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Abstract

If the conclusion of a data analysis is sensitive
to dropping very few data points, that conclusion
might hinge on the particular data at hand rather
than representing a more broadly applicable truth.
To check for this sensitivity, one idea is to con-
sider every small data subset, drop it, and re-run
our analysis. But the number of re-runs needed
is combinatorially large. Recent work proposes
a differentiable relaxation to find the worst-case
subset, but that work was developed for conclu-
sions based on estimating equations — and does
not directly handle Bayesian posterior approxima-
tions using MCMC. We make two principal con-
tributions. We adapt the existing data-dropping
relaxation to estimators computed via MCMC; in
particular, we re-use existing MCMC draws to
estimate the necessary derivatives via a covari-
ance relationship. Observing that Monte Carlo
errors induce variability in the estimates, we use
a variant of the bootstrap to quantify this uncer-
tainty. Empirically, our method is accurate in
simple models, such as linear regression. In mod-
els with complex structure, such as hierarchies,
the performance of our method is mixed.

1. Introduction
Consider this motivating example. Angelucci et al. (2015)
conducted a randomized controlled trial (RCT) in Mexico
to study whether microcredit loans improve business prof-
its. To analyze this data, one might use a simple Bayesian
model and Markov chain Monte Carlo (MCMC). Based on
the posterior mean MCMC estimate, one might conclude
that microcredit actually reduces profit in this study. Next, if
a policymaker wants to advocate against microcredit deploy-
ment outside of Mexico, they need to know if microcredit
remains detrimental beyond the data gathered in Angelucci
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et al. (2015). More broadly, many researchers analyze data
with Bayesian models and MCMC (Senf et al., 2020; Mea-
ger, 2022; Jones et al., 2021; Porter et al., 2022) and want
to know if their conclusions generalize beyond their data.

If one is interested in generalization, an intuitive idea is
checking if a conclusion changes after dropping very few
data points. For instance, we show in Section 4.1 that af-
ter removing less than 0.1% of the RCT data (Angelucci
et al., 2015), microcredit is estimated to increase, rather
than decrease, profit. So, the conclusion hinges on a small
number of businesses. We do not know if these data points
appear elsewhere. Hence, we worry about generalization.
For more motivation on why small-data sensitivity is related
to generalization, see Appendix A.1.

One might want to know if a similar sensitivity exists for
other analyses. A natural idea is to enumerate over ev-
ery data subset and re-analyze. Unfortunately, the number
of subsets to search over is prohibitively large. See Ap-
pendix A.2 for an estimate on brute-force runtime. So we
turn to approximations. While there has been previous work
on approximating dropping worst-case data subsets (Broder-
ick et al., 2023; Kuschnig et al., 2021; Shiffman et al., 2023;
Moitra and Rohatgi, 2022; Freund and Hopkins, 2023), none
directly apply to MCMC: the focus of past works have been
either estimating equations (Kosorok, 2008)[Chapter 13] or
ordinary least squares (OLS).

Our work extends Broderick et al. (2023) to conclusions
based on MCMC. In Section 3.1, similar to Broderick et al.
(2023), we use a first-order Taylor series. We observe
that the first derivatives can be interpreted as posterior co-
variances, and we use MCMC to estimate the covariances
(Section 3.2). Recognizing that Monte Carlo errors induce
variability in our approximation, in Section 3.3 we use a
variant of the bootstrap Efron (1979) to quantify this uncer-
tainty. We provide a longer discussion of related work in
Appendix A.3. Experimentally, in Section 4, while our ap-
proximation performs well in simple models such as linear
regression, it is less reliable in complex models.

2. Background
We introduce notation in two parts. First, we cover the
notation and concepts involved in Bayesian data analysis.
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Second, we extend the notation to dropping data.

Bayesian data analysis. Suppose we have a dataset
{d(n)}Nn=1. Consider a parameter β ∈ RV of interest.
To estimate β, we take a Bayesian approach. First, we
model the link between β and the data through a likeli-
hood L(d(n) | β). Secondly, we specify a prior distribution
over β, and use p(β) to denote the prior density. Then, the
density of the posterior distribution of β given the data is
p(β | {d(n)}Nn=1) ∝ p(β)

∏N
n=1 exp(L(d

(n) | β)).

In practice, an analyst uses a posterior functional to make
conclusions. One example is the posterior mean Eg(β),
where g is a mapping from RV to R. In linear regression,
commonly a practitioner will make a decision based on the
sign of the posterior mean of a particular regression coeffi-
cient. Other decisions are made with uncertainty intervals:
see Appendix B.1 for details.

Computationally, posterior functionals need not have closed
forms. To approximate posterior functionals, practitioners
frequently use MCMC methods. Let (β(1), . . . , β(S)) de-
note the MCMC draws that target the posterior distribution.
We estimate expectations using (β(1), . . . , β(S)), and make
a decision based on such estimates.

Dropping data. A Bayesian analyst might be worried
if the substantive decision arising from their data analysis
changed after removing some small fraction α of the data.
For instance, if their decision were based on the sign of the
posterior mean, they would be worried if that sign changed.
Other decision changes are given in Appendix B.1.

To describe non-robustness precisely and to develop our
approximation, we need to indicate the dependence of poste-
rior functionals on the presence of data points. We introduce
data weights w = (w1, w2, . . . , wN ). This vector defines
the so-called weighted posterior distribution.
Definition 2.1. Let Z(w) be the normalizing constant for
p(β)

∏N
n=1 exp(wnL(d

(n) | β)). If Z(w) < ∞, the den-
sity of the weighted posterior distribution associated with
w is denoted by p(β | w, {d(n)}Nn=1), and is equal to

1
Z(w)p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)
.

If wn = 0, the n-th observation is ignored; if wn = 1, the n-
th observation is fully included. We recover the regular pos-
terior by setting all weights to 1: w = 1N = (1, 1, . . . , 1).
It is possible that p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)

is not
integrable. For example, the prior p(β) is improper and all
weights have been set to zero: w = 0N = (0, 0, . . . , 0). We
assume that any likelihood contribution is enough to define
a proper posterior.
Assumption 2.1. ∀w ∈ [0, 1]N \ {0N}, Z(w) <∞.

This assumption is immediate in the case of proper prior

and standard likelihoods.

To indicate that an expectation is taken with respect to the
randomness β ∼ p(β | w, {d(n)}Nn=1), we use Ew. The
value of a posterior functional depends on w. For instance,
the posterior mean under the weighted posterior is Ewg(β).

The non-robustness concern can be formalized as follows.
For α ∈ (0, 1), let Wα denote the set of all weight vectors
that correspond to dropping no more than 100α% of the data
i.e. Wα :=

{
w ∈ {0, 1}N : 1

N

∑N
n=1(1− wn) ≤ α

}
. We

say the analysis is non-robust if there exists a weight w ∈
Wα that changes the conclusion.

We focus on decisions satisying the following simplifying
assumption: there exists a posterior functional (ϕ(w)) such
that ϕ(1N ) < 0 and the conclusion changes if and only if
ϕ(w) > 0. Such a functional will be called a “quantity of in-
terest” (QoI). The decision based on sign fits this framework.
To change this conclusion, if the full-data posterior mean
were positive, we take ϕ(w) = −Ewg(β). Appendix B.1
shows how other decision changes fit this framework.

Checking non-robustness is equivalent to a) finding the max-
imum value of ϕ(w) subject to w ∈Wα and b) checking its
sign. The outcome of this comparison remains the same if
we maximize the objective function ϕ(w)− c and compare
the optimal value with −c, for any constant c. Out of later
convenience, we set c = ϕ(1N ). As in Broderick et al.
(2023, Section 2), we define the Maximum Influence Pertur-
bation (MIP) to be the largest change induced by dropping
no more than 100α% of the data. In our notation, it is

max
w∈Wα

(ϕ(w)− ϕ(1N )) . (1)

In general, the brute-force approach to find the MIP takes a
prohibitively long time; recall Appendix A.2.

3. Methods
We turn to relaxations of the MIP. We focus on ϕ(w) =
Ewg(β); Appendices B.1 and B.3 discusses other QoIs.

3.1. Taylor series

Our first approximation relies on the first-order Taylor series
of the quantity of interest ϕ(w). We require that the quantity
of interest ϕ(w) is differentiable with respect to w. The
combination of Assumption 2.1 and Assumption B.2 from
Appendix B.2 forms a set of mild regularity conditions that
ensure this differentiability.
Theorem 3.1. Assume Assumption 2.1 and Assumption B.2.
For any δ ∈ (0, 1), ϕ(w) is continuously differentiable on
{w ∈ [0, 1]N : maxn wn ≥ δ}. The n-th partial derivative
is equal to Covw

(
g(β), L(d(n) | β)

)
.

See Proof D.1 for the proof, and connections to previous
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works on sensitivity analysis of posterior expectations.

We define the n-th influence as the partial derivative of
ϕ(w) at w = 1N : ψn := ∂ϕ(w)

∂wn

∣∣
w=1N

. Then, the first-
order Taylor series approximation of ϕ(w) − ϕ(1N ) is∑N

n=1 ψn(wn − 1). We approximately solve Equation (1)
by replacing its objective function:

max
w∈Wα

N∑
n=1

(wn − 1)ψn (2)

Solving Equation (2) involves a sort. For any w ∈ Wα,
the objective function is equal to

∑
n:wn=0(−ψn). Let

r1, r2, . . . , rN sort the ψn in increasing order: ψr1 ≤ ψr2 ≤
. . . ≤ ψrN . Then, the optimal value is equal to the nega-
tive of

∑⌊Nα⌋
m=1 ψrmI{ψrm < 0}, where I{·} is the indicator

function. We denote the optimal value by ∆(α), and the
data points to be removed by U(α).

3.2. Estimating the influence

To solve Equation (2), we need to compute the influence
ψn. Each ψn is a covariance under the full-data posterior.
Therefore, the MCMC draws, which are already used to
estimate ϕ(1N ), can be used to estimate ψn: ψn ≈ ψ̂n

where ψ̂n is the sample covariance between L(d(n) | β(s))
and g(β(s)) (the sample being (β(1), . . . , β(S))).

Since ψ̂n is only an approximation of ψn, we are not able
to solve Equation (2) exactly, but only solve an approxima-
tion of it. Namely, we replace all instances of ψn with ψ̂n

in Equation (2), and solve: maxw∈Wα

∑N
n=1(wn − 1)ψ̂n.

The algorithm to solve this is analogous of that for Equa-
tion (2). For instance, let the ranks v1, v2, . . . , vN be such
that ψ̂v1 ≤ ψ̂v2 ≤ . . . ≤ ψ̂vN . Then the optimal value is
−
∑⌊Nα⌋

m=1 ψ̂vmI{ψ̂vm < 0}. We denote this value by ∆̂,
and the data points to be removed by Û .

3.3. Confidence intervals

∆̂ is a noisy point estimate of ∆(α). One concern regarding
the quality of ∆̂ is noise due to sampling uncertainty of
(β(1), . . . , β(S)). So, we design confidence intervals.

Exact sampling. In certain cases, such as conjugate mod-
els (Diaconis and Ylvisaker, 1979), we can generate exact
Monte Carlo draws from the posterior distribution. Then,
conceptually, ∆̂ is an estimator constructed from an i.i.d.
sample. We appeal to the bootstrap (Efron, 1979), a general-
purpose technique to quantify the sampling uncertainty.

Our confidence interval construction proceeds in three steps.
First, we define the so-called bootstrap distribution of ∆̂.
Second, we approximate this distribution with an empirical
distribution based on Monte Carlo draws. Finally, we use

an interquantile range of this empirical distribution as our
confidence interval for ∆(α). For details, see Appendix B.4.

General MCMC. We now handle the case in which
(β(1), . . . , β(S)) exhibit dependence. One idea is to use
the previous section’s construction without modification.
Theoretically, it is known that the bootstrap struggles on
non-i.i.d. samples, for even simple estimators. Intuitively,
the bootstrap fails because the bootstrap draws do not have
any dependence, while the original draws do. Appendix B.5
explains this in detail.

To improve upon the bootstrap, one option is to resample
in a way that respects the original sample’s dependence
structure. In particular, we use the non-overlapping block
bootstrap (Lahiri, 2003; Carlstein, 1986): instead of resam-
pling individual Markov chain states, we first divide the
Markov chain into blocks, and then resample blocks. For
details, see Appendix B.5. The outcome of this resampling
is an interval, denoted by [∆lb(α),∆ub(α)], which is our
confidence interval for ∆(α).

4. Experiments
Now, we check the quality of our approximations empiri-
cally on real data analyses. For a particular MCMC run, we
estimate sensitivity for a range of α values: see Appendix E
for details. For each α, our method proposes an influential
data subset (Û) and a change in the quantity of interest, rep-
resented by a confidence interval ([∆lb(α),∆ub(α)]). We
plot how the change from re-running minus the proposed
data compares to the confidence interval.

4.1. Linear model

We consider a slight variation of Meager (2019)’s analysis
of the Angelucci et al. (2015) RCT. For context and ex-
perimental details, see Appendix F.1. In this simple linear
model, our prediction typically contains the rerun.

The most interesting parameter, θ, is the treatment effect: the
difference in profit between treatment and control. Figure 1
plots the histogram of the treatment effect draws as well as
key sample summaries. The sample mean is equal to −4.55.
The sample standard deviation is 5.79. The uncertainty
interval is (−16.10, 6.99). An analyst might conclude that
while the posterior mean of the effect of microcredit is
negative, the uncertainty interval covers zero, so they cannot
confidently conclude that microcredit either helps or hurts.

In Figure 2, we plot our confidence intervals and the result
after removing the proposed data. For changing sign, our
method predicts there exists a data subset at most 0.1% such
that if we remove it, we change the posterior mean’s sign.
Refitting after removing the proposed data confirms this
prediction. For changing significance, our method predicts
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Figure 1. (Linear model) Histogram of treatment effect MCMC
draws. Blue line is sample mean. Dashed red line is zero threshold.
Dotted blue lines are uncertainty interval endpoints.

Figure 2. (Linear model) Confidence interval and refit. At max-
imum, we remove 1% of the data. Each panel corresponds to a
target conclusion change: ‘sign’ is the change in sign, ‘sig’ is
change in significance, and ‘both’ is the change to a significant
effect of the opposite sign. Error bars are confidence interval for
refit after removing the most extreme data subset. Each ‘x’ is the
refit after removing the proposed data and re-running MCMC. The
dotted blue line is the fit on the full data.

there exists a data subset of relative size at most 0.36% such
that if we remove it, we change the sign of the uncertainty
interval’s right endpoint: refitting confirms this prediction.
Our method is not able to predict whether the result can be
changed to significant effect of the opposite sign for these
α values and this number of draws: we recommend more
MCMC draws, which should decrease interval width.

4.2. Hierarchical model

We consider a slight variation of the analysis of European
tree mortality from Senf et al. (2020). For details, see Ap-
pendix F.2. Our approximation struggles: we predict more
extreme changes than realized by re-running.

The most interesting parameter, θ, is the association between
water availability and the amount of tree canopy death. Fig-
ure 3 plots the histogram of the association effect draws
and sample summaries. The sample mean is equal to −1.88.
The sample standard deviation is 0.48. The uncertainty
interval is (−2.81,−0.94). One might decide that water
balance has a negative relationship with canopy mortality,
since the posterior mean is negative, and this relationship is
significant, since the uncertainty interval omits zero.

Figure 4 plots our confidence intervals and the reruns. In

Figure 3. (Hierarchical model for tree mortality) Histogram of
slope MCMC draws. See the caption of Figure 1 for the meaning
of the distinguished vertical lines.

Figure 4. (Hierarchical model for tree mortality) Confidence inter-
val and refit. See the caption of Figure 2 for the meaning of the
panels and the distinguished lines.

general, our interval is not conservative. The overestimation
is particularly severe for the ‘both’ QoI and the ‘sig’ QoI.
For changing sign, our method predicts there exists a data
subset of relative size at most 0.17% such that if we remove
it, we change the posterior mean’s sign; refitting does not
confirm this prediction, however. The smallest α whose
refit’s posterior mean actually changes sign is 0.22%. For
changing significance, our method predicts there exists a
data subset of relative size at most 0.10% such that if we
remove it, we change the sign of the right endpoint; refitting
confirms this prediction. For generating a significant result
of the opposite sign, our method predicts there exists a data
subset of relative size at most 0.17% such that if we remove
it, we change the sign of the left endpoint; refitting does
not confirm this prediction, however. The smallest α whose
refit’s left endpoint actually changes sign is 1.0%.

5. Next Steps
We have provided a fast approximation to what happens to
conclusions made with MCMC in Bayesian models when
a small percentage of data is removed. In real data exper-
iments, our approximation is accurate in simple models,
such as linear regression. In complicated models, such as
hierarchical ones, our methods are less accurate. Naturally,
we would like to understand why the performance in mixed.
In Appendix E, we describe the checks that could be run
to identify error sources. Appendix F.1 and Appendix F.2
show the outcomes of running such checks.
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A. Other Intro Details
A.1. More motivation of dropping data as generalization check

Standard tools to assess generalization often make assumptions that are not realistic in practice. For instance, an analyst
might use frequentist tools (confidence interval, p-values) to predict whether their inferences hold in the broader population.
The validity of these methods technically depends on the assumption that the gathered data is an independent and identically
distributed (i.i.d.) sample from the broader population. In practice, we have reason to suspect that this assumption is not met;
for instance, it might not be reasonable to assume that data collected in Mexico and data collected in a separate country are
i.i.d. from the same distribution.

As pointed out by Shiffman et al. (2023), an analyst might hope that deviations from the i.i.d. assumption are small enough
that (a) their conclusions remain the same in the broader population and (b) standard tools accurately assess generalization.
On the other hand, the analyst might worry that this hope is misplaced if small, realistic deviations from i.i.d.-ness could
affect the substantive conclusions of an analysis. An often-realistic kind of deviation is the missingness of a small fraction
of data; for instance, some percentage of the population might not respond to a survey. So, if it were possible to remove a
small fraction of data and change conclusions, the analyst might worry about generalization.

A.2. Brute-force runtime

We need to enumerate every data subset that drops no more than 100α% of the original data. And, for each subset, we
would need to re-run MCMC to re-estimate the quantity of interest. There are more than

(
N

⌊Nα⌋
)

elements in Wα. The RCT
data from Angelucci et al. (2015) has N = 16,560 observations; even for α = 0.001, there are more than 1054 subsets to
consider. Each Markov chain already takes a noticeable amount of time to construct; in this analysis, to generate S = 4,000
draws, we need to run the chain for 1 minute. The total time to find the worst-case data subset is on the order of 1048 years.

A.3. Related work

Our work arguably fits into the intersection of three lines of work.

The first is papers on detecting sensitivity to small-data removal. Broderick et al. (2023) were the first to formulate sensitivity
to dropping a small fraction of data as a check on generalization. Along with the formulation, one contribution of this
work is a fast approximation to detect sensitivity when the analysis in question is based on estimating equations (Kosorok,
2008)[Chapter 13]. Regardless of how estimators are constructed, in general, the brute-force approach to finding an
influential small fraction of data is computationally intractable. One would need to enumerate all possible data subsets
of a given cardinality and re-analyze on each subset: even when the fraction of data removed is small and each analysis
takes little time, there are too many such subsets to consider; see the discussion at the end of Section 3. For estimating
equations, Broderick et al. (2023) approximate the effect of dropping data with a first-order Taylor series approximation;
this approximation can be optimized very efficiently, while the brute-force approach is not at all practical. Neither Broderick
et al. (2023) nor subsequent existing work on small-data removals (Kuschnig et al., 2021; Shiffman et al., 2023; Moitra and
Rohatgi, 2022; Freund and Hopkins, 2023) can be immediately applied to determine sensitivity in MCMC. In particular,
since MCMC cannot be cast as the root of an estimating equation or the solution to an optimization problem, neither
Broderick et al. (2023) nor Shiffman et al. (2023) apply to our situation. As Kuschnig et al. (2021); Moitra and Rohatgi
(2022); Freund and Hopkins (2023) focus on ordinary least squares (OLS), their work does not address our problem, either.

The second line of work estimates the changes that happen to a posterior expectation because of small perturbations to the
total log likelihood. There are two conceptually distinct approaches to this sensitivity analysis.

• One approach (e.g. Arya et al., 2022, 2023; Seyer, 2023) applies to when the posterior is approximated with a
Metropolis-Hastings algorithm. In particular, this approach computes the gradient of the Metropolis-Hastings sampler
to small perturbations in the total log likelihood. More broadly, there is a literature on estimating gradients for random
processes with discrete components (Kleijnen and Rubinstein, 1996; Fu and Hu, 2012; Heidergott and Vázquez-Abad,
2008).

• The other approach does not compute the gradient of the MCMC algorithm or steps within it. Instead, it directly
computes (and then estimates) the gradient of the posterior expectation. Recent works in this literature include Giordano
et al. (2018); Mohamed et al. (2020); Giordano and Broderick (2023); Giordano et al. (2023), while foundational works
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include Diaconis and Freedman (1986); Ruggeri and Wasserman (1993); Gustafson (1996).

In our work, we take the second approach. A priori, it is not clear which approach is superior. Two reasons to prefer the
second approach over the first approach are the following. While the discrete operations in Metropolis-Hastings, e.g. the
accept/reject steps, pose a key challenge in the first approach, they do not cause any issues in the second approach; the
second approach is “oblivious” to details regarding how the posterior is approximated. In addition, suppose that an analyst
wishes to compute gradients of multiple quantities of interest. If they follow the first approach, for each quantity of interest,
they would need to re-run the sampling algorithm to estimate the gradient. Taking the second approach, the analyst only
needs to run the sampling algorithm once, and use the resulting draws to simultaneously estimate the gradient of multiple
quantities of interest. On the other hand, the first approach might be better than the second approach in the following way.
Our experiments later show that gradient estimates coming from the second approach can be noisy. The first approach,
with the promise of variance reduction through a good choice of Markov chain coupling, might produce more accurate
gradient estimates. It is an interesting direction for future work to apply the first approach to our problem and compare the
performance of the two approaches.

While papers taking the second approach have already mentioned how to estimate the effect of dropping an individual
observation, these estimates have not been used to assess whether conclusions based on MCMC are sensitive to the removal
of a small data fraction. Some works (e.g. Gustafson, 1996; Giordano et al., 2018, 2023) generate perturbations by varying
prior or likelihood choice. Giordano and Broderick (2023) estimate the frequentist variability of Bayesian procedures, a task
that can be seen as equivalent to the goal of bootstrap resampling. No existing work aims to find a small fraction of data that,
if dropped, would change conclusions.

The third set of works, in the Bayesian case influence literature, quantifies the importance of individual observations to a
Bayesian analysis. As we will explain, existing works do not tackle our problem. Early works in this area include Johnson
and Geisser (1983); Mcculloch (1989); Lavine (1992); Carlin and Polson (1991), while recent works include Marshall and
Spiegelhalter (2007); Millar and Stewart (2007); van der Linde (2007); Thomas et al. (2018); Pratola et al. (2023). Such
papers focus on the identification of outliers, rather than predictions about whether the conclusion changes after removing
a small amount of data. Generally, this literature defines an observation to be an outlier if the Kullback–Leibler (KL)
divergence between the posterior after removing the observation and the original posterior is large. For conclusions based
on posterior functionals, such as the mean, we are not aware of how to systematically connect the KL divergence to the
sensitivity of the decision-making process; in fact, recent work (Huggins et al., 2020) has shown that comparing probability
distributions based on the KL divergence can be misleading if an analyst really cared about the comparison between the
distributions’ means or variances.

B. Other Methods Details
B.1. Other decisions and quantities of interest

In Section 2 and Section 3, we focus on decisions based on the sign of the posterior mean. Here, we describe other decisions,
which are based on uncertainty intervals, and the corresponding quantities of interest.

An econometrician might declare that an intervention is helping some population if the vast majority of the posterior mass
for a particular coefficient lies above zero. That is, the practitioner checks if the lower bound of an uncertainty interval lies
above zero. This decision might be considered to reflect a Bayesian notion of significance.

A Bayesian analyst might be worried if the substantive decision arising from their data analysis changed after removing
some small fraction α of the data. For instance,

• If their decision were based on zero falling outside a credible interval, they would be worried if we can make the
credible interval contain zero.

• If their decision was based on both the sign and the significance, they would be worried if we can both change the
posterior mean’s sign and put a majority of the posterior mass on the opposite side of zero.

To change the conclusion about significance, if uncertainty interval’s left endpoint1 (E1N
g(β)− z0.975

√
Var1N

g(β)) were

1Our uncertainty interval multiplies the posterior standard deviation by z0.975, which is the 97.5% quantile of the standard normal, but
we can replace this with other scaling without undue effort.
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positive, we take
ϕ(w) = −(Ewg(β)− z0.975

√
Varwg(β)).

ϕ(w) > 0 is equivalent to moving the left endpoint below zero, thus changing from a significant result to a non-significant
one. Finally, to change to a significant result of the opposite sign, if the uncertainty interval’s left endpoint were positive, we
take

ϕ(w) = −(Ewg(β) + z0.975
√

Varwg(β)).

On the full data, the right endpoint is above zero. On weight such that ϕ(w) > 0, the right endpoint has been moved below
zero: the conclusion has changed from a positive result to a significant negative result.

B.2. Regularity conditions

To be able to form a Taylor series, we require that the quantity of interest ϕ(w) is differentiable with respect to the weight w.
We are not aware of a complete theory (necessary and sufficient conditions) for this differentiability. However, through
Assumption B.1 and Assumption B.2, we state a set of sufficient conditions.
Assumption B.1. Let g be a function from RV to the real line. ϕ(w) is a linear combination of posterior mean and posterior
standard deviation i.e. there exists constants c1 and c2, which are independent of w, such that

ϕ(w) = c1Ewg(β) + c2
√

Varwg(β).

A typical choice of g is the function that returns the v-th coordinate of a V -dimensional vector.

It might appear that constraining ϕ(w) to be a linear combination of the posterior mean and standard deviation is overly
restrictive. However, this choice encompasses many cases of practical interest: recall from Appendix B.1 that the quantities
of interest for changing sign, changing significance, and producing a significant result of the opposite sign, take the form
of Assumption B.1. Furthermore, the choice of constraining ϕ(w) to be a linear combination of the posterior mean and
standard deviation in Assumption B.1 is done out of convenience. Our framework can also handle quantities of interest that
involve higher moments of the posterior distribution, and the function that combines these moments need not be linear, but
we omit these cases for brevity. However, we note that posterior quantiles in general do not satisfy Assumption B.1 and
leave to future work the question of how to diagnose the sensitivity of such quantities of interest.
Assumption B.2. For any w ∈ [0, 1]N \{0N}, the following functions have finite expectations under the weighted posterior:
|g(β)|, g(β)2, |L(d(n) | β)| (for all n), |g(β)L(d(n) | β)| (for all n) and |g(β)2L(d(n) | β)| (for all n).

The assumption is mild. It is satisfied by for instance, linear regression under Gaussian likelihood and g(β) = βv .

Under Assumption 2.1, Assumption B.1, and Assumption B.2, ϕ(w) is continuously differentiable with respect to w.
Theorem B.1. Assume Assumption 2.1, Assumption B.1, and Assumption B.2. For any δ ∈ (0, 1), ϕ(w) is continuously
differentiable with respect to w on {w ∈ [0, 1]N : maxn wn ≥ δ}. The n-th partial derivative2 at w is equal to c1f + c2s
where

f = Covw
(
g(β), L(d(n) | β)

)
, (3)

and

s =
Covw

(
g(β)2, L(d(n) | β)

)
− 2Ewg(β)× Covw

(
g(β), L(d(n) | β)

)√
Varwg(β)

. (4)

See Proof D.2 for the proof. This theorem is a specific instance of the sensitivity of posterior expectations with respect to log
likelihood perturbations: for further reading, we recommend Diaconis and Freedman (1986); Basu et al. (1996); Gustafson
(1996). Theorem 3.1 establishes both the existence of the partial derivatives and their formula. Equation (3) is the partial
derivative of the posterior mean with respect to the weights, while Equation (4) is that for the posterior standard deviation,
with the understanding that the derivative is one-sided.

B.3. Estimating the influence for other QoI

Algorithm 1 describes the algorithm to estimate the influence of a quantity of interest ϕ(w) that satisfies Assumption B.1
and Assumption B.2.

2If wn lies on the boundary, the partial derivative is understood to be one-sided.
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Algorithm 1 Influence Estimate (EI)

Input: ϕ(w)-defining constants c1, c2, Markov chain (β(1), . . . , β(S))

m = 1
S

∑S
s=1 g(β

(s)), k = 1
S

∑S
s=1 g(β

(s))2

v = k −m2

ψ̂ = (0, 0, . . . , 0) {N -dimensional vector}
for n = 1 to N do
a = 1

S

∑S
s=1 g(β

(s))L(d(n) | β(s))

b = 1
S

∑S
s=1 g(β

(s))2L(d(n) | β(s))

u = 1
S

∑S
s=1 L(d

(n) | β(s))
f = a−mu {Estimate of Equation (3)}
g = b− ku
ŝ = (g − 2mf)/(

√
v) {Estimate of Equation (4)}

ψ̂n = c1f + c2s {Estimate of ψn }
end for
Return: ψ̂

Algorithm 2 Sum of Sorted Influence Estimate (SoSIE)

Input: ϕ(w)-defining constants c1, c2, Markov chain (β(1), . . . , β(S)), fraction of data to drop α
ψ̂ = EI(c1, c2, (β(1), . . . , β(S)))

Find ranks v1, v2, . . . , vN such that ψ̂v1 ≤ ψ̂v2 ≤ . . . ≤ ψ̂vN

Find the smallest p such that ψ̂vp+1 ≥ 0. If none exists, set p to N .
ŵ is the N -vector where ŵn = 1 for n ∈ {v1, . . . , vmin(p,⌊Nα⌋)} and ŵn = 0 otherwise
If p ≥ 1, Û = {dv1 , . . . , dvmin(p,⌊Nα⌋)}. Otherwise, Û = ∅
∆̂ = −

∑⌊Nα⌋
m=1 ψ̂vmI{ψ̂vm < 0}

Return: ∆̂, Û

Algorithm 2 describes the algorithm to estimate the worst-case change in quantity of interest ϕ(w) that satisfies Assump-
tion B.1 and Assumption B.2.

B.4. Confidence interval under exact sampling

For certain prior and likelihoods, we are able to draw exact Monte Carlo samples from the posterior distribution i.e.
(β(1), . . . , β(S)) is an i.i.d. sample of size S drawn from the full-data posterior distribution. This happens for conjugate
models (Diaconis and Ylvisaker, 1979), or for models in which convenient augmentation schemes have been discovered,
such as Bayesian logistic regression with Polya-Gamma augmentation (Polson et al., 2013). Conceptually, ∆̂ can be
thought of as an estimator constructed from an i.i.d. sample. However, the sample in question is not the data {d(n)}Nn=1, but
(β(1), . . . , β(S)). To highlight the dependence between ∆̂ and (β(1), . . . , β(S)), we will use the notation ∆̂(β(1), . . . , β(S)).
The estimator ∆̂ is a complex, non-smooth function of the sample: the act of taking the minimum across the estimated
influences ψ̂n is non-smooth. We do not attempt to prove distributional results for this estimator and use such results to
quantify uncertainty. Instead, we appeal to the bootstrap (Efron, 1979), a general-purpose technique to quantify the sampling
uncertainty of estimators.

Our confidence interval construction proceeds in three steps. First, we define the so-called bootstrap distribution of ∆̂.
Second, we approximate this distribution with an empirical distribution based on Monte Carlo draws. Finally, we use the
range spanned by quantiles of this empirical distribution as our confidence interval for ∆(α).

To define the bootstrap distribution, consider the empirical distribution of the sample (β(1), . . . , β(S)):

1

S

S∑
i=1

δ{β(i)}(·).

We denote one draw from this empirical distribution by β∗(s). A bootstrap sample is a set of S draws:
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(β∗(1), β∗(1), . . . , β∗(S)). The bootstrap distribution of ∆̂ is the distribution of ∆̂(β∗(1), β∗(1), . . . , β∗(S)), where the
randomness is taken over the bootstrap sample but is conditional on the original sample (β(1), . . . , β(S))

Clearly, the bootstrap distribution is discrete with finite support. If we chose to, we can enumerate its support and compute its
probability mass function, by enumerating all possible values a bootstrap sample can take. However, this is time-consuming.
It suffices to approximate the bootstrap distribution with Monte Carlo draws. The draw ∆̂(β∗(1), β∗(1), . . . , β∗(S)) is
abbreviated by ∆̂∗: we generate a total number of B such draws. When B increases, the empirical distribution of
(∆̂∗

1, ∆̂
∗
2, . . . , ∆̂

∗
B) becomes a better approximation of the bootstrap distribution. However, the computational cost scales up

with B. In practice, B in the hundreds are commonplace: our numerical work uses B = 200.

We now define confidence intervals for ∆(α). Each interval is parametrized by η, the nominal coverage level, which
is valued in (0, 1). We compute two quantiles of the empirical distribution over (∆̂∗

1, ∆̂
∗
2, . . . , ∆̂

∗
B), the (1 − η)/2 and

(1 + η)/2 quantiles3, and define the interval spanned by these two values as our confidence interval. By default, we set
η = 0.95.

One limitation of our current work is that we do not make theoretical claims regarding the actual coverage of such confidence
intervals. Although bootstrap confidence intervals can always be computed, whether the actual coverage matches the
nominal coverage η depends on structural properties of the estimator and regularity conditions on the sample. To verify
the quality of these confidence intervals, we turn to numerical simulation. We leave to future work the task of formulating
reasonable assumptions and theoretically analyzing the actual coverage.

B.5. Confidence interval under general MCMC

In the previous section, we made the simplifying assumption that exact sampling were possible. We now lift this assumption
and handle the case in which (β(1), . . . , β(S)) truly came from a Markov chain (such as the output of Hamiltonian Monte
Carlo). This case is much more common in practice than the exact sampling case.

To construct confidence intervals, one idea is to use the previous section’s construction without modification. In other words,
apply the bootstrap to a non-i.i.d. sample: recall that the Markov chain states are not independent of each other. Theoretically,
it is known that the bootstrap struggles on non-i.i.d. samples, for even simple estimators. For example, if the estimator in
question is the sample mean and the draws exhibit positive autocorrelation, under mild regularity conditions, the bootstrap
variance estimate seriously underestimates the true sampling variance, even in the limit of infinite sample size (Lahiri, 2003,
Theorem 2.2). In our case, the bootstrap likely struggles on the sample means that are involved in the definition of ∆̂: for
instance, it is very common for some coordinate v that (β(1)

v , β
(2)
v , . . . , β

(S)
v ) exhibits positive autocorrelation in practice.

Therefore, we have reason to be pessimistic about the ability of bootstrap confidence intervals to adequately cover ∆(α).

Fundamentally, the bootstrap fails in the non-i.i.d. case because the draws that form the bootstrap sample do not have any
dependence, while the draws that form the original sample do. To improve upon the bootstrap, one option is to resample in a
way that respects the original sample’s dependence structure. We recognize that the sample in question, (β(1), . . . , β(S)), is
a (multivariate) time series: we focus on methods that perform well under time series dependence. One such scheme is the
non-overlapping block bootstrap (Lahiri, 2003; Carlstein, 1986).4 The sample (β(1), . . . , β(S)) is divided up into a number
of blocks: each block is a vector of contiguous draws. Let L be the number of elements in a block, and let M := ⌊S/L⌋
denote the number of blocks. The m-th block is defined as

Bm :=
(
β((m−1)L+1), . . . , β(mL)

)
.

To generate one sample from the non-overlapping block bootstrap distribution, we first draw with replacement from the set
of blocks M values: B∗

1 , . . . , B
∗
M . Then, we write the elements of these drawn blocks in a contiguous series. For example,

when (β(1), . . . , β(S)) = (β(1), β(2), β(3), β(4)) and L = 2, the two blocks are (β(1), β(2)), and (β(3), β(4)). The set of
possible samples from resampling include (β(1), β(2), β(1), β(2)) and (β(3), β(4), β(3), β(4)) but not (β(1), β(3), β(1), β(3)).

The name “non-overlapping block bootstrap” comes from the fact that these blocks, viewed as sets, are disjoint from each
other. While the name is needed in Lahiri (2003) to distinguish from other blocking rules, moving forward, as we only

3We use R’s quantile() to compute the sample quantiles. When (1 + η)/2×B is not an integer, the (1 + η)/2 quantile is defined by
linearly interpolating the order statistics.

4The original paper, Carlstein (1986), did not use the term “non-overlapping block bootstrap” to describe the technique. The name
comes from Lahiri (2003).
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consider the above blocking rule, we will refer to the procedure as simply, block bootstrap. Intuitively, the block bootstrap
sample is a good approximation of the original sample if the latter has short-term dependence: in such a case, the original
sample itself can be thought of as the concatenation of smaller, i.i.d. subsamples, and the generation of a block bootstrap
sample mimics that. In well-behaved probabilistic models with well-tuned algorithms, the MCMC draws can be expected to
only have short-term dependence, and the block bootstrap is a good choice.

The block bootstrap has one hyperparameter: the block length L. We would like both L and M to be large: large L captures
time series dependence at larger lags, and large M is close to having many i.i.d. subsamples. However, since their product is
constrained to be S, the choice of L is a trade-off. In numerical studies, we set L = 10.

Our construction of confidence intervals for general MCMC proceeds identically to the previous section’s construction,
except for the step of generating the bootstrap sample: instead of drawing from the vanilla bootstrap, we draw from the
block bootstrap. We will denote the endpoints of such an interval by ∆lb(α) (lower endpoint) and ∆ub(α) (upper endpoint).

Similar to the previous section, we do not make theoretical claims on the actual coverage of our block bootstrap confidence
intervals: we verify the quality of the intervals through later numerical studies.

C. Theory
In this section, we theoretically quantify the approximation errors incurred by our methods. Namely, Appendix C.1 analyzes
the error made by the first-order approximation, while Appendix C.2 analyzes the error made by using MCMC to estimate
influences.

C.1. Accuracy of first-order approximation

In this section, we investigate the error incurred by replacing ϕ(w)− ϕ(1N ) with the Taylor series from Section 3.1. While
the approximation applies to any model that satisfies Assumption 2.1, Assumption B.1, and Assumption B.2, our error
analysis is limited to two models: a normal model and a normal means model. Their salient features are the following.
Both are convenient to analyze and address the same statistical task: derive the population mean based on a finite sample
{x(n)}Nn=1 where x(n) ∈ R. The normal means model is hierarchical: the observations are organized into disjoint
groups. Each observation d(n) is (x(n), g(n)), where g(n) is valued in {1, 2, . . . , G}, with g(n) = g indicating that the n-th
observation belongs to the g-th group. The normal model does not have this structure, as only x(n) is observed and used
in modeling. We show that error in the normal model is qualitatively different from the error in the normal means model.
Roughly speaking, the former depends on the ratio between the number of observations left out, ⌊Nα⌋, and the total number
of observations, N . Meanwhile, the later depends on three quantities a) ⌊Nα⌋, b) the number of groups G and c) the number
of observations in a group.

Before specializing to different models, we pin down the common notion of error. We define error to be the difference
between ϕ(w) − ϕ(1N ) and

∑
n(wn − 1)ψn. We mainly care when w encodes the full removal of certain observations

and full inclusion of the remaining ones i.e. w ∈ {0, 1}N . If we let q be the function that returns the zero indices of such a
weight (q(w) = {n : wn = 0}), then its inverse q−1 takes a set of observation indices (I ⊂ {1, 2, . . . , N}) and produces
a weight valued in {0, 1}N . We reformulate the error as a function of I instead of w by replacing w with q−1(I) in the
definition of error. This reformulation reads

Err1st(I) = ϕ(q−1(I))− ϕ(1N ) +
∑
n∈I

ψn.

C.1.1. NORMAL MODEL.

We detail the prior and likelihood of the normal model and the associated quantity of interest. The parameter of interest is
the population mean µ. The likelihood of an observation is Gaussian with a known standard deviation σ. In other words, the
n-th log-likelihood evaluated at µ is L(d(n) | µ) = 1

2 log
(

1
2πσ2

)
− 1

2σ2 [(x
(n))2 − 2x(n)µ+ µ2]. We choose the uniform

distribution over the real line as the prior for µ. The quantity of interest is the posterior mean of µ.

In this model, expectations under the weighted posterior have closed forms. We can derive an explicit expression for
the error. To display the error, it is convenient to define the sample average of observations as a function of I: for any
I ⊂ {1, 2, . . . , N}, let x̄I := (1/|I|)

∑
n∈I x

(n). The sample average of the whole dataset will be denote by x̄.
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Lemma C.1. For the normal model, Err1st(I) is qual to

|I|2(x̄− x̄I)

N(N − |I|)

We prove Lemma C.1 in Proof D.3. The error is a function of I through the a) the cardinality of the set |I| and b) the
difference between the whole dataset’s sample mean, x̄, and the sample mean for elements in I. Since the data is fixed, we
can upper bound |x̄− x̄I | with the constant 2∥x∥∞, where ∥x∥∞ := maxn |x(n)|. The rate at which the absolute value of
the error goes to zero is |I|2: as the ratio |I|/N equals α, this means the error’s absolute value goes to zero like α2.

C.1.2. NORMAL MEANS MODEL.

We detail the prior and likelihood of the normal means model and the associated quantity of interest. The parameters of
interest are the population mean µ and the group means θ = (θ1, θ2, . . . , θG). Observations in group g are modeled as
Gaussian centered at the group mean θg with a known standard deviation σ. In other words, the n-th log-likelihood is
L(d(n) | µ, θ) = 1

2 log
(

1
2πσ2

)
− 1

2σ2 [(x
(n))2 − 2x(n)θg(n) + θ2

g(n) ]. The prior over (µ, θ) is the following. We choose the
uniform distribution over the real line as the prior for µ. Conditioned on µ, the group means are Gaussian centered at µ,
with a known standard deviation τ . The quantity of interest is the posterior mean of µ.

This model, like the normal model, has closed-form posterior expectations. Before displaying the exact formula for the error
Err1st(I), we need to describe the weighted posterior in more detail. For each group g, we define three functions of w:

Ng(w) :=
∑

n:g(n)=g

wn,Mg(w) :=

∑
n:g(n)=g wnx

(n)

Ng(w)
,Λg(w) :=

(
σ2

Ng(w)
+ τ2

)−1

.

While Ng(w) sums up the weights of observations in group g, Mg(w) is the weighted average of observations in this group,
and Λg(w) will be used to weigh Mg(w) in forming the posterior mean of µ. Proof D.4 shows that Ewµ is equal to∑G

g=1 Λg(w)Mg(w)∑G
g=1 Λg(w)

.

To avoid writing
∑G

g=1 Λg(w), we define Λ(w) :=
∑G

g=1 Λg(w). To lighten notation, for expectations under the original
posterior, we write µ∗ instead of E1N

µ and N∗
g instead of Ng(1N ). The same shorthand applies to Ng(1N ), Mg(1N ),

Λg(1N ) and Λ(1N ). In words, µ∗ is the posterior mean of µ under the full-data posterior, N∗
g is the number of observations

in group g of the original dataset, and so on. We also utilize the x̄I and x̄ notations defined the normal model section.

The error in the normal means model is given in the following lemma.

Lemma C.2. In the normal means model, let the index set I be such that there exists k ∈ {1, 2, . . . , G} such that g(n) = k
for all n ∈ I . Define

F (I) :=
|I|2

N∗
k [N

∗
k − |I|]

(M∗
k − x̄I) +

|I|
N∗

k

σ2Λ∗
k

N∗
k

(µ∗ −M∗
k ),

E(I) :=
|I|

N∗
k [N

∗
k − |I|]

σ2Λk(q
−1(I))Λ∗

k.

Then, Err1st(I) is equal to

Λk(q
−1(I))

Λ∗ F (I) +

(∑
g ̸=k Λ

∗
g(M

∗
g −Mk(q

−1(I)))
)

Λ∗Λ(q−1(I))
E(I).

We prove Lemma C.2 in Proof D.4. The constraint where all observations in I belong to the same group k is made out of
convenience: we can derive the error without this constraint, but the formula will be much more complicated.

A corrolary of Lemma C.2 is that the absolute value of the error behaves like |I|2/(G|N∗
k |2).

13
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Corollary C.1. In the normal means model, for all groups g, assume that N∗
g ≥ σ2/τ2. Let the index set I be such that

there exists k ∈ {1, 2, . . . , G} such that g(n) = k for all n ∈ I . For this k, assume that N∗
k − |I| ≥ σ2/τ2. Then,

|Err1st(I)| ≤ C(∥x∥∞, σ, τ)
1

G

|I|2

|N∗
k |2

.

where C(∥x∥∞, σ, τ) is a constant that only depends on ∥x∥∞, σ, and τ .

We prove Corollary C.1 in the Proof D.5. In addition to the assumptions Lemma C.2, the corrolary assumes that the number
of observations in each group is not too small, and that after removing I , group k still has enough observations. This
condition allows us to approximate Λ∗

k and Λg(q
−1(I)) with a constant. The factor ∥x∥∞ in the bound comes from upper

bounding |M∗
g −Mk(q

−1(I))| by 2maxNn=1 |x(n)|.

For two reasons, we conjecture that similiar qualitative differences also appear in the comparison between more complicated
hierarchical and non-hierarchical models The fundamental task of estimating the population mean is embedded in many
other statistical tasks, such as regression. In addition, the group structure imposed by the normal means model is also found
in practically relevant hierarchical models.

C.2. Estimator properties

Recall from Section 3.3 that one concern regarding the quality of ∆̂ is the (β(1), . . . , β(S))-induced sampling uncer-
tainty. Theoretically analyzing this uncertainty is difficult, with one obstacle being that ∆̂ is a non-smooth function of
(β(1), . . . , β(S)). In this section, we settle for the easier goal of analyzing the sampling uncertainty of the influence estimates
ψ̂n. We expect such theoretical characterizations to play a role in the eventual theoretical characterizations of ∆̂, but we
leave this step to future work.

In this analysis, we make more restrictive assumptions than those needed for Theorem 3.1 to hold. We assume that the sample
(β(1), . . . , β(S)) comes from exact sampling: the independence across draws makes it easier to analyze sampling uncertainty.
We focus on the quantity of interest equaling the posterior mean (c1 = 1, c2 = 0 in the sense of Assumption B.1): the
scaling c1 = 1 for the posterior mean is made out of convenience, and a smiliar analysis can be conducted when c2 ̸= 0, but
we omit it for brevity. Finally, we need more stringent moment conditions than Assumption B.2.
Assumption C.1. The functions |g(β)2L(d(i) | β)L(d(j) | β)| (across i, j) have finite expectation under the full-data
posterior.

This moment condition guarantees that the sample covariance of g(β) and L(d(i) | β) has finite variance under the full-data
posterior: it plays the same as role as finite kurtosis in proofs sample variance consistency

With the assumptions in place, we begin by showing that the sampling uncertainty of ψ̂n goes to zero in the limit of S → ∞.
Lemma C.3. Assume Assumption 2.1, Assumption B.1, Assumption B.2, Assumption C.1 holds. Let ψ̂ be output of
Algorithm 1 for c1 = 1, c2 = 0 and (β(1), . . . , β(S)) being an i.i.d. sample. Then, there exists a constant C such that for all
n, for all S, Var(ψ̂n) ≤ C/S.

We prove Lemma C.3 in Proof D.7. That the variance of individual ψ̂n goes to zero at the rate of 1/S is not surprising: ψ̂n

is a sample covariance, after all.

We use Lemma C.3 to show consistency of different estimators.
Theorem C.1. Assume Assumption 2.1, Assumption B.1, Assumption B.2, and Assumption C.1 holds Let ψ̂ be output
of Algorithm 1 for c1 = 1, c2 = 0 and (β(1), . . . , β(S)) being an i.i.d. sample. Then maxNn=1 |ψ̂n − ψn| converges in
probability to 0 in the limit S → ∞, and ∆̂ converges in probability to ∆(α) in the limit S → ∞.

We prove Theorem C.1 in Proof D.8. Our theorem states that the vector ψ̂ is a consistent estimator for the vector ψ and ∆̂ is
a consistent estimator for ∆(α).

Not only is ψ̂ consistent in estimating ψ, it is also asymptotically normal.
Theorem C.2. Assume Assumption 2.1, Assumption B.1, Assumption B.2, and Assumption C.1 holds. Let ψ̂ be
output of Algorithm 1 for c1 = 1, c2 = 0 and (β(1), . . . , β(S)) being an i.i.d. sample. Then

√
S(ψ̂ − ψ) con-

verges in distribution to N(0N ,Σ) where Σ is the N × N matrix whose (i, j) entry, Σi,j , is the covariance between

14
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(g(β)− E1N
g(β))

(
L(d(i) | β)− E1N

L(d(i) | β)
)

and (g(β)− E1N
g(β))

(
L(d(j) | β)− E1N

L(d(j) | β)
)
, taken under

the full-data posterior.

We prove Theorem C.2 in Proof D.9. Heuristically, for each n, the distribution of ψ̂n is the Gaussian centered at ψn, with
standard deviation

√
Σn,n/

√
S.

C.2.1. NORMAL MODEL WITH UNKNOWN PRECISION.

While
√

Σn,n/
√
S eventually goes to zero, for finite S, this standard deviation can be large, making ψ̂n an imprecise

estimate of ψn. To illustrate this phenomenon, we will derive Σn,n in the context of a simple probabilistic model: a normal
model with unknown precision.

We first introduce the model and the associated quantity of interest. The data is a set of N real values: d(n) = x(n), where
x(n) ∈ R. The parameters of interest are the mean µ and the precision τ of the population. The log-likelihood of an
observation based on µ and τ is Gaussian: 1

2 log
(

τ
2π

)
− 1

2τ [(x
(n))2 − 2x(n)µ+µ2]. The prior is chosen to be the following.

µ is distributed from uniform over the real line, and τ is distributed from a gamma distribution. The quantity of interest is
the posterior mean of µ.

For this probabilistic model, the assumptions of Theorem C.2 are satisfied. We show that the variance Σn,n behaves like a
quartic function of the observation x(n).

Lemma C.4. In the normal-gamma model, there exists constants D1, D2, and D3, where D1 > 0, such that for all n, Σn,n

is equal to D1(x
(n) − x̄)4 +D2(x

(n) − x̄)2 +D3.

We prove Lemma C.4 in Proof D.10. D1, D2, D3 are based on the posterior expectations: for instance, the proof shows that

D1 =
E1N

[τ−1(τ−E1N
τ)2]

4N . It is easy to show that for the normal-gamma model,

Cov1N
(µ,L(d(n) | µ, τ)) = x(n) − x̄

N
.

Hence, while the mean of ψ̂n behaves like a linear function of x(n) − x̄, its standard deviation behaves like a quadratic
function of x(n) − x̄. In other words, the more influence an observation has, the harder it is to accurately determine its
influence!

D. Proofs
D.1. Taylor series proofs

Proof D.1 (Proof of Theorem 3.1). Theorem 3.1 is a special case of Theorem B.1. See Proof D.2 for the proof of the latter,
which implies the proof of the former.

Proof D.2 (Proof of Theorem B.1). At a high level, we rely on Fleming (1977, Chapter 5.12, Theorem 5.9) to interchange
integration and differentiation.

Although the theorem statement does not explicitly mention the normalizer, to show that the quantity of interest is continuously
differentiable and compute partial derivatives, it is necessary to show that the normalizer is continuously differentiable and
compute partial derivatives. To do so, we verify the following conditions on the integrand defining Z(w):

1. For any β, the mapping w 7→ p(β) exp
(∑N

n=1 wnL(d
(n) | β)

)
is continously differentiable.

2. There exists a Lebesgue integrable function f1 such that for all w ∈ {w ∈ [0, 1]N : maxn wn ≥ δ},

p(β) exp
(∑N

n=1 wnL(d
(n) | β)

)
≤ f1(β).

3. For each n, there exists a Lebesgue integrable function f2 such that for all w ∈ {w ∈ [0, 1]N : maxn wn ≥ δ},∣∣∣ ∂
∂wn

p(β) exp
(∑N

n=1 wnL(d
(n) | β)

)∣∣∣ ≤ f2(β).

The first condition is clearly satisfied. To construct f1 that satisfies the second condition, we partition the parameter space
RV into a finite number of disjoint sets. To index these sets, we use a subset of {1, 2, . . . , N}. If the indexing subset were
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I = {n1, n2, . . . , nM}, the corresponding element of the partition is

BI := {β ∈ RV : ∀n ∈ I, L(d(n) | β) ≥ 0}. (5)

This partition allows us to upper bound the integrand with a function that is independent of w. Suppose β ∈ BI , I ̸= ∅. The
maximum

∑N
n=1 wnL(d

(n) | β) is attained by setting wn = 1 for all n ∈ I and wn = 0 for all n /∈ I . Suppose β ∈ B∅. As
L(d(n) | β) < 0 for all 1 ≤ n ≤ N , and we are constrained by maxn wn ≥ δ, the maximum of

∑N
n=1 wnL(d

(n) | β) is
attained by setting wn = δ for argmaxn L(d

(n) | β) and wn = 0 for all other n. In short, our envelope function is

f1(β) :=

{
p(β)

∏
n∈I exp(L(d

(n) | β)) if β ∈ BI , I ̸= ∅.
p(β)

(
maxNn=1 exp(δL(d

(n) | β))
)

if β ∈ B∅.

The last step is to show f1 is integrable. It suffices to show that the integral of f1 on each BI is finite. On B∅, integrating
p(β)

(
exp(δL(d(n) | β))

)
over B∅ is clearly finite: by Assumption 2.1, the integral of p(β) exp(δL(d(n) | β)) over RV

is finite, and B∅ is a subset of RV . As f1(β) is the maximum of a finite number of integrable functions, it is integrable.
Similarly, the integral of f1 over BI where I ̸= ∅ is atmost the integral of p(β)

∏
n∈I exp(L(d

(n) | β)) over RV , which is
finite by Assumption 2.1. To construct f2 that satisfies the third condition, we use the same partition of RV , and the envelope
function is f2(β) := L(d(n) | β)f1(β), since the partial derivative of the weighted log probability is clearly the product of
the n-th log likelihood and the weighted log probability. The integrability of f2 follows from Assumption B.2’s guarantee
that the expectation of |L(d(n) | β)| is finite under different weighted posteriors. In all, we can interchange integration with
differentiation, and the partial derivatives are

∂Z(w)

∂wn
= Z(w)× Ew

[
L(d(n) | β)

]
.

We move on to prove that Ewg(β) is continuously differentiable and find its partial derivatives. The conditions on

g(β) 1
Z(w)p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)

that we wish to check are:

1. For any β, the mapping w 7→ g(β) 1
Z(w)p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)

is continously differentiable.

2. There exists a Lebesgue integrable function f1 such that for all w ∈ {w ∈ [0, 1]N : maxn wn ≥ δ},∣∣∣g(β) 1
Z(w)p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)∣∣∣ ≤ f3(β).

3. For each n, there exists a Lebesgue integrable function f4 such that for all w ∈ {w ∈ [0, 1]N : maxn wn ≥ δ},∣∣∣ ∂
∂wn

g(β) 1
Z(w)p(β) exp

(∑N
n=1 wnL(d

(n) | β)
)∣∣∣ ≤ f4(β).

We have already proven that Z(w) is continuously differentiable: hence, there is nothing to do for the first condition.
It is straightforward to use Assumption B.2 and check that the second condition is satisfied by the function f3(β) :=

1
Z(w)g(β)f1(β), and the third condition is satisfied by f4(β) := 1

Z(w)g(β)L(d
(n) | β)f1(β). Hence, we can interchange

integration with differentiation. The partial derivatives of Ewg(β) is equal to tthe sume of two integrals. The first part is∫ (
∂Z(w)−1

∂wn
g(β)p(β) exp

(
N∑

n=1

wnL(d
(n) | β)

))
dβ

= −
(
Ew

[
L(d(n) | β)

]) ∫ ( 1

Z(w)
g(β)p(β) exp

(
N∑

n=1

wnL(d
(n) | β)

))
dβ

= −Ew

[
L(d(n) | β)

]
× Ew [g(β)] .

The second part is∫ (
1

Z(w)
g(β)L(d(n) | β)p(β) exp

(
N∑

n=1

wnL(d
(n) | β)

))
dβ = Ew

[
g(β)L(d(n) | β)

]
.
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Putting two parts together, the partial derivative is equal to a covariance

∂Ewg(β)

∂wn
= Covw

[
g(β), L(d(n) | β)

]
.

The proof that Ewg(β)
2 is continuously differentiable is similar to that for Ewg(β). The partial derivative is

∂[Ewg(β)
2]

∂wn
= Covw

[
g(β)2, L(d(n) | β)

]
.

Since the posterior standard deviation is a differentiably continuous function of the mean and second moment, it is also
differentiably continuous. The partial derivative of the posterior standard deviation is a simple application of the chain rule,
and we omit the proof for brevity.

D.2. First-order accuracy proofs

Proof D.3 (Proof of Lemma C.1). Our proof finds exact formulas for the posterior mean and the partial derivatives of the
posterior mean with respect to wn. Then, we take the difference between the posterior mean and its Taylor series.

In the normal model, the total log probability at w is equal to

N∑
n=1

wn

[
1

2
log

(
1

2πσ2

)
− 1

2σ2
[(x(n))2 − 2x(n)µ+ µ2]

]

= −

(∑N
n=1 wn

2σ2

)(
µ−

∑N
n=1 wnx

(n)∑N
n=1 wn

)2

+ C,

where C is a constant that does not depend on µ. Hence, the distribution of µ under w is normal with mean
(
∑N

n=1 wnx
(n))/(

∑N
n=1 wn) and precision (

∑N
n=1 wn)/(σ

2). The partial derivative of the posterior mean with respect to
wn is

x(n)(
∑N

n=1 wn)− (
∑N

n=1 wnx
(n))

(
∑N

n=1 wn)2
.

Plugging in w = 1N , we have that ψn is equal to (x(n) − x̄)/N .

After removing the index set I , the actual posterior mean is

Nx̄− |I|x̄I
N − |I|

,

while the Taylor series approximation is

x̄−
∑
n∈I

x(n) − x̄

N
=
Nx̄+ |I|(x̄− x̄I)

N
.

The difference between the actual posterior mean and its approximation is as in the statement of the lemma.

Proof D.4 (Proof of Lemma C.2). Similar to the proof of Lemma C.1, we first find exact formulas for the posterior mean
and its Taylor series.

In the normal means model, the total log probability at w is

G∑
g=1

[
log

(
1

2πτ2

)
− 1

2τ2
(θg − µ)2

]

+

N∑
n=1

wn

{
log

(
1

2πσ2

)
− 1

2σ2

[
(x(n))2 − 2x(n)θg(n) + θ2g(n)

]}
.

By completing the squares, we know that
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• The distribution of µ is normal:

N

(∑G
g=1 Λg(w)Mg(w)∑G

g=1 Λg(w)
,

1∑G
g=1 Λg(w)

)

• Condition on µ, the group means are independent normals:

θg | µ ∼ N

(
µ/τ2 + [Ng(w)Mg(w)]/σ

2

1/τ2 +Ng(w)/σ2
,

1

1/τ2 +Ng(w)/σ2

)
.

To express the partial derivative of the posterior mean of µ with respect to wn, it is helpful to define the following
“intermediate” value between Ewµ and Ewθg:

µ̃g(w) :=
Mg(w)Ng(w)/σ

2 + Ewµ/τ
2

Ng(w)/σ2 + 1/τ2
.

In addition, we need the partial derivatives of the functions Ng , Λg , and Mg .

∂Ng

∂wn
=

{
0 if g ̸= g(n)

1 if g = g(n)
,

∂Mg

∂wn
=

{
0 if g ̸= g(n)

x(n)−Mg(w)
Ng(w) if g = g(n)

,

∂Λg

∂wn
=

{
0 if g ̸= g(n)

σ2 Λg(w)2

Ng(w)2 if g = g(n)
.

If n is in the k-th group, the partial derivative of the posterior mean with respect to wn is

1

Λ(w)

1

σ2 + τ2Nk(w)

(
x(n) − µ̃k(w)

)
.

After removing only observations from the k-th group, the actual posterior mean is

Λk(q
−1(I))Mk(q

−1(I)) +
∑

g ̸=k Λg(1N )Mg(1N )

Λk(q−1(I)) +
∑

g ̸=k Λg(1N )
.

Between w = q−1(I) and w = 1N , the Ng,Mg,Λg functions do not change for g ̸= k. The Taylor series approximation of
the posterior mean is

Λk(1N )
[
Mk(1N ) +

∑
n∈I

(
µ̃k(1N )− x(n)

)
/Nk(1N )

]
+
∑

g ̸=k Λg(1N )Mg(1N )

Λk(1N ) +
∑

g ̸=k Λg(1N )
.

If we denote
A1 :=

∑
g ̸=k

Λg(1N )Mg(1N ), A2 :=
∑
g ̸=k

Λg(1N )

B1 := Λk(q
−1(I))Mk(q

−1(I)), B2 := Λk(q
−1(I))

C1 := Λk(1N )

[
Mk(1N ) +

∑
n∈I

(
µ̃k(1N )− x(n)

)
/Nk(1N )

]
, C2 := Λk(1N )

,

then Err1st(I) is equal to (A1 +B1)/(A2 +B2)− (A1 + C1)/(A2 + C2). The last equation is equal to

A2(B1 − C1) +A1(C2 −B2) + (B1C2 − C1B2)

(A2 +B2)(A2 + C2)
.

18



Small-data sensitivity of MCMC analyses

We analyze the differences C2 −B2, B1C2 − C1B2, and B1 − C1 separately.

C2 −B2. This difference is
1

σ2/Nk(1N ) + τ2
− 1

σ2/Nk(q−1(I)) + τ2
.

Since we remove |I| from group k, Nk(q
−1(I)) = Nk(1N )− |I|. Hence, the difference C2 −B2 is

σ2Λk(1N )Λk(q
−1(I))

|I|
Nk(1N )(Nk(1N )− |I|)

,

which is exactly the E(I) mentiond in the lemma statement.

B1C2 − C1B2. The difference is

Λk(1N )Λk(q
−1(I))

{
Mk(q

−1(I))−Mk(1N )−
∑

n∈I [µ̃k(1N )− x(n)]

Nk(1N )

}
.

We analyze the term in the curly brackets. It is equal to{
Mk(q

−1(I))−Mk(1N )−
∑

n∈I [Mk(1N )− x(n)]

Nk(1N )

}
+
∑
n∈I

(
Mk(1N )− µ̃k(1N )

Nk(1N )

)
The left term is equal to

|I|2(Mk(1N )− x̄I)

Nk(1N )[Nk(1N )− |I|]
.

The right term is equal to
|I|

Nk(1N )

σ2Λk(1N )

Nk(1N )
(E1N

µ−Mk(1N )).

The sum of the two terms is exactly F (I) mentioned in the lemma statement. Overall, the difference B1C2 − C1B2 is equal
to Λk(1N )Λk(q

−1(I))F (I).

B1 − C1. If we introduce D := Λk(1N )Mk(q
−1(I)), then the difference B1 − C1 is equal to (B1 −D) + (D − C1). The

former term is
Mk(q

−1(I))(B2 − C2) = −Mk(q
−1(I))E(I).

The later term is

Λk(1N )

{
Mk(q

−1(I))−Mk(1N )−
∑

n∈I [µ̃k(1N )− x(n)]

Nk(1N )

}
.

We already know that the term in the curly brackets is equal to F (I). Hence B1 − C1 is equal to Λk(1N )F (I) −
Mk(q

−1(I))E(I).

With the differences C2−B2, B1C2−C1B2, and B1−C1, we can now state the final form of Err1st(I). The final numerator
is Λk(q

−1(I)) +
∑
g ̸=k

Λg(1N )

Λk(1N )F (I)

+

∑
g ̸=k

Λg(1N )Mg(1N )−Mk(q
−1(I))

∑
g ̸=k

Λg(1N )

E(I)

.

Divide this by the denominator
[∑

g Λg(1N )
] [∑

g Λg(q
−1(I))

]
, we have proven the lemma.

Proof D.5 (Proof of Corollary C.1). Under the assumption that N∗
g ≥ σ2/τ2, we have that Λg(1N ) ∈

[
1

2τ2 ,
1
τ2

]
. Since

M∗
k − |I| ≥ σ2/τ2, it is also true that Λk(q

−1(I)) ∈
[

1
2τ2 ,

1
τ2

]
.
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Because of Lemma C.2, an upper bound on Err1st(I) is

Λk(q
−1(I))

Λ∗ |F (I)|+

∣∣∣∣∣∣
(∑

g ̸=k Λ
∗
g(M

∗
g −Mk(q

−1(I)))
)

Λ∗Λ(q−1(I))

∣∣∣∣∣∣ |E(I)| .

The fraction Λk(q
−1(I))/Λ∗ is at most ( 1

τ2 )/
(
G 1

2τ2

)
, which is equal to 2/G. The absolute value |F (I)| is at most

2|I|2∥x∥∞
(N∗

k )
2

+
2|I|∥x∥∞(σ2/τ2)

(N∗
k )

2
≤ 2|I|2∥x∥∞(σ2/τ2 + 1)

(N∗
k )

2

The absolute value ∣∣∣∣∣∣
(∑

g ̸=k Λ
∗
g(M

∗
g −Mk(q

−1(I)))
)

Λ∗Λ(q−1(I))

∣∣∣∣∣∣
is at most

G(1/τ2)2∥x∥∞
G2(1/2τ2)

≤ 4∥x∥∞
G

.

Finally, the absolute value |E(I)| is at most

|I|(σ2/(4τ4))

(N∗
k )

2
≤ |I|2(σ2/(4τ4))

(N∗
k )

2
.

In all, the constant C(∥x∥∞, σ, τ) in the corollary’s statement is

∥x∥∞
(
4(σ2/τ2 + 1) + σ2/τ4

)
.

D.3. Consistency and asymptotic normality proofs

The following lemma, on covariance between sample covariances under i.i.d. sampling, will be useful for later proofs.

Lemma D.1. Suppose we have S i.i.d. draws (A(s), B(s), C(s))Ss=1. Let f1 be the (biased) sample covariance between the
A’s and the B’s. Let f2 be the (biased) sample covariance between the A’s and C’s. In other words,

f1 :=

(
1

S

S∑
s=1

A(s)B(s)

)
−

(
1

S

S∑
s=1

A(s)

)(
1

S

S∑
s=1

B(s)

)
,

f2 :=

(
1

S

S∑
s=1

A(s)C(s)

)
−

(
1

S

S∑
s=1

A(s)

)(
1

S

S∑
s=1

C(s)

)
.

Suppose that the following are finite: E[(A− E[A])2(B − E[B])(C − E[C])], Cov(B,C), Var(A), Cov(A,B), Cov(A,C).
Then, the covariance of f1 and f2 is equal to

(S − 1)2

S3
E[(A− E[A])2(B − E[B])(C − E[C])]

+
S − 1

S3
Cov(B,C)Var(A)− (S − 1)(S − 2)

S3
Cov(A,B)Cov(A,C).

Proof D.6 (Proof of Lemma D.1). It suffices to prove the lemma in the case where E[A] = E[B] = E[C] = 0. Otherwise,
we can subtract the population mean from the random variable: the value of f1 and f2 would not change (since covariance
is invariant to constant additive changes). In otherwords, we want to show that the covariance between f1 and f2 is equal to

(S − 1)2

S3
E[A2BC] +

S − 1

S3
E[BC]E[A2]− (S − 1)(S − 2)

S3
E[AB]E[AC]. (6)
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Since f1 is the biased sample covariance, Ef1 = S−1
S E[AB]. Similarly, Ef2 = S−1

S E[AC]. To compute Cov(f1, f2), we
only need an expression for E[f1f2]. The product f1f2 is equal to the sum of D1, D2, D3, D4 where:

D1 := −

(
1

S

∑
s

A(s)B(s)

)(
1

S

∑
s

A(s)

)(
1

S

∑
s

C(s)

)
,

D2 :=

(
1

S

∑
s

A(s)

)2(
1

S

∑
s

B(s)

)(
1

S

∑
s

C(s)

)
,

D3 := −

(
1

S

∑
s

A(s)C(s)

)(
1

S

∑
s

A(s)

)(
1

S

∑
s

B(s)

)
,

D4 :=

(
1

S

∑
s

A(s)B(s)

)(
1

S

∑
s

A(s)C(s)

)
.

We compute the expectation of each Dj .

D1. By expanding D1, we know that ED1 = 1
S3

∑
i,j,k E[A(k)B(k)A(i)C(j)]. The value of E[A(k)B(k)A(i)C(j)] depends

on the triplet (i, j, k) in the following way:

E[A(k)B(k)A(i)C(j)] =



0 if i = k, j ̸= k

E[A2BC] if i = k, j = k

0 if i ̸= k, j = k

E[AB]E[AC] if i ̸= k, j ̸= k, i = j

0 if i ̸= k, j ̸= k, i ̸= j

We have used independence of (A(s), B(s), C(s))Ss=1 to factorize the expectation E[A(k)B(k)A(i)C(j)]. For certain triplets,
the factorization reveals that the expectation is zero. By accounting for all triplets, the expectation of D1 is

1

S3

[
SE[A2BC] + S(S − 1)E[AB]E[AC]

]
.

D2. By expanding D2, we know that ED2 = 1
S4

∑
i,j,p,q E[A(i)A(i)B(p)C(q)]. We can do a similar case-by-case analysis

of how E[A(i)A(i)B(p)C(q)] depend on the quartet (i, j, p, q). In the end, the expectation of D2 is

1

S3

[
E[A2BC] + (S − 1)E[A2]E[BC] + 2(S − 1)E[AB]E[AC]

]
.

D3. By symmetry betwene D1 and D3, the expectation of D3 is also

1

S3

[
SE[A2BC] + S(S − 1)E[AB]E[AC]

]
.

D4. By expanding D4, we know that ED4 = 1
S2

∑
i,j E[A(i)B(i)A(j)C(j)]. The case-by-case analysis of

E[A(i)B(i)A(j)C(j)] for each (i, j) is simple, and is omitted. The expectation of D4 is

1

S
E[A2BC] +

S − 1

S
E[AB]E[AC].

Simple algebra reveals that
∑4

i=1 E[Di]− S−1
S E[AB]S−1

S E[AC] is equal to Equation (6).

Proof D.7 (Proof of Lemma C.3). In this proof, we will only consider expectations under the full-data posterior. Hence, to
alleviate notation, we shall write E instead of E1N

: similarly, covariance and variance evaluations are understood to be at
w = 1N .
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Applying Lemma D.1, the covariance of ψ̂n and ψ̂n i.e. the variance of ψ̂n is equal to

(S − 1)2

S3
E{(g(β)− E[g(β)])2(L(d(n) | β)− E[L(d(n) | β)])2}

+
S − 1

S3
Var(L(d(n) | β))Var(g(β))− (S − 1)(S − 2)

S3
Cov(g(β), L(d(n) | β))2.

Define the constant C to be the maximum over n of

Cov(g(β), L(d(n) | β))2 + Var(g(β))Var(L(d(n) | β))
+ E{(g(β)− E[g(β)])2(L(d(n) | β)− E[L(d(n) | β)])2}.

Simple algebra shows that Var(ψ̂n) ≤ C
S .

Proof D.8 (Proof of Theorem C.1). Similar to the proof of Lemma C.3, expectations (and variances and covariances) are
understood to be taken under the full-data posterior.

Since ψ̂n is the biased sample variance, we know that

Eψ̂n =
S − 1

S
ψn.

The bias of ψ̂n goes to zero at rate 1/S. Because of Lemma C.3, the variance also goes to zero at rate 1/S. Then, the
application of Chebyshev’s inquality shows that ψ̂n

p−→ ψn. SinceN is a constant, the pointwise convergence |ψ̂n−ψn|
p−→ 0

implies the uniform convergence maxNn=1 |ψ̂n − ψn|
p−→ 0.

We now prove that |∆̂−∆(α)| p−→ 0. We first recall some notation. The ranks r1, r2, . . . , rN sort the influences ψr1 ≤ ψr2 ≤
. . . ≤ ψrN , and ∆(α) = −

∑⌊Nα⌋
m=1 ψrmI{ψrm < 0}. Similarly, v1, v2, . . . , vN sort the estimates ψ̂v1 ≤ ψ̂v2 ≤ . . . ≤ ψ̂vN ,

and ∆̂ = −
∑⌊Nα⌋

m=1 ψ̂vmI{ψ̂vm < 0}. It suffices to prove the convergence when ⌊Nα⌋ ≥ 1: in the case ⌊Nα⌋ = 0, both ∆̂
and ∆(α) are equal to zero, hence the distance between them is identically zero. Denote the T unique values among ψn

by u1 < u2 < . . . < uT . If T = 1 i.e. there is only one value, let ω := 1. Otherwise, let ω be the smallest gap between
subsequent values: ω := mint(ut+1 − ut).

Suppose that maxNn=1 |ψ̂n − ψn| ≤ ω/3: let A be the indicator for this event. For any n, each ψ̂n is in the interval
[ψn − ω/3, ψn + ω/3]. In the case T = 1, clearly all k such that ψ̂k is in [ψn − ω/3, ψn + ω/] satisfy ψk = ψn. In the
case T > 1, since unique values of ψn are at least ω apart, all k such that ψ̂k is in [ψn − ω/3, ψn + ω/] satisfy ψk = ψn.
This means that the ranks v1, v2, . . . , vN , which sort the influence estimates, also sort the true influences in ascending order:
ψv1 ≤ ψv2 ≤ . . . ≤ ψvN . Since the ranks r1, r2, . . . , rN also sort the true influences, it must be true that ψvm = ψrm for
all m. Therefore, we can write

|∆̂−∆(α)| =

∣∣∣∣∣∣
⌊Nα⌋∑
m=1

(
ψvmI{ψvm < 0} − ψ̂vmI{ψ̂vm < 0}

)∣∣∣∣∣∣
≤

⌊Nα⌋∑
m=1

∣∣∣ψvmI{ψvm < 0} − ψ̂vmI{ψ̂vm < 0}
∣∣∣ .

We control the absolute values
∣∣∣ψvmI{ψvm < 0} − ψ̂vmI{ψ̂vm < 0}

∣∣∣. For any index n, by triangle inequality,∣∣∣ψnI{ψn < 0} − ψ̂nI{ψ̂n < 0}
∣∣∣ is at most

I{ψ̂n < 0}|ψn − ψ̂n|+ |ψn||I{ψ̂n < 0} − I{ψn < 0}|.

The first term is at most |ψn − ψ̂n|. The second term is at most I{|ψn − ψ̂n| ≥ |ψn|, ψn ̸= 0}. We next prove a bound

on
∣∣∣ψnI{ψn < 0} − ψ̂nI{ψ̂n < 0}

∣∣∣ that holds across n. Our analysis proceeds differently based on whether the set

{n : ψn ̸= 0} is empty or not.
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• {n : ψn ̸= 0} is empty. This means ψn = 0 for all n. Hence, I{|ψn − ψ̂n| ≥ |ψn|, ψn ̸= 0} is identically zero.

• {n : ψn ̸= 0} is not empty. We then know that minn |ψn| > 0. Hence, I{|ψn − ψ̂n| ≥ |ψn|, ψn ̸= 0} is
upper bounded by I{|ψn − ψ̂n| ≥ minn |ψn|}. Since |ψn − ψ̂n| ≤ maxn |ψn − ψ̂n|, this last indicator is at most
I{maxn |ψn − ψ̂n| ≥ minn |ψn|}.

To summarize, we have proven the following upper bounds on |∆̂−∆(α)|. When {n : ψn ̸= 0} is empty, on A, |∆̂−∆(α)|
is upper bounded by

⌊Nα⌋max
n=1

|ψn − ψ̂n| (7)

When {n : ψn ̸= 0} is not empty, on A, |∆̂−∆(α)| is upper bounded by

⌊Nα⌋max
n=1

|ψn − ψ̂n|+ ⌊Nα⌋I{max
n

|ψn − ψ̂n| ≥ min
n

|ψn|}. (8)

We are ready to show that Pr(|∆̂−∆(α)| > ϵ) converges to zero. For any positive ϵ, we know that

Pr(|∆̂−∆(α)| > ϵ) ≤ Pr(|∆̂−∆(α)| > ϵ,A) + Pr(Ac).

The later probability goes to zero because maxNn=1 |ψ̂n − ψn|
p−→ 0.

Suppose that {n : ψn ̸= 0} is empty. Using the upper bound Equation (7), we know that event in the former probability
implies that maxNn=1 |ψ̂n−ψn| ≥ ϵ/⌊Nα⌋: The probability of this event also goes to zero because maxNn=1 |ψ̂n−ψn|

p−→ 0.

Suppose that {n : ψn ̸= 0} is not empty. Using the upper bound Equation (8), we know that event in the former probability
implies that (maxNn=1 |ψ̂n − ψn| + I{maxn |ψn − ψ̂n| ≥ minn |ψn|}) ≥ ϵ/⌊Nα⌋. Since maxNn=1 |ψ̂n − ψn| converges
to zero in probability, I{maxn |ψn − ψ̂n| ≥ minn |ψn|} also converges to zero in probability. Hence, the probability that
(maxNn=1 |ψ̂n − ψn|+ I{maxn |ψn − ψ̂n| ≥ minn |ψn|}) ≥ ϵ/⌊Nα⌋ converges to zero.

In all, Pr(|∆̂−∆(α)| > ϵ) goes to zero in both the case where {n : ψn ̸= 0} is empty and the complement case. As the
choice of ϵ was arbitrary, we have shown ∆̂

p−→ ∆(α).

Proof D.9 (Proof of Theorem C.2). Similar to the proof of Lemma D.1, we only consider expectations under the full-data
posterior. Hence, we will write E instead of E1N

to simplify notation. Variance and covariance operations are also
understood to be taken un der the full-data posteiror. To lighten the dependence of the notation on the parameter β, we will
write g(β) as g and L(d(n) | β) as Ln when talking about the expectation of g(β) and L(d(n) | β).

Define the the following multivariate function

f(β) :=
[
g(β), L(d(1) | β), g(β)L(d(1) | β), . . . , L(d(N) | β), g(β)L(d(N) | β)

]T
.

As defined, f(·) is a mapping from V -dimensional space to 2N + 1-dimensional space. Since (β(1), . . . , β(S)) is an i.i.d.
sample,

(
f(β(1)), f(β(2)), . . . , f(β(S))

)
is also an i.i.d. sample. Because of the moment conditions we have assumed, each

f(β) has finite variance. We apply the Lindeberg-Feller multivariate central limit theorem (van der Vaart, 1998, Proposition
2.27), and conclude that

√
S

(
1

S

∑
s

f(β(s))− Ef(β)

)
D−→ N(0,Ξ)

where the limit is S → ∞, and Ξ is a symmetric (2N +1)× (2N +1) dimensional matrix, which we specify next. It suffices
to write down the formula for (i, j) entry of Ξ where i ≤ j:

Ξi,j =



Var(g) if i = j = 1

Cov(g, Ln) if i = 1, j > 1

Cov(Ln, Lm) if i = 2n, j = 2m

Cov(Ln, gLm) if i = 2n, j = 2m+ 1

Cov(gLn, Lm) if i = 2n+ 1, j = 2m

Cov(gLn, gLm) if i = 2n+ 1, j = 2m+ 1

.
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To relate the asymptotic distribution of f(β) to that of the vector ψ̂, we now use the delta method. Define the following
function which acts on 2N + 1 dimensional vectors and returns N dimensional vectors:

h([x1, x2, . . . , x2N+1]
T ) :=

[
x3 − x1x2, x5 − x1x4, x7 − x1x6, . . . , x2N+1 − x1x2N

]T
.

Written this way, clearly h(·) transform the sample mean 1
S

∑
s f(β

(s)) into the estimated influences: ψ̂ =

h
(
1
S

∑
s f(β

(s))
)
. Furthermore, h(·) applied to Ef(β) yields the vector of true influences: ψ = h (Ef(β)). h(·) is

continuously differentiable everywhere: its Jacobian is the N × (2N + 1) matrix

Jh =


−x2 −x1 1 0 0 . . . 0
−x4 0 0 −x1 1 . . . 0

...
...

...
. . . 0 . . . 0

−x2N 0 0 . . . 0 . . . 1

 ,
which is non-zero. Therefore, we apply the delta method (van der Vaart, 1998, Theorem 3.1) and conclude that

√
S
(
ψ̂ − ψ

)
D−→ N

(
0,Jh

∣∣
x=Ef(β)Ξ(Jh

∣∣
x=Ef(β))

T
)
.

The (i, j) entry of the asymptotic covariance matrix is the dot product between the i-th row of Jh

∣∣
x=Ef(β) and the j-th

column of Ξ(Jh

∣∣
x=Ef(β))

T . The former is

[−ELi, 0, 0, . . . , −Eg︸︷︷︸
2i entry

, 1︸︷︷︸
(2i+1) entry

, . . . , 0].

The later is  (−ELj)Cov(g, g)− (Eg)Cov(g, Lj) + Cov(g, gLj)
...

(−ELj)Cov(gLN , g)− (Eg)Cov(gLN , Lj) + Cov(gLN , gLj)

 .
Taking the dot product, we have that the (i, j) entry of the asymptotic covariance matrix is equal to

Cov(gLi, gLj)− (Eg) [Cov(gLi, Lj) + Cov(gLj , Li)]

− [(ELj)Cov(g, gLi) + (ELi)Cov(g, gLj)]

+ (ELj)(ELi)Var(g)

+ (Eg)2Cov(Li, Lj)

+ (Eg) [(ELj)Cov(g, Li) + (ELi)Cov(g, Lj)]

It is simple to check that the last display is equal to the covariance between (g−E[g])(Lj−E[Lj ]) and (g−E[g])(Li−E[Li]).

Proof D.10 (Proof of Lemma C.4). We use the (shape, rate) parametrization of the gamma distribution. Let the prior over τ
be Gamma(α, β) where α, β > 0. Conditioned on observations, the posterior distribution of (µ, τ) is normal-gamma:

τ ∼ Gamma

(
α+

N

2
, β +

N

2

[
1

N

N∑
n=1

(x(n))2 − x̄2

])
,

ϵ ∼ N(0, 1),

µ | τ, ϵ = x̄+
ϵ√
Nτ

.

In this section, since we only take expectations under the original full-data posterior, we will lighten the notation’s
dependence on w, and write E instead of E1N

. Similarly, covariance and variance operators are understood to be under the
full-data posterior.

For completeness, we compute Cov(µ,L(d(n) | µ, τ)). We know that µ− Eµ = ϵ/
√
Nτ . The log likelihood, as a function

of τ and ϵ, is
1

2
log
( τ
2π

)
− 1

2
τ(x(n) − x̄)2 − 1

2N
ϵ2 +

x(n) − x̄√
N

ϵ
√
τ .
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The covariance of µ and L(d(n) | µ, τ) is equal to the covariance between ϵ/
√
Nτ and L(d(n) | µ, τ). Since ϵ/

√
Nτ is

zero mean, the covariance is equal to the expectation of the product. Since ϵ is indedependent of τ , many of the terms that
form the expectatin of the product is zero. After some algebra, the only term that remains is

E
[
x(n) − x̄

N
ϵ2
]
=
x(n) − x̄

N
.

To compute the asymptotic variance of ψ̂n, it suffices to compute the expectation of ϵ2

Nτ

(
L(d(n) | µ, τ)− EL(d(n) | µ, τ)

)2
.

The calculations are simple, but tedious, and we omit them. We will only state the result. The expectation of
ϵ2

Nτ

(
L(d(n) | µ, τ)− EL(d(n) | µ, τ)

)2
is[

1

4N
E[τ−1(τ − Eτ)2]

]
(x(n) − x̄)4

+

[
3 + E[τ−1(τ − Eτ)]

N2
− E[τ−1(log τ − E log τ)]

2N

]
(x(n) − x̄)2

+
1

2N3
E[τ−1] +

1

2N
E[τ−1(log τ − E log τ)2]− 1

N2
E[τ−1(log τ − E log τ)2].

Since the asymptotic variance is equal to this expectation minus the square of the covariance between L(d(n) | µ, τ) and µ,
our final expression for the asymptotic variance Σn,n is[

1

4N
E[τ−1(τ − Eτ)2]

]
(x(n) − x̄)4

+

[
2 + E[τ−1(τ − Eτ)]

N2
− E[τ−1(log τ − E log τ)]

2N

]
(x(n) − x̄)2

+
1

2N3
E[τ−1] +

1

2N
E[τ−1(log τ − E log τ)2]− 1

N2
E[τ−1(log τ − E log τ)2].

The constants D1, D2, and D3 mentioned in the lemma statement can be read off this last display. It is possible to replace
the posterior functionals of τ with quantities that only depends on the prior (α, β) and the observed data. Such formulas
might be helpful in studying the behavior of Σn,n in the limit where some x(n) becomes very large.

E. Experimental Setup
In this section, we only describe the checks: for the actual results, see Section 4 and Appendices F.1 and F.2.

A practitioner with a particular definition of “small data” can set α to reflect their concern. We consider a number of α
values. We set the maximum value of α to be 0.01. This choice is motivated by Broderick et al. (2023). Many analyses
are non-robust to removing 1% of the data, and we a priori think that α > 1% is a large amount of data to remove. We
vary log10(α) in an equidistant grid of length 10 from −3 to −2. The ten values are 0.10%, 0.13%, 0.17%, 0.22%, 0.28%,
0.36%, 0.46%, 0.60%, 0.77% and 1.00%.

For the range of dropout fraction specified above and across three common quantities of interest corresponding to sign,
significance, and significant result of opposite sign changes, we walk through what a practitioner would do in practice
(although they would choose only one α and one decision). Our method proposes an influential data subset and a change in
the quantity of interest, represented by a confidence interval.

Ideally, we want to check if our interval includes the result of the worst-case data to leave out. We are unable to do so, since
we do not know how to compute the worst-case result in a reasonable amount of time. We settle for the following checks.

In the first check, for a particular MCMC run, we plot how the change from re-running minus the proposed data compares to
the confidence interval. We recommend the user run this check if re-running MCMC a second time is not too computationally
expensive.

Unfortunately, such refitting does not paint a complete picture of approximation quality. For instance, the MCMC run might
be unlucky since MCMC is random. To be more comprehensive, we run additional checks. We do not expect users to run
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these tests, as their computational costs are high. The central question is how frequently (under MCMC randomness) the
confidence interval includes the result after removing the worst-case data. Since we estimate the worst-case change with
a linear approximation, a natural way to answer this question is with two separate checks: while Appendix E.1 checks
how frequently the confidence interval includes the result of the linear approximation i.e. the AMIP, Appendix E.3, checks
whether the linear approximation is good. To understand why we observe the coverage in Appendix E.1, in Appendix E.2
we isolate the impact of the sorting step in the construction of our confidence interval.

E.1. Estimate coverage of confidence interval for AMIP

We estimate how frequently [∆lb(α),∆ub(α)] covers the AMIP by using another level of Monte Carlo. Recall that
[∆lb(α),∆ub(α)] is intended to be a confidence interval covering ∆(α) a fraction η of the time. If the estimated coverage is
far from η, we have evidence that [∆lb(α),∆ub(α)] does not achieve the desired nominal coverage.

We draw J Markov chains: we set J = 960. On each chain, we estimate the influences and construct the confidence interval
[∆lb(α),∆ub(α)]. From all the chains, for each n, we have J estimates of ψn. We take the sample mean across chains, and
denote this by ψ∗

n: because of variance reduction through averaging, ψ∗
n is a much better estimate of ψn than individual ψ̂n.

We denote the indices of the ⌊Nα⌋ most negative ψ∗
n by U∗(α). We sort ψ∗

n across n and sum the ⌊Nα⌋ most negative
ψ∗
n. This sum is denoted by ∆∗(α): we use it in place of the ground truth ∆(α). We use the sample mean of the indicators

I{∆∗(α) ∈ [∆lb(α),∆ub(α)]} as the point estimate of the coverage. We also report a 95% confidence interval for the
coverage. This interval is computed using binomial tests designed in Clopper and Pearson (1934) and implemented as R’s
binom.test() function.

E.2. Estimate coverage of confidence intervals for sum-of-influence

It is possible that the estimated coverage of [∆lb(α),∆ub(α)] is far from the nominal η. We suspect that such a discrepancy
comes from the sorting of ψ̂n to construct ∆(α). To modularize out the sorting, we consider a target of inference that is
simpler than ∆(α). At a high level, we fix an index set I , and define the target to be the sum of influences in I:

∑
n∈I ψn.

On each sample (β(1), . . . , β(S)), our point estimate is
∑

n∈I ψ̂n: this estimate does not involve any sorting, while ∆̂ does.
We construct the confidence interval, [V lb, V ub], from the block bootstrap distribution of

∑
n∈I ψ̂n. The difference between

[V lb, V ub] and [∆lb(α),∆ub(α)], which is constructed from the block bootstrap distribution of ∆̂, is that the former is not
based on sorting the influence estimates. If the actual coverage of [V lb, V ub] is close to the nominal value, we have evidence
that the miscoverage of [∆lb(α),∆ub(α)] is due to this sorting.

From Appendix E.1 we use ψ∗
n and the associated ∆∗(α) and U∗(α) as replacement for ground truths. We set I to

be U∗(α). We run another set of J Markov chains: for each chain, we construct the confidence interval [V lb, V ub] by
sampling from the block bootstrap distribution of the estimator

∑
n∈I ψ̂n. We report the sample mean of the indicators

I{
∑

n∈I ψ
∗
n ∈ [V lb, V ub]} as our point estimate of the coverage. We also report a 95% confidence interval for the coverage.

This interval is computed using binomial tests designed in Clopper and Pearson (1934) and implemented as R’s binom.test()
function.

E.3. Re-running MCMC on interpolation path

Ideally, we want to know the difference between the Maximum Influence Perturbation and the AMIP. As we have established,
we do not know how to compute the former efficiently. We settle for checking the linearity approximation made in Section 3.1
i.e. estimating ϕ(w)− ϕ(1N ) with

∑
n(wn − 1)ψn. In particular, we expect the first-order Taylor series approximation to

be arbitrarily good for w arbitrarily close to 1N . By necessity, we are interested in some w∗ that has a non-trivial distance
from 1N . Plotting the quantity of interest ϕ(w) on an interpolation path between 1N and w∗, we get a sense of how much
we have diverged from linearity by that point.

From Appendix E.1, we have ψ∗
n as our replacement for the ground truth ψn. We focus on α = 0.05: 5% is a large

amount of data to remove, and a priori we expect the linear approximation to be poor. Recall that U∗(0.05) is the set of
⌊0.05N⌋ observations that are most influential according to sorted ψ∗

n. Let w∗ be the N -dimensional weight vector that
is 1 for observations in U∗(0.05) and 0 otherwise. For ζ ∈ [0, 1], the linear approximation of ϕ(ζw∗ + (1 − ζ)1N ) is
ϕ(1N ) + ζ∆∗(0.05). In the extreme ζ = 0, we do not leave out any data. In the extreme ζ = 1, we leave out the entirety of
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U∗(0.05) i.e. 5% of the data. An intermediate value ζ roughly corresponds5 to removing (ζ5)% of the data. We discretize
[0, 1] with 15 values: 0, 0.0010, 0.0016, 0.0027, 0.0044, 0.0072, 0.0118, 0.0193, 0.0316, 0.0518, 0.0848, 0.1389, 0.2276,
0.3728, 0.6105, 1. For each value on this grid, we run MCMC to estimate ϕ(ζw∗ +(1− ζ)1N ), and compare it to the linear
approximation.

F. Other Quality Checks
In our experiments, we find that our approximation works well for a simple linear model. But we find that it can struggle in
hierarchical models with more complex structure. While Section 4 has plotted our confidence interval and the result after
removing proposed data, we have not yet discussed the checks in Appendices E.1 to E.3. Furthermore, Section 4 has not
described the context to each analysis. This section a) fills in the missing context and b) shows the outcome of the additional
quality checks.

F.1. Linear model

We consider a slight variation of a microcredit analysis from Meager (2019). In Meager (2019), conclusions regarding
microcredit efficacy were based on ordinary least squares (OLS). We refer the reader to Broderick et al. (2023, Section 4.3.2)
for investigations of such conclusions’ non-robustness. Here, we instead consider an analogous Bayesian analysis using
MCMC, and we examine the robustness of conclusions from this analysis. Even for this very simple Bayesian analysis, it is
possible to change substantive conclusions by removing a small fraction of the data.

Our quality checks suggest that our approximation is accurate. Our confidence interval contains the refit after removing
the proposed data. The actual coverage of the confidence interval for AMIP is close to the nominal coverage. The actual
coverage of the confidence interval for sum-of-influence is also close to the nominal coverage. Even for dropping 5% of the
data, the linear approximation is still adequate.

F.1.1. BACKGROUND.

Meager (2019) studies the microcredit data from Angelucci et al. (2015), which was an RCT conducted in Mexico. There
are N = 16,560 households in the RCT. Each observation is d(n) = (x(n), y(n)), where x(n) is the treatment status and
y(n) is the profit measured. The log-likelihood for the n-th observation is L(d(n) | µ, θ, σ) = − 1

2σ2 (y
(n) − θx(n) − µ)2 −

1
2 log(2πσ

2). Here, the model parameters are baseline profit µ, treatment effect θ, and noise scale σ. The most interesting
parameter is θ: as x(n) is binary, θ compares the means in the treatment and control groups. Meager (2019) estimates the
model parameters with OLS.

Our variation of the above analysis is as follows. We put t location-scale distribution priors on the model parameters, with the
additional constraint that the noise scale σ is positive. Recall that the t location-scale distribution has three hyperparameters:
ν, µ, σ. ν is the degrees of freedom, µ is the location, and σ is the scale. The density at y of this distribution is

Γ((ν + 1)/2)

Γ(ν/2)

1√
πνσ2

(
1 +

(y − µ)2

νσ2

)−(ν+1)/2

.

We set the the prior over µ to be t location-scale with degrees of freedom 3, location 0, and scale 1000. We set the the
prior over θ to be t location-scale with degrees of freedom 3, location 0, and scale 1000. We set the the prior over σ to be t
location-scale with degrees of freedom 3, location 0, and scale 1000.

We use Hamiltonian Monte Carlo (HMC) as implemented in Stan (Carpenter et al., 2017) to approximate the full-data
posterior. We draw S = 4000 samples.

F.1.2. RUNTIME.

The running of our approximation takes very little time compared to the running of the original analysis. Generating the
draws in Figure 1 took 3 minutes on MIT Supercloud (Reuther et al., 2018). For one α and one quantity of interest, it took
less than 5 seconds to make a confidence interval for what happens if we remove the most extreme data subset. A user might
check approximation quality by dropping a proposed subset and re-running MCMC: each such check took us around 3

5This correspondence is not exact, since for ζ < 1, all observations in U∗(0.05) are included in the analysis, only with downplayed
contributions.
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Figure 5. (Linear model) Monte Carlo estimate of AMIP confidence interval’s coverage. Each panel corresponds to a target conclusion
change. The dashed line is the nominal level η = 0.95. The solid line is the sample mean of the indicator variable for the event that
ground truth is contained in the confidence interval. The error bars are confidence intervals for the population mean of these indicators.

Figure 6. (Linear model) Monte Carlo estimate of sum-of-influence confidence interval’s coverage. Each panel corresponds to a target
conclusion change. The dashed line is the nominal level η = 0.95. The solid line is the sample mean of the indicator variable for the
event that ground truth is contained in the confidence interval, and error bars are confidence intervals for the population mean of these
indicators.

minutes, the runtime of the original analysis.

F.1.3. ADDITIONAL QUALITY CHECKS.

Figure 5 shows that the actual coverage of the confidence interval for the AMIP is close to the nominal one, across α. As the
half-width of each error bar is small (only 0.02), we believe that the difference between the true coverage and our point
estimate of it is small. For either ‘sign’ or ‘both’ QoI, the error bars do not contain the nominal η. However, the difference
between the point estimate and the nominal η is only 0.03 at worst, which is small. For the ‘sig’ QoI, the point estimate is
within 0.005 of the nominal value, and the error bars contain the nominal η.

Figure 6 shows that the actual coverage of the confidence interval for the sum-of-influence is close to the nominal one across
α. The absolute errors between our estimate of coverage and the nominal η are similar to those seen in Figure 5. This
success suggests that the default block length, L = 10, is appropriate for this problem.

Figure 7 shows that the linear approximation works very well. It is somewhat remarkable that the linear approximation is
this good even after dropping 5%, which we consider to be a large fraction of data. The horizontal axis (‘scale’) is the same
as ζ in Appendix E.3. For all quantities of interest, the linear approximation and the refit lie mostly on top of each other:
towards the right end of each panel, the approximation slightly underestimates the refit.
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Figure 7. (Linear model) Quality of the linear approximation. Each panel corresponds to a target conclusion change. The solid blue line is
the full-data fit. The horizontal axis is the distance from the weight that represents the full data. We plot both the refit from rerunning
MCMC and the linear approximation of the refit.

F.2. Hierarchical model on tree mortality data

In the final experiment, we break from microcredit and look at ecological data. In particular, we consider a slight tweak of
the analysis of European tree mortality from Senf et al. (2020). Senf et al. are acutely aware of generalization concerns.
While previous work on tree death had been limited in both time and space, Senf et al. (2020) designs a large study that
stretches across Europe and over 30 years, in hopes of making a broad-scale assessment. Our work shows that, even after an
expansive study with generalization in mind, one might still worry about applying the findings at large, because of small-data
sensitivity.

Our approximation struggles in this case. For the particular MCMC run used to estimate the full-data posterior, our
confidence interval does not contain the refit after removing the proposed data. As each MCMC run is already highly
time-consuming, we do not run quality checks on the whole dataset. We settle for running quality checks on a subsample of
the data. On the subsampled data, the confidence interval for AMIP undercovers: the undercoverage is severe for one of the
quantities of interest. However, the confidence interval for sum-of-influence is close to achieving the nominal coverage. For
all three quantities of interest, the linear approximation is good up to removing roughly 1.1% of the data. For two of the
three, it breaks down afterwards: for the remaining one, it continues to be good up to 3%, then falters.

As articulated in Appendix E, we think that dropping more than 1% of the data is already removing a large fraction. We are
not worried about the Maximum Influence Perturbation for such α. So, that the linear approximation stops working after
1.1% is not a cause for concern.

F.2.1. BACKGROUND.

Senf et al. (2020) studies the relationship between drought and tree death in Europe. To identify the association, they have
compiled a dataset with N = 87,390 observations. Europe is divided into 2,913 regions, and the data spans 30 years: each
observation is a set of measurements made in a particular region, which we denote as l(n), and at a particular year, which we
denote as t(n). For our purposes, it suffices to know that the measurement of (the opposite of) drought is called climatic
water balance, and we denote it as x(n): larger values of x(n) indicate that more water is available i.e. there is less drought.
The response of interest, y(n), is excess death of tree canopy.

In our experiment, we mostly replicate (Senf et al., 2020)’s probabilistic model: we use the same likelihood, and make
only an immaterial modification in the choice of priors. The likelihood for the n-th observation is exponentially modified
Gaussian with standard deviation σ, scale λ and mean(

µ
(time)
t(n) + µ

(region)
l(n) + µ

)
+
(
θ
(time)
t(n) + θ

(location)
l(n) + θ

)
x(n) + f(x(n)),

with f(x) :=
∑10

i=1Bi(x)γi where Bi’s are fixed thin plate spline basis functions (Wood, 2003) and γi’s are random:
γi ∼ Normal(0, σ2

(smooth)). In all, the parameters of interest are

• Fixed effects: µ and θ.
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Figure 8. (Hierarchical model on subsampled tree mortality) Histogram of effect MCMC draws. See Figure 1 for the meaning of the
distinguished lines.

• Random effects: time (µ(time)
t(n) , θ

(time)
t(n) ) and location (µ(region)

l(n) , θ
(location)
l(n) ).

• Degree of smoothing: σ(smooth).

Since there are many regions (nearly 3,000) and periods of time (30), the number of random effects is large. Senf et al.
(2020) uses brms()’s default priors for all parameters: in this default, the fixed effects are given improper uniform priors over
the real line. To work with proper distributions, we set the priors for the random effects and degree of smoothing in the same
way set by Senf et al. (2020). For fixed effects, we use t location-scale distributions with degrees of freedom 3, location 0,
and scale 1000.

At a high level, both Senf et al. (2020)’s prior and our prior share strength across regions and times by modeling the random
effects as coming from a some common global distributions. However, while Senf et al. (2020) uses an improper prior, we
use a proper one. Numerically, there is no perceptible difference between the two. Theoretically, we prefer working with
proper priors to avoid the integrability issue mentioned around Assumption 2.1.

Following Senf et al. (2020), we make conclusions based on posterior functionals of θ. Roughly speaking, θ is the average
(across time and space) association effect that water balance has on excess tree death. We use S = 8000 HMC draws to
approximate the posterior.

F.2.2. RUNTIME

The running of our approximation takes very little time compared to the running of the original analysis. Generating the
draws in Figure 3 took 12 hours. For one α and one quantity of interest, it took less than 2 minutes to make a confidence
interval for what happens if we remove the most extreme data subset. A user might check approximation quality by dropping
a proposed subset and re-running MCMC: each such check took us around 12 hours, which is the runtime of the original
analysis.

F.2.3. RESULTS ON SUBSAMPLED DATA.

Running MCMC on the original dataset of size over 80,000 took 12 hours. In theory, we can spend time (on the order of
thousands of hours) to run our quality checks, but we do not do so. Instead, we subsample 2,000 observations at random
from the original dataset. Each MCMC on this subsample takes only 15 minutes, making it possible to run quality checks in
a few hours instead of weeks. We hope that the subsampled data is representative enough of the original data that the quality
checks on the subsampled data are indicative of the quality checks on the original data.

We use the same probabilistic model to analyze the subsampled data. Figure 8 plots the histogram of the association
effect draws and sample summaries. Based on the draws, a forest ecologist might tentatively say that drought is positively
associated with canopy mortality if they relied on the posterior mean, but refrain from conclusively deciding, since the
uncertainty interval contains zero.

Figure 9 shows our confidence intervals and the actual refits. Similar to Figure 4, our confidence intervals predict a more
extreme change than realized by the refit. The overestimation is most severe for ‘both’ QoI.

In Figure 10, the confidence interval for AMIP undercovers for all quantities of interest. The actual coverage decreases as
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Figure 9. (Hierarchical model on subsampled tree mortality) Confidence interval and refit. See the caption of Figure 2 for the meaning of
the panels and the distinguished lines.

Figure 10. (Hierarchical model on subsampled tree mortality) Monte Carlo estimate of coverage of confidence interval for ∆(α). See
Figure 5 for the meaning of the panels and the distinguished lines.

α increases. The undercoverage is most severe for ‘sig’ QoI: while the nominal level is 0.95, the confidence interval for
the true coverage only contains values less than 0.15. This translates to a relative error of over 84%. In other words, our
confidence interval for significance change is too narrow, and rarely contains the AMIP. For ‘both’ QoI and ‘sig’ QoI, the
worst-case relative error between the nominal and the estimated coverage, which occurs under the largest α, is 15.7%.

In Figure 11, the estimated coverage of the confidence interval for sum-of-influence is close to the nominal coverage. Note
the stark contrast in the vertical scale of the ‘sig’ panel in Figure 10 with that in Figure 11. At worst, our point estimate of
the true coverage is 0.04 less than the nominal level, which is only a 4.2% relative error. This success of the block bootstrap
indicate that the undercoverage observed in Figure 10 can be attributed to the sorting step involved in the definition of ∆̂.
We leave to future work to investigate why the interference cause by the sorting step is so much more severe for changing
the significance than for changing sign or generating significant result of the opposite sign.

Figure 12 shows that the linear approximation is good for the posterior mean (‘sign’ QoI) and the left credible endpoint
(‘both’ QoI) up to ζ = 0.2276: in data percentages, this is roughly 1.1%. For larger ζ , the refit for ‘both’ QoI plateaus while
the linear approximation continues to increase, and the linear approximation for posterior mean slightly underestimates
it. For the left endpoint (‘both’ QoI), the linear approximation is close to the refit up to ζ = 0.6105 (roughly 3% of data);
afterwards, the left endpoint increases while the linear approximation continues to decrease.
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Figure 11. (Hierarchical model on subsampled tree mortality) Monte Carlo estimate of coverage of confidence interval for sum-of-
influence. See Figure 6 for the meaning of the panels and the distinguished lines.

Figure 12. (Hierarchical model on subsampled tree mortality) Quality of linear approximation. See Figure 7 for the meaning of the panels
and the distinguished lines.
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