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Abstract

Recently, commonsense reasoning in text gen-
eration has attracted much attention. Genera-
tive commonsense reasoning is the task that re-
quires machines, given a group of keywords, to
compose a single coherent sentence with com-
monsense plausibility. While existing datasets
targeting generative commonsense reasoning
focus on everyday scenarios, it is unclear how
well machines reason under specific geograph-
ical and temporal contexts. We formalize this
challenging task as SITUATEDGEN, where ma-
chines with commonsense should generate a
pair of contrastive sentences given a group of
keywords including geographical or temporal
entities. We introduce a corresponding English
dataset consisting of 9,060 contrastive sentence
pairs, which are built upon several existing com-
monsense reasoning benchmarks with minimal
manual labor. Experiments show that state-of-
the-art text generation models struggle to gen-
erate sentences with commonsense plausibility
and still lag far behind human performance.

1 Introduction

In recent years, there has been a substantial growth
in new benchmarks evaluating commonsense rea-
soning for natural language processing (NLP) mod-
els, especially large-scale Pretrained Language
Models (PLMs). Most existing commonsense rea-
soning benchmarks adopt natural language under-
standing formats due to easy evaluation (e.g., accu-
racy), including multiple-choice question answer-
ing (Talmor et al., 2019; Sap et al., 2019; Huang
et al., 2019; Lin et al., 2021), natural language in-
ference (Bhagavatula et al., 2020), and detecting
true/false statements (Onoe et al., 2021; Singh et al.,
2021). However, datasets measuring commonsense
knowledge in natural language generation are still
relatively scarce. We aim to fill this research gap
since advancing commonsense reasoning skills of
text generation models benefits many downstream
applications such as document summarization (Sha,

2020), story writing (Yao et al., 2019) and dialogue
response generation (Mou et al., 2016).

COMMONGEN (Lin et al., 2020), a generative
commonsense reasoning challenge, has attracted
wide attention recently. Given a set of keywords
(e.g., {dog, frisbee, catch, throw}), the task
requires models to compose a plausible sentence
describing everyday scenario using all the provided
keywords (e.g., “The dog catches the frisbee when
the boy throws it.””). While COMMONGEN focuses
on social and physical commonsense in everyday
life, it is unclear how well current commonsense
generation models reason with factual knowledge
about specific entities, which is referred to as entity
commonsense (Onoe et al., 2021). In this work, we
mainly consider geographical and temporal entities,
as they provide extra-linguistic contexts (Zhang
and Choi, 2021) for commonsense reasoning and
appear in a significant proportion of existing com-
monsense benchmarks (Section 4.2). Although
Zhang and Choi (2021) have studied the effect of
geographical and temporal contexts on Question
Answering (QA), to the best of our knowledge,
we are the first to incorporate these situations into
generative commonsense reasoning.

Furthermore, we argue that geographical and
temporal contexts are important for commonsense
reasoning. On the one hand, basic knowledge about
geography and time is part of human common-
sense (Allen, 1983; Bhatt and Wallgriin, 2014),
such as “Earth rotates on its axis once in 24
hours.” On the other hand, certain types of com-
monsense knowledge are correlated with specific
situations (Yin et al., 2021). For example, “July
is summer” is true for people living in the north-
ern hemisphere, while those living in the southern
hemisphere would agree that “July is winter”.

Our proposed task SITUATEDGEN (Situated
Generative Commonsense Reasoning) requires the
machines to generate a pair of contrastive sentences
(formally speaking, antithesis) with commonsense



plausibility, given a group of keywords includ-
ing geographical or temporal entities. For exam-
ple, when provided with [July, United States,
winter, Australia, summer, July], areason-
able output could be “July is summer in the United
States. July is winter in Australia.”, while a slightly
different version “July is summer in Australia. July
is winter in the United States.” does not adhere to
commonsense.

There are two key challenges for machines to
solve the SITUATEDGEN task. The first challenge
is situated semantic matching. In order to generate
a pair of contrastive sentences, machines need to
split the keywords into two groups (either explic-
itly or implicitly) based on geographical/temporal
relevance and perform relational reasoning (Nickel
et al., 2016) within/between the keyword groups.
Second, models should master compositional gen-
eralization (Keysers et al., 2020), reasoning over
new combinations of keywords during the infer-
ence stage instead of memorizing existing key-
words matching results.

To study the challenging SITUATEDGEN task,
we construct a corresponding large-scale English
dataset containing 9,060 pairs of situated common-
sense statements. We design an automatic pipeline
to collect data at scale with quality assurance and
minimal human annotation efforts. Concretely, we
derive commonsense statements with geographi-
cal or temporal contexts from existing common-
sense benchmarks and mine contrastive sentence
pairs based on entity-masked sentence similarity.
We further manually filter out invalid examples
in the test set to ensure the evaluation soundness.
To assess the difficulty of our dataset, we conduct
baseline experiments on pretrained text generation
models with automatic evaluation metrics. Results
show these models lag far behind human perfor-
mance, indicating that current models struggle to
generate sentences adhering to commonsense un-
der the SITUATEDGEN setting. We believe that
SITUATEDGEN could serve as a complement to
COMMONGEN and enrich the resource for evaluat-
ing constrained commonsense text generation in a
more realistic setting.

The main contributions of this work are three-
fold:

» Task. We incorporate geographical and tem-
poral contexts into generative commonsense
reasoning and propose a novel task SITUAT-
EDGEN.

* Resource. We construct a large-scale dataset
in a non-trivial way to facilitate the studies of
situated generative commonsense reasoning.
The dataset will be released and contribute to
the commonsense reasoning community.

» Evaluation. We benchmark the performance
of state-of-the-art pretrained text generation
models on our dataset and demonstrate the
difficulty of the task with a significant gap
between machine and human performance.

2 Related Work

Constrained Commonsense Text Generation.
Constrained Commonsense Text Generation (Bhar-
gava and Ng, 2022) requires PLMs to generate com-
monsense text subject to a set of constraints. Com-
monsense generation models are currently evalu-
ated by three tasks. COMMONSENSE EXPLANA-
TION aims to generate an explanation for why a
model selects a candidate answer to a given ques-
tion. « NLG (Bhagavatula et al., 2020) is another
commonsense generation task. The artificial in-
telligence models are provided with two obser-
vations in chronological order and need to gen-
erate a plausible hypothesis/explanation describing
what happened between the observations. Obvi-
ously, SITUATEDGEN is different from these two
tasks. In COMMONGEN (Lin et al., 2020), models
should compose a plausible sentence describing
everyday scenario using all the provided concepts.
This task has attracted much attention recently, and
researchers advance machine performance on the
dataset with contrastive learning (Li et al., 2021),
prototype editing (Liu et al., 2021b), scene knowl-
edge graph (Wang et al., 2021), etc. Our proposed
task differs to COMMONGEN in the focus on com-
posing a pair of contrastive sentences instead of a
single sentence and incorporating extra-linguistic
contexts.

NLP Benchmarks with Geographical and Tem-
poral Contexts. There are many emerging bench-
marks in NLP that incorporate extra-linguistic con-
texts such as geographical and temporal contexts.
TEMPLAMA (Dhingra et al., 2021) and GEOM-
LAMA (Yin et al., 2022) probe language models
with masked text prompts to query geographical
and temporal knowledge. In question answering,
MCTACO (Zhou et al., 2019), TORQUE (Ning et al.,
2020) and TIMEQA (Chen et al., 2021) contains
challenging questions involving temporal common-
sense reasoning over duration, frequency, temporal



order, and other various aspects of events. SITU-
ATEDQA (Zhang and Choi, 2021) is made up of
open-domain questions whose answers vary across
different geographical and temporal contexts. TI-
MEDIAL (Qin et al., 2021) studies temporal rea-
soning in dialogues with a multiple-choice cloze
task. In vision-and-language tasks, GD-VCR (Yin
et al., 2021) and MaRVL (Liu et al., 2021a) aim
to collect commonsense questions and statements
that are visually grounded and geographically di-
verse. Our dataset SITUATEDGEN also considers
such geographical and temporal contexts/reasoning
in language. However, our work is different from
the previous ones in that we choose the task of gen-
erative commonsense reasoning, pioneered by Lin
et al. (2020), as it focuses on the commonsense
reasoning capabilities of NLG models rather than
NLU. We note that benchmarks targeting at ma-
chines commonsense in NLG are far less than those
for NLU and thus require more empirical attention.

3 Task Definitions and Challenges

We use antithesis generation for evaluating genera-
tive commonsense reasoning under extra-linguistic
contexts. In this section, we first introduce the defi-
nition of antithesis as a literary device, followed by
a mathematical formulation of situated generative
commonsense reasoning. We then analyze the two
key challenges of our proposed task.

3.1 Definitions

Antithesis. Antithesis refers to a figure of speech
that expresses an opposition of ideas with a par-
allel grammatical structure of words, clauses, or
sentences (Lloyd, 1911; Bridgwater, 1963). An
example of antithesis could be Neil Armstrong’s
famous quote “That’s one small step for a man, one
giant leap for mankind”. In this work, we adopt
the definition of sentence-level antithesis, which
means two simple sentences with similar syntac-
tic structure creating a contradiction in semantics.
We emphasize on the commonsense plausibility
rather than the rhetoric effect of antithesis within
the scope of this paper.

Extra-Linguistic Contexts. Following Zhang
and Choi (2021), we focus on two context types:
geographical (GEO) and temporal (TEMP). GEO
defines each context value as a geopolitical entity
(“GPE”). TEMP defines each context value as times-
tamp (“DATE”, “TIME”, “EVENT”).

Contextual Dependence. We define that a con-
trastive sentence pair is context-dependent if swap-
ping any of the GEO or TEMP entities between
the two sentences could lead to contradiction with
commonsense yet grammatical correctness. For
example, for the sentence pair “July is summer in
China. July is winter in Australia.”, if the two
GEO entities “China" and “Australia" are swapped,
the resulting sentences do not adhere to common-
sense anymore: “July is summer in Australia. July
is winter in China.” This indicates that they are
context-dependent.

Contextual dependence is crucial for a proper
evaluation of the generation results. Because sen-
tence pairs that do not satisfy context dependence
may have multiple valid answers (swapping the en-
tity words leads to an extra correct answer), the met-
rics introduced in Section 6 cannot make a sound
evaluation with only a single reference.

Situated Generative Commonsense Reasoning.
We modify the mathematical formulation of the
task COMMONGEN to define SITUATEDGEN. The
input of the task is a multiset! consisting of k key-
words = [c1,¢2,...,ck] € X, where each key-
word ¢; € C is a noun or entity, a single word or
phrase. We denote X as all possible combinations
of keywords and C as the vocabulary of keywords.
Keywords in = should contain at least two GEO or
TEMP entities and two other keywords?.

The output of the task is an unordered pair of
coherent and plausible sentences y = {s1, 2} € Y
that satisfies the following conditions: 1) the sen-
tence pair includes all keywords in z; 2) each
sentence has at least one GEO or TEMP key-
word; 3) each sentence is geographical-temporal-
semantically correct; 4) s; and so form a pair of
contrastive sentences, or antithesis; 5) s; and so
are context-dependent. The goal of the task is to
learn a function f : X — ) that maps a group of
pf keywords x to a pair of sentences y.

3.2 Challenges

Situated Semantic Matching. As the goal of our
task is to generate a pair of sentences instead of a
single sentence, machines need to explicitly or im-
plicitly classify the keywords into two subgroups

"Multiset is a set that allows multiple instances for each of
its elements.

2We do not explicitly provide the types of keywords in our
dataset. The models are expected to infer which keyword is
GEO or TEMP if needed.



Q: How many times does Earth
rotate on its axis in one day? A: once

QA-to-statement

Earth rotates oniits
axis once in one day.

Contexts Identification

Earth rotates on its axis
once in one day(DATE).

Contrastive Sentences Mining

Q: How many times does the Moon rotate
on its axis during a lunar month? A: one

QA-to-statement

The Moon rotates on its axis
one time during a lunar month.

Contexts Identification

The Moon rotates on its axis one time
during a lunar month(DATE).

axis, Moon, time, one

Earth rotates on its axis once in one day.

lunar month The Moon rotates on its axis one time during a lunar month.

i day, Earth, axis, a

Figure 1: An overview of data collection pipeline.

based on their geographical and temporal seman-
tic relevance, so as to generate one commonsense
sentence with each subgroup. For example, given
[July, China, winter, Australia, summer,
July], the resulting keyword subgroups should be
{July, China, summer?} and {July, winter,
Australia}l.

During the process of keyword grouping and
matching, machines determine which keywords are
more relevant to each other with relational reason-
ing (Nickel et al., 2016) over factual knowledge
about these nouns and entities, a.k.a. entity knowl-
edge (Zhang and Choi, 2021), such as geographical
location, temporal order, physical rules, social cus-
toms, etc. The matching process is important since
wrong grouping results will lead to generated sen-
tences without commonsense plausibility>.

In order to prevent the model from exploiting
“shortcuts” (Gururangan et al., 2018; Tu et al., 2020)
to group keywords based on syntactic forms instead
of semantic meanings, we ask the model to gen-
erate contrastive sentences that are syntactically
similar, rather than two coherent (yet possibly irrel-
evant) sentences.

Compositional Generalization. In machine
learning practice, compositional generaliza-
tion (Keysers et al., 2020) means that models can

3We note that under certain circumstances, wrong grouping
results might produce correct answer via negative sentences.
For example, the machine could generate “July is not summer
in Australia” with {July, Australia, summer}. However,
we observe that these are rare scenarios in our datasets and
also uncommon expressions in everyday life, so we do not
consider their confusing effects in our study.

Inside the dotted box is a final example in the dataset.

generalize to test examples of novel combinations
after being exposed to the necessary components
during training. Specifically, in the SITUATEDGEN
task, the components refer to keywords. We
ensure that there is no overlap among the keyword
combinations in the training, validation and test
set during the dataset collection. While humans
can easily compose sentences with unfamiliar com-
binations of keywords, it is very challenging for
the machines to make analogy and inference with
unseen keyword combinations, instead of simply
memorizing existing keyword combinations.

4 Dataset Collection

To study the SITUATEDGEN challenge, we con-
struct a large-scale English dataset. We design a
pipeline to collect high-quality data at scale with
minimal manual annotation efforts. Figure 1 il-
lustrates the overall pipeline for dataset collection,
which consists of three steps:

1. QA-to-statement.  Converting question-
answer pairs of existing commonsense ques-
tion answering benchmarks into correspond-
ing statements.

2. Contexts Identification. Identifying all en-
tities in a statement with an NER tagger and
removing those statements without GEO and
TEMP entities.

3. Contrastive Sentences Mining. Automati-
cally mining contrastive sentence pairs (an-
tithesis) from the remaining commonsense
statements based on entity-masked sentence
similarity.



# GEO # Valid

Dataset # Sent # GEO # TEMP & TEMP  Sent
CREAK 5,779 868 552 153 1,573
StrategyQA 4976 501 366 86 953

CommonsenseQA 10,962 487 215 12 714

ARC 7,787 165 426 52 643
OpenbookQA 6,493 31 119 5 155
Total 35,997 2,052 1,678 308 4,038

Table 1: Statistics of contexts identification results.

“Sent” means the commonsense statements collected
in Section 4.1. “GEO”/“TEMP” refer to statements with
only geographical/temporal entities. “GEO & TEMP”
refers to statements with both geographical and tem-
poral entities. “Valid Sent” means the commonsense
statements with GEO or TEMP contexts.

4.1 QA-to-Statement

Our dataset is composed of commonsense state-
ments, which are simple sentences describing com-
monsense knowledge, e.g., “You would find many
canals in Venice.” In recent years, numerous com-
monsense reasoning benchmarks have been pro-
posed and they form a potentially available com-
monsense knowledge base with high quality and
diverse content. Inspired by recent benchmarks
that are sourced from existing datasets (Zhang and
Choi, 2021; Park et al., 2022), we aim to extract
commonsense statements from these commonsense
benchmarks®*.

We conduct a holistic study of commonsense
reasoning datasets to date and select five differ-
ent data sources after considering their size, anno-
tation quality and reasoning difficulty. They are
CREAK (Onoe et al., 2021), StrategyQA (Geva
et al., 2021), CommonsenseQA (Talmor et al.,
2019), ARC (Clark et al.,, 2018) and Open-
bookQA (Mihaylov et al., 2018), respectively. We
briefly introduce the nature of each dataset in Ap-
pendix A.1. Since the raw data come in differ-
ent formats such as multiple-choice questions and
Yes/No questions, we apply a specific preprocess-
ing method for each dataset to transform them
(i.e., question-answer pairs) into statements. The
transformation details are also included in Ap-
pendix A.1. In general, we collected 35,997 com-
monsense statements from the five source datasets
(statistics in Table 1).

“We assume that the knowledge in these commonsense
benchmarks is actually commonsense, though they might not
be shared locally in certain groups of people due to a lack of
geographical diversity.

The Moon rotates on
its axis one time during
a lunar month.

Earth rotates on its
axis once in one day.

Keyword Masking

{Keyword Masking

[UNK] rotates on its
[UNK] once in [UNK].

The [UNK] rotates on its [UNK]
one [UNK] during [UNK].

{Sentence Embedding

I

Cosine
Similarity

{ Sentence Embedding

I

Figure 2: An illustration of the contrastive sentence
mining algorithm.

4.2 Contexts Identification

We now filter out commonsense statements with-
out geographical or temporal contexts. Follow-
ing (Zhang and Choi, 2021), we identify sentences
with extra-linguistic contexts by GEO and TEMP en-
tities. We use FLERT? (Schweter and Akbik, 2020),
a named entity recognition (NER) model, to ex-
tract all entities from a sentence and remove those
statements without any GEO (“GPE”) or TEMP
(“DATE”, “TIME”, “EVENT") entities.

Table 1 shows that of all the commonsense state-
ments extracted from the five source datasets, 6.6%
sentences have GEO contexts and 5.5% have TEMP
contexts, which we count as a significant propor-
tion. Finally, we obtain 4,038 (11.2%) common-
sense statements with extra-linguistic contexts.

4.3 Contrastive Sentences Mining

We aim to automatically mine contrastive sentence
pairs from the commonsense statement corpus. An-
tithesis mining has not been studied in the existing
literature, so we propose a pilot algorithm. We
observe that after removing keywords from con-
trastive sentences, the remaining parts are very sim-
ilar, since antithesis sentences have parallel syntac-
tic structures (Bridgwater, 1963). Based on this
observation, we design the antithesis mining al-
gorithm illustrated in Figure 2 consisting of three
steps:

1. Keyword Masking. We extract all entities
and other nouns as keywords in the sentence
and replace each keyword with a [UNK] to-
ken, telling the pretrained language models to
neglect the meaning of these keywords.

Shttps://huggingface.co/flair/
ner-english-ontonotes-large
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2. Masked Sentence Similarity Matching. We
obtain the embedding of the keyword-masked
sentence from a pretrained language model
and calculate the cosine similarity between all
possible sentence pairs.

3. Rule-based Filtering. We filter out invalid
sentence pairs base on a fixed threshold of
masked sentence similarity, number of key-
words and entity types.

We introduce the implementation of our antithe-
sis mining algorithm in Appendix A.2. In this way,
we efficiently extracted 9,378 contrastive sentence
pairs from all possible pairwise combinations of
the previous 4,038 commonsense statements with
extra-linguistic contexts® (Section 4.2). For each
contrastive sentence pair, we merge the keywords
from each statement and randomly shuffle them
to get the input data. The output is the concate-
nation of two statements. When splitting the data
into training, validation and test set, we explicitly
require that one statement cannot appear simulta-
neously in any two sets. This ensures the com-
positional generalization challenge (Section 3.2)
since there is no overlap among the sentence-level
keyword combinations in the training, validation
and test data. Statements with similar syntactic
structures will also be divided into the same set to
reduce overlap of syntactic templates across differ-
ent sets’. To ensure the evaluation soundness, we
manually filter out invalid examples in the fest set
that are not fluent antitheses or context dependent.
13.6% of test data are removed and the final dataset
has 9,060 examples in total.

5 Dataset Analysis
5.1 Quality Analysis

To measure the quality of our automatically col-
lected data, we randomly select 100 examples (i.e.
sentence pairs) from the validation set (which is
not manually filtered) and annotate each example
for whether it is actually 1) (fluent) antithesis and
2) context dependent. We find that 87% of the data
are real antitheses with fluency and 80% of the data
satisfy both of the two requirements. Considering
that our dataset is constructed through a fully auto-
matic pipeline, this quality is pretty satisfying and
can meet the needs of training and evaluation. As

®One statement might be paired with multiple statements,
formulating multiple contrastive sentence pairs.

"Please refer to Appendix A.3 for details of our dataset
splitting algorithm.

Statistics Train  Dev Test
Size (# Sent Pairs) 5,641 1,407 2,012
# Unique Sents 788 309 449
per Sent Pair 0.14 0.22 0.22
# Unique Keywords 1,847 725 1,075

# Avg. Input Keywords ~ 7.34 6.96 6.91
# Avg. Output Tokens 20.89 24.08 20.73

Table 2: The basic statistics of the SITUATEDGEN
dataset. “Sent” means commonsense statement.

251
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Figure 3: Distribution of numbers of input keywords.

we have discussed in Section 3.1, test examples
not satisfying contextual dependence can fool the
evaluation metrics, since there are multiple valid
references despite the single one provided in the
test set. Thanks to the additional manual filtering,
the test set is now qualified for evaluation. As
for the unfiltered training set, even if a contrastive
sentence pair is not context-dependent, it is still
valuable training data, satisfying the other require-
ments for the target side (Section 3.1). A reduced
size of training data after potential manual filtering
is also unfavourable to the learning of models. As
a result, we retain all the examples in the training
set.

Below, we analyze the bad cases in detail, in-
cluding non-contrastive and non-context-dependent
sentence pairs. The main reason for producing non-
contrastive sentence pair is that the remaining verbs
after keyword masking may have lexical ambiguity,
e.g. “play” in “Slaves play a role in the history
of the united states.” and “A team sport played
mostly in Canada is Lacrosse.” Although the pre-
trained language models could infer the meaning
of a word according to its context (Devlin et al.,
2019), the contexts are lost after keyword masking.
As a result, two sentences with different syntac-
tic structures are matched together, thus violating
the antithesis rule. This poses a limitation of our
antithesis mining algorithm.



In addition, 7% of the sentence pairs are antithe-
ses yet not context-dependent. Take the following
sentence pair as an example: “You could find mil-
lions of brownstone in New York City.3 One can
find a Holiday Inn inside the United States.”. Af-
ter swapping the GEO entity “New York City” and
“United States” in these two sentences, they still
conform to commonsense. The reason for this phe-
nomenon is that New York City is part of the United
States, and thus the “brownstone” related to New
York will also be related to the United States.

5.2 Dataset Statistics

Table 2 includes the basic statistics of the SITUAT-
EDGEN dataset. If we use the ratio of unique state-
ment count to sentence pair count (“# Unique Sents
per Sent Pair”) to represent the content/keyword
diversity of the dataset, the validation set and the
test set are relatively high (0.22), compared to the
training set (0.14). This also shows that the test
set is more challenging than the training set, which
further increases the difficulty of the dataset.

Distribution of Numbers of Input Keywords.
Figure 3 shows the distribution of numbers of input
keywords for all examples in the dataset. More
input keywords are more difficult for the models
to handle. The average number of input keywords
is 7.19 and the distribution is fairly symmetrical
(skewness=-0.24), suggesting that the SITUATED-
GEN has a reasonable difficulty.

Distribution of Context Types. We define three
context types of pairs of contrastive sentences: a
GEO pair of sentences contains only GEO entities; a
TEMP pair of sentences contains only TEMP entities;
If both sentences contain GEO and TEMP entities,
the pair of sentences belongs to the type of GEO &
TEMP . We find that 78% of all sentence pairs are
GEO , 21% are TEMP and the rest 1% are GEO &
TEMP .

6 Methods

Baseline Models. We benchmark the perfor-
mance of two prominent pretrained language gen-
eration models: BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020). We fine-tuned all models
on our training data with the seq2seq format and
expect that the models can learn to group keywords

8 As background knowledge, there are many historical
buildings in New York City whose facades are made of
brown sandstone, see https://bungalow.com/articles/
what-exactly-is-a-brownstone.

Model MATCH BLEU-4 ROUGE-2 METEOR CIDEr SPICE
BART-base 61.2 227 29.6 299 182 539
BART-large 62.6 23.0 30.8 29.1 179 553
T5-base 56.5 221 28.8 30.1 174 541
T5-large 67.7 263 33.1 319 209 579
Human 92.1 415 48.2 40.5 40.1 72.0

Table 3: Experimental results on the test set of SITU-
ATEDGEN . The best model performance is in bold.
Human performance is tested on a subset of 100 random
samples.

Context MATCH BLEU-4 ROUGE-2 METEOR CIDEr SPICE

GEO 68.2 255 31.9 31.7 200 573
TEMP 645 311 42.2 338 240 625
ALL 67.7 263 33.1 319 209 579

Table 4: The performance of T5-large across different
context types on the test set of SITUATEDGEN . The
best type performance is in bold.

implicitly. Specifically, for the input of BART, we
concatenate all shuffled keywords with a comma
as the separation token “cy, co, ..., c;”. Regarding
the input format of T5, we prepend the keyword
sequence with a simple task description to align
with its pretraining objective: “generate two sen-
tences with: cy, ca, ..., ci”. The outputs of all mod-
els are simple concatenation of the two target sen-
tences s and s3. Since the output is an unordered
pair, we feed two examples “x — s; s2” and
“xr — sg s1” to the model for each original training
example. We report the model hyper-parameters in
Appendix B.1.

Evaluation Metrics. Lin et al. (2020) have well
established the automatic evaluation protocol of
the generative commonsense reasoning task. They
demonstrated a strong correlation between the auto-
matic metrics and human evaluation results. Since
SITUATEDGEN adopts a similar format of keyword-
to-text generation to COMMONGEN , we follow the
evaluation protocol of COMMONGEN and do not
include an extra manual evaluation in our study.

Concretely, we employ several widely-used au-
tomatic NLG metrics based on n-gram overlap —
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
METEOR (Banerjee and Lavie, 2005) — and image
caption metrics that focus on the consistency of
keywords and their relationships — CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al., 2016).
Additionally, we report the accuracy of keyword
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Input Keywords

24 hours, axis, one month, Earth, axis, Moon

Reference It takes for the Moon to rotate on its axis one month. Earth rotating on its axis takes 24 hours.
BART-base The axis of the Moon is 24 hours. One month is one month.

BART-large There are 24 hours in one month.

T5-base Earth has a 24 hour axis. One month is one month.

T5-large One month is one month on Earth. The Moon is 24 hours away from the axis of the Earth.
Input Keywords  Paul, Emperor, China, Qin, Russia, dynasty

Reference The Qin dynasty reigned in China. Paul I of Russia reigned as the Emperor of Russia.
BART-base The Emperor of China worked in China. Paul served as the first emperor of the dynasty Qin.
BART-large Emperor of the Qin dynasty. Paul existed in Russia. o
T5-base China is a dynastT of China. Paul Qin is the Emperor of China.

T5-large Paul was the Emperor of Russia. ﬁ@ dynasty ruled China.

Table 5: Case studies of machine generations. Keywords appearing in the generation results are underlined.

grouping results’ as MATCH, which serves as a good
indicator of the commonsense plausibility of the
generated texts. In particular, if a keyword does
not appear in the output, we treat it as unmatched.
In this way, MATCH also reflects the coverage of
keywords in the output. See Appendix B.2 for the
implementation details of these evaluation metrics.

7 Results

In Table 3, we report the experimental results of
different baseline models on the test set of SITU-
ATEDGEN. We approximate human performance
with 100 randomly sampled examples from the test
set which are annotated by the authors of this pa-
per. We observe that larger models tend to have
better performance than smaller ones. The biggest
tested model, T5-large, surpasses other models in
every metric, but it still lags far behind human per-
formance. For example, there is a difference of
about 24 points in MATCH, indicating the lack of
commonsense in machine generations. The large
gap of keyword-based metrics (CIDEr and SPICE)
also suggests that models find it difficult to in-
fer the relationship between keywords. Further-
more, machine-generated outputs are considered
less fluent by n-gram-based metrics (BLEU, ROUGE
and METEOR). The significant gap between models
and humans demonstrates the difficulty of SITUAT-
EDGEN and leaves much room for improvement in
future research.

Performance across Different Context Types.
Table 4 reports the performance of the T5-large
model across different context types. The re-
sults show that the matching accuracy of TEMP
type is lower than GEO, indicating that temporal-
dependent test examples are more challenging.

“Keywords appearing in the same lemmatized output sen-
tence are considered to be grouped together by models.

However, the amount of TEMP data is less than
GEO in the training set, which may also give rise to
the performance difference. Interestingly, the gen-
eration fluency of GEO type is worse than TEMP,
suggesting that it is more difficult to use GEO enti-
ties to compose sentences smoothly.

Case Study. Table 5 shows two groups of gen-
eration examples by different models. The first
example belongs to TEMP type (“24 hours” and
“one month”) and the second one is GEO (“Rus-
sia” and “China”). We find that models are prone
to omit keywords in their outputs. For example,
BART-large only covers 2 out of 6 keywords in
the first example. Besides, most of the observed
generated outputs are not commonsensical due to
wrong keyword grouping results, e.g., “There are
24 hours in one month” and “Paul served as the
first emperor of the dynasty Qin”. Surprisingly, the
generation result of T5-large in the second example
is quite close to the gold reference.

8 Conclusion

In this paper, we introduce the challenging task
SITUATEDGEN to incorporate geographical and
temporal contexts into generative commonsense
reasoning. We build a corresponding testbed to
evaluate the situated reasoning capabilities of state-
of-the-art text generation models. The benchmark
performance shows that models struggle to gener-
ate commonsensical sentences and lag far behind
human on our proposed task. Altogether, our data
will serve as a challenging benchmark for measur-
ing commonsense knowledge in language gener-
ation models and support future progress of con-
strained commonsense text generation in a more
realistic situation.



Ethics Statement

Our data is built upon publicly available datasets
and we will follow their licenses when releasing
our data. There is no explicit detail that leaks an
annotator’s personal information. The dataset has
very low risks of containing sentences with toxi-
city and offensiveness. Since our data is sourced
from existing datasets, we may inherit geograph-
ical biases (Faisal et al., 2022) that result in an
uneven distribution of commonsense knowledge
about western and non-western regions. The com-
monsense statements may not sound familiar to
people who live in locations that are poorly repre-
sented in the source datasets. Therefore, models de-
veloped on our dataset may preserve biases learned
from the annotators of the source datasets. We note
that pretrained language models may also inherit
the bias in the massive pretraining data. It is impor-
tant that interested parties carefully address those
biases before deploying the model to real-world
settings.
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A Additional Details of Dataset Collection

A.1 Commonsense Statement Collection

We briefly introduce the nature of each source
datasets in Section 4.1.

* CREAK (Onoe et al., 2021) is a common-
sense fact verification dataset featuring entity
commonsense, which includes 13,418 true or
false statements about entity knowledge writ-
ten by crowdworkers.

* StrategyQA (Geva et al., 2021) is a common-
sense question answering dataset that requires
multi-hop implicit reasoning. It consists of
5,111 questions whose answers are either Yes
or No. Machines need to decompose a ques-
tion into multiple atomic questions to arrive
at an answer.

¢ CommonsenseQA (Talmor et al., 2019) is
a commonsense question answering dataset
of 12,247 five-way multiple-choice questions
with a focus on knowledge in everyday life.

¢ ARC (Clark et al., 2018) is a commonsense
question answering dataset. It has 7,787 four-
way multiple-choice natural science ques-
tions collected from grade-school standard-
ized tests.

* OpenbookQA (Mihaylov et al., 2018) is a
commonsense question answering dataset that
simulates openbook test. The data set is made
up of 5,957 multiple-choice questions, ac-
companied by 6,493 commonsense statements
about science facts. Since there is a significant
overlap between the knowledge in questions
and statements, we only use the statements
data for simplicity.

We now detail the specific preprocessing method
for each source dataset to convert them (i.e.,
question-answer pairs) into statements.

* If the raw data comes in the statement format
(CREAK and OpenbookQA), we obtain the
true statements (part of CREAK and all of
OpenbookQA) without extra processing.

e If the raw data comes in Yes/No ques-
tion format (StrategyQA), we leverage
a POS-rule-based open-sourced system
question_to_statement!? to transform a
pair of question and Yes/No answer into a
statement.

Ohttps://github.com/SunnyWay/question_to_
statement
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Dataset Size Format

Raw Data — Statement Conversion Example

CREAK (Onoe et al., 13,418 True/False state-
2021) ment

StrategyQA (Geva 5,111  Yes/No Question
etal., 2021)

CommonsenseQA (Tal- 12,247 Multiple-choice

mor et al., 2019) Question

ARC (Clark et al., 7,787  Multiple-choice
2018) Question
OpenbookQA (Mi- 6,493  Commonsense
haylov et al., 2018) Statement

In the calendar year, May comes after April
and before June. (True/False) — In the cal-
endar year, May comes after April and be-
fore June.

Are more watermelons grown in Texas than
in Antarctica? (Yes/No) — More watermel-
ons are grown in Texas than in Antarctica.
Where in Southern Europe would you find
many canals? (A) Michigan (B) New York
(C) Amsterdam (D) Venice (E) Sydney —
You would find many cannals in Venice,
Southern Europe.

How long does it take for Earth to ro-

tate on its axis seven times? (A) one day

(B) one week (C) one month (D) one year
— It takes one week for Earth to rotate on its
axis seven times.

You wear shorts in the summer. — You wear
shorts in the summer.

Table 6: Source dataset examples. Correct answers are in bold and underlined.

e If the raw data comes in multiple-choice for-
mat (CommonsenseQA and ARC), we utilize
a neural model to convert a pair of question
and correct choice (g, a) into a statement in
a sequence-to-sequence fashion. Concretely,
we use the QA-to-statement model checkpoint
released by Pan et al. (2021), which is a
BART (Lewis et al., 2020) model finetuned
on QA2D (Demszky et al., 2018), a dataset of
human-annotated statements for QA pairs.

We summarize the basic information of these
datasets and provide an example of statement con-
version for each dataset in Table 6.

A.2 Antithesis Mining

Keyword Masking. We use entities and other
nouns as the keywords of sentences, because as
a pilot study, we only consider the relationships
between spatio-temporal contexts and nouns and
ignore the influence of other part of speech cate-
gories such as verbs, adjectives and prepositions.
We use the same NER tagger in Section 4.2 to ex-
tract entities. We leverage spaCy!! to extract all the
nouns (including proper nouns) from a sentence.
We merge the entities and nouns as keywords after
removing duplicates. In particular, if a noun and an

11https://spacy.io/models/en#en_core_web_sm
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entity partly overlaps (e.g., “month” and “a lunar
month”), we retain the entity when deduplicating.

Masked Sentence Similarity Matching.
We use the pretrained language model
all-MinilLM-L6-v2!2 released by Sentence-
Transformers (Reimers and Gurevych, 2019)
to obtain high-quality embeddings of keyword-
masked sentences. We calculate the cosine
similarity to pair highly similar masked sentences.
Computing the similarity of all possible sentence
pairs requires O(n?) time complexity. To acceler-
ate this process, we use the paraphrase_mining
API of SentenceTransformers (Reimers and
Gurevych, 2019).

Rule-based Filtering. We devise the following
rules to filter invalid sentence pairs based on itera-
tive observation of the data:

* The masked sentence similarity exceeds a cer-
tain threshold'?, which indicates parallel sen-
tence structure of antithesis.

* The number of masked keywords ([UNK]) of
each single sentence should not be more than
5 and less than 2, which controls for a reason-

12https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
3We set the threshold as 0.8 via manual inspection.
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able difficulty of the keyword-to-text genera-
tion task.

Any entity in one sentence does not appear
in the other sentence within a pair (includ-
ing the deformation of entity words, such as
singular/plural form, upper/lower case, etc.).
This is to avoid that both sentences express
the information of the same entity, while the
contrastive sentences should describe two op-
posite things.

Both of the two sentences contain either
GEO entities or TEMP entities (GEO+GEO or
TEMP+TEMP), which avoids sentences com-
paring GEO context to a non-parallel TEMP
context (GEO+TEMP).

A.3 Dataset Splitting

We treat dataset splitting as a community struc-
ture (Blondel et al., 2008) discovery problem. Com-
munity structure refers to a group of tightly con-
nected nodes that have a high density of internal
connections and a low density of external connec-
tions. We regard a single sentence as a node in the
graph. If two single sentences can be matched into
a pair of contrastive sentences, an undirected edge
will connect the corresponding nodes of these two
single sentences. In this way, we obtain an undi-
rected graph describing the dataset structure. A
subset of a dataset (such as a training set) is equiv-
alent to a subgraph containing all sentence pairs
(edges) and single sentences (nodes) of that subset.

In order to prevent the same sentence from ap-
pearing across different sets, we require that the
subgraph node sets of the training set, validation
set, and test set are disjoint. We use a community
structure detection algorithm to meet this require-
ment. We use the community as the basic unit of
dataset splitting, putting all the edges (sentence
pairs) in one community into a certain dataset split.
Connecting edges between communities (two ver-
tices belong to different community) are removed.
We note that sentences with similar syntactic struc-
tures tend to be connected to each other in the graph
and thus fall into the same community, which en-
sures the syntactic variability between train/dev/test
splits.

We use the Louvain (Blondel et al., 2008) com-
munity structure detection algorithm'# and divide
our graph into 79 communities. The largest com-
munity contains 3,273 edges, accounting for about

14https ://github.com/shobrook/communities
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Parameter Value
epoch 10
batch size 32

beam size 4

max input length 64
max output length 128
learning rate 3e-5
warm-up steps 500

Table 7: Hyper-parameter settings for all baseline mod-
els.

26% of the total data. After removing a total
of 3,311 edges connecting different communities
(about 26% of the total), we obtained 9,378 con-
trastive sentence pairs with geographical or tempo-
ral contexts. We then randomly divide the commu-
nities into training set, validation set or test set.

B Experimental Setup

B.1 Baseline Models

We use HuggingFace (Wolf et al., 2020) implemen-
tations of the BART and T5 models. For decod-
ing method, we adopt the standard beam search
with a beam size of 4 for all baseline models. As
for checkpoint selection, we save checkpoint for
each epoch and select the checkpoint with high-
est ROUGE-2 on the validation set. Other default
hyper-parameters are shown in Table 7.

B.2 Evaluation Metrics

We use the standard implementation of
BLEU, ROUGE, METEOR, CIDEr, SPICE
in pycocoevalcap'. In addition, we design
and implement MATCH to evaluate how well the
machines solve the challenge of situated semantic
matching (Section 3.2). We now define the
keyword matching accuracy MATCH based on
mathematical notations introduced in Section 3.1.

t (t1,..,tx),t; € {0,1} indicates that
each keyword c¢; appears in which sentence in
the answer pair "¢ = {s{"u¢ sbrue} In other
words, if ¢; should appear in sy, then t; = O;
if ¢; should appear in sg, then t; = 1. p
(p1,.-sp0k),pi € {—1,0,1} indicates that each
keyword c; appears in which sentence in the out-

put pair yP ¢ = {sﬁ’red, sgmd}. In other words,
if ¢; actually appear in sp, then p; = 0; if ¢
actually appear in so, then p; = 1; if ¢; does

15https: //github.com/salaniz/pycocoevalcap
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not actually appear in both s; and sg, then p; =
—1'6, We define the matching accutacy of a sen-
tence pair match ("¢, y?"?) as the proportion of
correctly matched keywords, which is calculated
as %maX(Z;{:l :ﬂ‘ti:pi7 Zf:l ]ll—tz:pz‘) € [07 1]'
Here 1 is the indicator function. The formula in-
cludes both 1 —¢ and ¢ in a symmetric way because
the sentence pair is unordered. For the whole test
set, we take the average matching accuracy of all
examples as MATCH.

We illustrate the computing process of matching
accuracy with a simple example. Given [July,
China, winter, Australia, summer, Julyl],
the answer could be “July is summer in China. July
is winter in Australia.” Sot = (0,0,1,1,0,1). If
the generated output is “July is summer in Australia.
July is winter in China.”, then p = (0,1,1,0,0,1).
As a result, the matching accuracy is 4/6 = 0.67.

As for the implementation, we utilize NLTK! to
split the output into two sentences. In particular, if
there is only one sentence in the output, we append
an empty string as the second one; if there are more
than two sentences, we only take the former two
sentences into consideration. We lemmatize the
sentence before determining keyword appearance.

1By defining p; = —1, MATCH can also reflect the coverage
of keywords in the output.
17https ://www.nltk.org/
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