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Abstract

Large-scale deployed learning systems are often evaluated along multiple objec-1

tives or criteria. But, how can we learn or optimize such complex systems, with2

potentially conflicting or even incompatible objectives? How can we improve the3

system when user feedback becomes available, feedback possibly alerting to issues4

not previously optimized for by the system? We present a new theoretical model5

for learning and optimizing such complex systems. Rather than committing to6

a static or pre-defined tradeoff for the multiple objectives, our model is guided7

by the feedback received, which is used to update its internal state. Our model8

supports multiple objectives that can be of very general form and takes into account9

their potential incompatibilities. We consider both a stochastic and an adversarial10

setting. In the stochastic setting, we show that our framework can be naturally cast11

as a Markov Decision Process with stochastic losses, for which we give efficient12

vanishing regret algorithmic solutions. In the adversarial setting, we design effi-13

cient algorithms with competitive ratio guarantees. We also report the results of14

experiments with our stochastic algorithms validating their effectiveness.15

1 Introduction16

Learning algorithms trained on large amounts of data are increasingly adopted in a variety of17

applications and form the engine driving complex large-scale systems such as e-commerce platforms,18

online advertising auctions and recommender systems. Their system designer must take into account19

multiple metrics when optimizing them [Kaminskas and Bridge, 2016, Masthoff, 2011, Lin et al.,20

2019]. As an example, consider the case of a recommendation system for recipes, videos or fashion.21

There is no single metric that defines what a good recommendation engine should do. One needs22

to carefully take into consideration metrics measuring the quality of recommendations provided to23

end-users, their relevance and utility, the long-term growth of the content creators, and the overall24

revenue generated for the hosting platform. Furthermore, it is crucial to consider the risk of bias in25

these systems [Speicher et al., 2018, Xiao et al., 2017, Holstein et al., 2019]. Hence, additional metrics26

may need to be incorporated, such as performance across demographic groups, geographical locations27

or other identity terms. This can easily lead to hundreds of metrics that need to be simultaneously28

optimized for user satisfaction.29

Further complicating the above scenario is the fact that often the multiple metrics considered are30

incompatible and inherently in conflict with each other [Kleinberg et al., 2017, Sener and Koltun,31

2018, Jin, 2006]. For instance, in the context of a recommendation system, there is a tension between32

maximizing revenue via ad placements and maximizing end-user “happiness”. Another tension may33

be between maximizing quality versus diversity of recommendations. In many cases, resolving such34

conflicts may force the designer to make hard choices among notions that seem perfectly reasonable in35

isolation, weighing in current use-patterns, wins and losses. An illuminating example is the analysis36

of the COMPAS tool for predicting recidivism by Angwin et al. [2019]. The authors showed that,37
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among black defendants who do not recidivate, the tool predicted incorrectly at twice the rate than38

it did for white defendants who did not recidivate, i.e., the tool was unfair according to the false39

positive rate metric. The creator of the tool, Northpointe, responded by demonstrating that the tool40

was fair according to other natural measures such as AUC (Area Under the ROC Curve), for which41

each group had similar values. Later work showed that this tension is inherent and that it is often42

impossible to simultaneously satisfy multiple seemingly natural criteria [Kleinberg et al., 2017] (see43

also Feller et al. [2016]).44

The above discussion raises the question of how one should define the optimal trade-off among45

multiple conflicting metrics to optimize for user satisfaction. A natural approach is to define the46

trade-offs in a static manner, either by using domain knowledge and human expertise, or by analyzing47

past historical data. Another line of work studies optimization in the presence of multiple objectives48

by designing algorithms that compete with any linear combination of the objectives [Mohri et al.,49

2019, Cortes et al., 2020] or by designing pareto-optimal solutions [Sener and Koltun, 2018, Shah50

and Ghahramani, 2016]. However, these solutions may be sub-optimal for the richer situation where51

user feedback is available. While algorithms tailored to a specific metric or a combination of metrics52

would be effective at first, experience shows that they become non pertinent over time: once a system53

is deployed and it interacts with its end-users, inefficiencies in the system design emerge, as evident54

via the user feedback, which in turn could lead one to prefer metrics originally not accounted for55

[Liu et al., 2018]. Motivated by the above, in this work, we present a theoretical data-driven model56

for optimizing multiple conflicting metrics by taking into account the user feedback. Our proposed57

framework allows for the design of algorithmic solutions with strong theoretical guarantees.58

In the context of a recommender system, user initiated feedback may be a "dislike", "too spicy", or59

"age inappropriate" [Chen and Pu, 2012], but feedback may also be indirectly observed by e.g. high60

abandonment rates or low click-through rates. Going from complaints to actionable solutions involves61

many steps. First, the complaints are analyzed, typically by human specialists, and attributed to a set62

of predefined criteria, such as low accuracy of classifiers, false positive rates or AUC scores. Each63

complaint could trigger several criteria and a human specialist can monitor the aggregate performance64

on each criterion. Since criteria are often incompatible, based on the analysis of the complaints and65

their affect on the criteria, a decision is made to allocate resources to improve a subset of the criteria66

and this process repeats [Yu et al., 2020]. While human involvement is crucial in the above process67

for both analyzing complaints and trading off metrics, a large portion of the above process could be68

made algorithmic and automated.69

In practice, the problem of multiple conflicting metrics may emerge, even when a single fixed criterion70

is adopted [Klinkman et al., 1998, Buolamwini and Gebru, 2018]. As an example, consider again71

a recommendation system for videos. Let us assume that a system designer has opted for the false72

positive rate and the false negative rate to measure the performance of the system. The overall false73

positive (FP) rate or the false negative (FN) rate is rarely a good indicator of performance, particularly74

from an algorithmic bias point of view. Instead, the system designer would wish to monitor and75

optimize the FP/FN rates across different slices of the data, such as “sports”, “religion”, “LGBTQ76

issues” videos, or videos originating from different geographic locations, or a combination of them.77

This could easily result in hundreds of relevant slices of the data, where each can be viewed as a78

separate metric. As discussed before, these slices will often admit mutual incompatibilities [Kleinberg79

et al., 2017, Feller et al., 2016]. Thus, a user feedback data-driven method is needed to make the80

optimal choice. Our main contribution is precisely a data-driven model and algorithms for that81

purpose. Not only is our proposed framework grounded in theory, it can also be effectively realized82

in practice as we will show later.83

Our model assumes predetermined costs for user complaints along the multiple metrics. The difficulty84

in optimizing for user happiness arises from the fact that the nature and volume of the complaints85

depend on the state of the model. Of course if no complaints is received, an optimal state has been86

reached, but most often complaints will arise. Fixing the model to optimize for this set of complaints87

will most likely spur a different set of complaints, etc. Only by visiting all incompatible states of88

the model and observing the associated complaint set would one be able to fully optimize the model.89

Such an exhaustive search is prohibitive from both a time and development perspective. This paper90

presents a model that effectively reaches a beneficial state and provides performance guarantees.91

The rest of the paper is organized as follows. In Section 2, we define our model. In the stochastic92

setting (Section 3), we show that our framework can be cast as a Markov Decision Process with93
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Figure 1: (a) Illustration of constraints graph G. v1, v2, v3, v4 represent 4 different criteria. (b) More
generally, each vertex can represent a joint criterion, for example v1 ∧ v2. This helps specify joint
constraints such as the following: v1, v2, and v3 cannot be simultaneously satisfied. (c) Illustration
of the MDP for a fully connected incompatibility graph G over three criteria. The state set is
S = {0 = [0, 0, 0],1 = [1, 0, 0],2 = [0, 1, 0],3 = [0, 0, 1]}, the action set A = {0, 1, 2, 3}. Each
transition is labeled with a/λ(s, a), where a is the action taken from s and where λ(s, a) is the total
loss incurred as a result.

stochastic losses, for which we give efficient vanishing regret algorithmic solutions. In the adversarial94

setting (Section 4), we give algorithms with competitive ratio guarantees. Appendix D demonstrates95

how our framework can be realized in practice and reports the results of experiments with our96

algorithms in the stochastic setting that demonstrate their effectiveness and the applicability of our97

model. We further discuss our modeling assumptions and extensions in Appendix B, and finally,98

discussion of related work and proofs of theorems can also be found in the appendix.99

2 Conflict resolution model100

We consider optimization in the presence of multiple criteria, where not all criteria can be satisfied101

simultaneously. The constraints are specified by an undirected graph G = (V,E), where each vertex102

represents a criterion and where an edge between vertices vi and vj indicates that criteria vi and vj103

cannot be simultaneously satisfied. We denote by V = {v1, . . . , vk} the set of k criteria considered.104

Figure 1 illustrates these definitions. Note that vertices may represent joint criteria as in Figure 1(b).105

We consider a machine learning system that evolves over a sequence of time steps in the presence of106

the criteria represented by the graph G. At each time step t, the system is in some state st characterized107

by its performance on all criteria in V . Note, a state is distinct from a vertex of G. The system then108

receives a new batch of feedback that depend on its current state and incurs a loss. The objective of109

the algorithm is to minimize the total cost incurred over a period of time, which includes the total110

loss accrued, as well as the total cost of fixing various criteria over that period. We envision that the111

algorithm is solving a constraint optimization problem with the criteria as constraints.112

The assignment of a complaint to one or more criteria can be achieved by human analysis or via a113

multi-class multi-label classifier trained on past data and making use of known classifiers for specific114

criteria. Even when a complaint is related to a single criterion, we do not simply advocate taking115

that raw feedback as the ground truth. We discuss the risks associated with doing so in Section 3116

and Appendix E, in the context of the COMPAS example. To further improve and maintain the117

accuracy of this multi-class multi-label classifier, in practice, there may be ongoing data labeling118

and assistance by expert auditors analyzing complaints. Note that not all complaints received by the119

system are relevant and the classifier, or a human in the loop, may decide to not assign a complaint120

to any criterion. This also helps protect the system against potential attacks by coordinated users.121

Recent work on interactive models for ML fairness has studied this for specific metrics and auditor122

behavior [Bechavod et al., 2020].123

Loss. As a result of the complaints, the system incurs a loss and responds by changing its state.124

The definition of the loss, which depends on the criteria affected by the complaints is critical, a125

poor choice can yield a so-called loudest voice effect (see discussion in Section 3). The notion of126

complaints and the associated loss may seem abstract at this point. In Appendix D, we demonstrate127

how our model can be applied in practice.128

Graph and criteria. The assumption that the graph G is known a priori may seem restrictive.129

However, in many settings, graph G can be derived from analyzing past complaints and by measuring130

how fixing one criterion affects the performance on others. For instance, in the recommendation131
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system example discussed above, where each metric corresponds to the false positive rate on a132

different slice of the data, one can easily use past data to see how optimizing the false positive rate on133

one slice affects the other and get the graph of incompatibilities. See the experiments in Section D for134

a more concrete example. Our model also provides the flexibility of accounting for incompatibilities135

among criteria such as those discussed by Kleinberg et al. [2017] and Feller et al. [2016]. This can136

be achieved by augmenting the graph with vertices representing joint criteria as in Figure 1(b). The137

graph stipulates in particular that v1, v2 and v3 cannot be all simultaneously satisfied.138

States. For our theoretical and algorithmic analysis, we will adopt the following simplifying assump-139

tions and will later discuss their extensions or relaxation in Section 3. We assume that each criterion140

can only be in one of two states: fixed, meaning that criterion vi is met or is not violated, or unfixed,141

meaning the opposite. Hence, the overall state of the system can be described by a k-dimensional142

Boolean vector. An action corresponds to fixing a particular criterion, or set of criteria, and moving143

to a different vertex vi in the graph. Fixing the criteria associated to vi entails an algorithmic and144

resource allocation cost that we denote by ci. Initially, all criteria are unfixed. At each time step, a145

conflict resolution system or algorithm selects some action, which may be to fix an unfixed vertex vi,146

thereby incurring the cost ci and unfixing any vertex adjacent to vi, or the algorithm may select the147

null action, not to fix or unfix any vertex and wait to collect more data. Note that the incompatibilities148

in our model defined via edges in the graph are data agnostic. In practice, it is possible that two gen-149

erally incompatible criteria can be simultaneously satisfied for a given dataset, say via incorporating150

a slack. This is a direction for future work.151

Fixing costs. The fixing cost can be estimated from past experience. In the absence of any prior152

information, one could assume a unit fixing cost for all criteria. We deliberately avoid making specific153

choices. This gives us flexibility in dealing with different types of metrics in a unified manner.154

3 Stochastic setting155

We first detail a stochastic setting of our model that can be described in terms of a Markov Decision156

Process (MDP). Next, we present algorithms with strong regret guarantees.157

Description. The distribution of complaints received by the system is a function of its current state,158

that is the current set of fixed or unfixed criteria vi. Thus, we consider an MDP with a state space159

S ⊆ {0, 1}k representing the set of bit vectors for criteria: a state s ∈ {0, 1}k is defined by s(i) = 0160

when criterion vi is unfixed and s(i) = 1 when it is fixed. By definition of the incompatibility graph161

G, s is a valid state if and only if the set of fixed criteria at s is an independent set of G.162

When in state s ∈ S, the system incurs a loss `si due to complaints related to criterion i ∈ [k].163

Loss `si is a random variable assumed to take values in [0, B] with mean µsi . We do not assume164

independence across criteria, i.e., `si and `sj may be dependent for a given state s. The action set is165

A = {0, 1, . . . , k}. A non-zero action i corresponds to fixing criterion i. Action 0 is the null action,166

that is no criterion is fixed. Transitions are deterministic: given state s and action i ∈ A, the next167

state is s if i = 0 since the fixed-unfixed bits for criteria are unchanged; otherwise, for i 6= 0 the next168

state is the state s′ that only differs from s by s′(i) = 1 and (possibly) s′(j) = 0 for all j ∈ N(i),169

where N(i) is the neighbors of vi in G, since neighbors of i must be unfixed once i is fixed.170

Each action a= i admits a fixing cost ci. The cost for unfixing, as well as the null action, is zero. The171

loss incurred when taking action a at state s is the sum of the fixing cost ca and the complaint losses172

at the (possibly) next state s′: λ(s, a) = ca +
∑k
i=1 `

s′

i . The expected loss of transition (s, a, s′) is:173

E

[
ca +

k∑
i=1

`s
′

i

]
= ca +

k∑
i=1

µs
′

i . (1)

Note, ca and the losses `s
′

i are observed by the algorithm, but the mean values µs
′

i are unknown. To174

keep the formalism simple we assume that the cost ca of taking an action a is independent of the175

current state s. Figure 1 (c) illustrates our stochastic model for three mutually incompatible criteria.176

The notion of each metric in a binary state is a simplifying modeling assumption for our theoretical177

investigation. We discuss this more at the end of the Section.178

Correlation sets. In practice, the distribution of complaints related to a criterion vi at179

two different states may be related. To capture these correlations in a general way, we180
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assume that a collection C = {C1,C2, . . . ,Cn} of correlation sets is given, where each181

Cj is a subset of the k criteria and has size at most m. By allowing correlation sets182

of varying sizes, we can capture a range of dependencies that may exist between differ-183

ent criteria. These dependencies affect the loss observed by the algorithm at each time.184

Figure 2: Example of correla-
tion sets and associated losses
for a graph with four criteria.

We assume that at a given state s, each set Cj generates losses with185

mean value θsj per vertex, and that if two states s and s′ admit the186

same configuration for the vertices in Cj , then they share the same187

parameter θsj = θs
′

j . Given a criterion i and a state s, we assume188

that the loss incurred by criterion i equals the sum of the individual189

losses due to each correlation set Cj that contains i. Thus, µsi can190

be expressed as follows: µsi =
∑n
j=1 θ

s
j 1(i ∈ Cj). If a criteria is191

not correlated with any other vertex, we add to C a correlation set of192

size one for that criterion. See Figure 2 for an illustration. For each193

j ∈ [n], there are at most 2m configurations for the vertices of Cj in a state s, hence there are at most194

2mn distinct parameters θsj . Let θ denote the vector of all distinct parameters θsj . Our MDP model195

can then be denoted MDP(S,A, C,θ).196

Algorithm. We consider an online algorithm that at time t takes action at from state st and reaches197

state st+1, starting from the initial state (0, . . . , 0). The objective of an algorithm can be formulated198

as that of learning a policy, that is a mapping π : S→ A, with a value close to that of the optimal. We199

are mainly interested in the cumulative loss of the algorithm over the course of T interactions with200

the environment. The goal is to minimize the pseudo-regret:201

Reg(A) =

T∑
t=1

E
[
λt(st, at)

]
−

T∑
t=1

E
[
λt(s

π∗

t , π∗(sπ
∗

t ))
]
, (2)

where λt(s, a) is the total loss incurred by taking action a at state s at time t, s1 = (0, . . . , 0) and202

π∗ is the optimal policy. Note, λt is only a function of the current state and the action taken. The203

expectation is over the random generation of the complaint losses. Given the correlation sets and204

the parameter θ, the optimal policy π∗ corresponds to moving from the initial state (0, . . . , 0) to the205

state s∗ ∈ S with the most favorable distribution and remaining at s∗ forever. We define by g(s) the206

expected (per time step) loss incurred by staying in state s, that is, g(s) :=
∑k
i=1 µ

s
i . The optimal207

state s∗ is then defined as follows:208

s∗ = argmin
s∈S

g(s). (3)

Note, in this definition of s∗, we disregard the one-time cost of moving to a state from the initial209

state, since in the long run the expected cost incurred by staying at a given state governs the choice of210

the optimal state. We will assume that we have access to an oracle that can solve the above offline211

optimization problem. This is a standard assumption in the theory of online learning and MDPs.212

Since our problem can be seen as that of learning with a deterministic MDP with stochastic losses, we213

could adopt an existing algorithm for that problem [Jaksch et al., 2010]. However, the running-time214

of such algorithms would directly depend on the size of the state space S, which here is exponential215

in k, and that of the action set A. Furthermore, the regret guarantees of these algorithms would also216

depend on |S||A|.217

Case m = 2. We first consider a simpler setting where correlation sets are defined on subsets of size218

at most two. This setting also captures an important case where fixing a particular criterion affects219

the complaints of its neighbors. The algorithmic challenge we face here is to avoid exploring the220

exponentially many states in the MDP. Instead, we will design an algorithm that spends an initial221

exploration phase by visiting a specific subset of states of size at most 4n. This subset denoted by K,222

that we call a cover of C will help the algorithm estimate the expected loss of any state in the MDP223

given the estimates of losses for states in the cover. We next formally define the cover.224

For two criteria i, j and b ∈ {0, 1}, we say that (i, j, b) is a dichotomy if there exist two states225

s, s′ ∈ S such that: (1) s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. We call the two states226

s, s′ an (i, j, b)-pair. Note that if an edge (vi, vj) is present in G, then (i, j, 1) cannot be a dichotomy,227

since criteria i and j cannot be fixed simultaneously. A cover K of C is simply a subset of the states228

in the MDP that contains an (i, j, b)-pair for every {i, j} ∈ C and valid dichotomy (i, j, b).229

Furthermore, for every singleton set {i} in C, K contains states s, s′ such that s(i) = 0, s′(i) = 1230

and s(j) = s′(j) for all j 6= i. Note that we only need the cover to contain an (i, j, b)-pair if {i, j} is231
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a correlation set. Hence, it is easy to see that when m = 2, there is always a cover of size at most 4n.232

We then have the following guarantee.233

Theorem 1. Consider an MDP(S,A, C,θ) with losses in [0, B], maximum fixing cost c, and corre-234

lations sets of size at most m = 2. Let K be a cover of C of size r ≤ 4n, then, the algorithm of235

Figure 3 (see Appendix B) achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT )1/3T 2/3).236

Furthermore, given access to an oracle for (3), the algorithm runs in time polynomial in k and237

n = |C|.238

There is a natural extension to arbitrary correlation sets via extending the notion of a dichotomy and239

a cover (Algorithm in Figure 4, Appendix B). Our algorithms are also scalable. During step 1 they240

only explore the states in the cover K that could be much smaller than the full state space.241

Beyond T 2
3 regret. Next, we present algorithms that achieve Õ(

√
T ) regret. In particular for the242

case of m = 1, we have the following guarantee.243

Theorem 2. Consider MDP(S,A, C,θ) with losses in [0, B] and maximum fixing cost c. Given244

correlations sets C of size one, the algorithm of Figure 5 (see Appendix B.2) achieves a pseudo-regret245

bounded by O(k2(c+B)2
√
T log T ). Furthermore, given access to an oracle for (3), the algorithm246

runs in time polynomial in k.247

The theorem above can also be extended to higher values of m (see Figure 6 in Appendix B.2).248

4 Adversarial setting249

We also study a setting with no distributional assumptions about the arrival of complaints. We250

consider an adversarial model where, at each time step, multiple complaints arrive for the vertices in251

G. Initially all the vertices in G are in an unfixed state and each vertex has a fixing cost of ci. Each252

time, the algorithm can decide to fix a particular vertex, and as a result its neighbors get unfixed. At253

time step t, if criterion vi is unfixed, then the algorithm incurs a loss of `i(t) (which depends on the254

current state of the system), otherwise the algorithm incurs no loss. For an algorithm A, during T255

time steps, the total loss is256

Loss(A) =

k∑
i=1

T∑
t=1

`i(t) · 1(st(i) = 0) +

k∑
i=1

T∑
t=2

ci · 1(st−1(i) = 0, st(i) = 1). (4)

Let OPT be the algorithm that, given the entire loss sequence in advance, makes the decisions to fix257

vertices. We define the competitive ratio [Borodin and El-Yaniv, 1998] of A to be the maximum of258

Loss(A)/Loss(OPT) over all possible complaint sequences. Our main result is stated below.259

Theorem 3. Let G be a graph with fixing costs at least one. There is a polynomial-time algorithm260

with a competitive ratio of at most 2B + 4 on any sequence of complaints with loss values in [0, B].261

Our algorithm for this setting is provided in Figure 7 in Appendix C.262

5 Experiments263

While our primary contribution is a theoretical framework and the design of near optimal algorithms,264

our proposed algorithms are indeed scalable and practical. We demonstrate this in Appendix D via265

experiments on both simulated and real world data.266

6 Conclusion267

We presented a new data-driven model of online optimization from user feedback in the presence of268

multiple criteria, with algorithms benefiting from theoretical guarantees both in the stochastic and269

the adversarial setting. We provided empirical evidence that our model can be effectively realized in270

practice. Several extensions are worth exploring in future work. These include fixing costs that can271

vary with time to capture varying algorithmic price and human effort cost. Similarly, the expected272

losses in our stochastic model could be time-dependent to express the growing cost of a criterion not273

being addressed.274
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A Related work402

There is extensive literature on optimizing multiple metrics or objectives under specific criteria.403

The recent works of Mohri et al. [2019], Cortes et al. [2020] consider optimizing in the presence404

of multiple base objectives. Given objectives L1, . . . , Li these works aim to design “agnostic”405

algorithms that can simultaneously compete with any linear or convex combination of the objectives.406

Another line of work considers design algorithms that can achieve the Pareto optimal solution [Jin407

and Sendhoff, 2008, Sener and Koltun, 2018, Shah and Ghahramani, 2016, Marler and Arora, 2004].408

Another line of work considers optimizing multiple constraints (inspired by group fairness metrics)409

via constrained non-convex optimization [Agarwal et al., 2018, Cotter et al., 2018a, Thomas et al.,410

2019]. These publications either reduce the problem to that of cost-sensitive classification [Agarwal411

et al., 2018, Dwork et al., 2018] or replace the non-convex constraints by convex proxies and next412

optimize them via external or swap regret minimization algorithms [Cotter et al., 2018b,a].413

There have also been studies of the inherent tension between satisfying multiple metrics. Kleinberg414

et al. [2017] and Feller et al. [2016] demonstrate that it is impossible to satisfy equal opportunity and415

calibration at the same time. Inspired from fairness applications the work of Menon and Williamson416

[2018] studies the tradeoff between accuracy and other metrics of interest such as false positive and417

false negative rates.418

Since we are concerned with optimizing multiple metrics, it is natural to consider whether the problem419

can be framed via multi-task learning. However, there are certain crucial differences. In multi-task420

learning, the learner has access to data from multiple tasks and the goal is to jointly learn these tasks,421

which are assumed to be somewhat related or similar, to achieve a better generalization across all422

tasks. The online version of the problem admits many variants and with the aim of learning both423

a task similarity and predictors or only predictors when a task similarity is already supplied. The424

literature is indeed very rich.425

In our setting, there is typically only one task (same label), but different loss functions. In lieu426

of a similarity between tasks, we have an incompatibility graph between losses. We consider user427

feedback which does not seem to have a direct counterpart in the multi-task setting. Furthermore, a428

different predictor is typically learned for each task, while this is not our setting. In most settings of429

multi-task online learning, the objective is in terms of an adversarial regret, while our MDP scenario430

is for a stochastic scenario. Hence, while there are some aspects that seem reminiscent of our scenario,431

the traditional multi-task learning scenario seems to be quite different from our considered setting.432

Recent works have also studied the long-term impact of optimizing multiple conflicting criteria433

in settings with feedback mechanisms [Liu et al., 2018, Hashimoto et al., 2018, Mouzannar et al.,434

2019, Kannan et al., 2019]. Liu et al. [2018] show that, in certain situations, constrained loss435

minimization to equalize certain criteria could lead to further disparate impact on the end users in436

the long run. Hashimoto et al. [2018] proposed algorithms for minimizing such disparate impact in437

settings involving repeated loss minimization. More recently, Jabbari et al. [2017], Wen et al. [2019]438

study the problem of satisfying multiple constraints in reinforcement learning settings involving a439

Markov Decision Process. The authors in Jabbari et al. [2017] consider learning in an MDP where440

the criteria to be optimized require that the algorithm never takes an action a over action a′ if the441

long-term reward is higher. It is clear to see that the optimal policy for the MDP indeed satisfies this442

property. Hence, there does exist a policy that satisfies the required criterion. However, the authors443

show that finding a near optimal policy while satisfying the criterion requires time exponential in the444

size of the state space.445

Wen et al. [2019] consider other metrics such as demographic parity in the context of learning in446

MDPs. Doroudi et al. [2017] show that existing importance sampling methods for off-policy policy447

selection in reinforcement learning can lead to bad outcomes according to other natural criteria and448

present algorithms to mitigate this effect.449

While our work also involves learning in a Markov Decision Process (MDP) and optimizing multiple450

criteria in the long term, the setup and the motivation are different. Unlike all the previous work451

mentioned, we do not commit to a fixed definition of quality or a metric, and allow for arbitrary452

criteria. Hence, states in our MDP correspond to the current configurations of different criteria.453

Rather than studying each metric in isolation, the objective of our work is to propose a data-driven454

model that can learn from feedback, a near-optimal configuration of the metrics to impose on the455
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system. To the best of our knowledge, ours is the first work to incorporate optimizing metrics of456

arbitrary types in an online setting. In this context, inspired by fairness applications, the recent work457

of Kearns et al. [2019] studies a specific combination of group and individual fairness metrics. The458

authors consider a setting where there is a distribution over individuals as well as a distribution over459

classification tasks. They consider algorithms for achieving average individual fairness, that is in460

expectation over classification tasks, the performance of the algorithm on a group fairness metric461

such as demographic parity should be the same for each individual.462

An important aspect of our stochastic MDP-based model requires the ability to observe the losses463

associated with different criteria at each time. This relates to the problem of evaluating and monitoring464

the performance of the system according to different metrics from data. There has been work in recent465

years on developing auditing and monitoring approaches Bastani et al. [2019], Ghosh et al. [2020],466

Bellamy et al. [2018]. Furthermore, many metrics require access to both labeled data and to certain467

sensitive attribute information such as race or gender, for accurate evaluation. A recent line of work468

has studied this estimation problem when one has limited and/or noisy access to sensitive attribute469

information Gupta et al. [2018], Coston et al. [2019], Lamy et al. [2019], Wang et al. [2020]. Finally,470

we note that our model learns from feedback received as a form of complaints. These complaints471

are a result of a (potentially incorrect) decision made by an ML system. There has been recent472

work in developing counterfactual based explanations Tsirtsis and Gomez-Rodriguez [2020] for such473

decisions and exploring recourse strategies Gupta et al. [2019].474
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B Stochastic setting475

In this section we provide algorithms and their analysis for the stochastic setting as defined in476

Section 3. Recall from the setup in Section 3 that since our problem can be seen as that of learning477

with a deterministic MDP with stochastic losses, we could adopt an existing algorithm for that problem478

[Jaksch et al., 2010]. However, the running-time of such algorithms would directly depend on the479

size of the state space S, which here is exponential in k, and that of the action set A. Furthermore,480

the regret guarantees of these algorithms would also depend on |S||A|. Instead, by exploiting the481

structure of the MDP, we can design vanishing regret algorithms with a computational complexity482

that is only polynomial in k and the number of parameters. We will assume access to an oracle that,483

given θ, can optimize (3). In Appendix B.3, we show how to approximately solve (3) for the case484

of m = 1, i.e., singleton correlation sets. In that case, the true parameters θ can also be estimated485

efficiently (see Theorem 9).486

Case m = 2. To illustrate the ideas behind our general algorithm, we first consider a simpler setting487

where correlation sets are defined on subsets of size at most two. We first recall the notion of a cover488

from Section 3.489

For two criteria i, j and b ∈ {0, 1}, we say that (i, j, b) is a dichotomy if there exist two states490

s, s′ ∈ S such that: (1) s(j) = 0 and s′(j) = 1, and (2) s(i) = s′(i) = b. We call the two states491

s, s′ an (i, j, b)-pair. Note that if an edge (vi, vj) is present in G, then (i, j, 1) cannot be a dichotomy,492

since criteria i and j cannot be fixed simultaneously. A cover K of C is simply a subset of the states493

in the MDP that contains an (i, j, b)-pair for every {i, j} ∈ C and valid dichotomy (i, j, b).494

Furthermore, for every singleton set {i} in C, K contains states s, s′ such that s(i) = 0, s′(i) = 1495

and s(j) = s′(j) for all j 6= i. Note that we only need the cover to contain an (i, j, b)-pair if {i, j} is496

a correlation set. Hence, it is easy to see that when m = 2, there is always a cover of size at most 4n.497

Next, we state our key result that estimating the loss values for the states in a cover is sufficient.498

Theorem 4. Let K be a cover for C. For any state s ∈ S and any i ∈ [k] with s(i) = b, we have:499

µsi = µs
′

i +

k∑
j=1

Xi,j
b [1(s(j) = 1)1(s′(j) = 0)]−

k∑
j=1

Xi,j
b [1(s(j) = 0)1(s′(j) = 1)] , (5)

where s′ is any state in K with s′(i) = b, and for {i, j} ∈ C, Xi,j
b := µs1i − µ

s2
i where (s1, s2) is500

some (i, j, b) pair. If {i, j} /∈ C, we define Xi,j
b to be zero.501

Proof. Consider a correlation set {i, j}. The expected loss incurred by vertex vi or vj due to this set502

in any given state depends solely on the configuration of vi and vj in that state. Hence there are four503

parameters in the θ vector corresponding to the correlation set {i, j} and we denote them using γa,bi,j ,504

where a, b ∈ {0, 1}. Let s, s′ be an (i, j, b) pair. When we switch from s to s′ the only difference in505

the expected losses for vertex i comes from the pair (i, j). Hence we have506

µs
′

i − µsi = γb,1i,j − γ
b,0
i,j := Xi,j

b .

Hence, given the loss estimates for states in K we can estimate Xi,j
b for each i, j ∈ [k] and b ∈ {0, 1}.507

Next, given an arbitrary state s with s(i) = b let s′′ ∈ K such that s′′(i) = b. We have508

µsi = µs
′′

i +
∑

j:s(j)=0
s′′(j)=1

(γb,0i,j − γ
b,1
i,j ) +

∑
j:s(j)=1
s′′(j)=0

(γb,1i,j − γ
b,0
i,j )

= µs
′′

i +
∑

j:s(j)=1,
s′′(j)=0

Xi,j
b −

∑
j:s(j)=0,
s′′(j)=1

Xi,j
b

= µs
′′

i +

k∑
j=1

Xi,j
b [1(s(j) = 1)1(s′′(j) = 0)− 1(s(j) = 0)1(s′′(j) = 1)] .

509
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Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3(log rkT )1/3

r2/3
.

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all
i ∈ [k].

4. Using the estimated losses for the states in K and Equation (5), run the oracle for the
optimization (3) to obtain an approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 3: Algorithm for m = 2 achieving Õ(T 2/3) pseudo-regret.

From the above theorem we have the following guarantee.510

Theorem 5. Consider an MDP(S,A, C,θ) with losses in [0, B], maximum fixing cost c, and correla-511

tions sets of size at most m = 2. Let K be a cover of C of size r ≤ 4n, then, the algorithm of Figure 3512

achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT )1/3T 2/3). Furthermore, given access513

to an oracle for (3), the algorithm runs in time polynomial in k and n = |C|.514

Proof. In each time step the maximum loss incurred by any criterion is bounded by c + B. Let515

{s1, s2, . . . , sr} be the states in K. During the exploration phase the algorithm stays in each state516

for N time steps and incurs a total loss bounded by kNr(c+B). During the exploration phase the517

algorithm moves from one state to another in at most k steps and incurs a total additional loss of at518

most rk2(c+B). At any given state s ∈ K and vertex vi, after N time steps we will, with probability519

at least 1− δ, an estimate of µsi up to an accuracy of 2B
√

log 1/δ
N . Setting δ = 1/(rkT 4) and using520

union bound, we have that at the end of the exploration phase, with probability at least 1− 1
T 4 , the521

algorithm will have estimate µ̂si for all s ∈ K and i ∈ [k] such that522

µ̂si − µsi ≤ 4B

√
log rkT

N
. (6)

Hence during the exploitation phase, with high probability, the algorithm will have the estimate for523

the expected loss of each state in S, i.e.,
∑
i µ

s
i up to an error of 4kB

√
log rkT
N . Combining the above524

we get that the total pseudo-regret of the algorithm is bounded by525

Reg(A) ≤ kNr(c+B) + rk2(c+B) +
(

1− 1

T 4

)
4kBT

√
log rkT

N
+

1

T 4
k(c+B)T.

Setting N = 10T
2/3(log rkT )1/3

r2/3
we get that

Reg(A) ≤ O(kr1/3(c+B)(log rkT )1/3T 2/3).

526

B.1 General case527

The algorithm for the case of m = 2 naturally extends to arbitrary correlation set sizes. Overall528

the structure of the algorithm remains the same where we pick a cover of C and estimate the losses529

incurred in states that belong to the cover. Using the estimated losses we are able to approximately530

estimate the loss of any vertex at any other state. In order to do this we extend the definition of the531

cover as follows. Given correlation sets of arbitrary size in C, a vertex vi may participate in many532

of them. We say that vertices vi and vj share a correlation set, if they appear together in a set in C.533

Consider the set of indices of all the vertices that vi shares a correlation set with. We partition this534

set into disjoint subsets such that no two vertices in different subsets share a correlation set. For a535
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given vertex vi, we denote this collection of disjoint subsets by Ii. For example, if C contains sets536

{1, 2}, {1, 3}, and {1, 4}, then, I1 consists of the set {2, 3, 4}. On the other hand if C contains sets537

{1, 2, 3}, {1, 3, 4}, and {1, 6, 7} then, I1 consists of sets {2, 3, 4} and {6, 7}. For a given state s and538

J ∈ Ii we denote by s(J) the vector s restricted to indices in J . Notice that, in the worst case, Ii539

will consist of a single set of size at most min(k − 1, nm). However, for more structured cases (e.g,540

m = 2) we expect Ii to consist of subsets of small sizes.541

Given i ∈ [k], J ∈ Ii, b ∈ {0, 1} and vectors u1, u2, we say that (i, b, J, u1, u2) is a dichotomy, if542

there exist two states s, s′ ∈ S such that: (1) s(J) = u1, s
′(J) = u2, (2) s(i) = b = s′(i), and (3)543

s, s′ agree in all other criteria. We call such a pair of states s, s′ an (i, b, J, u1, u2) pair. We next544

extend the definition of a cover as follows. A subset K ⊆ S is called a cover of C if for any valid545

dichotomy (i, b, J, u1, u2), there exists an (i, b, J, u1, u2) pair s, s′ ∈ K. In general, we will always546

have a cover of size at most n2mn. Similar to (??), for a valid dichotomy (i, b, J, u1, u2), we define547

Xi,u1,u2

b,J as548

Xi,u1,u2

b,J := µsi − µs
′

i , (7)

where s, s′ ∈ K is an (i, b, J, u1, u2) pair. Given the loss values in the states present in K, we can549

estimate the loss of any other state using Theorem 6 stated below.550

Theorem 6. Let K be a cover for C. Then, for any state s ∈ S and any i ∈ [k] with s(i) = b, we551

have:552

µsi = µs
′′

i +
∑
J∈Ii

X
i,s(J),s′′(J)
b,J (8)

Here s′′ is any state in K with s′′(i) = b.553

Proof. Let s, s′ ∈ K be an (i, b, J, u1, u2) pair. When we move from state s to s′, the only difference554

between the expected losses incurred by vertex vi comes from the configuration of the vertices in J .555

Hence there at at most 2|J|+1 distinct parameters governing the expected loss incurred by vertex i in556

a given state s due to the configuration of the vertices in J . Denoting these parameters by γb,s(J)i,J we557

have558

µs
′

i − µsi = γ
b,s′(J)
i,J − γb,s(J)i,J := X

i,s′(J),s(J)
b,J .

Given the loss values for the states in the cover K, we can estimate the quantities Xi,s(J),s′′(J)
b,J .559

Next, for an arbitrary state s such that s(i) = b, let s′′ ∈ K be such that s′′(i) = b. We have560

µsi = µs
′′

i +
∑
J∈Ii

γ
b,s(J)
i,J − γb,s

′′(J)
i,J

=
∑
J∈Ii

X
i,s(J),s′′(J)
b,J .

561

For general correlation sets with each vertex participating in at most n sets, we use (8) instead of (5)562

to estimate losses in step 4 of the algorithm in Figure 3. The algorithm for general m is described563

in Figure 4 and has the following associated regret guarantee. The proof is identical to the proof of564

Theorem 5.565

Theorem 7. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of fixing566

a vertex being c. Given correlations sets C of size at most m, and a cover K of C of size r ≤ n2mn,567

the algorithm in Figure 4 achieves a pseudo-regret bounded by O(kr1/3(c+B)(log rkT )1/3T 2/3).568

Furthermore, given access to the optimization oracle for Eq. (3) the algorithm runs in time polynomial569

in k, n = |C| and r = |K|.570

Our algorithms are also scalable. During step 1 they only explore the states in the cover K that could571

be much smaller than the full state space.572
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Input: The graph G, correlation sets C, fixing costs ci.
1. Pick a cover K = {s1, s2, . . . , sr} of C.

2. Let N = 10T
2/3(log rkT )1/3

r2/3
.

3. For each state s ∈ K do:
• Move from current state to s in at most k time steps.
• Play action a = 0 in state s for the next N time steps to obtain an estimate µ̂si for all
i ∈ [k].

4. Using the estimated losses for the states in K and Equation (8), run the oracle for the
optimization (3) to obtain an approximately optimal state ŝ.

5. Move from current state to ŝ and play action a = 0 from ŝ for the remaining time steps.

Figure 4: Online algorithm for general m achieving Õ(T 2/3) pseudo-regret.

B.2 Beyond T 2
3 regret573

In this section, we present algorithms for our problem that achieve Õ(
√
T ) regret, first in the case574

m = 1, next for any m, under the natural assumption that each criterion does not participate in too575

many correlations sets.576

Let us first point out that our problem can be cast as an instance of the stochastic multi-armed577

bandit problem with switching costs, where each state s is viewed as an arm and where the cost of578

transitions from state s to state s′ is the switching cost between s and s′. For the instance of this579

problem with identical switching costs, Cesa-Bianchi et al. [2013][Appendix A] gave an algorithm580

achieving expected regret Õ(
√
T ), via an arm-elimination technique with at most O(log log T )581

switches. However, naturally, the regret guarantee and the time complexity of that algorithm depend582

on the number of arms, which in our case is exponential (2k). We will show here that, in most realistic583

instances of our model, we can achieve Õ(
√
T ) regret efficiently.584

We first consider the case where the correlations sets in C are of size one (m = 1). In this case, the585

parameter vector θ can be described using the following 2k parameters: for each i ∈ [k], let γ0i586

denote the expected loss incurred by criterion i when it is unfixed and γ1i its expected loss when it587

is fixed. In this case, the cover K is of size k + 1 and includes the all-zero state, as well as k states588

corresponding to the indicator vectors of the k vertices. Our algorithm is similar to the UCB algorithm589

for multi-armed bandits Auer et al. [2002] and maintains optimistic estimates of the parameters. For590

every vertex i, we denote by τ0i,t the total number of time steps up to t (including t) during which the591

vertex vi is in an unfixed position and by τ1i,t the total number of times steps up to t during which592

vertex vi is in a fixed position. Fix δ ∈ (0, 1) and let γ̂bi,t be the empirical expected loss observed593

when vertex vi is in state b, for b ∈ {0, 1}. Our algorithm maintains the following optimistic estimates594

at each time step t,595

γ̃bi,t = γ̂bi,t − 10B

√
log(kT/δ)

τ bi,t
. (9)

To minimize the fixing cost incurred when transitioning from one state to another, our algorithm596

works in episodes. In each episode h, the algorithm first uses the current optimistic estimates to query597

the optimization oracle and determine the current best state s. Next, it remains at state s for t(h) time598

steps before querying the oracle again. The number of time steps t(h) will be chosen carefully to599

avoid incurring the fixing costs too often. The algorithm is described in Figure 5. We will prove that600

it benefits from the following regret guarantee.601

Theorem 2. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of602

fixing a vertex being c. Given correlations sets C of size one, the algorithm of Figure 5 achieves a603

pseudo-regret bounded by O(k2(c+B)2
√
T log T ). Furthermore, given access to an oracle for (3),604

the algorithm runs in time polynomial in k.605
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Input: graph G, correlation sets C, fixing costs ci.
1. Let K be the cover of size k+ 1 that includes the all zeros state and the states corresponding

to indicator vectors of the k vertices.
2. Move to each state in the cover once and update the optimistic estimates according to (9).
3. For episodes h = 1, 2, . . . do:

• Run the optimization oracle for solving Eq. (3) with the optimistic estimates as in (9)
to get a state s.

• Move from current state to state s. Stay in state s for t(h) time steps and update the
corresponding estimates using (9). Here t(h) = mini τ

s(i)
i,th

and th is the total number
of time steps before episode h starts.

Figure 5: Online algorithm for m = 1 with Õ(
√
T ) regret.

Proof. We first bound the total number of different states visited by the algorithm. Initially the606

algorithm visits k + 1 states in the cover. After that, each time the optimization oracle returns a new607

state s, by the definition of t(h), the number of time steps where some vertex is in a 0 or 1 position is608

doubled. Hence, at most O(k log T ) calls are made to the optimization oracle. Noticing that one can609

move from one state to another in at most k time steps, the total loss incurred during the switching of610

the states is bounded by O(k2(c+B) log T ).611

For ε > 0 to be chosen later, we consider the episodes where the algorithm plays a state s with612

expected loss at most ε more than that of the best state s∗. The total expected regret accumulated in613

these good episodes is at most εT . We next bound the expected regret accumulated during the bad614

episodes.615

From Hoeffding’s inequality we have that for any time t, with probability at least 1 − δ
T 3 , for all616

i ∈ [k], b ∈ {0, 1},617

γ̃bi,t + 20B

√
log(kT/δ)

τ bi,t
≥ γbi ≥ γ̃bi,t. (10)

Let G be the good event that (10) holds for all t ∈ [1, T ]. Conditioned on G we also have that for any618

state s and vertex i619

µsi ≥ µ̃si , (11)

where µ̃si is the estimated loss using the optimistic estimates. We will bound the expected regret620

accumulated in the bad episodes conditioned on the event G above.621

In order to do this we define certain key quantities. Consider a particular trajectory T of T time622

steps executed by the algorithm. Furthermore, let T be such that the good event in (10) holds during623

the T time steps. We associate the following random variables with the trajectory. Let Nε be the624

total number of time steps spent in bad episodes. Furthermore, let Regε be the total accumulated625

regret during these time steps. Then it is easy to see that E[Regε |G] > εNε. For each vertex vi and626

b ∈ {0, 1} we define τε(i, b) to be the total number of time steps that vertex vi spends in bad episodes627

in position b and τε(i, b, t) to be the total number of time steps spent in bad episodes up to time step t.628

Notice that629 ∑
b

∑
i

τε(i, b) ≤ 2kNε. (12)

Consider a particular bad episode h and let s be the state returned by the optimization oracle during630

that episode. Then conditioned on the good eventG, the total regret Regh accumulated during episode631
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h satisfies632

E[Regh|T ] =
∑
i

(
µsi − µs

∗

i

)
t(h)

≤
∑
i

(
µsi − µ̃s

∗

i

)
t(h)

(
from(11)

)
≤
∑
i

(
µsi − µ̃si

)
t(h)

(
since s is best state according to the optimistic losses

)
≤
∑
i

(
γ
s(i)
i − γ̃s(i)i,th

)
t(h)

≤
∑
i

20B

√
log(kT/δ)

τ bi,th
t(h).

(
from (9)

)
In the above inequality, the expectation is taken over the loss distribution for each vertex during states633

visited in the trajectory T .634

Since τ bi,th ≥ τε(i, b, th) we have we have that635

E[Regh|T ] ≤
∑
i

20B

√
log(kT/δ)

τε(i, b, th)
t(h).

Summing over bad episodes, the total expected regret in bad episodes can be bounded by636

E[Regε|T ] ≤
∑
i

∑
b

∑
h:h is bad

20B

√
log(kT/δ)

τε(i, b, th)
t(h). (13)

Notice that τε(i, b, th) =
∑
h′<h:h′ is bad t(h

′). Furthermore, we know that (Jaksch et al. [2010]) for637

any sequence z1, z2, . . . , zh of non-negative numbers such that zi ≥ 1,638

h∑
i=1

zi√∑i−1
j=1 zj

≤ (1 +
√

2)

√√√√ h∑
i=1

zi. (14)

From (14) we get:639 ∑
h:h is bad

t(h)√
τε(i, b, th)

≤
√
τε(i, b).

Substituting into (13) we get that640

E[Regε|T ] ≤
∑
i

∑
b

20B
√

log(kT/δ)
√
τε(i, b).

Using (12) we have that the above expected regret is maximized when τε(i, b) are equal, thereby641

implying642

E[Regε|T ] ≤ 20Bk
√

log(kT/δ)
√
Nε.

Using the fact that E[Regε |G] > εNε we get that conditioned on G,643

Nε ≤
400B2k2 log(kT/δ)

ε2
.

Combining trajectories T where the good event G holds, we get that the total expected regret644

accumulated in the bad episodes satisfies645

E[Regε|G] ≤ 20Bk
√

log(kT/δ)
√
Nε

≤ 400B2k2
log(kT/δ)

ε
.
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Combining the above with the total expected regret accumulated in the good episodes, the loss of646

moving to different states, and the probability of good event G not holding, we get647

Reg(A) ≤ 400B2k2
log(kT/δ)

ε
+ εT +

k(c+B)

T 3
+O(k2(c+B) log T ).

Setting ε = 1√
T

and δ = 1
T 4 , we have the final bound648

Reg(A) ≤ O
(
(c+B)2k2

√
T log(T )

)
.

649

The above result extends to higher m values, assuming that each vertex does not participate in too650

many correlation sets. If a vertex vi appears in at most O(log k) correlation sets, then the total loss651

incurred by vertex vi in any state depends on the position of vi and every other vertex that it is652

correlated with. Hence the total loss incurred by vertex vi depends on an O(m log k)-dimensional653

vector. For every configuration b of this vector, we associate with each vertex vi, parameters γbi .654

Notice that there are at most O(km) such parameters. Each parameter is in turn a sum of a subset of655

the parameters in θ. Notice that in this case the size of the cover K is upper bounded by O(km+1).656

Our algorithm for higher m values is similar to the one for m = 1, but instead maintains optimistic657

estimates of the parameters γbi via658

γ̃bi,t = γ̂bi,t − 10B

√
m

log(kT/δ)

τbi,t
. (15)

Here τbi,t is the total time spent up to and including t where the vertex i and the vertices that it is659

correlated with are in configuration b. Similarly, for a given state s, we will denote by s(i), the660

configuration of the vertex i and the vertices that it is correlated with. The algorithm is sketched661

below
Input: The graph G, correlation sets C, fixing costs ci.

1. Let K be the cover of size O(km+1).
2. Move to each state in the cover once and update the optimistic estimates according to (15).
3. For episodes h = 1, 2, . . . do:

• Run the optimization oracle (3) with the optimistic estimates as in (15) to get a state s.
• Move from current state to state s. Stay in state s for t(h) time steps and update the

corresponding estimates using (15). Here t(h) = mini τ
s(i)
i,th

and th is the total number
of time steps before episode h starts.

Figure 6: Online algorithm for higher m.662

For m ≥ 1, we obtain the following guarantee.663

Theorem 8. Consider an MDP(S,A, C,θ) with losses bounded in [0, B] and maximum cost of fixing664

a vertex being c. Given correlations sets C of size at most m such that each vertex participates in at665

mostO(log k) sets, the the algorithm in Figure 6 achieves a pseudo-regret bounded byO(mk2m+2(c+666

B)2
√
T log T ). Furthermore, given access to an oracle for (3), the algorithm runs in time polynomial667

in O(km+1).668

Proof. The proof is very similar to the proof of Theorem 2. Since each time the optimization oracle669

is called the time spent in some configuration s(i) is doubled, we get that the total number of calls670

to the optimization oracle are bounded by O(km log T ). Hence the total loss incurred during the671

exploration phase can be bounded by O(km(c+B) log T ). Let G be the good event that (15) holds672

for all t ∈ [1, T ].673

As before, the loss incurred during good episodes is bounded by εT . Define τε(i, b) to be the total674

time that vertex i and vertices that it is correlated with spend in configuration b during bad episodes.675

Then analogous to (12) we have676 ∑
b

∑
i

τε(i, b) ≤ O(km)Nε.
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For a trajectory T where the good event G holds, the total expected regret in bad episodes can be677

bounded as678

E[Regε|T ] ≤
∑
i

∑
b

∑
h:h is bad

20B

√
m

log(kT/δ)

τε(i, b, th)
t(h) (16)

≤
∑
i

∑
b

20B
√
m log(kT/δ)

√
τε(i, b) (17)

≤ O(Bkm+1)
√
m log(kT/δ)

√
Nε. (18)

Using the fact that E[Regε |T ] > εNε we get that for a trajectory where the event G holds,679

Nε ≤
O(R2k2m+2m log(kT/δ))

ε2
.

Hence we get that conditioned on the good event G, the total expected regret accumulated in the bad680

episodes is at most681

E[Regε|G] ≤ O
(
R2mk2m+2 log(kT/δ)

ε

)
.

Combining the above with the total expected regret accumulated in the good episodes, the loss of682

moving to different states, and the probability of the event G not holding we get683

Reg(A) ≤ O
(
B2mk2m+2 log(kT/δ)

ε

)
+ εT +

k(c+B)

T 3
+O(km log T ).

Setting ε = 1√
T

and δ = 1
T 4 , we have the final bound684

Reg(A) ≤ O
(
(c+B)2mk2m+2

√
T log(T )

)
.

685

An important corollary of the above is the following686

Corollary 1. If G is a constant degree graph with correlation sets consisting of subsets of edges in687

G, then there is a polynomial time algorithm that achieves a pseudo-regret bounded by O(k6(c +688

B)2
√
T log T ).689

Modeling assumptions and extensions. Here we briefly discuss assumptions and extensions.690

Scalability. The running time of our algorithms depends linearly on the size of the cover K. While691

in the worst case the size of the cover could be exponential in n,m, in practice, we expect it to be692

rather small, in which case our algorithms are quite efficient.693

Loss function. The choice of the loss function is critical in the effectiveness of our model. We694

made the simplifying assumption that the loss at each time step is additive in the losses incurred695

by correlation sets. A careless choice of what the additive losses correspond to may result in a696

sub-optimal overall. For example, a poor choice is one that uses the volume of complaints, i.e., how697

many complaints have triggered a criterion. This will make us vulnerable to the loudest voices in the698

system. In Section D, we discuss how our framework can be implemented in practice and present699

reasonable choices for the loss function. We further discuss the choice of the loss function in the case700

of the COMPAS example in Appendix E.701

Adversarial manipulation. Our model may be vulnerable to strategic coordination. A malicious702

group of users can form a sub-community generating a large number of complaints to press the703

system to include a new criterion in the graph. The presence of such poor criteria may result in an704

overall suboptimal system. Modeling this scenario is beyond the scope of the current work.705

Continuous states. This is a direction for future work.706

B.3 Additional proofs for the Stochastic setting707

Here we show that in the stochastic model, if correlation sets are of size one then one can efficiently708

approximate the cost of the optimal state up to a factor of two.709
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Theorem 9. If correlations sets are of size one (m = 1), then, for any ε, δ > 0, the true parameter710

vector for MDP(S,A, C,θ) can be approximated to ε-accuracy in `∞-norm with probability at711

least 1 − δ, in at most O(B
2k
ε2 log(kδ )) time steps and exploring at most k + 1 specific states in S.712

Furthermore, given a parameter vector θ, there is an algorithm that runs in time polynomial in k and713

finds an approximately optimal state s′ such that g(s′) ≤ 2 mins∈S g(s).714

Proof. Notice that when correlation sets are of size one, the expected loss incurred for criterion vi715

at any given state s solely depends on whether s(i) = 0 or s(i) = 1. Hence in this case the MDP716

consists of 2k parameters where we use γ1i and γ0i to denote the expected losses incurred by vertex i717

when it is in fixed and unfixed position respectively. For any δ > 0, by Hoeffding’s inequality, we718

have that if we stay in state s = (0, 0, . . . , 0) for N = B2

ε2 log(2k/δ) time steps then with probability719

at least 1 − δ
2 , we have each γ0i estimated up to ε accuracy. Let ei ∈ {0, 1}k denote the indicator720

vector for i. If we stay in state s = ei for B2

ε2 log(2k/δ) time steps, then with probability at least721

1 − δ
2 we have γ1i estimated up to ε accuracy. Hence, overall after O(B

2k
ε2 log(kδ )) time steps, we722

have each parameter estimated up to ε accuracy. Notice that in total we observe at most k + 1 states.723

Next we show how to efficiently approximate the loss of the best state. Given the parameters of the724

MDP each vertex has two costs Λ
(1)
i = γ0i , denoting the cost incurred if the vertex is unfixed and725

Λ
(2)
i = ci + γ1i , denoting the cost incurred if the vertex is fixed. Without loss of generality assume726

that Λ
(1)
i > Λ

(2)
i (any vertex that does not satisfy this can be safely left unfixed). For each i, define727

yi = 1 if vertex i is unfixed otherwise define yi = 0. Then the offline problem of finding the best728

state can be written as729

min
k∑
i=1

(1− yi)Λ2
i + yiΛ

1
i =

k∑
i=1

yiγi +

k∑
i=1

Λ
(2)
i

s.t. yi ∈ {0, 1}
yi + yj ≥ 1, ∀(vi, vj) ∈ E.

Here γi = Λ
(1)
i − Λ

(2)
i > 0. By relaxing yi to be in [0, 1] and solving the corresponding linear730

programming relaxation, we get a solution y∗1 , y
∗
2 , . . . , y

∗
k. Let LPval denote the linear programming731

objective value achieved by y∗1 , y
∗
2 , . . . , y

∗
k. Since the linear programming formulation is a valid732

relaxation of the problem of finding the best state, we have LPval ≤ mins∈S g(s).733

We output the state s′ in which a vertex i if and only if y∗i < 1/2. Let S be the set of fixed vertices.734

We have735

g(s′) =
∑
i∈S

Λ
(2)
i +

∑
i/∈S

Λ
(1)
i

=

k∑
i=1

Λ
(2)
i +

∑
i/∈S

(Λ
(1)
i − Λ

(2)
i )

=

k∑
i=1

Λ
(2)
i +

∑
i/∈S

γi

<

k∑
i=1

Λ
(2)
i + 2

∑
i/∈S

y∗i γi

< 2
( k∑
i=1

Λ
(2)
i +

k∑
i=1

y∗i γi

)
< 2 · LPval
≤ min

s∈S
2gp(s).

736
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C Adversarial setting737

In the previous section, we studied a stochastic model for arrival of complaints and designed no738

regret algorithms. In this section, we study the setting when we cannot make assumptions about the739

arrival of complaints. In particular, we study an adversarial model where at each time step multiple740

complaints arrive for the vertices in G via the choice made by an oblivious adversary. For a given741

vertex vi and time step t, we denote by `i(t) the loss incurred if criterion vi is unfixed at time t.742

Similar to the setting from the previous section, initially all the vertices in G are in unfixed state and743

each vertex has a fixing cost of ci. At each time step the algorithm can decide to fix a particular744

vertex. As a result all its neighbors get unfixed. At time step t, if criterion vi is unfixed then the745

the algorithm incurs a loss of `i(t). If vi is fixed at time step t then algorithm incurs no loss. The746

overall loss incurred by the algorithm is the total fixing cost and the total loss incurred over the arrival747

complaints. As before, we will denote a configuration of the vertices in G using a vector s ∈ {0, 1}k748

with s(i) = 0 representing an unfixed vertex. For an algorithm A processing the request sequence,749

During the course of T time steps, the total loss of processing the complaints is750

Loss(A) =

k∑
i=1

T∑
t=1

`i(t) · 1(st(i) = 0) +

k∑
i=1

T∑
t=2

ci · 1(st−1(i) = 0, st(i) = 1). (19)

Define OPT to be the algorithm that given the entire loss sequence in advance, makes the optimal751

choice of decisions to fix vertices. Following standard terminology we define the competitive ratio of752

an algorithm A to be the maximum of Loss(A)/Loss(OPT) over all possible complaint sequences.753

We will design efficient online algorithms for processing the complaints that achieve a constant754

competitive ratio. Notice that in this setting, in order for the competitive ratio to be finite, we need to755

bound the range of the losses and the fixing costs of the vertices. We will assume that the cost of756

fixing each vertex is at least one and as before assume that the losses are bounded in the range [0, B].757

For ease of exposition, in the rest of the discussion we will assume that at each time step complaints758

arrive for one of the vertices in G. A simple reduction shows that an algorithm that is competitive759

with OPT in this setting remains so in the general setting with the same competitive ratio. We discuss760

this at the end of the section. Via this reduction we can consider the loss sequence to be of the form761

((i1, `i1), . . . , (iT , `iT )) where it is the index of the criterion for which the tth complaint arrives and762

`it is the associated loss.763

To get a better understanding of the above adversarial setting, consider the case when the graph G764

over the criteria has no edges, i.e., there are no conflicts. In this case, given a sequence of complaints,765

each with unit loss value, the optimal offline algorithm that has the entire loss sequence in advance766

can independently make a decision for each vertex. In particular, if the total loss of the complaints767

incurred at vertex vi exceeds the fixing cost ci then the optimal decision is to fix the vertex vi, and768

otherwise simply incur the loss from the arriving complaints. In this case the online algorithm can769

also simply process each vertex independently. At each vertex the algorithm is faced with the classical770

ski-rental problem for which there exists a deterministic algorithm that is 2-competitive with optimal771

algorithm Karlin et al. [1988]. For each vertex i, the online algorithm simply waits till a total loss of772

ci or more has been incurred on vertex i and then decides to fix it. It is easy to see that the total cost773

incurred by this strategy is at most twice the cost incurred by OPT.774

However, the above algorithm will fail miserably in the presence of conflicts in the graph G. As775

an example consider a graph with two vertices vi and vj that are connected by an edge. Let the776

fixing cost of vi be 1 and the fixing cost of vj be C � 1. Consider a sequence of complaints, each777

of unit loss, consisting of C complaints for vj followed one complaint for vi. If this sequence is778

repeated T times the optimal offline algorithm OPT incurs a loss of C + T by fixing vj and incurring779

losses due to vi. However, the algorithm above will incur a cost of (2C + 2)T thereby leading to an780

unbounded competitive ratio. Hence, in order to achieve a good competitive ratio one must make781

decisions not only based on the loss incurred at the given vertex vi, but also the status of the vertices782

in the neighborhood of vi. Our main result in this section is the algorithm in Figure 7 that achieves a783

constant factor competitive ratio.784

The algorithm described in Figure 7 makes decisions based on local neighborhood information of a785

vertex. Intuitively, if a vertex is fixed only once or a few times in the optimal algorithm one would786

like to avoid fixing it too many times. In order to achieve this, each time a vertex vi is fixed, it adds a787

barrier of κi = ci to the loss any of its neighbors need to incur before getting fixed. Hence, if a vertex788
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Input: The graph G, fixing costs ci, loss sequence (i1, `i1), . . . , (iT , `iT ).
1. For each i ∈ [k], initialize τi, κi to 0.
2. Process the complaints in sequence and for each complaint (i, `i) such that vi is unfixed do:

(a) τi = τi + `i.
(b) While `i > 0 and exists j ∈ N(i) with κj > 0 do:

i. Set ∆ = min(`i, κi) and reduce both κi and `i by ∆.
(c) If τi ≥ max

(
ci,
∑
j∈N(i) κj

)
fix vi. Set τi to 0 and κi to ci. Set τj = 0 for all

j ∈ N(i).

Figure 7: Online algorithm for the adversarial setting.

is connected to a lot of fixed vertices then it has a high barrier to cross before getting fixed. During789

the course of the algorithm each unfixed vertex is in one of the two phases. In phase one, the vertex is790

accumulating losses to pay for the barrier introduced by its neighbors (step 2(b) of the algorithm).791

In phase two, once the barrier has been crossed the vertex follows the standard ski-rental strategy792

independent of other vertices for making a decision as to fix or not. Notice that via step 2(b) of the793

algorithm, multiple neighbors of a vertex vi can help bring down the barrier of ci introduced by the794

action of fixing vertex vi. This is necessary to ensure the online algorithm does not incur a large loss795

on a vertex by waiting too long to fix it.796

As an example consider a graph G with k vertices and k − 1 edges, where vertex v0 is the central797

vertex connected to every other vertex. Let the fixing cost of vertex v0 be a large value C, and the798

fixing cost of other vertices be one. We consider a sequence of C complaints, each with unit loss799

arriving for vertex v0, followed by a sequence of C complaints for vertex v1 and so on. In this case800

the optimal offline solution incurs a loss of C + k by deciding to fix every vertex except v0. After801

processing C complaints for v0, the online algorithm will fix v0 and incur a loss of 2C. Next, during802

the course of processing C complaints for v1, the algorithm fixes v1 and incurs an additional loss of803

C + 1. More importantly, due to step 2(b), the barrier κ0 introduced by vertex v0 has been reduced to804

zero and hence the algorithm only incurs a loss of 2 per vertex for the remaining sequence for a total805

loss of 3C + 2k − 1. Without the presence of step 2(b) each vertex will incur a loss of C leading to a806

large competitive ratio.807

Notice that our algorithm in Figure 7 is designed for a setting where in each time step complaints808

arrive for a single vertex in G. If multiple vertices accumulate complaints in a time step, we can809

simply order them arbitrarily and run the algorithm on the new sequence. Let OPT be the optimal810

offline algorithm according to the chosen ordering of the complaints. Let OPT’ be the optimal offline811

algorithm when processing multiple complaints per time step. Notice that for each time step, the loss812

of OPT cannot be larger than that of OPT’ since any choice available to OPT’ is available to OPT as813

well. Hence it is enough to design an algorithm that is competitive with OPT. In particular, we have814

the following theorem.815

Theorem 3. Let G be a graph with fixing costs at least one. Then, the algorithm of Figure 7 achieves816

a competitive ratio of at most 2B + 4 on any sequence of complaints with loss values in [0, B].817

Proof. Recall that `i(t) denotes the loss incurred by vertex vi at time t. We divide this loss into the818

amount that was used to reduce the κj value of one its neighbors and the rest. Formally, for every819

edge (i, j) we define δti→j as follows. If in time step t, the complaint arrived for vertex i and step820

2(b) was executed to reduce κj by ∆, then we define δti→j = ∆. Otherwise we define δti→j to be821

zero. We also define822

δti→i = `i(t) −
∑

j∈N(i)

δti→j . (20)

If vertex vi is fixed fi times during the course of the algorithm then we have that the total loss incurred823

by the algorithm can be written as824

Loss(A) =

k∑
i=1

fici +

k∑
i=1

T∑
t=1

(
δti→i +

∑
j∈N(i)

δti→j
)
. (21)
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Next we notice that each time a vertex vi is fixed it accumulates a value of κi = ci. Furthermore, the825

total loss incurred by vertices as a result of executing step 2(b) is upper bounded by the total κ value826

accumulated. Hence we have827

T∑
t=1

k∑
i=1

∑
j∈N(i)

δti→j ≤
k∑
i=1

fici. (22)

Substituting into (21) we have828

Loss(A) ≤
k∑
i=1

2fici +

k∑
i=1

T∑
t=1

δti→i. (23)

Next we bound the above loss for each vertex separately. For a given vertex vi that is fixed fi times829

by the algorithm, we can divide the time steps into fi+ 1 intervals consisting of an interval I0 starting830

from t = 0 up to (and including) the first time vi is fixed. The next fi intervals correspond to the831

time spent by vi between two successive fixes. Denoting these intervals as I0, I1, . . . we have that832

2fici +

k∑
i=1

T∑
t=1

δti→i =
∑
t∈I0

δti→i +
∑
t∈Ir

(2ci + δti→i). (24)

Next we compare the above to the loss incurred by OPT for vertex vi. Let `∗i(t) be the loss incurred by833

OPT for vertex vi at time t. We will denote by s∗t the state of the vertices at time t according to OPT.834

We instead redefine the loss incurred by OPT for vertex vi at time t to be835

˜̀
i(t) = `∗i(t) +

∑
j∈N(i)

δtj→i 1(s∗t (j) = 0). (25)

Notice that ∑
i∈N(j)

δtj→i 1(s∗t (j) = 0) ≤ `∗j(t).

Hence we get that836

k∑
i=1

T∑
t=1

˜̀
i(t) ≤

k∑
i=1

( T∑
t=1

`∗i(t) +
∑

j∈N(i)

`∗j(t)
)

(26)

≤ 2 · Loss(OPT). (27)

Next we consider each interval in (23) separately. For any interval Ir we have that837 ∑
t∈Ir

δti→i ≤ Bci. (28)

This is because after incurring a loss of more than ci, any additional loss incurred by vi is due to step838

2(b), since otherwise step 2(c) will be executed and vi will be fixed.839

Next consider interval I0. The loss incurred by the algorithm on vertex vi equals
∑
t∈I0 δ

t
i→i ≤ Bci.840

Either OPT fixes vi at least once during this interval or incurs the total loss. Either way we have that841

the loss incurred by OPT is at least842

min
(
ci,
∑
t∈I0

δti→i
)
≥
∑
t∈I0 δ

t
i→i

B
. (29)

Next consider an interval Ir between two successive fixes. The loss incurred by the algorithm for
vertex vi during this interval is at most∑

t∈Ir

δti→i + 2ci ≤ (B + 2)ci.

If OPT fixes vi at least once during this interval then it incurs a cost of ci. If vi remains unfixed in843

OPT during the course of the interval then OPT incurs a loss of at least ci. This is because vertex vi844
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went from being unfixed to fixed during the second half of the interval and hence a total loss of at845

least ci must have arrived for the vertex vi during this interval.846

Finally, suppose vertex vi is fixed in OPT before the start of the interval and remains so through-847

out. Since vi goes from being fixed to unfixed during the first half of the interval, we must have848 ∑
t∈Ir

∑
j∈N(i) δ

t
j→i ≥ ci. Furthermore, since vi is fixed by OPT during this interval, OPT must849

incur a loss on all neighbors of j. In particular, from (25) we have850 ∑
t∈Ir

˜̀
i(t) ≥

∑
t∈Ir

∑
j∈N(i)

δtj→i 1(s∗t (j) = 0) (30)

≥ ci. (31)

In either of the three cases we have that the loss
∑
t∈Ir

˜̀
i(t) incurred by OPT is at least a 1/(B + 2)

fraction of the loss incurred by the algorithm. Summing over all the vertices and the corresponding
intervals, we get that the total loss incurred by the algorithm can be bounded by

Loss(A) ≤ (B + 2)

T∑
t=1

k∑
i=1

˜̀
i(t) ≤ 2(B + 2)Loss(OPT).

851

D Experiments852

In this appendix we present experimental results demonstrating the practical applicability of our853

proposed framework and algorithms. We view our work as primarily theoretical and of course a more854

extensive empirical evaluation is a direction for future work. Regarding the choice of baselines, we855

are not aware of any efficient algorithms that directly apply to our setting. Existing general algorithms856

for solving MDPs will not scale to our setting since their complexity is proportional to the number of857

states. Note that in our experiments we will demonstrate that our proposed algorithms can compete858

with the offline optimal (the best solution in hindsight) which is a strong comparison point.859

D.1 Experiments with simulated data860

We evaluate the performance of our algorithms developed in the stochastic setting of Section 3. We861

first detail experiments on simulated data. We consider a simulated environment where the conflict862

graph G is generated from the Erdős-Renyi model: G(k, p) where we set p = 2 log k
k . This ensures863

that with high probability G is connected. Next we generate correlation sets C consisting of pairs864

of vertices in G sampled uniformly at random. For a parameter α > 0 that we vary, we choose αk865

pairs of vertices at random and add them as correlation sets in C. Hence on average, each vertex866

participates in α correlation sets. We also add to C singleton sets for each vertex in G. The fixing cost867

of each vertex is samples uniformly at random in the range [1, 5].868

Next we describe the choice of parameters governing the loss distribution of the different states in869

the MDP. For a correlation set {i} of size one corresponding to vertex vi, we sample a parameter γ1i870

from the beta distribution Beta(0.5, 0.5). For a given state s with s(i) = 1, the loss generated due to871

{i} is drawn from an exponential distribution with mean γ1i . For a given state s with s(i) = 0, the872

loss generated due to {i} is drawn from an exponential distribution with mean λγ1i , where λ > 1 is873

a parameter that we vary. For a correlation set {i, j} of size two, we generate two parameters γ1,1i,j874

and γ1,0i,j from the beta distribution Beta(0.5, 0.5) such that γ1,0i,j > γ1,1i,j . For a given state s with875

s(i) = 1 and s(j) = 1, the loss generated due to {i, j} is drawn from an exponential distribution876

with mean γ1,1i,j . For states where s(i) = 0 and s(j) = 1 or vice-versa, the loss is generated from an877

exponential distribution with mean γ1,0i,j . Finally, for states where both s(i) = 0 and s(j) = 0, the878

loss is generated from an exponential distribution with mean λγ1,0i,j .879

In general, computation of the optimal state in (??) requires time exponential in k. In our experiments880

we approximate the optimal state by a linear programming relaxation of the optimization in (??) and881

use the appropriately rounded linear programming relaxation solution as a proxy for the optimal state.882

883
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Figure 8: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure 6 on a graph with k = 50 criteria. The parameter α controls the total number of correlation
sets. For each value of α, we add αk random pairs of vertices into correlation sets.

For general m, our proposed algorithms in Figure 3 and Figure 6 have complementary strengths.884

While the algorithm in Figure 3 incurs a higher regret as a function of the number of time steps T ,885

its running time has a polynomial dependence on the parameter α, i.e., the number of correlation886

sets that a vertex participates in, on average. The algorithm in Figure 6 incurs a smaller regret of887

Õ(
√
T ) as a function of T at the expense of an exponential dependence on α. In Figures 8 and 9 we888

empirically demonstrate this behavior where for small values of α, the Õ(
√
T )-regret algorithm is889

much better, whereas for higher values of α the Õ(T 2/3)-regret algorithm is more desirable.890

For the case of m = 1 however, i.e., singleton correlation sets, the algorithm in Figure 6 achieves a891

smaller regret and runs in polynomial time and hence is expected to outperform the explore-exploit892

based algorithm from Figure 3. As can be seen from Figure 10 this is indeed the case and the Õ(
√
T )893

regret algorithm significantly outperforms the Õ(T 2/3) regret algorithm.894

D.2 Experiments with a real-world dataset895

In this section we demonstrate via experiments how our framework and algorithms can be applied896

to real world data. In order to do this we study the UCI Adult dataset [Kohavi, 1996]. The dataset897

comprises of 48852 examples each represented using 124 features, after binarizing categorical898

features. Each data point corresponds to a person and the label is a 0/1 value representing whether the899

income of the person is more or less than $50,000. The dataset contains information about sensitive900
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Figure 9: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure 6 on a graph with k = 100 criteria. The parameter α controls the total number of correlation
sets. For each value of α, we add αk random pairs of vertices into correlation sets.

attributes such as race and gender. We will simulate an online scenario where a classifier is making901

predictions on the income of individuals. At each time step a batch of complaints arrive, the system902

incurs a loss and responds by transitioning to a different state (and updating the classifier). We next903

describe how we instantiate various components of our stochastic model from Section 3.904

Graph G: We take race as a sensitive attribute that takes values in {black,white}, to obtain two905

sub-populations and consider two natural criteria namely the true positive rate and the AUC score.906

This leads to four vertices tprw, tprb, aucw, aucb. Furthermore, we add the classifier accuracy as907

another criterion. This leads to total 5 vertices in the graph.908

Losses and Correlation Sets: We consider correlation sets of size one, and hence the total loss909

incurred at any state is the sum of the losses incurred by each criterion. For the accuracy criterion910

we simply define the loss to be the error of the system (the classifier). We next describe how we911

define the loss for the tprw criterion. We first compute the overall true positive rate of the classifier912

and also the true positive rate on the white population. If the two deviate by more than a threshold913

τ , then we penalize the classifier linearly in the violation. Therefore the loss for tprw is defined914

as: max(0, |tproverall − tprw| − τ). The loss for all other criteria is defined the same way. In915

our experiments we choose τ = 0.005. Note that while we fix the threshold apriori, our method916

does indeed offer a way to choose the thresholds themselves in a data-driven manner. This can be917

achieved by simply adding, for each metric i, additional metrics to the graph with different thresholds918

τi,1, τi,2, . . . and so on.919
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Figure 10: The figure shows the total accumulated loss incurred by the Algorithms in Figure 3 and
Figure ?? for the case of m = 1 and varying graph sizes.

Incompatibilities and State Transitions: To generate incompatibilities among criteria we compute920

a set of valid and invalid states as follows. For each state s ∈ {0, 1}5, we solve a constrained921

optimization problem on a training set to compute a classifier. We then evaluate the classifier on922

the test set to compute the loss of each criterion. If the loss of any criterion is more than a specific923

threshold then we consider the state as an invalid state, otherwise the state is valid. In our experiments924

we set a threshold of 0.4 for the accuracy criterion. For the considered criteria we present results925

for two thresholds, 2τ and 6τ , the first one resulting in 4 valid states and other second one resulting926

in 7 valid states. To solve a constrained optimization problem we use the tensorflow constrained927

optimization toolkit [Cotter et al., 2018a,b]. We use the default parameter settings provided by the928

toolkit. The toolkit is released under Apache license 2.0. If a state s has accuracy criterion set to 1,929

then we optimize for model accuracy subject to constraints for the other criteria that are set to 1 in s.930

If the accuracy criterion is set to 0 then we optimize for a constant loss function subject to constraints.931

Recall that our proposed algorithms function by fixing a criterion and as a result moving to another932

state. We obtain these state transitions as follows. If the algorithm asks to fix criterion vi in state s,933

we set s(i) = 1 to go to the next state s′. While s′ is invalid, we unfix the criterion (not including vi)934

with the highest loss in the state s′ to reach another state.935

Fixing Cost: We simply take the fixing cost of each criterion to be 1.936

Simulating Complaints: We divide the dataset into a set of 16000 examples that we use to update our937

classifier at each time step and the remaining test set to simulate the arrival of complaints. At each938

time step, we randomly select a batch of examples from the test set to generate complaints. This set939

of complaints is used to compute the loss of a given state at a given time step.940

Benchmark and Results: We compare our Algorithm from Figure ?? with an offline optimal solution941

that has been computed to find the state with the minimum average loss over the arrival sequence of942

complaints. The results are averaged over 10 independent runs.943

The results are shown in Figure 11 and Figure 12. We show results for two values of the threshold944

parameters and in each case plot the loss of the algorithm as compared to the benchmark, as well as945

the states chosen by the algorithm, as a function of the number of time steps. As can be seen from946

Figure 11 our algorithm quickly converges to the offline optimal solution after an initial exploration947
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phase. To get a better understanding of the performance of the algorithm in the initial phases, in948

Figure 12 we plot the same setting as in the case of Figure 11, but with x-axis on a log-scale. For949

the case of threshold being 0.01, one can see that the state 0 results in much higher loss and, during950

exploration, the algorithm alternates in a periodic pattern between states 1 and 3 that have similar951

loss. A similar pattern holds for the case of the threshold being 0.03. It is important to note that the952

choice of the loss functions was important in this case and that we did not weight each criterion by953

the volume of the complaints. This demonstrates that our algorithms, when combined with a good954

choice of the loss function, can be useful in practice.955

Figure 11: The figure shows the performance of the Algorithm in Figure ?? on the UCI Adult dataset.
We present results for two threshold values, and in each case plot the loss of the offline solution and
the online algorithm as well as the states chosen by the online algorithm, as a function of the time
steps.

Compute Resources. All our experiments were performed on a machine containing a Tesla P100956

GPU with 80 GB of RAM and four CPUs.957

Hyperparameters. For the case of simulated data the hyperparameters have been mentioned in958

Section D.1. For the case of real data, apart from the hyperparameters mentioned in Section D.2, we959

used the default learning rates and optimizers provided by the tensorflow constrained optimization960

toolkit [Cotter et al., 2018a,b]. We performed a random train/test split as detailed in Section D.2.961
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Figure 12: The figure shows the performance (x-axis on a log scale) of the Algorithm in Figure ?? on
the UCI Adult dataset. We present results for two threshold values, and in each case plot the loss of
the offline solution and the online algorithm as well as the states chosen by the online algorithm, as a
function of the time steps.

Assets. We used publicly available code from the tensorflow constrained optimization toolkit1 and962

the publicly available UCI Adult Dataset2.963

E Further discussion on the COMPAS example964

Throughout the main sections, we have mentioned that the choice of the loss function is important965

in the effectiveness of our model. We briefly discussed this in Section 3. Below, we present a more966

detailed discussion of the effect of the loss function on our model, by using the COMPAS scenario967

from Section 1 as an example.968

Loss function – COMPAS illustration. Consider the COMPAS example with a graph G with four969

criteria namely, false positive rate on populationA, false positive rate on populationB, AUC score for970

1License at: https://github.com/google-research/tensorflow_constrained_
optimization/blob/master/README.md.

2https://archive.ics.uci.edu/ml/datasets/adult.

30



population A and AUC score for population B. We want to understand what kinds of loss functions971

will result in an overall suboptimal system when our model and algorithms from Section 3. Suppose972

our algorithm take an action to fix a criterion and reach a state where the true positive rates and the973

AUC scores associated with the four criteria are: [0.1, 0.8, 0.5, 0.5]. Then a poor choice of the loss974

function would be f1 ·0.1+f2 ·0.8+f3 ·0.5+f4 ·0.5, where fi represents the fraction of complaints975

that trigger criterion i. Such a choice of the loss function will make our system vulnerable to the976

loudest voices in the system and as a result might not lead to a good solution at all. A more reasonable977

choice of the loss is 0.1 + 0.8 + 0.5 + 0.5, that weighs each criteria equally and does not take into978

account the underlying size of the population. Another alternative is λ1|0.1− 0.8|+ λ2(|0.5− 0.5|),979

that aims at keeping both the discrepancy in the false positive rate and the AUC scores small. Finally,980

the choice we make in our experiments of penalizing each criterion for the deviation from the981

value over the entire population, i.e., max(0, |tproverall − tprw| − τ), also leads to good solutions982

empirically.983

Another case where additive losses are a poor choice is if the criteria in G is not chosen carefully. For984

instance, consider a scenario in the COMPAS example where all except one of the criteria correspond985

to the performance of the system on population A. An additive loss would then naturally force the986

system to disproportionately favor population A over a period of time.987

While the above discussion used the COMPAS scenario as a specific example, we would like to988

re-iterate that our model and algorithms are much more general and can be motivated from different989

applications. As another motivating scenario for our work, consider a large organization that is990

building a classifier to detect harmful content that the users of their platform may be exposed to. The991

organization wants to build a classifier that has a good overall performance, say measured in terms992

of false positive rates (FPRs) and false negative rates (FNRs) (these in general could be arbitrary993

metrics). Furthermore, the organization also wants to ensure good FPRs and FNRs on users sliced by994

different attributes such as race, gender, geographic location, education level etc. While the overall995

classifier performance is still of paramount importance, the organization’s policy team may have996

given them guidelines to try and enforce that FPRs and FNRs on different slices are less than a certain997

threshold. However, not all such constraints may be satisfiable and the organization wants to figure998

out the optimal tradeoffs between these metrics via end user feedback. Our model and algorithms999

address this question1000
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