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Abstract

Recent advances in image tokenizers, such as001
VQ-VAE, have enabled text-to-image genera-002
tion using auto-regressive methods, similar to003
language modeling. However, these methods004
have yet to leverage pre-trained language005
models, despite their adaptability to various006
downstream tasks. In this work, we explore this007
gap by adapting a pre-trained language model008
for auto-regressive text-to-image generation,009
and find that pre-trained language models offer010
limited help. We provide a two-fold explanation011
by analyzing tokens from each modality. First,012
we demonstrate that image tokens possess013
significantly different semantics compared to014
text tokens, rendering pre-trained language015
models no more effective in modeling them016
than randomly initialized ones. Second, the017
text tokens in the image-text datasets are too018
simple compared to normal language model019
pre-training data, which causes the catastrophic020
degradation of language models’ capability.021

1 Introduction022

Recent works in text-to-image generation primar-023

ily employ two kinds of methods: diffusion mod-024

els (Ramesh et al., 2022; Saharia et al., 2022;025

Rombach et al., 2022) and auto-regressive mod-026

els (Ramesh et al., 2021; Yu et al., 2022b). The027

latter is facilitated by “image tokenizers”, such as028

VQ-VAE (van den Oord et al., 2017; Razavi et al.,029

2019) and VQ-GAN (Esser et al., 2021; Yu et al.,030

2022a), which transform an image into a sequence of031

discrete tokens, similar to text tokens (Figure 1 Left).032

Consequently, image and text tokens can be jointly033

modeled using auto-regressive algorithms like the034

Transformer (Vaswani et al., 2017) (Figure 1 Right).035

The superiority of diffusion-based models when036

compared with auto-regressive-based methods037

for text-to-image generation still remains unclear.038

OpenAI’s pioneering work, DALL-E (Ramesh et al.,039

2021), showcased the potential of auto-regressive040

methods in this domain. Yet, its successor, 041

DALL-E 2 (Ramesh et al., 2022), transitioned to a 042

diffusion-based architecture and achieved enhanced 043

image generation quality. Later, Google released 044

Imagen (Saharia et al., 2022) (diffusion-based) and 045

Parti (Yu et al., 2022b) (auto-regressive-based) at the 046

same time and demonstrated their comparable gen- 047

eration quality. Similarly, the retrieval-augmented 048

methods, Re-Imagen (Chen et al., 2022) (diffusion- 049

based) and CM3leon (Yu et al., 2023b) (auto- 050

regressive-based), display similar performance in 051

text-to-image generation tasks. A comparison based 052

on zero-shot FID (Heusel et al., 2017) on the COCO 053

dataset (Lin et al., 2014) can be found in Figure 2. 054

While these two approaches achieve similar 055

performance, it is intriguing that diffusion- 056

based models consistently utilize pre-trained 057

text encoders, whereas their auto-regressive 058

counterparts generally do not. For instance, 059

Imagen (Saharia et al., 2022) (diffusion-based) 060

reports that employing a stronger pre-trained text 061

encoder, specifically T5 (Raffel et al., 2020), yields 062

substantial improvements to using CLIP (Radford 063

et al., 2021). Furthermore, they observe that scaling 064

up the T5 text encoder leads to more pronounced 065

improvements than scaling up the diffusion models. 066

Conversely, Parti (Yu et al., 2022b) (auto-regressive- 067

based) shows that using a pre-trained text encoder 068

does not necessarily improve image quality in its 069

Appendix. However, Parti employs an encoder- 070

decoder architecture and uses BERT (Devlin et al., 071

2019), a relatively inferior text encoder, to initialize 072

the encoder only. It remains unclear whether a 073

decoder-only approach would benefit from recent 074

advances in large language models (LLMs), given 075

the clear similarity between language modeling and 076

auto-regressive text-to-image generation. 077

In this work, we explore the potential of 078

pre-trained LLMs for auto-regressive text-to-image 079

generation. To enable the model to process both 080

text and image tokens, we expand the size of the 081
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Figure 1: Adapting language models for auto-regressive text-to-image generation. (Left) An image is fed into
an image tokenizer (MoVQGAN (Zheng et al., 2022)) and converted to a grid of discrete tokens, and it can be
well-reconstructed with these image tokens. (Right) As images are converted to tokens similar to text tokens, we
can enable language models to generate images by adapting its embedding layer and output layer.
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Figure 2: Auto-regressive and diffusion based models
achieve similar performances on text-to-image gener-
ation. However, while all the diffusion models leverage
pre-trained language models, all the auto-regressive
models do not.

embedding and output layers by incorporating an082

image vocabulary from the image tokenizer. We083

initialize these added weights either randomly or084

using a novel contrastive alignment (elaborated085

later in Section 3.2), while the remaining weights086

are directly copied from the original models. Sub-087

sequently, we fine-tune the model on image-caption088

datasets, as depicted in Figure 1 Right.089

Surprisingly, the results show that pre-trained090

language models achieve the same loss and image091

generation quality as the model that is entirely092

randomly initialized and trained from scratch093

(Figure 3). Furthermore, we observe a catastrophic094

deterioration in the model’s text capabilities, such095

as world knowledge or in-context learning, after096

only minimal steps of fine-tuning (Table 1).097

To understand this phenomenon, we break down098

the cross-entropy loss on image and text tokens,099

and find that 1) the loss on image tokens is the same100

between the pre-trained and randomly initialized101

model, and 2) the loss on text tokens of the pre-102

trained model is significantly lower at the beginning103

compared to the randomly initialized models, but104

the gap soon disappears after training (Figure 4).105

The first finding of the loss on the image tokens is106

particularly interesting. We hypothesize that image107

tokens obtained from image tokenizers might either108

lack semantics or possess significantly different109

semantics compared to text tokens, which renders110

language pre-training not transferable to the image111

modeling task. To verify this hypothesis, we con- 112

duct unconditional image generation experiments 113

by training the model on image tokens only. Our 114

results show that 1) the pre-trained model achieves 115

the same loss as the randomly initialized model, and 116

2) freezing any part of the pre-trained model results 117

in a loss degradation (Figure 5). These indicate that 118

optimal weights for language and image modeling 119

are fundamentally different, making language 120

pre-training not transferable to image modeling. 121

In summary, we share our experimental findings 122

about pre-trained language models do not help 123

auto-regressive text-to-image generation, and offer 124

an explanation: 1) the intrinsic differences between 125

image and text tokens make language pre-training 126

ineffective for the image token modeling, and 2) 127

the disproportionate ratio between image and text 128

tokens (usually 30:1 for image-caption datasets) 129

minimizes the impact of loss on text tokens and 130

leads to catastrophic forgetting. 131

2 Pre-trained Language Models 132

Do Not Help Text-to-Image Generation 133

2.1 Experimental Setup 134

Language model. We use the publicly available 135

open_lm codebase and its open_lm-1b model 136

for our experiments (Gururangan et al., 2023). 137

This language model contains ∼1B parameters 138

and is trained on 1.6T tokens on a mix of RedPa- 139

jama (Computer, 2023), Pile (Gao et al., 2020), 140

S2ORC (Lo et al., 2020), The Pile of Law (Hen- 141

derson et al., 2022), Deepmind Math (Saxton 142

et al., 2019), and RealNews (Zellers et al., 2019b). 143

It achieves better or comparable performance 144

compared to models with similar size such as 145

OPT-1.3B (Zhang et al., 2022), Pythia-1B (Bi- 146

derman et al., 2023), Neox-1.3B (Black et al., 147

2022), OPT-IML-1.3B (Iyer et al., 2022) on an 148

average of 11 tasks such as HellaSwag (Zellers 149

et al., 2019a) and MMLU (Hendrycks et al., 150

2021). More details can be found in the open_lm 151

repository (Gururangan et al., 2023). 152
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Figure 3: Pre-trained language models do not help
auto-regressive text-to-image generation. Models are
trained on the HQITP-134M image-caption dataset with
64 A100 80GB GPUs using batch size 1M tokens. EMA
is Exponential Moving Average.

Image tokenizer. We use SBER-153

MoVQGAN (Zheng et al., 2022) as the image154

tokenizer, which is the current state-of-the-art155

publicly available image tokenizer that achieves156

0.686 FID on Imagenet image reconstruction.157

Given an image with 256 × 256 resolution, it158

converts an image to 1,024 tokens with a vocabulary159

size of 16,384. Figure 1 (Left) shows a real160

reconstruction example from this tokenizer.161

Dataset. For multi-modal training, we use an162

internal dataset referred to as High Quality Image-163

Text Pairs (HQITP) (Ranasinghe et al., 2023), which164

contains 134M high-quality image-caption pairs.165

We pre-process the dataset before training. Each im-166

age is center-cropped to 256× 256 and converted to167

1,024 tokens. Each caption is tokenized with NeoX168

tokenizer with an average of 30 tokens. We add six169

special tokens corresponding to the beginning and170

end of document, text segment, and image, respec-171

tively. This results in input sequences of the form172

“<doc> <text> ...text tokens... </text> <image>173

...image tokens... </image> </doc>”, and pad them174

into 1,152 tokens with the special <pad> token.175

Training setups. Models are trained with 100B to-176

kens using 64 A100 80GB GPUs with batch size 1M177

tokens. We use the AdamW (Loshchilov and Hutter,178

2019) optimizer with a cosine learning rate schedule179

with 2K warm-up steps and a peak learning rate of180

0.0003. This mimics the settings reported in (Agha-181

janyan et al., 2023). We also tried different hyper-182

parameters, such as learning rates from 0.00005 to183

0.0003 and batch size from 0.5M to 2M tokens, and184

found no significant influences on the conclusions.185

2.2 Results186

In Figure 3, we present the perplexity (exponential187

of loss) during training for both the pre-trained and188

randomly initialized models. Intriguingly, across189

the entire 100B token training regimen, the loss190

Original Completion Completion after Training
5B Tokens

Simply put, the theory of
relativity states that the speed
of light is the same for all ob-
servers, regardless of their
location in the universe.

Simply put, the theory of
relativity states that iles must
be able to see the invisible.

Translate English to French: Translate English to French:
sea otter => loutre de mer sea otter => loutre de mer
peppermint => menthe
poivrée

peppermint => menthe
poivrée

plush girafe => girafe peluche plush girafe => girafe peluche
cheese => fromage cheese => I love cheese

Table 1: Concrete examples of forgetting. We observe
a severe deterioration of the model’s language capability,
such as knowledge and in-context learning, after a small
amount of training. Model completions are bolded.

of the pre-trained model aligns closely with that 191

of the randomly initialized one. Beyond this, a 192

sharp decline in text capabilities of the pre-trained 193

model is observed after training on 5B tokens, as 194

illustrated in Table 1. At this point, both the model’s 195

world knowledge and its in-context learning ability 196

are entirely diminished. 197

To delve deeper into this phenomenon, we sep- 198

arate the cross-entropy loss into two components: 199

text tokens and image tokens, displayed separately 200

in Figure 4. As anticipated, the pre-trained model 201

begins with a significantly lower text loss in 202

comparison to its randomly initialized counterpart. 203

Yet, due to the overwhelming image-text token 204

ratio (30:1), this initial advantage is obscured in 205

the aggregate loss. Furthermore, any benefit the 206

pre-trained model offers in text loss diminishes 207

soon during training. In contrast, for image tokens, 208

there is no difference between the pre-trained and 209

randomly initialized models. We hypothesize that 210

the inability of effectively transferring a pre-trained 211

language model to image token modeling is caused 212

by the distinction between image and text tokens. 213

Moreover, loss on text tokens is substantially 214

lower than image tokens, and even lower than 215

typical language models trained on text-only data. 216

This is because texts in image-caption datasets such 217

as HQITP are less complex than those in standard 218

text-only pre-training corpora, which also explains 219

the catastrophic degradation of the model’s text 220

capability. 221

3 Image Tokens Are 222

Drastically Different From Text Tokens 223

Why there is no difference between the loss of 224

pre-trained and randomly initialized models on the 225
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Figure 4: Break-down loss on image and text tokens.
Models are trained on the HQITP-134M image-caption
dataset with 64 A100 80GB GPUs using batch size 1M
tokens.

image tokens? We hypothesize image tokens are226

significantly different from text tokens, for example,227

they lack semantics or have drastically different228

semantics compared to text tokens, which makes229

the pre-trained language model not transferable to230

image token modeling. Our unconditional image231

generation and image-token alignment experiments232

verify this hypothesis.233

3.1 Unconditional Image Generation234

To assess if pre-trained language models benefit235

image tokens, we perform unconditional image236

generation experiments. Unlike the text-to-image237

generation setup, we removed all text tokens,238

leaving only the image tokens. This approach239

rigorously examines if image tokens benefit from240

pre-trained language models. As shown in Figure 5,241

pre-trained language models yield the same loss as242

models initialized randomly.243

Additionally, we selectively tune components of244

the pre-trained models: 1) only the embedding and245

output layer; 2) 1 plus layer norm and positional246

embedding; and 3) 2 plus the first half of layers;247

4) 2 plus the feed-forward layers (FFN). Figure 5248

presents these loss metrics. The findings reveal249

that none of these configurations achieves as low250

a loss as a fully tunable model. This underscores251

the divergence in optimal weights for modeling text252

and image tokens, suggesting that any part of the253

text-trained weights is sub-optimal to transfer to254

image tokens.255

3.2 Image-Text Token Contrastive Alignment256

To understand whether image tokens have similar257

semantics as text tokens, we aligned image tokens258

with text tokens using a contrastive approach, in-259

spired by methods like CLIP (Radford et al., 2021).260

Given an image, we tokenize it into 1024 tokens and261

compute its bag-of-words image embeddings as262

its representation. Similarly, we tokenize the corre-263

sponding caption and compute its bag-of-words text264

embeddings. The text embeddings are initialized265

from a pre-trained language model while the image266

Figure 5: Pre-trained language models do not help to
model image tokens. Models are trained only on the
HQITP dataset’s image tokens without any text tokens.
We also compare the full fine-tuning with electively
fine-tuning components of the pre-trained models
(shown in parenthesis). EMA 0.95 is applied to the plot.

Figure 6: Image-text token contrastive alignment. (Left)
The contrastive loss plateaus quickly, indicating a
difficulty in aligning text and image tokens directly at
a bag-of-words level. (Right) The learnable temperature
in the contrastive loss during training for reference.

embeddings are randomly initialized. For a batch 267

of N = 1024 image-caption pairs, the contrastive 268

objective from CLIP is employed to maximize the 269

cosine similarity between matched image-caption 270

l2-normalized representations and to minimize the 271

similarity for non-matching pairs. Only the image 272

embeddings are updated during training. 273

In Figure 6, we illustrate that the contrastive loss 274

plateaus quickly, indicating a difficulty in aligning 275

text and image tokens directly at a bag-of-words 276

level. Indeed, after training, when querying the 277

closest text tokens for any image token, we observe 278

that they predominantly align with noisy, seman- 279

tically void text tokens. Furthermore, when we use 280

the trained image embeddings as initialization for 281

text-to-image generation, as opposed to random 282

initialization, there is no discernible improvement. 283

4 Conclusion 284

This study highlights the difficulty of naively 285

adapting a text-only language model to handle 286

multi-modal contents, such as texts and images. 287

Given the challenge of the disparities between 288

image tokens and text tokens, a valuable avenue 289

for future experiments is to employ tokenizers 290

that align semantically with text tokens, such as 291

SEED (Ge et al., 2023) or SPAE (Yu et al., 2023a). 292

4



Limitations293

Our study has some limitations. First, the results294

are based on the VQGAN image tokenizer, which295

does not align semantics between image tokens296

and text tokens. Tokenizers that semantically297

align image tokens with text tokens might yield298

different outcomes. Second, we observed severe299

degradation in language model capabilities during300

fine-tuning, suggesting that exploring methods to301

avoid catastrophic forgetting could be a promising302

future research direction. Additionally, the exper-303

iments required extensive computational resources,304

which might limit reproducibility. Despite these305

limitations, our findings remain useful and provide306

valuable information for future research.307
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