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Abstract

Recently, commonsense reasoning in text gen-001
eration has attracted much attention. Genera-002
tive commonsense reasoning is the task that re-003
quires machines, given a group of keywords, to004
compose a single coherent sentence with com-005
monsense plausibility. While existing datasets006
targeting generative commonsense reasoning007
focus on everyday scenarios, it is unclear how008
well machines reason under specific geograph-009
ical and temporal contexts. We formalize this010
challenging task as SITUATEDGEN, where ma-011
chines with commonsense should generate a012
pair of contrastive sentences given a group of013
keywords including geographical or temporal014
entities. We introduce a corresponding English015
dataset consisting of 9,060 contrastive sentence016
pairs, which are built upon several existing com-017
monsense reasoning benchmarks with minimal018
manual labor. Experiments show that state-of-019
the-art text generation models struggle to gen-020
erate sentences with commonsense plausibility021
and still lag far behind human performance.022

1 Introduction023

In recent years, there has been a substantial growth024

in new benchmarks evaluating commonsense rea-025

soning for natural language processing (NLP) mod-026

els, especially large-scale Pretrained Language027

Models (PLMs). Most existing commonsense rea-028

soning benchmarks adopt natural language under-029

standing formats due to easy evaluation (e.g., accu-030

racy), including multiple-choice question answer-031

ing (Talmor et al., 2019; Sap et al., 2019; Huang032

et al., 2019; Lin et al., 2021), natural language in-033

ference (Bhagavatula et al., 2020), and detecting034

true/false statements (Onoe et al., 2021; Singh et al.,035

2021). However, datasets measuring commonsense036

knowledge in natural language generation are still037

relatively scarce. We aim to fill this research gap038

since advancing commonsense reasoning skills of039

text generation models benefits many downstream040

applications such as document summarization (Sha,041

2020), story writing (Yao et al., 2019) and dialogue 042

response generation (Mou et al., 2016). 043

COMMONGEN (Lin et al., 2020), a generative 044

commonsense reasoning challenge, has attracted 045

wide attention recently. Given a set of keywords 046

(e.g., {dog, frisbee, catch, throw}), the task 047

requires models to compose a plausible sentence 048

describing everyday scenario using all the provided 049

keywords (e.g., “The dog catches the frisbee when 050

the boy throws it.”). While COMMONGEN focuses 051

on social and physical commonsense in everyday 052

life, it is unclear how well current commonsense 053

generation models reason with factual knowledge 054

about specific entities, which is referred to as entity 055

commonsense (Onoe et al., 2021). In this work, we 056

mainly consider geographical and temporal entities, 057

as they provide extra-linguistic contexts (Zhang 058

and Choi, 2021) for commonsense reasoning and 059

appear in a significant proportion of existing com- 060

monsense benchmarks (Section 4.2). Although 061

Zhang and Choi (2021) have studied the effect of 062

geographical and temporal contexts on Question 063

Answering (QA), to the best of our knowledge, 064

we are the first to incorporate these situations into 065

generative commonsense reasoning. 066

Furthermore, we argue that geographical and 067

temporal contexts are important for commonsense 068

reasoning. On the one hand, basic knowledge about 069

geography and time is part of human common- 070

sense (Allen, 1983; Bhatt and Wallgrün, 2014), 071

such as “Earth rotates on its axis once in 24 072

hours.” On the other hand, certain types of com- 073

monsense knowledge are correlated with specific 074

situations (Yin et al., 2021). For example, “July 075

is summer” is true for people living in the north- 076

ern hemisphere, while those living in the southern 077

hemisphere would agree that “July is winter”. 078

Our proposed task SITUATEDGEN (Situated 079

Generative Commonsense Reasoning) requires the 080

machines to generate a pair of contrastive sentences 081

(formally speaking, antithesis) with commonsense 082
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plausibility, given a group of keywords includ-083

ing geographical or temporal entities. For exam-084

ple, when provided with [July, United States,085

winter, Australia, summer, July], a reason-086

able output could be “July is summer in the United087

States. July is winter in Australia.”, while a slightly088

different version “July is summer in Australia. July089

is winter in the United States.” does not adhere to090

commonsense.091

There are two key challenges for machines to092

solve the SITUATEDGEN task. The first challenge093

is situated semantic matching. In order to generate094

a pair of contrastive sentences, machines need to095

split the keywords into two groups (either explic-096

itly or implicitly) based on geographical/temporal097

relevance and perform relational reasoning (Nickel098

et al., 2016) within/between the keyword groups.099

Second, models should master compositional gen-100

eralization (Keysers et al., 2020), reasoning over101

new combinations of keywords during the infer-102

ence stage instead of memorizing existing key-103

words matching results.104

To study the challenging SITUATEDGEN task,105

we construct a corresponding large-scale English106

dataset containing 9,060 pairs of situated common-107

sense statements. We design an automatic pipeline108

to collect data at scale with quality assurance and109

minimal human annotation efforts. Concretely, we110

derive commonsense statements with geographi-111

cal or temporal contexts from existing common-112

sense benchmarks and mine contrastive sentence113

pairs based on entity-masked sentence similarity.114

We further manually filter out invalid examples115

in the test set to ensure the evaluation soundness.116

To assess the difficulty of our dataset, we conduct117

baseline experiments on pretrained text generation118

models with automatic evaluation metrics. Results119

show these models lag far behind human perfor-120

mance, indicating that current models struggle to121

generate sentences adhering to commonsense un-122

der the SITUATEDGEN setting. We believe that123

SITUATEDGEN could serve as a complement to124

COMMONGEN and enrich the resource for evaluat-125

ing constrained commonsense text generation in a126

more realistic setting.127

The main contributions of this work are three-128

fold:129

• Task. We incorporate geographical and tem-130

poral contexts into generative commonsense131

reasoning and propose a novel task SITUAT-132

EDGEN.133

• Resource. We construct a large-scale dataset 134

in a non-trivial way to facilitate the studies of 135

situated generative commonsense reasoning. 136

The dataset will be released and contribute to 137

the commonsense reasoning community. 138

• Evaluation. We benchmark the performance 139

of state-of-the-art pretrained text generation 140

models on our dataset and demonstrate the 141

difficulty of the task with a significant gap 142

between machine and human performance. 143

2 Related Work 144

Constrained Commonsense Text Generation. 145

Constrained Commonsense Text Generation (Bhar- 146

gava and Ng, 2022) requires PLMs to generate com- 147

monsense text subject to a set of constraints. Com- 148

monsense generation models are currently evalu- 149

ated by three tasks. COMMONSENSE EXPLANA- 150

TION aims to generate an explanation for why a 151

model selects a candidate answer to a given ques- 152

tion. α NLG (Bhagavatula et al., 2020) is another 153

commonsense generation task. The artificial in- 154

telligence models are provided with two obser- 155

vations in chronological order and need to gen- 156

erate a plausible hypothesis/explanation describing 157

what happened between the observations. Obvi- 158

ously, SITUATEDGEN is different from these two 159

tasks. In COMMONGEN (Lin et al., 2020), models 160

should compose a plausible sentence describing 161

everyday scenario using all the provided concepts. 162

This task has attracted much attention recently, and 163

researchers advance machine performance on the 164

dataset with contrastive learning (Li et al., 2021), 165

prototype editing (Liu et al., 2021b), scene knowl- 166

edge graph (Wang et al., 2021), etc. Our proposed 167

task differs to COMMONGEN in the focus on com- 168

posing a pair of contrastive sentences instead of a 169

single sentence and incorporating extra-linguistic 170

contexts. 171

NLP Benchmarks with Geographical and Tem- 172

poral Contexts. There are many emerging bench- 173

marks in NLP that incorporate extra-linguistic con- 174

texts such as geographical and temporal contexts. 175

TEMPLAMA (Dhingra et al., 2021) and GEOM- 176

LAMA (Yin et al., 2022) probe language models 177

with masked text prompts to query geographical 178

and temporal knowledge. In question answering, 179

MCTACO (Zhou et al., 2019), TORQUE (Ning et al., 180

2020) and TIMEQA (Chen et al., 2021) contains 181

challenging questions involving temporal common- 182

sense reasoning over duration, frequency, temporal 183
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order, and other various aspects of events. SITU-184

ATEDQA (Zhang and Choi, 2021) is made up of185

open-domain questions whose answers vary across186

different geographical and temporal contexts. TI-187

MEDIAL (Qin et al., 2021) studies temporal rea-188

soning in dialogues with a multiple-choice cloze189

task. In vision-and-language tasks, GD-VCR (Yin190

et al., 2021) and MaRVL (Liu et al., 2021a) aim191

to collect commonsense questions and statements192

that are visually grounded and geographically di-193

verse. Our dataset SITUATEDGEN also considers194

such geographical and temporal contexts/reasoning195

in language. However, our work is different from196

the previous ones in that we choose the task of gen-197

erative commonsense reasoning, pioneered by Lin198

et al. (2020), as it focuses on the commonsense199

reasoning capabilities of NLG models rather than200

NLU. We note that benchmarks targeting at ma-201

chines commonsense in NLG are far less than those202

for NLU and thus require more empirical attention.203

3 Task Definitions and Challenges204

We use antithesis generation for evaluating genera-205

tive commonsense reasoning under extra-linguistic206

contexts. In this section, we first introduce the defi-207

nition of antithesis as a literary device, followed by208

a mathematical formulation of situated generative209

commonsense reasoning. We then analyze the two210

key challenges of our proposed task.211

3.1 Definitions212

Antithesis. Antithesis refers to a figure of speech213

that expresses an opposition of ideas with a par-214

allel grammatical structure of words, clauses, or215

sentences (Lloyd, 1911; Bridgwater, 1963). An216

example of antithesis could be Neil Armstrong’s217

famous quote “That’s one small step for a man, one218

giant leap for mankind”. In this work, we adopt219

the definition of sentence-level antithesis, which220

means two simple sentences with similar syntac-221

tic structure creating a contradiction in semantics.222

We emphasize on the commonsense plausibility223

rather than the rhetoric effect of antithesis within224

the scope of this paper.225

Extra-Linguistic Contexts. Following Zhang226

and Choi (2021), we focus on two context types:227

geographical (GEO) and temporal (TEMP). GEO228

defines each context value as a geopolitical entity229

(“GPE”). TEMP defines each context value as times-230

tamp (“DATE”, “TIME”, “EVENT”).231

Contextual Dependence. We define that a con- 232

trastive sentence pair is context-dependent if swap- 233

ping any of the GEO or TEMP entities between 234

the two sentences could lead to contradiction with 235

commonsense yet grammatical correctness. For 236

example, for the sentence pair “July is summer in 237

China. July is winter in Australia.”, if the two 238

GEO entities “China" and “Australia" are swapped, 239

the resulting sentences do not adhere to common- 240

sense anymore: “July is summer in Australia. July 241

is winter in China.” This indicates that they are 242

context-dependent. 243

Contextual dependence is crucial for a proper 244

evaluation of the generation results. Because sen- 245

tence pairs that do not satisfy context dependence 246

may have multiple valid answers (swapping the en- 247

tity words leads to an extra correct answer), the met- 248

rics introduced in Section 6 cannot make a sound 249

evaluation with only a single reference. 250

Situated Generative Commonsense Reasoning. 251

We modify the mathematical formulation of the 252

task COMMONGEN to define SITUATEDGEN. The 253

input of the task is a multiset1 consisting of k key- 254

words x = [c1, c2, ..., ck] ∈ X , where each key- 255

word ci ∈ C is a noun or entity, a single word or 256

phrase. We denote X as all possible combinations 257

of keywords and C as the vocabulary of keywords. 258

Keywords in x should contain at least two GEO or 259

TEMP entities and two other keywords2. 260

The output of the task is an unordered pair of 261

coherent and plausible sentences y = {s1, s2} ∈ Y 262

that satisfies the following conditions: 1) the sen- 263

tence pair includes all keywords in x; 2) each 264

sentence has at least one GEO or TEMP key- 265

word; 3) each sentence is geographical-temporal- 266

semantically correct; 4) s1 and s2 form a pair of 267

contrastive sentences, or antithesis; 5) s1 and s2 268

are context-dependent. The goal of the task is to 269

learn a function f : X → Y that maps a group of 270

pf keywords x to a pair of sentences y. 271

3.2 Challenges 272

Situated Semantic Matching. As the goal of our 273

task is to generate a pair of sentences instead of a 274

single sentence, machines need to explicitly or im- 275

plicitly classify the keywords into two subgroups 276

1Multiset is a set that allows multiple instances for each of
its elements.

2We do not explicitly provide the types of keywords in our
dataset. The models are expected to infer which keyword is
GEO or TEMP if needed.

3



Q: How many times does Earth 
rotate on its axis in one day? A: once

Earth rotates on its 
axis once in one day.

Earth rotates on its axis 
once in one day(DATE).

QA-to-statement

Contexts Identification

Q: How many times does the Moon rotate 
on its axis during a lunar month? A: one

The Moon rotates on its axis 
one time during a lunar month.

The Moon rotates on its axis one time 
during a lunar month(DATE).

QA-to-statement

Contexts Identification

Earth rotates on its axis once in one day.

The Moon rotates on its axis one time during a lunar month.

axis, Moon, time, one 
day, Earth, axis, a 

lunar month

Contrastive Sentences Mining

Figure 1: An overview of data collection pipeline. Inside the dotted box is a final example in the dataset.

based on their geographical and temporal seman-277

tic relevance, so as to generate one commonsense278

sentence with each subgroup. For example, given279

[July, China, winter, Australia, summer,280

July], the resulting keyword subgroups should be281

{July, China, summer} and {July, winter,282

Australia}.283

During the process of keyword grouping and284

matching, machines determine which keywords are285

more relevant to each other with relational reason-286

ing (Nickel et al., 2016) over factual knowledge287

about these nouns and entities, a.k.a. entity knowl-288

edge (Zhang and Choi, 2021), such as geographical289

location, temporal order, physical rules, social cus-290

toms, etc. The matching process is important since291

wrong grouping results will lead to generated sen-292

tences without commonsense plausibility3.293

In order to prevent the model from exploiting294

“shortcuts” (Gururangan et al., 2018; Tu et al., 2020)295

to group keywords based on syntactic forms instead296

of semantic meanings, we ask the model to gen-297

erate contrastive sentences that are syntactically298

similar, rather than two coherent (yet possibly irrel-299

evant) sentences.300

Compositional Generalization. In machine301

learning practice, compositional generaliza-302

tion (Keysers et al., 2020) means that models can303

3We note that under certain circumstances, wrong grouping
results might produce correct answer via negative sentences.
For example, the machine could generate “July is not summer
in Australia” with {July, Australia, summer}. However,
we observe that these are rare scenarios in our datasets and
also uncommon expressions in everyday life, so we do not
consider their confusing effects in our study.

generalize to test examples of novel combinations 304

after being exposed to the necessary components 305

during training. Specifically, in the SITUATEDGEN 306

task, the components refer to keywords. We 307

ensure that there is no overlap among the keyword 308

combinations in the training, validation and test 309

set during the dataset collection. While humans 310

can easily compose sentences with unfamiliar com- 311

binations of keywords, it is very challenging for 312

the machines to make analogy and inference with 313

unseen keyword combinations, instead of simply 314

memorizing existing keyword combinations. 315

4 Dataset Collection 316

To study the SITUATEDGEN challenge, we con- 317

struct a large-scale English dataset. We design a 318

pipeline to collect high-quality data at scale with 319

minimal manual annotation efforts. Figure 1 il- 320

lustrates the overall pipeline for dataset collection, 321

which consists of three steps: 322

1. QA-to-statement. Converting question- 323

answer pairs of existing commonsense ques- 324

tion answering benchmarks into correspond- 325

ing statements. 326

2. Contexts Identification. Identifying all en- 327

tities in a statement with an NER tagger and 328

removing those statements without GEO and 329

TEMP entities. 330

3. Contrastive Sentences Mining. Automati- 331

cally mining contrastive sentence pairs (an- 332

tithesis) from the remaining commonsense 333

statements based on entity-masked sentence 334

similarity. 335
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Dataset # Sent # GEO # TEMP
# GEO

& TEMP
# Valid

Sent

CREAK 5,779 868 552 153 1,573
StrategyQA 4,976 501 366 86 953

CommonsenseQA 10,962 487 215 12 714
ARC 7,787 165 426 52 643

OpenbookQA 6,493 31 119 5 155

Total 35,997 2,052 1,678 308 4,038

Table 1: Statistics of contexts identification results.
“Sent” means the commonsense statements collected
in Section 4.1. “GEO”/“TEMP” refer to statements with
only geographical/temporal entities. “GEO & TEMP”
refers to statements with both geographical and tem-
poral entities. “Valid Sent” means the commonsense
statements with GEO or TEMP contexts.

4.1 QA-to-Statement336

Our dataset is composed of commonsense state-337

ments, which are simple sentences describing com-338

monsense knowledge, e.g., “You would find many339

canals in Venice.” In recent years, numerous com-340

monsense reasoning benchmarks have been pro-341

posed and they form a potentially available com-342

monsense knowledge base with high quality and343

diverse content. Inspired by recent benchmarks344

that are sourced from existing datasets (Zhang and345

Choi, 2021; Park et al., 2022), we aim to extract346

commonsense statements from these commonsense347

benchmarks4.348

We conduct a holistic study of commonsense349

reasoning datasets to date and select five differ-350

ent data sources after considering their size, anno-351

tation quality and reasoning difficulty. They are352

CREAK (Onoe et al., 2021), StrategyQA (Geva353

et al., 2021), CommonsenseQA (Talmor et al.,354

2019), ARC (Clark et al., 2018) and Open-355

bookQA (Mihaylov et al., 2018), respectively. We356

briefly introduce the nature of each dataset in Ap-357

pendix A.1. Since the raw data come in differ-358

ent formats such as multiple-choice questions and359

Yes/No questions, we apply a specific preprocess-360

ing method for each dataset to transform them361

(i.e., question-answer pairs) into statements. The362

transformation details are also included in Ap-363

pendix A.1. In general, we collected 35,997 com-364

monsense statements from the five source datasets365

(statistics in Table 1).366

4We assume that the knowledge in these commonsense
benchmarks is actually commonsense, though they might not
be shared locally in certain groups of people due to a lack of
geographical diversity.

Earth rotates on its 
axis once in one day.

[UNK] rotates on its 
[UNK] once in [UNK].

Keyword Masking

The Moon rotates on 
its axis one time during 

a lunar month.

The [UNK] rotates on its [UNK] 
one [UNK] during [UNK].

Keyword Masking

Cosine 
Similarity

Sentence Embedding Sentence Embedding

0.92

Figure 2: An illustration of the contrastive sentence
mining algorithm.

4.2 Contexts Identification 367

We now filter out commonsense statements with- 368

out geographical or temporal contexts. Follow- 369

ing (Zhang and Choi, 2021), we identify sentences 370

with extra-linguistic contexts by GEO and TEMP en- 371

tities. We use FLERT5 (Schweter and Akbik, 2020), 372

a named entity recognition (NER) model, to ex- 373

tract all entities from a sentence and remove those 374

statements without any GEO (“GPE”) or TEMP 375

(“DATE”, “TIME”, “EVENT”) entities. 376

Table 1 shows that of all the commonsense state- 377

ments extracted from the five source datasets, 6.6% 378

sentences have GEO contexts and 5.5% have TEMP 379

contexts, which we count as a significant propor- 380

tion. Finally, we obtain 4,038 (11.2%) common- 381

sense statements with extra-linguistic contexts. 382

4.3 Contrastive Sentences Mining 383

We aim to automatically mine contrastive sentence 384

pairs from the commonsense statement corpus. An- 385

tithesis mining has not been studied in the existing 386

literature, so we propose a pilot algorithm. We 387

observe that after removing keywords from con- 388

trastive sentences, the remaining parts are very sim- 389

ilar, since antithesis sentences have parallel syntac- 390

tic structures (Bridgwater, 1963). Based on this 391

observation, we design the antithesis mining al- 392

gorithm illustrated in Figure 2 consisting of three 393

steps: 394

1. Keyword Masking. We extract all entities 395

and other nouns as keywords in the sentence 396

and replace each keyword with a [UNK] to- 397

ken, telling the pretrained language models to 398

neglect the meaning of these keywords. 399

5https://huggingface.co/flair/
ner-english-ontonotes-large
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2. Masked Sentence Similarity Matching. We400

obtain the embedding of the keyword-masked401

sentence from a pretrained language model402

and calculate the cosine similarity between all403

possible sentence pairs.404

3. Rule-based Filtering. We filter out invalid405

sentence pairs base on a fixed threshold of406

masked sentence similarity, number of key-407

words and entity types.408

We introduce the implementation of our antithe-409

sis mining algorithm in Appendix A.2. In this way,410

we efficiently extracted 9,378 contrastive sentence411

pairs from all possible pairwise combinations of412

the previous 4,038 commonsense statements with413

extra-linguistic contexts6 (Section 4.2). For each414

contrastive sentence pair, we merge the keywords415

from each statement and randomly shuffle them416

to get the input data. The output is the concate-417

nation of two statements. When splitting the data418

into training, validation and test set, we explicitly419

require that one statement cannot appear simulta-420

neously in any two sets. This ensures the com-421

positional generalization challenge (Section 3.2)422

since there is no overlap among the sentence-level423

keyword combinations in the training, validation424

and test data. Statements with similar syntactic425

structures will also be divided into the same set to426

reduce overlap of syntactic templates across differ-427

ent sets7. To ensure the evaluation soundness, we428

manually filter out invalid examples in the test set429

that are not fluent antitheses or context dependent.430

13.6% of test data are removed and the final dataset431

has 9,060 examples in total.432

5 Dataset Analysis433

5.1 Quality Analysis434

To measure the quality of our automatically col-435

lected data, we randomly select 100 examples (i.e.436

sentence pairs) from the validation set (which is437

not manually filtered) and annotate each example438

for whether it is actually 1) (fluent) antithesis and439

2) context dependent. We find that 87% of the data440

are real antitheses with fluency and 80% of the data441

satisfy both of the two requirements. Considering442

that our dataset is constructed through a fully auto-443

matic pipeline, this quality is pretty satisfying and444

can meet the needs of training and evaluation. As445

6One statement might be paired with multiple statements,
formulating multiple contrastive sentence pairs.

7Please refer to Appendix A.3 for details of our dataset
splitting algorithm.

Statistics Train Dev Test

Size (# Sent Pairs) 5,641 1,407 2,012
# Unique Sents 788 309 449

per Sent Pair 0.14 0.22 0.22
# Unique Keywords 1,847 725 1,075
# Avg. Input Keywords 7.34 6.96 6.91
# Avg. Output Tokens 20.89 24.08 20.73

Table 2: The basic statistics of the SITUATEDGEN
dataset. “Sent” means commonsense statement.
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Figure 3: Distribution of numbers of input keywords.

we have discussed in Section 3.1, test examples 446

not satisfying contextual dependence can fool the 447

evaluation metrics, since there are multiple valid 448

references despite the single one provided in the 449

test set. Thanks to the additional manual filtering, 450

the test set is now qualified for evaluation. As 451

for the unfiltered training set, even if a contrastive 452

sentence pair is not context-dependent, it is still 453

valuable training data, satisfying the other require- 454

ments for the target side (Section 3.1). A reduced 455

size of training data after potential manual filtering 456

is also unfavourable to the learning of models. As 457

a result, we retain all the examples in the training 458

set. 459

Below, we analyze the bad cases in detail, in- 460

cluding non-contrastive and non-context-dependent 461

sentence pairs. The main reason for producing non- 462

contrastive sentence pair is that the remaining verbs 463

after keyword masking may have lexical ambiguity, 464

e.g. “play” in “Slaves play a role in the history 465

of the united states.” and “A team sport played 466

mostly in Canada is Lacrosse.” Although the pre- 467

trained language models could infer the meaning 468

of a word according to its context (Devlin et al., 469

2019), the contexts are lost after keyword masking. 470

As a result, two sentences with different syntac- 471

tic structures are matched together, thus violating 472

the antithesis rule. This poses a limitation of our 473

antithesis mining algorithm. 474
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In addition, 7% of the sentence pairs are antithe-475

ses yet not context-dependent. Take the following476

sentence pair as an example: “You could find mil-477

lions of brownstone in New York City.8 One can478

find a Holiday Inn inside the United States.”. Af-479

ter swapping the GEO entity “New York City” and480

“United States” in these two sentences, they still481

conform to commonsense. The reason for this phe-482

nomenon is that New York City is part of the United483

States, and thus the “brownstone” related to New484

York will also be related to the United States.485

5.2 Dataset Statistics486

Table 2 includes the basic statistics of the SITUAT-487

EDGEN dataset. If we use the ratio of unique state-488

ment count to sentence pair count (“# Unique Sents489

per Sent Pair”) to represent the content/keyword490

diversity of the dataset, the validation set and the491

test set are relatively high (0.22), compared to the492

training set (0.14). This also shows that the test493

set is more challenging than the training set, which494

further increases the difficulty of the dataset.495

Distribution of Numbers of Input Keywords.496

Figure 3 shows the distribution of numbers of input497

keywords for all examples in the dataset. More498

input keywords are more difficult for the models499

to handle. The average number of input keywords500

is 7.19 and the distribution is fairly symmetrical501

(skewness=-0.24), suggesting that the SITUATED-502

GEN has a reasonable difficulty.503

Distribution of Context Types. We define three504

context types of pairs of contrastive sentences: a505

GEO pair of sentences contains only GEO entities; a506

TEMP pair of sentences contains only TEMP entities;507

If both sentences contain GEO and TEMP entities,508

the pair of sentences belongs to the type of GEO &509

TEMP . We find that 78% of all sentence pairs are510

GEO , 21% are TEMP and the rest 1% are GEO &511

TEMP .512

6 Methods513

Baseline Models. We benchmark the perfor-514

mance of two prominent pretrained language gen-515

eration models: BART (Lewis et al., 2020) and516

T5 (Raffel et al., 2020). We fine-tuned all models517

on our training data with the seq2seq format and518

expect that the models can learn to group keywords519

8As background knowledge, there are many historical
buildings in New York City whose facades are made of
brown sandstone, see https://bungalow.com/articles/
what-exactly-is-a-brownstone.

Model MATCH BLEU-4 ROUGE-2 METEOR CIDEr SPICE

BART-base 61.2 22.7 29.6 29.9 18.2 53.9
BART-large 62.6 23.0 30.8 29.1 17.9 55.3
T5-base 56.5 22.1 28.8 30.1 17.4 54.1
T5-large 67.7 26.3 33.1 31.9 20.9 57.9

Human 92.1 41.5 48.2 40.5 40.1 72.0

Table 3: Experimental results on the test set of SITU-
ATEDGEN . The best model performance is in bold.
Human performance is tested on a subset of 100 random
samples.

Context MATCH BLEU-4 ROUGE-2 METEOR CIDEr SPICE

GEO 68.2 25.5 31.9 31.7 20.0 57.3
TEMP 64.5 31.1 42.2 33.8 24.0 62.5

ALL 67.7 26.3 33.1 31.9 20.9 57.9

Table 4: The performance of T5-large across different
context types on the test set of SITUATEDGEN . The
best type performance is in bold.

implicitly. Specifically, for the input of BART, we 520

concatenate all shuffled keywords with a comma 521

as the separation token “c1, c2, ..., ck”. Regarding 522

the input format of T5, we prepend the keyword 523

sequence with a simple task description to align 524

with its pretraining objective: “generate two sen- 525

tences with: c1, c2, ..., ck”. The outputs of all mod- 526

els are simple concatenation of the two target sen- 527

tences s1 and s2. Since the output is an unordered 528

pair, we feed two examples “x → s1 s2” and 529

“x → s2 s1” to the model for each original training 530

example. We report the model hyper-parameters in 531

Appendix B.1. 532

Evaluation Metrics. Lin et al. (2020) have well 533

established the automatic evaluation protocol of 534

the generative commonsense reasoning task. They 535

demonstrated a strong correlation between the auto- 536

matic metrics and human evaluation results. Since 537

SITUATEDGEN adopts a similar format of keyword- 538

to-text generation to COMMONGEN , we follow the 539

evaluation protocol of COMMONGEN and do not 540

include an extra manual evaluation in our study. 541

Concretely, we employ several widely-used au- 542

tomatic NLG metrics based on n-gram overlap — 543

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), 544

METEOR (Banerjee and Lavie, 2005) — and image 545

caption metrics that focus on the consistency of 546

keywords and their relationships — CIDEr (Vedan- 547

tam et al., 2015) and SPICE (Anderson et al., 2016). 548

Additionally, we report the accuracy of keyword 549
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Input Keywords 24 hours, axis, one month, Earth, axis, Moon
Reference It takes for the Moon to rotate on its axis one month. Earth rotating on its axis takes 24 hours.
BART-base The axis of the Moon is 24 hours. One month is one month.
BART-large There are 24 hours in one month.
T5-base Earth has a 24 hour axis. One month is one month.
T5-large One month is one month on Earth. The Moon is 24 hours away from the axis of the Earth.

Input Keywords Paul, Emperor, China, Qin, Russia, dynasty
Reference The Qin dynasty reigned in China. Paul I of Russia reigned as the Emperor of Russia.
BART-base The Emperor of China worked in China. Paul served as the first emperor of the dynasty Qin.
BART-large Emperor of the Qin dynasty. Paul existed in Russia.
T5-base China is a dynasty of China. Paul Qin is the Emperor of China.
T5-large Paul was the Emperor of Russia. The Qin dynasty ruled China.

Table 5: Case studies of machine generations. Keywords appearing in the generation results are underlined.

grouping results9 as MATCH, which serves as a good550

indicator of the commonsense plausibility of the551

generated texts. In particular, if a keyword does552

not appear in the output, we treat it as unmatched.553

In this way, MATCH also reflects the coverage of554

keywords in the output. See Appendix B.2 for the555

implementation details of these evaluation metrics.556

7 Results557

In Table 3, we report the experimental results of558

different baseline models on the test set of SITU-559

ATEDGEN. We approximate human performance560

with 100 randomly sampled examples from the test561

set which are annotated by the authors of this pa-562

per. We observe that larger models tend to have563

better performance than smaller ones. The biggest564

tested model, T5-large, surpasses other models in565

every metric, but it still lags far behind human per-566

formance. For example, there is a difference of567

about 24 points in MATCH, indicating the lack of568

commonsense in machine generations. The large569

gap of keyword-based metrics (CIDEr and SPICE)570

also suggests that models find it difficult to in-571

fer the relationship between keywords. Further-572

more, machine-generated outputs are considered573

less fluent by n-gram-based metrics (BLEU, ROUGE574

and METEOR). The significant gap between models575

and humans demonstrates the difficulty of SITUAT-576

EDGEN and leaves much room for improvement in577

future research.578

Performance across Different Context Types.579

Table 4 reports the performance of the T5-large580

model across different context types. The re-581

sults show that the matching accuracy of TEMP582

type is lower than GEO, indicating that temporal-583

dependent test examples are more challenging.584

9Keywords appearing in the same lemmatized output sen-
tence are considered to be grouped together by models.

However, the amount of TEMP data is less than 585

GEO in the training set, which may also give rise to 586

the performance difference. Interestingly, the gen- 587

eration fluency of GEO type is worse than TEMP, 588

suggesting that it is more difficult to use GEO enti- 589

ties to compose sentences smoothly. 590

Case Study. Table 5 shows two groups of gen- 591

eration examples by different models. The first 592

example belongs to TEMP type (“24 hours” and 593

“one month”) and the second one is GEO (“Rus- 594

sia” and “China”). We find that models are prone 595

to omit keywords in their outputs. For example, 596

BART-large only covers 2 out of 6 keywords in 597

the first example. Besides, most of the observed 598

generated outputs are not commonsensical due to 599

wrong keyword grouping results, e.g., “There are 600

24 hours in one month” and “Paul served as the 601

first emperor of the dynasty Qin”. Surprisingly, the 602

generation result of T5-large in the second example 603

is quite close to the gold reference. 604

8 Conclusion 605

In this paper, we introduce the challenging task 606

SITUATEDGEN to incorporate geographical and 607

temporal contexts into generative commonsense 608

reasoning. We build a corresponding testbed to 609

evaluate the situated reasoning capabilities of state- 610

of-the-art text generation models. The benchmark 611

performance shows that models struggle to gener- 612

ate commonsensical sentences and lag far behind 613

human on our proposed task. Altogether, our data 614

will serve as a challenging benchmark for measur- 615

ing commonsense knowledge in language gener- 616

ation models and support future progress of con- 617

strained commonsense text generation in a more 618

realistic situation. 619
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Ethics Statement620

Our data is built upon publicly available datasets621

and we will follow their licenses when releasing622

our data. There is no explicit detail that leaks an623

annotator’s personal information. The dataset has624

very low risks of containing sentences with toxi-625

city and offensiveness. Since our data is sourced626

from existing datasets, we may inherit geograph-627

ical biases (Faisal et al., 2022) that result in an628

uneven distribution of commonsense knowledge629

about western and non-western regions. The com-630

monsense statements may not sound familiar to631

people who live in locations that are poorly repre-632

sented in the source datasets. Therefore, models de-633

veloped on our dataset may preserve biases learned634

from the annotators of the source datasets. We note635

that pretrained language models may also inherit636

the bias in the massive pretraining data. It is impor-637

tant that interested parties carefully address those638

biases before deploying the model to real-world639

settings.640
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A Additional Details of Dataset Collection 989

A.1 Commonsense Statement Collection 990

We briefly introduce the nature of each source 991

datasets in Section 4.1. 992

• CREAK (Onoe et al., 2021) is a common- 993

sense fact verification dataset featuring entity 994

commonsense, which includes 13,418 true or 995

false statements about entity knowledge writ- 996

ten by crowdworkers. 997

• StrategyQA (Geva et al., 2021) is a common- 998

sense question answering dataset that requires 999

multi-hop implicit reasoning. It consists of 1000

5,111 questions whose answers are either Yes 1001

or No. Machines need to decompose a ques- 1002

tion into multiple atomic questions to arrive 1003

at an answer. 1004

• CommonsenseQA (Talmor et al., 2019) is 1005

a commonsense question answering dataset 1006

of 12,247 five-way multiple-choice questions 1007

with a focus on knowledge in everyday life. 1008

• ARC (Clark et al., 2018) is a commonsense 1009

question answering dataset. It has 7,787 four- 1010

way multiple-choice natural science ques- 1011

tions collected from grade-school standard- 1012

ized tests. 1013

• OpenbookQA (Mihaylov et al., 2018) is a 1014

commonsense question answering dataset that 1015

simulates openbook test. The data set is made 1016

up of 5,957 multiple-choice questions, ac- 1017

companied by 6,493 commonsense statements 1018

about science facts. Since there is a significant 1019

overlap between the knowledge in questions 1020

and statements, we only use the statements 1021

data for simplicity. 1022

We now detail the specific preprocessing method 1023

for each source dataset to convert them (i.e., 1024

question-answer pairs) into statements. 1025

• If the raw data comes in the statement format 1026

(CREAK and OpenbookQA), we obtain the 1027

true statements (part of CREAK and all of 1028

OpenbookQA) without extra processing. 1029

• If the raw data comes in Yes/No ques- 1030

tion format (StrategyQA), we leverage 1031

a POS-rule-based open-sourced system 1032

question_to_statement10 to transform a 1033

pair of question and Yes/No answer into a 1034

statement. 1035

10https://github.com/SunnyWay/question_to_
statement
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Dataset Size Format Raw Data → Statement Conversion Example

CREAK (Onoe et al.,
2021)

13,418 True/False state-
ment

In the calendar year, May comes after April
and before June. (True/False) → In the cal-
endar year, May comes after April and be-
fore June.

StrategyQA (Geva
et al., 2021)

5,111 Yes/No Question Are more watermelons grown in Texas than
in Antarctica? (Yes/No) → More watermel-
ons are grown in Texas than in Antarctica.

CommonsenseQA (Tal-
mor et al., 2019)

12,247 Multiple-choice
Question

Where in Southern Europe would you find
many canals? (A) Michigan (B) New York
(C) Amsterdam (D) Venice (E) Sydney →
You would find many cannals in Venice,
Southern Europe.

ARC (Clark et al.,
2018)

7,787 Multiple-choice
Question

How long does it take for Earth to ro-
tate on its axis seven times? (A) one day
(B) one week (C) one month (D) one year
→ It takes one week for Earth to rotate on its
axis seven times.

OpenbookQA (Mi-
haylov et al., 2018)

6,493 Commonsense
Statement

You wear shorts in the summer. → You wear
shorts in the summer.

Table 6: Source dataset examples. Correct answers are in bold and underlined.

• If the raw data comes in multiple-choice for-1036

mat (CommonsenseQA and ARC), we utilize1037

a neural model to convert a pair of question1038

and correct choice (q, a) into a statement in1039

a sequence-to-sequence fashion. Concretely,1040

we use the QA-to-statement model checkpoint1041

released by Pan et al. (2021), which is a1042

BART (Lewis et al., 2020) model finetuned1043

on QA2D (Demszky et al., 2018), a dataset of1044

human-annotated statements for QA pairs.1045

We summarize the basic information of these1046

datasets and provide an example of statement con-1047

version for each dataset in Table 6.1048

A.2 Antithesis Mining1049

Keyword Masking. We use entities and other1050

nouns as the keywords of sentences, because as1051

a pilot study, we only consider the relationships1052

between spatio-temporal contexts and nouns and1053

ignore the influence of other part of speech cate-1054

gories such as verbs, adjectives and prepositions.1055

We use the same NER tagger in Section 4.2 to ex-1056

tract entities. We leverage spaCy11 to extract all the1057

nouns (including proper nouns) from a sentence.1058

We merge the entities and nouns as keywords after1059

removing duplicates. In particular, if a noun and an1060

11https://spacy.io/models/en#en_core_web_sm

entity partly overlaps (e.g., “month” and “a lunar 1061

month”), we retain the entity when deduplicating. 1062

Masked Sentence Similarity Matching. 1063

We use the pretrained language model 1064

all-MiniLM-L6-v212 released by Sentence- 1065

Transformers (Reimers and Gurevych, 2019) 1066

to obtain high-quality embeddings of keyword- 1067

masked sentences. We calculate the cosine 1068

similarity to pair highly similar masked sentences. 1069

Computing the similarity of all possible sentence 1070

pairs requires O(n2) time complexity. To acceler- 1071

ate this process, we use the paraphrase_mining 1072

API of SentenceTransformers (Reimers and 1073

Gurevych, 2019). 1074

Rule-based Filtering. We devise the following 1075

rules to filter invalid sentence pairs based on itera- 1076

tive observation of the data: 1077

• The masked sentence similarity exceeds a cer- 1078

tain threshold13, which indicates parallel sen- 1079

tence structure of antithesis. 1080

• The number of masked keywords ([UNK]) of 1081

each single sentence should not be more than 1082

5 and less than 2, which controls for a reason- 1083

12https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

13We set the threshold as 0.8 via manual inspection.

13
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able difficulty of the keyword-to-text genera-1084

tion task.1085

• Any entity in one sentence does not appear1086

in the other sentence within a pair (includ-1087

ing the deformation of entity words, such as1088

singular/plural form, upper/lower case, etc.).1089

This is to avoid that both sentences express1090

the information of the same entity, while the1091

contrastive sentences should describe two op-1092

posite things.1093

• Both of the two sentences contain either1094

GEO entities or TEMP entities (GEO+GEO or1095

TEMP+TEMP), which avoids sentences com-1096

paring GEO context to a non-parallel TEMP1097

context (GEO+TEMP).1098

A.3 Dataset Splitting1099

We treat dataset splitting as a community struc-1100

ture (Blondel et al., 2008) discovery problem. Com-1101

munity structure refers to a group of tightly con-1102

nected nodes that have a high density of internal1103

connections and a low density of external connec-1104

tions. We regard a single sentence as a node in the1105

graph. If two single sentences can be matched into1106

a pair of contrastive sentences, an undirected edge1107

will connect the corresponding nodes of these two1108

single sentences. In this way, we obtain an undi-1109

rected graph describing the dataset structure. A1110

subset of a dataset (such as a training set) is equiv-1111

alent to a subgraph containing all sentence pairs1112

(edges) and single sentences (nodes) of that subset.1113

In order to prevent the same sentence from ap-1114

pearing across different sets, we require that the1115

subgraph node sets of the training set, validation1116

set, and test set are disjoint. We use a community1117

structure detection algorithm to meet this require-1118

ment. We use the community as the basic unit of1119

dataset splitting, putting all the edges (sentence1120

pairs) in one community into a certain dataset split.1121

Connecting edges between communities (two ver-1122

tices belong to different community) are removed.1123

We note that sentences with similar syntactic struc-1124

tures tend to be connected to each other in the graph1125

and thus fall into the same community, which en-1126

sures the syntactic variability between train/dev/test1127

splits.1128

We use the Louvain (Blondel et al., 2008) com-1129

munity structure detection algorithm14 and divide1130

our graph into 79 communities. The largest com-1131

munity contains 3,273 edges, accounting for about1132

14https://github.com/shobrook/communities

Parameter Value

epoch 10
batch size 32
beam size 4

max input length 64
max output length 128

learning rate 3e-5
warm-up steps 500

Table 7: Hyper-parameter settings for all baseline mod-
els.

26% of the total data. After removing a total 1133

of 3,311 edges connecting different communities 1134

(about 26% of the total), we obtained 9,378 con- 1135

trastive sentence pairs with geographical or tempo- 1136

ral contexts. We then randomly divide the commu- 1137

nities into training set, validation set or test set. 1138

B Experimental Setup 1139

B.1 Baseline Models 1140

We use HuggingFace (Wolf et al., 2020) implemen- 1141

tations of the BART and T5 models. For decod- 1142

ing method, we adopt the standard beam search 1143

with a beam size of 4 for all baseline models. As 1144

for checkpoint selection, we save checkpoint for 1145

each epoch and select the checkpoint with high- 1146

est ROUGE-2 on the validation set. Other default 1147

hyper-parameters are shown in Table 7. 1148

B.2 Evaluation Metrics 1149

We use the standard implementation of 1150

BLEU, ROUGE, METEOR, CIDEr, SPICE 1151

in pycocoevalcap15. In addition, we design 1152

and implement MATCH to evaluate how well the 1153

machines solve the challenge of situated semantic 1154

matching (Section 3.2). We now define the 1155

keyword matching accuracy MATCH based on 1156

mathematical notations introduced in Section 3.1. 1157

t = (t1, ..., tk), ti ∈ {0, 1} indicates that 1158

each keyword ci appears in which sentence in 1159

the answer pair ytrue = {strue1 , strue2 }. In other 1160

words, if ci should appear in s1, then ti = 0; 1161

if ci should appear in s2, then ti = 1. p = 1162

(p1, ..., pk), pi ∈ {−1, 0, 1} indicates that each 1163

keyword ci appears in which sentence in the out- 1164

put pair ypred = {spred1 , spred2 }. In other words, 1165

if ci actually appear in s1, then pi = 0; if ci 1166

actually appear in s2, then pi = 1; if ci does 1167

15https://github.com/salaniz/pycocoevalcap
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not actually appear in both s1 and s2, then pi =1168

−116. We define the matching accutacy of a sen-1169

tence pair match(ytrue, ypred) as the proportion of1170

correctly matched keywords, which is calculated1171

as 1
k max(

∑k
i=1 1ti=pi ,

∑k
i=1 11−ti=pi) ∈ [0, 1].1172

Here 1 is the indicator function. The formula in-1173

cludes both 1− t and t in a symmetric way because1174

the sentence pair is unordered. For the whole test1175

set, we take the average matching accuracy of all1176

examples as MATCH.1177

We illustrate the computing process of matching1178

accuracy with a simple example. Given [July,1179

China, winter, Australia, summer, July],1180

the answer could be “July is summer in China. July1181

is winter in Australia.” So t = (0, 0, 1, 1, 0, 1). If1182

the generated output is “July is summer in Australia.1183

July is winter in China.”, then p = (0, 1, 1, 0, 0, 1).1184

As a result, the matching accuracy is 4/6 = 0.67.1185

As for the implementation, we utilize NLTK17 to1186

split the output into two sentences. In particular, if1187

there is only one sentence in the output, we append1188

an empty string as the second one; if there are more1189

than two sentences, we only take the former two1190

sentences into consideration. We lemmatize the1191

sentence before determining keyword appearance.1192

16By defining pi = −1, MATCH can also reflect the coverage
of keywords in the output.

17https://www.nltk.org/

15
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