
Comparison of Current Approaches to Lemmatization: A Case Study in
Estonian

Aleksei Dorkin
Institute of Computer Science

University of Tartu
aleksei.dorkin@ut.ee

Kairit Sirts
Institute of Computer Science

University of Tartu
kairit.sirts@ut.ee

Abstract

This study evaluates three different
lemmatization approaches to Estonian—
Generative character-level models, Pattern-
based word-level classification models, and
rule-based morphological analysis. Ac-
cording to our experiments, a significantly
smaller Generative model consistently out-
performs the Pattern-based classification
model based on EstBERT. Additionally, we
observe a relatively small overlap in errors
made by all three models, indicating that
an ensemble of different approaches could
lead to improvements.

1 Introduction

Recently, two different approaches have been
adopted for model-based lemmatization. The Gen-
erative approach is based on encoder-decoder mod-
els and they generate the lemma character by char-
acter conditioned on the word form with its relevant
context (Qi et al., 2020; Bergmanis and Goldwater,
2018). The Pattern-based approach treats lemmati-
zation as a classification task (Straka, 2018), where
each class is a transformation rule. When the cor-
rect rule is applied to a word-form, it unambigu-
ously transforms the word-form to its lemma.

Our aim in this paper is to compare the perfor-
mance of these two lemmatization approaches in
Estonian. As a third approach, we also adopt the
Estonian rule-based lemmatizer Vabamorf (Kaalep
and Vaino, 2001). As all three approaches rely on
different formalisms to lemmatization, we are also
interested in the complementarity of these methods.
The Generative approach is the most flexible, it
has the largest search space and therefore it can
occasionally result in hallucinating non-existing
morphological transformations. On the other hand,
the search space of the Pattern-based approach is
much smaller as the model only has to correctly

choose a single transformation class. However, if
the required transformation is not present in the set
of classes then the model is blocked from making
the correct prediction. Similarly, the rule-based
system can be highly precise but if it encounters a
word that is absent from its dictionary the system
can be clueless even if this word is morphologically
highly regular.

One problem with the recently proposed pattern-
based approach implemented in the UDPipe2 is
that the transformation rules mix the casing and
morphological transformations. This means that
for many morphological transformations there will
be two rules in the ruleset—one for the lower-cased
version of the word and another for the same word
with the capital initial letter that needs to be low-
ered for the lemma—which increases the size of
the ruleset considerably and thus artificially com-
plicates the prediction task. Thus, in many cases
a more optimal approach would be to treat casing
separately from the lemmatization. Additionally, in
the UD Estonian treebanks, lemmas include anno-
tations of derivational and compounding processes
marked by special symbols. However, these anno-
tations are inconsistent in the data which confuses
the models and also complicates the transformation
rules. Thus, for our evaluation to be unaffected
by these factors, we also train our models on the
lowercased data with the special symbols removed.

Lemmatization models are commonly token-
based, meaning that if the same word-form (with
its relevant context) appears several times in the
dataset, these repeating instances are kept in the
data and thus the training and evaluation sets re-
flect the natural distribution of words. In contrast,
for the morphological reinflection task, the custom
has been to train type-based models, in which each
lemma and morphological feature combination is
presented to the model only once. We were in-
terested in how well the type-based approach can
work for lemmatization and thus we also experi-



(a) Generative approach.

(b) Pattern-based approach.

Figure 1: Schematic representations of the genera-
tive and pattern-based approaches.

mented with type-based models where appropriate.
In sum, our contributions in this paper are

first comparing three different lemmatization ap-
proaches on two Estonian datasets with different
domains with the goal of assessing the complemen-
tarity of these systems. Secondly, we investigate
the effect of casing and special symbols as well
as type- vs token-based training and evaluation for
each comparison system.

2 Lemmatization approaches

This section gives a brief overview of the current
approaches to lemmatization.

2.1 Generative approach

Generative lemmatization involves using a neural
network to convert a word form, represented as a
sequence of characters, into its lemma, also repre-
sented as a sequence of characters. The model is
trained to predict the lemma in an auto-regressive
manner, meaning that it makes predictions one char-
acter at a time based on the previously predicted
characters. Commonly, generative lemmatization
makes use of part of speech and morphological in-
formation as context (Qi et al., 2020). However,
it is not necessarily limited to that. For example,
Bergmanis and Goldwater (2018) propose using

surrounding words, subword units, or characters as
context for a given word form.

2.2 Pattern-based approach

In the Pattern-based lemmatization, the model as-
signs a specific transformation class to each word
form, and then uses a predetermined rule to trans-
form the word form to the lemma. The approach
is not bound to any specific method of classifi-
cation, or for that matter, representation of input
features. For instance, in the UDPipe2 (Straka,
2018), the patterns are sequences of string edit op-
erations, while the Spacy’s lemmatizer uses an edit
tree structure as a pattern (Müller et al., 2015).

2.3 Rule- and lexicon-based approaches

Rule-based approaches to lemmatization use var-
ious rule formalisms such as rule cascades or fi-
nite state transducers to transform the word form
into lemma. For instance, the rule-based machine
translation library Apertium also includes rule-
based morphological analyzers for many languages
(Khanna et al., 2021). For the Estonian language,
there is a morphological analyzer called Vabamorf
(Kaalep and Vaino, 2001). In the dictionary-based
approach, the lemma of a word is determined by
looking it up in a special dictionary. The dictio-
nary may include word forms and their POS tags
with morphological features, which can be used to
identify the correct lemma. Such morphologial dic-
tionaries include for instance Unimorph (McCarthy
et al., 2020) and UD Lexicons (Sagot, 2018).

What these approaches have in common is that,
intrinsically, they are not able to fully consider the
context in which a given word form appears, which
prevents them from disambiguating multiple candi-
dates. So, for that purpose they have to rely on sep-
arate tools, such as Hidden Markov Models. They
are also language-specific. The advantage, how-
ever, is that they are not dependent on the amount
of training data, and can be quite precise.

3 Data

We use the Estonian Dependency Treebank (EDT)
and the Estonian Web Treebank (EWT) from the
Universal Dependencies collection version 2.10.
The EDT comprises several genres such as newspa-
per texts, fiction, scientific articles, while the EWT
is composed of texts from internet blogs and fo-
rums. The statistics of both datasets are given in
Table 1.



train dev test

EDT # of sentences 24633 3125 3214
EDT # of tokens 344953 44686 48532

EWT # of sentences 4579 833 913
EWT # of tokens 55143 10012 13176

Table 1: Number of sentences and tokens per split
in Estonian Dependency Treebank and Estonian
Web Treebank as of version 2.10.

4 Implementation

For the Generative approach, we adopted the neural
transducer by Wu et al. (2020), previously used for
morphological reinflection. Neural transducer is a
character-level transformer, which takes individual
characters of a word form and morphological tags
as input, and outputs the resulting lemma character-
by-character.

For the Pattern-based model we adopted an ap-
proach similar to UDpipe2 (Straka, 2018). We used
a transformer-based token classification model by
fine-tuning EstBERT (Tanvir et al., 2020) to predict
the correct transformation class (form → lemma)
for every token in a sentence. Our model uses Hug-
gingFace (Wolf et al., 2020) TokenClassification
implementation. Moreover, we reuse the code to
generate transformation classes from UDpipe2.1

For the rule-based approach, we adopted
the Estonian rule-based morphological analyzer
Vabamorf (Kaalep and Vaino, 2001). We used
Vabamorf via EstNLTK, which is a library that
provides an API to various Estonian language tech-
nology tools (Orasmaa et al., 2016). We utilized
Vabamorf’s HMM-based disambiguation capabili-
ties to output a single lemma for each token.

5 Results

Tables 2 and 3 show the results on the EDT and
EWT validation sets respectively. Overall, the
Generative model (in the token-based training set-
ting, see below) outperforms both the Pattern-
based model and the rule-based Vabamorf on both
datasets.

The first column (Original) in Table 2 shows
results on the EDT data in its original case sensi-
tive form and including special symbols marking
derivation and compounding. The second column

1https://github.com/ufal/udpipe/blob/
udpipe-2/udpipe2_dataset.py

Original No Sym Type Eval

Gen Token 95.49 97.59 97.61
Gen Type 91.55 95.64 95.10

Pattern-based 95.04 96.34 –

Vabamorf 87.78 91.66 –
Vabamorf Oracle 99.31 99.47 –

Table 2: Lemmatization accuracy on the EDT val-
idation set. Original: unaltered EDT, No Sym:
lowercased EDT with special symbols removed,
Type Eval: evaluation on distinct word types with
No Sym setting.

Trained on EWT EDT

Gen Token 95.88 96.28
Gen Type 94.63 95.97

Pattern-based 95.02 87.97

Vabamorf 91.75 91.74
Vabamorf Oracle 96.98 96.98

Table 3: Lemmatization accuracy on the EWT val-
idation set. The first column contains results for
models trained on EWT, the results for models
trained on EDT are shown in the second column.

(No Sym) shows the results of models trained on
lowercased data with special symbols removed. All
approaches show a noticeable improvement in ac-
curacy in the simplified environment. Although the
improvement with the Pattern-based model is the
smallest, it has the largest implications—ignoring
casing and removing special symbols halves the
number of transformation classes.

The top part of the Tables 2 and 3 compare the
results of the Generative model trained on word to-
kens and word types. Additionally, the last column
of the Table 2 also shows the evaluation on unique
types of both the token-based and type-based mod-
els trained in the No Sym setting. The Generative
model trained on word tokens always performs bet-
ter than the model trained on unique word types
even when evaluated on word types. We conclude
that there does not seem to be any disadvantages to
token-based training.

In Table 3, EWT validation set is evaluated in
two settings. The first column shows the results
of the in-domain models trained on the EWT train
set, the results in the second column are obtained



with the out-of-domain models trained on the EDT
train set. We observe that the Generative models
perform well in the cross-domain environment, and
outperform the model trained on the EWT train set.
Meanwhile, the Pattern-based model trained on the
EDT shows a significant drop in performance when
evaluated on EWT. Vabamorf also demonstrates a
degraded performance on EWT.

The last row in both Tables 2 and 3 show the
performance of the Vabamorf in the oracle mode,
in which case the prediction is considered correct
if the true lemma appears in the list of generated
candidates. We observe a significant improvement
in the accuracy of Vabamorf in the oracle mode.
This means that a large chunk of errors made by
the rule-based approach is the result of poor dis-
ambiguation, rather than incorrect morphological
analysis.

In addition to comparing the performance of dif-
ferent approaches, we are interested in whether
there is any complementarity in the errors made
by models based on different approaches. Figure 2
presents a Venn diagram of the token-level errors
made by each system. We note that the area of the
intersection of all three models is relatively small,
meaning that the number of words where all mod-
els make an error is quite small, suggesting that
different approaches can complement each other in
an ensemble setting.

6 Discussion

Because the UDPipe2’s pattern-based approach
was highly successful in the Sigmorphon 2019
shared task (Straka et al., 2019), we expected it
to perform well also in our case, especially because
instead of the frozen BERT weights used in the
UDPipe2, we fine-tuned the full model. However,
the best shared task lemmatization scores for the
Estonian language were obtained with the genera-
tive contextual lemmatizer by Bergmanis and Gold-
water (2018), which perhaps explains the success
of the Generative model also in our experiments.
When analyzing the errors made by each three ap-
proaches, we can see that the set of errors where all
models overlap is relatively small (302 out of 5194,
5.8%), which suggests that different approaches
can potentially compensate for each other and thus
an ensemble of different methods can be useful.

The rule-based Vabamorf made the largest num-
ber of errors. However, when we evaluated it in the
oracle mode on EDT, it covered the vast majority of

346 860
252

3044

179
211

302

Generative

Pattern-
based

Vabamorf

Figure 2: Venn diagram of the token-level lemma-
tization errors made by each model on the EDT
validation set.

correct answers. This implies that Vabamorf could
gain a lot from a better disambiguator than the cur-
rent HMM-based one. This was not the case for
EWT which, being a web treebank, contains more
word forms (such as neologisms, more recent loan-
words, and so on) missing from the Vabamorf’s
lexicon. Thus, while Vabamorf can be a good solu-
tion for formal and grammatically correct Estonian,
it is less suitable for more noisy web texts.

The approach to creating transformation rules
suggested by the developers of UDpipe may output
equivalent rules, i.e., when applying these rules to
a surface form, the result is identical. We noticed
that the Pattern-based model is able to identify such
cases. This means that an incorrectly predicted
label can result in a correct lemma. For exam-
ple, two rules ↓0;d¦---+m+a and 0;d¦-+m→-
transform the third person plural present tense form
into the corresponding -ma infinitive (vabandavad
→ vabandama “to apologize”). The difference be-
tween these rules is that the former rule removes
three last letters and adds ma-suffix, while the lat-
ter removes the last letter, and then replaces the
existing letter preceding the existing a with m. We
suggest that such a peculiarity may be used to probe
language models for morphological knowledge.

The five most common rules are shown in Ta-
ble 4. The most common rule is the “do-nothing”
rule, which accounts for more than half of the oc-
currences in the EDT train set. The next three most
common rules with smaller but still considerable
frequency involve removing suffixes of varying



% Rule Description

54.1 ↓0;d¦ Do nothing
8.3 ↓0;d¦- Remove the last letter
5.2 ↓0;d¦-- Remove two last letters
3.4 ↓0;d¦--- Remove three last letters
3.3 ↓0;d¦-+m+a Replace the last letter with ma

Table 4: Top 5 most common transformation rules
present in the train split of the EDT dataset.

length. The last rule fitting into our top-5 list is
specific to verbs, replacing the last character with
the lemma suffix for verbs. The total set contains
a very long tail of transformation rules that appear
only a few times or just once, such as rules corre-
sponding to the transformation of infrequently used
suppletive forms.

7 Conclusion

We compared three lemmatization approaches on
two Estonian datasets from different domains and
found that on both datasets the Generative encoder-
decoder approach trained from scratch outperforms
both the rule-based Vabamorf as well as the Pattern-
based approach fine-tuned from a large pre-trained
language model. We observed complementary er-
ror patterns for each three approaches, which sug-
gests that ensembling techniques can take advan-
tage of the complementary strengths of each indi-
vidual approach.

Acknowledgments

This research was supported by the Estonian Re-
search Council Grant PSG721.

References
Toms Bergmanis and Sharon Goldwater. 2018. Context

sensitive neural lemmatization with Lematus. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1391–1400, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Heiki-Jaan Kaalep and Tarmo Vaino. 2001. Com-
plete morphological analysis in the linguist’s toolbox.
Congressus Nonus Internationalis Fenno-Ugristarum
Pars V, pages 9–16.

Tanmai Khanna, Jonathan N Washington, Francis M
Tyers, Sevilay Bayatlı, Daniel G Swanson, Tommi A
Pirinen, Irene Tang, and Hèctor Alòs i Font. 2021.

Recent advances in apertium, a free/open-source rule-
based machine translation platform for low-resource
languages. Machine Translation, 35(4):475–502.

Arya D. McCarthy, Christo Kirov, Matteo Grella,
Amrit Nidhi, Patrick Xia, Kyle Gorman, Ekate-
rina Vylomova, Sabrina J. Mielke, Garrett Nico-
lai, Miikka Silfverberg, Timofey Arkhangelskiy, Na-
taly Krizhanovsky, Andrew Krizhanovsky, Elena
Klyachko, Alexey Sorokin, John Mansfield, Valts
Ernštreits, Yuval Pinter, Cassandra L. Jacobs, Ryan
Cotterell, Mans Hulden, and David Yarowsky. 2020.
UniMorph 3.0: Universal Morphology. In Proceed-
ings of the Twelfth Language Resources and Evalua-
tion Conference, pages 3922–3931, Marseille, France.
European Language Resources Association.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and mor-
phological tagging with lemming. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2268–2274, Lisbon,
Portugal. Association for Computational Linguistics.

Siim Orasmaa, Timo Petmanson, Alexander Tkachenko,
Sven Laur, and Heiki-Jaan Kaalep. 2016. Estnltk -
nlp toolkit for estonian. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. Euro-
pean Language Resources Association (ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Benoı̂t Sagot. 2018. A multilingual collection of
CoNLL-U-compatible morphological lexicons. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka, Jana Straková, and Jan Hajic. 2019. Ud-
pipe at sigmorphon 2019: Contextualized embed-
dings, regularization with morphological categories,
corpora merging. SIGMORPHON 2019, page 95.

Hasan Tanvir, Claudia Kittask, and Kairit Sirts. 2020.
Estbert: A pretrained language-specific BERT for
estonian. CoRR, abs/2011.04784.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara



Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2020. Ap-
plying the transformer to character-level transduction.
CoRR, abs/2005.10213.


