±0.79 19.33±5.26 10.21±1.58 5.88±0.83

ReNode 22.88±1.64 14.65±2.07 17.00±2.13 30.31±1.51 20.22±0.88 22.99±1.09 18.14±5.79 12.99±1.57 10.96±1.92

Resample 31.57±1.85 15.13±2.14 15.25±2.79 31.00±1.32 16.30±1.89 20.79±0.43 30.90±5.67 11.63±3.20 7.82±0.80

SMOTE 33.32±1.38 16.33±1.12 17.95±2.50 32.61±1.45 17.27±0.86 18.25±0.89 31.79±5.21 10.56±1.82 11.66±2.58

GSMOTE 21.78±1.79 17.90±2.75 18.44±2.20 22.64±2.69 21.37±1.25 21.01±1.45 15.87±2.34 3.35±1.08 5.83±1.27

GENS 20.04±1.12 16.98±3.02 18.02±2.23 16.95±2.64 14.94±0.75 15.54±0.60 11.93±3.46 5.95±1.85 5.15±0.80

Best 20.04 14.43 15.25 16.95 13.82 13.93 11.93 3.35 5.15

G
AT

Vanilla 27.38±1.71 19.23±0.80 17.97±2.65 28.32±2.07 15.62±0.77 15.90±0.95 30.94±1.27 10.77±2.04 8.51±2.48

Reweight 22.90±1.67 16.44±2.71 17.32±2.83 30.27±1.26 18.64±1.30 20.83±1.06 24.92±1.88 3.01±0.96 5.44±1.33

ReNode 23.13±1.54 15.05±1.59 18.96±1.65 25.21±1.85 20.48±0.82 20.51±0.49 18.15±4.37 4.77±1.22 6.17±0.42

Resample 32.73±2.12 17.87±2.04 17.64±2.57 32.59±0.89 17.76±1.79 18.73±1.02 31.67±0.98 6.18±1.35 4.58±1.14

SMOTE 31.17±0.69 18.40±1.03 18.26±1.87 33.32±0.88 10.68±0.68 13.24±1.12 32.79±2.13 8.14±2.00 7.56±1.05

GSMOTE 24.84±1.60 15.48±2.08 18.23±2.00 26.74±1.53 18.34±1.64 19.76±0.42 24.50±2.78 5.12±1.38 8.54±2.03

GENS 20.08±1.56 17.75±2.40 17.88±2.50 26.49±1.18 12.89±0.77 15.09±0.95 10.29±2.75 7.83±2.27 7.55±2.38

Best 20.08 15.05 17.32 25.21 10.68 13.24 10.29 3.01 4.58

SA
G

E

Vanilla 29.94±1.75 18.62±2.13 19.49±1.67 26.75±1.58 14.56±1.16 18.13±1.32 21.09±3.43 10.96±1.99 4.09±1.17

Reweight 25.61±1.60 15.24±2.66 17.54±2.45 29.95±1.83 19.05±1.60 22.94±0.49 25.47±3.49 3.35±0.72 8.09±0.19

ReNode 24.12±1.73 13.32±3.03 15.45±2.41 22.41±4.31 22.20±0.97 22.75±0.87 22.92±4.36 7.63±1.23 5.77±1.55

Resample 31.66±1.47 15.77±2.75 15.08±2.74 30.29±1.16 18.72±0.90 18.48±2.00 21.41±2.88 4.68±1.42 4.76±1.09

SMOTE 30.86±2.64 17.30±2.09 14.87±3.23 32.07±1.00 13.17±1.33 12.78±0.43 31.62±2.86 13.88±1.44 11.63±2.28

GSMOTE 27.71±1.86 17.28±2.25 16.10±2.94 28.77±2.61 18.69±0.76 18.05±1.21 20.10±0.90 5.37±1.21 4.64±1.61

GENS 19.81±1.65 17.50±2.05 17.63±2.11 19.76±2.07 15.99±0.81 16.99±0.85 11.76±2.91 7.63±1.51 8.31±1.64

Best 19.81 13.32 14.87 19.76 13.17 12.78 11.76 3.35 4.09

A
PP

N
P

Vanilla 38.32±1.94 35.50±2.10 32.18±1.68 36.82±0.10 36.67±0.25 36.83±0.36 42.13±0.27 40.45±0.11 41.34±0.16

Reweight 19.83±1.46 17.33±2.88 18.46±2.42 26.19±2.93 20.96±0.58 19.38±0.72 16.96±2.84 8.04±1.94 9.13±1.05

ReNode 18.09±2.52 16.87±2.95 19.47±2.00 25.95±3.66 22.09±1.43 20.42±1.57 14.49±3.81 10.25±1.93 3.95±1.02

Resample 27.28±2.13 18.37±2.34 18.72±2.32 32.71±1.23 15.87±1.02 23.72±4.14 25.86±4.38 13.60±1.68 9.49±1.65

SMOTE 27.86±1.78 18.61±2.35 19.42±1.81 33.26±1.10 14.91±0.93 22.90±4.49 26.37±4.47 13.37±1.97 8.70±2.29

GSMOTE 20.98±1.45 18.19±2.59 18.55±2.28 29.39±2.20 16.49±1.12 19.19±3.44 22.32±4.21 11.53±3.00 10.69±2.27

Best 18.09 16.87 18.46 25.95 14.91 19.19 14.49 8.04 3.95

G
PR

G
N

N

Vanilla 22.96±1.20 18.12±2.29 17.00±2.98 27.57±1.32 17.10±1.17 20.94±2.58 29.94±3.68 36.57±1.46 5.30±0.91

Reweight 20.94±1.21 17.83±2.82 19.67±1.81 22.43±2.39 21.52±1.06 20.03±1.81 16.12±1.84 7.54±0.49 5.48±1.49

ReNode 18.84±2.19 16.78±2.53 17.89±2.96 24.14±1.47 19.84±1.79 22.83±1.40 14.40±3.18 9.75±2.20 6.61±1.47

Resample 25.62±1.80 19.23±2.26 17.61±2.77 33.08±0.66 17.04±0.78 15.98±0.93 22.59±2.75 7.62±2.50 7.76±0.85

SMOTE 25.44±1.88 16.97±3.19 17.38±2.78 32.85±0.95 15.09±1.23 16.85±2.51 21.35±2.76 9.41±2.67 6.09±0.62

GSMOTE 21.23±1.48 18.02±2.62 19.06±2.28 24.21±3.06 14.83±0.95 19.11±1.73 20.08±3.77 5.99±1.49 8.27±0.75

Best 18.84 16.78 17.00 22.43 14.83 15.98 14.40 5.99 5.30

Table 14: Performance of TOBE under varying types and levels of class imbalance. For each
setting, we report the relative gain over base and mark the best/second-best score in bold/underlined.

Dataset Cora CiteSeer PubMed CS Physics
Step IR 10 20 10 20 10 20 10 20 10 20

BA
cc

.↑ Base 61.6 52.7 37.6 34.2 64.2 60.8 75.4 65.3 80.1 67.7
+ TOBE 69.8+13.4% 71.3+35.2% 55.4+47.2% 51.3+49.9% 68.6+6.8% 63.3+4.1% 82.6+9.6% 79.9+22.2% 87.6+9.4% 88.0+29.9%

BestIGL 70.1+13.9% 66.5+26.2% 56.0+48.9% 47.2+38.0% 74.0+15.2% 71.1+17.0% 84.1+11.6% 81.3+24.4% 89.4+11.6% 85.7+26.6%

+ TOBE 74.2+20.6% 71.6+35.9% 62.7+66.6% 62.5+82.6% 76.9+19.7% 75.7+24.5% 86.3+14.5% 85.6+31.0% 91.2+13.9% 90.9+34.2%

M
ac

ro
-F

1↑ Base 60.1 47.0 28.1 21.9 55.1 46.4 72.7 59.2 80.7 64.7
+ TOBE 68.7+14.3% 69.6+48.1% 54.9+95.8% 48.9+123.5% 67.2+21.9% 60.7+30.8% 78.6+8.1% 74.7+26.1% 88.8+10.0% 87.8+35.8%

BestIGL 70.0+16.4% 66.2+40.9% 54.5+94.1% 45.0+105.6% 71.3+29.4% 68.9+48.3% 83.9+15.3% 80.9+36.7% 89.5+10.9% 86.2+33.2%

+ TOBE 72.8+21.2% 70.2+49.4% 62.5+122.7% 62.1+183.6% 76.9+39.5% 74.9+61.2% 85.4+17.5% 84.6+43.0% 90.7+12.4% 90.0+39.2%

Pe
rf

St
d↓ Base 27.9 39.0 29.9 35.1 34.7 41.5 21.2 32.1 22.2 36.0

+ TOBE 21.3-23.7% 24.4-37.5% 13.9-53.5% 16.7-52.5% 21.8-37.2% 29.1-29.9% 17.4-18.2% 22.9-28.8% 11.5-48.3% 25.6-29.0%

BestIGL 20.0-28.1% 21.9-43.8% 16.9-43.4% 18.0-48.6% 11.9-65.6% 14.2-65.7% 8.9-58.3% 12.3-61.8% 6.3-71.7% 12.4-65.5%

+ TOBE 15.2-45.3% 17.5-55.2% 13.9-53.5% 16.7-52.5% 5.1-85.2% 4.6-89.0% 7.9-62.7% 10.1-68.5% 6.6-70.2% 6.9-80.8%

Natural IR 50 100 50 100 50 100 50 100 50 100

BA
cc

.↑ Base 58.1 61.8 44.9 44.7 52.0 51.1 73.8 71.4 76.0 77.7
+ TOBE 69.1+18.9% 68.3+10.6% 58.4+29.9% 57.4+28.5% 55.6+7.0% 56.5+10.4% 82.1+11.3% 81.9+14.8% 86.9+14.3% 84.1+8.3%

BestIGL 71.0+22.3% 73.8+19.5% 56.3+25.3% 56.3+26.0% 72.7+39.8% 72.8+42.5% 81.2+10.0% 81.4+14.0% 85.8+12.9% 87.2+12.2%

+ TOBE 73.1+25.8% 76.9+24.5% 62.1+38.2% 61.3+37.3% 75.8+45.7% 75.9+48.5% 85.0+15.1% 84.5+18.5% 88.6+16.5% 89.7+15.4%

M
ac

ro
-F

1↑ Base 58.7 61.4 37.5 36.2 47.3 45.1 75.3 73.2 78.0 79.8
+ TOBE 68.7+17.1% 67.5+10.0% 57.1+52.6% 55.8+54.3% 52.8+11.6% 52.0+15.4% 82.6+9.7% 82.6+12.8% 87.6+12.3% 85.2+6.8%

BestIGL 71.1+21.2% 73.4+19.5% 54.3+44.8% 53.8+48.8% 72.9+53.9% 73.7+63.6% 82.5+9.5% 82.4+12.6% 87.7+12.4% 88.3+10.6%

+ TOBE 72.7+23.9% 76.0+23.9% 60.2+60.8% 59.4+64.3% 75.3+59.2% 76.1+68.8% 85.7+13.7% 85.1+16.2% 88.8+13.8% 89.4+12.0%

Pe
rf

St
d↓ Base 28.8 31.0 38.7 39.8 36.2 38.2 26.3 28.2 23.8 21.0

+ TOBE 18.3-36.4% 25.4-18.1% 24.9-35.6% 33.1-17.0% 33.3-8.1% 35.9-6.2% 19.0-27.9% 19.5-30.9% 17.0-28.7% 19.6-6.7%

BestIGL 18.9-34.4% 17.3-44.4% 28.7-25.9% 29.7-25.3% 6.0-83.4% 9.6-75.0% 14.4-45.4% 15.4-45.5% 11.2-53.1% 9.7-53.8%

+ TOBE 15.9-44.8% 14.7-52.8% 21.9-43.4% 19.8-50.3% 4.2-88.3% 5.6-85.3% 12.2-53.5% 12.8-54.7% 7.4-68.9% 7.2-65.7%
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