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ABSTRACT
This paper introduces FreqMAE, a novel self-supervised learn-
ing framework that synergizes masked autoencoding (MAE) with
physics-informed signal insights to capture feature patterns from
multi-modal IoT sensing signals. By enhancing the representation
of sensor data semantics in a latent feature space, FreqMAE dimin-
ishes the dependence on data labeling and boosts the accuracy of
downstream AI tasks. Unlike paradigms relying on data augmenta-
tions, such as contrastive learning, FreqMAE’s automated approach
avoids handcrafted label-invariant transformations. Adapting MAE
for IoT sensing signals, we present three contributions from fre-
quency domain insights: First, a Temporal-Shifting Transformer
(TS-T) encoder that enables temporal interactions while distin-
guishing different frequency regions; Second, a factorized multi-
modal fusion mechanism that leverages cross-modal correlations
while allowing for modality-private features; Third, a hierarchi-
cally weighted loss function that prioritizes the reconstruction of
important frequency components and high Signal-to-Noise Ratio
(SNR) samples. Comprehensive evaluations on two sensing appli-
cations validate FreqMAE’s proficiency in reducing labeling needs
and enhancing resilience against domain shifts.

1 INTRODUCTION
The paper advances the state of the art in self-supervised learning
from time-series sensor data. Self-supervised learning aims to trans-
form unlabeled input data into a latent space that captures data
semantics, simplifying extensive downstream tasks. Two popular
ways to do so are contrastive learning and masked autoencoders.
Contrastive learning utilizes data augmentations, such as image
rotations, that maintain content semantics. By comparing pairs
of these semantically similar inputs against random pairs, neural
networks are trained to cluster similar items in latent space. On
the other hand, MAEs, which don’t require designing semantics-
preserving augmentations, conceal parts of the input and train
the network to reconstruct these sections accurately. The insight
behind MAEs is that accurate reconstruction of masked sections in-
dicates the network’s ability to discern higher-level semantics. For
example, if the network can deduce an object’s traits from partial
data, it can likely reconstruct obscured sections of that object. With
a latent space that effectively represents high-level object attributes,
training subsequent inference tasks is more efficient. Hence, label-
free MAEs optimize the training process for downstream AI tasks,
achieving better accuracy even with limited data samples [33].

Although MAEs excelled in vision and natural language domains
[20, 37, 64], their performance on time-series sensing signals has
been inferior to contrastive frameworks [62]. We find that appro-
priately integrating insights from a conventional signal processing
perspective can effectively simplify the optimization space and
boost the performance of MAEs. Therefore, we introduce FreqMAE,
a specialized MAE for multi-modal IoT sensing. It integrates three

distinct frequency-aware insights applicable across sensing tasks,
which set FreqMAE apart from standard MAEs, tailoring it for
time-frequency analysis.

First, we design a frequency-aware Transformer variant tailored
for sensor spectrogram encoding. While Transformers [57] excel
in handling complex data distributions due to their adaptive neu-
ral attention, using Vision Transformer (ViT) encoders directly on
sensor spectrograms by treating them as images, has proven less
effective [23]. This is because ViT encoders utilize global attention
across all input areas, only suitable for visual data where semantics
remain consistent irrespective of object position or transformation.
Yet, for spectrogram data, translation and scaling of frequencies can
significantly change the semantics of sensor measurements. More-
over, spectrogram amplitudes and fundamental frequencies exhibit
gradual temporal shifts due to the non-stationary nature of physical
elements [41]. Addressing these nuances, we present a Temporal-
Shifting Transformer (TS-T) that separately handles frequency and
time domains, aligning with time-series signal characteristics. In
the frequency domain, we integrate a local attention mechanism
that clusters and partitions the short-time Fourier windows of the
spectrogram into localized windows. Conversely, we compute the
attention with frequencies and their shifted harmonic components
in the temporal domain. This temporal shift operation preserves the
spectral structure while representing shifting frequency behavior.

Second, we introduce a factorized data fusion mechanism that
emphasizes both cross-modal correlations and modality-private
features. The insight here is that synchronized modalities not only
share information from the same physical stimuli but also offer
unique perspectives that complement each other through collabo-
ration [69]. To extract comprehensive information, we apply single
masking to the input of each modality. This results in two dis-
tinct feature spaces post-encoding: (i) a private and (ii) a shared
space. The private space captures distinct modality-specific patterns,
emphasizing self-reconstruction. The shared space, on the other
hand, captures cross-modal information, where one modality’s input
is reconstructed using shared embeddings from other modalities.
To achieve this, we utilize two specialized lightweight decoders,
ensuring no extra overhead during fine-tuning or inference.

Third, we propose a hierarchically weighted loss function em-
phasizing important frequency regions and high Signal-to-Noise
Ratio (SNR) samples. To illustrate the benefits of weighting, we con-
sider IoT applications, where crucial information is predominantly
found in the low-frequency components, whereas high-frequency
sections are mostly noise [33]. Consequently, emphasizing the ac-
curate reconstruction of these low-frequency parts during training
bolsters the quality of representation learning. Moreover, high SNR
measurements, with substantial energy content, provide accurate in-
sights, enhancing representation learning’s efficacy. For instance, in
vehicle classification via audio and seismic sensors, measurements
captured when vehicles are nearby are especially informative [63].
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Figure 1: Masked Autoencoder (MAE) Workflow

This work is motivated by the rise in embedded device compu-
tational power, coupled with deep neural networks’ (DNN) robust
modeling, which propelled the Artificial Intelligence of Things
(AIoT) domain, fostering advancements in activity detection, vehi-
cle tracking, and smart healthcare [3, 22, 45, 50, 65]. Most existing
work [12, 16, 27, 36, 66] relies heavily on supervised learning that
requires substantial amounts of labeled data for training purposes.
This reliance poses practical challenges, as time-series labels can
only be collected in predefined controlled environments. Unlike
the common practice of mass labeling image and text data through
post-hoc crowdsourcing, understanding sensing signals and obtain-
ing their labels is not straightforward [49]. Moreover, DNN models
trained on data from limited environments often exhibit sensitivity to
unforeseen changes in the actual deployment setting [60].

By utilizing self-supervised learning, we train the encoderwithout
the need for labeled data. Subsequently, we perform supervised fine-
tuning using a limited number of data labels to train the downstream
inference task. This approach is highly label-efficient and yields
pretrained data encoders with enhanced robustness against environ-
mental variations. Unlike contrastive learning frameworks [7, 13]
which heavily rely on human intuition to create label-invariant
transformations, FreqMAE only employs simple random mask-
ing as the preprocessing step. It also integrates physical signal
knowledge that is applicable across various sensing applications as
improvements, resulting in higher automaticity and extensibility.

We extensively evaluate FreqMAE using four datasets, demon-
strating its superior performance over existing approaches in vari-
ous sensing applications and downstream tasks. The results high-
light the exceptional potential of the self-supervised FreqMAE
framework as a step towards building foundation models specially
tailored for sensing streams and time series data. Beyond the dataset
evaluations, we use a real-world case study to demonstrate the
robustness of FreqMAE. One standout feature is its exceptional per-
formance in the face of environmental variations. FreqMAE shows
unparalleled capability in managing dynamic, real-life scenarios,
affirming its utility for representing information from dynamic
sensing streams.

The rest of this paper is organized as follows. Section 2 presents
background knowledge used in this paper. Section 3 introduces Fre-
qMAE design details. Section 4 provides the experiment details and
results. Section 5 reviews the related work, and Section 6 discusses
the limitations and concludes this paper.

1 1

a) Moving Vehicle at t= T seconds b) Moving Vehicle at t= T+1 seconds
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Figure 2: Audio FFT signatures for a moving vehicle. 1 The
presence of characteristic peaks in localized regions needs
local harmonic associations and shift-sensitive representa-
tions. 2 Higher frequency regions mostly contain noise.

2 PRELIMINARIES
This section outlines the foundational concepts of self-supervised
learning and the inspirations behind FreqMAE’s design.

2.1 Masked Autoencoders
Compared to the prevalent contrastive learning paradigm for IoT
data [11, 53, 59], which heavily relies on domain knowledge for
designing label-invariant transformations (i.e., augmentations), we
introduce a fully automated self-supervised approach based on
MAEs [20]. This approach, free from augmentations, applies broadly
to many sensing contexts and drastically reduces labeled data depen-
dence. Figure 1 illustrates the MAE structure, featuring an encoder,
a decoder, and a downstream classifier, with a two-phase training:
self-supervised pretraining and supervised fine-tuning.

The aim of pretraining is to leverage extensive unlabeled data
for extracting versatile representations applicable to various down-
stream tasks. Specifically, we employ random masking on segments
of the unlabeled spectrograms. The encoder then processes the
masked data, creating a low-dimensional data embedding. The
decoder’s role is to reconstruct the masked regions using these en-
coded embeddings. The training aims to minimize the discrepancy
between the decoded results and the original data within masked
areas. To encourage the model to capture overarching semantics
over low-level interpolations, we apply masking at the granularity
of frequency patches with a high masking ratio.

In the fine-tuning stage, we discard the decoder and directly con-
nect the encoder to a lightweight classifier (i.e., one fully connected
layer). During this phase, the pretrained encoder parameters remain
fixed, and the linear classifier is updated using the representations
generated by FreqMAE, which are based on limited labels specific
to the downstream task. This approach offers two advantages: (i)
the need for fewer labels for convergence [28] and (ii) faster training.

2.2 Characteristics of IoT Sensing Data
IoT sensing data exhibit unique characteristics that set them apart
from other contexts. Following common practices [31, 66], we use
spectrogram data after a short-time Fourier transform (STFT) on
the raw input, as the modality input. We carefully examine the
fundamental properties of such spectrograms to guide the design of
FreqMAE. Figure 2 presents two sensor (audio and seismic) readings
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Figure 3: FreqMAE design components with self-supervised pretraining workflow.

from two consecutive time windows for a moving vehicle, collected
as it passes by the sensors. Several observations are highlighted.

2.2.1 No Scale and Shift Invariance. While vanilla MAE em-
ploys global attention due to visual objects’ invariance to translation
or scaling, this assumption doesn’t hold for IoT data. Here, the po-
sitioning and scaling of frequency content significantly influence
semantics. Thus, global self-attention might be less effective when
time-frequency information is predominantly local. For instance,
only linking harmonic patches vertically through frequency (see 1
in Figure 2) may be suboptimal due to recurring harmonics while
associating the shifted harmonics horizontally through time can
yield more comprehensive insights into non-stationary patterns.

2.2.2 Multi-Modal Fusion. IoT data stems from various sensors,
such as accelerometers, gyroscopes, and magnetometers, each pro-
viding a distinct perspective into the observed event. By fusing
information from multiple sensors, a richer understanding and in-
creased system efficacy can be achieved [6]. Therefore, aligning
with the emerging trend on multi-modal fusion [5, 30, 35, 47, 58, 66],
an effective SSL framework should support data fusion across di-
verse modalities and feature generalization across various sensors.

2.2.3 Differentiated Frequency and Sample Importance. Re-
garding the reconstruction objective in MAE, we observed that
differentiated importance should be imposed locally among differ-
ent frequency bands and globally among different samples. First, in
physical sensing tasks, it is well-known that valuable information
tends to be found in the low-frequency sections of the spectrogram
[33]. Conversely, the very high-frequency sections often consist
mostly of noise (e.g., 2 in Figure 2). Second, due to external factors
and the nature of physical sensing data, some samples are more
important than others regarding the detection of the observed phe-
nomenon. For instance, samples with higher SNR provide more
useful information than lower SNR samples that include noise.

3 FRAMEWORK
In this section, we introduce FreqMAE and its three novel compo-
nents (motivated by the aforementioned characteristics).

3.1 Overview
The aim of FreqMAE is to generate representational embeddings
for unlabeled time series sensing data from multiple collaborating
sensory modalities. Assuming we have a collection of 𝑃 modali-
ties M = {𝑀1, 𝑀2, . . . , 𝑀𝑃 } and a large set of 𝑁 unlabeled train-
ing samples X = {x1, x2, . . . , x𝑁 } from all modalities, where each

sample is a fixed-length signal window. Sample x𝑖 𝑗 represents the
input from sensory modality 𝑀𝑗 within sample x𝑖 . Then, the ob-
jective of FreqMAE can be formulated as: h𝑖 𝑗 = 𝐸 𝑗 (x𝑖 𝑗 ), where
E = {𝐸1, 𝐸2, . . . , 𝐸𝑃 } are FreqMAE encoders for each modality and
h𝑖 𝑗 is the embedding vector sample representations of x𝑖 𝑗 . The orig-
inal modal input forms a multivariate time series, which we trans-
form via Short-Time Fourier Transform (STFT) for time-frequency
representation (i.e., spectrogram).

Figure 3 illustrates the FreqMAE pretraining process. We start by
dividing time-frequency sample spectrograms into non-overlapping
regular grid patches. These patches are then flattened and embed-
ded through a linear projection. In line with previous work [36],
we found no discernible advantage in incorporating positional em-
beddings (Analysis at Appendix D.5).

We then randomly mask out a large portion of spectrogram
patches which is the key ingredient for efficient self-supervised
pretraining [20]. In this process, the masking resembles a Bernoulli
process, where each patch has a probability 𝑝 of being masked
(also called the masking ratio). Since spectrograms provide a two-
dimensional representation of time-frequency components, we ex-
plored both unstructured and structured masking strategies. Our
investigation revealed that unstructured random masking delivers
the best pretraining performance (analysis at Appendix D.2). Simi-
lar to images [20], a high masking rate, ranging from 70% to 80%, is
most conducive to representation learning.

FreqMAE utilizes Temporal-Shifting (TS) Transformer encoders
for each modality, a transformer design incorporating localized
attention with a spectrogram-compatible shifting mechanism in-
spired by the SwinTransformer[36]. The encoder-generated em-
beddings are merged into private and shared modality representa-
tions through the factorized fusion mechanism. Private embeddings
capture modality-specific information, while shared embeddings
encapsulate information common to all modalities. This approach
facilitates the learning of cross-modality representations and the
association of diverse information available across modalities.

Decoders, also constructed from TS-Transformers, utilize modal-
ity embeddings to reconstruct the pre-masking input. Different
from previous studies [20, 38], FreqMAE employs a weighted re-
construction objective, leveraging preliminary signal knowledge to
prioritize important patches and samples during the pretraining.
Specifically, in physical sensing applications, lower-frequency re-
gions with more significant information and signal samples with
larger Signal-to-Noise Ratios (SNRs) are prioritized over higher-
frequency regions and noisy samples, respectively.
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3.2 Temporal-Shifting (TS) Transformer
The vanilla MAE [20] employs global self-attention within the
Transformer, a design well-suited for visual contexts where ob-
ject semantics are largely independent of their spatial position and
scale. Yet, for time-frequency spectrograms, attributes like exact
positions, scales, and shifts crucially determine a physical signal’s
semantics [43]. This creates a misalignment between the vanilla
design and our application domain. Figure 2-(a) reveals that while
lower frequency band harmonics can predict higher frequency
bands vertically, they’re less adept at horizontal predictions in the
time domain. This is due to higher frequency harmonics shifting
gradually from inherent non-stationarity in physical signals. As
seen between Figure 2-(a) and (b), this shift complicates predictions
using lower frequency bands. The sequence and placement of spec-
trogram patches are pivotal for signal interpretation. Thus, global
attention may be sub-optimal for these spectrograms, especially
when time-frequency details are predominantly local.

Inspired by SwinTransformer [36], a state-of-the-art Transformer
model for images, TS-Transformer incorporates two fundamental
insights: (i) the predominantly local time-frequency components
of spectrograms, which necessitate an association between local
harmonic components, and (ii) the need for a representation that
captures the shifting frequency components of physical signals
due to non-stationarity. Localized attention is essential to ensure
limited invariance since (slightly) shifted frequencies resulting from
non-stationarity may still represent the same physical phenomenon
at different times. Therefore, effective representation learning for
physical signals should capture this mechanism while preserving
the position and scale of the frequency components.

Figure 4 illustrates the TS-Transformer’s design. The masked
spectrograms are fed into the patch embedding layer, a convolu-
tional layer that produces a vector embedding from the unmasked
patch signals with a dimension of 𝐻𝑑𝑖𝑚 . The TS-Transformer con-
sists of two sequential transformer blocks. These blocks take in
𝐻 -dimensional modality embeddings and iterate R times before out-
putting representations of identical dimensionality. The resulting
representation is formulated as:

A{𝑟−1}
1 = WMSA

(
LayerNorm

(
H{𝑟−1}

))
+ H{𝑟−1},

P{𝑟−1} = MLP
(
LayerNorm

(
A{𝑟−1}
1

))
+ A{𝑟−1}

1 ,

A{𝑟−1}
2 = TS-WMSA

(
LayerNorm

(
P{𝑟−1}

))
+ P{𝑟−1},

Layer L Layer L+1
Figure 5: Local attention and temporal shifted windows.

H{𝑟 } = MLP
(
LayerNorm

(
A{𝑟−1}
2

))
+ A{𝑟−1}

2 ,

where LayerNorm(·) is the layer normalization [2]. The MLP(·) com-
prises two fully-connected layers. Both WMSA(·) and TS-WMSA(·)
are multi-head self-attention modules [57] configured with regular
(Local Window MSA) and temporally shifted window (TS-Window
MSA) attention settings and 𝐴 attention heads, respectively.

To represent local frequency structures, we employ a local at-
tention mechanism for both attention modules. This mechanism
only applies attention within short frequency bands while distinctly
differentiating across these bands. It groups and segregates spectro-
gram patches into local windows in spatial dimensions, applying
self-attention within these windows to learn relationships among
predominantly local frequency components. Furthermore, to ad-
dress non-stationarity in the temporal dimension, we apply a tem-
poral shifting procedure that associates harmonics with their tempo-
rally shifted but close counterparts. Figure 5 illustrates the regions
of local window attention and the partitioning of temporally shifted
windows. The local windows shift horizontally (i.e., in the time di-
mension) by 50% at consecutive layers to enable cross-window
interactions. No shifting is applied to the frequency dimension
because different frequency bands carry different physical mean-
ings. This setup facilitates the application of local attention to brief
frequency bands to capture primarily local time-frequency compo-
nents of the spectrogram, while simultaneously recognizing the
correlations between shifted harmonics within successive temporal
spectrogram windows (e.g., the case in Figure 2).

3.3 Factorized Modality Fusion
Multi-modal fusion leverages the diverse and rich information pro-
vided by different modalities, each offering a unique perspective on
the observed phenomenon. To effectively extract representations
from multi-modal data, we emphasize the necessity for a comple-
mentary modality fusion approach. On one hand, it’s vital to extract
shared information between collaborating modalities to understand
their semantic relationships. On the other hand, these modalities
mutually enrich each other by offering unique, private informa-
tion that complements the data from other modalities. A practical
framework should be capable of extracting both shared and unique
patterns across modalities to enhance generalizability.

To achieve this, we introduce a factorized fusion mechanism
within FreqMAE, encompassing both modality self-reconstruction
and cross-modality reconstruction. Figure 6 provides a visual expla-
nation of this approach. After fusion, each modality’s embedding
space is partitioned into two subsets: private and shared spaces.
Private embeddings come directly from the encoding of the cur-
rent modality. Conversely, shared embeddings are generated by
fusing the embeddings of other modalities through a shared fusion
layer, comprising two feed-forward layers. Both private and shared
embeddings are then fed into separate decoders to reconstruct the

4
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current modality. This reconstruction uses the same weighted loss
function, resulting in two distinct reconstruction losses: Lprivate
and Lshared. The overall pretraining loss is calculated as follows:

Ltotal = Lprivate + 𝛾Lshared (1)

where 𝛾 is the hyperparameter that controls the weight between
two loss components. Because of the asymmetric structure between
the deep encoders and lightweight decoders in MAE, we will show
later in the evaluation that the introduced extra decoder only incurs
negligible computation overhead. Moreover, decoders are discarded
after the pretraining stage, removing overhead at inference time.

The proposed factorized fusion mechanism is unique to Freq-
MAE and it forces the encoded modality embedding to contain
semantical information useful to reconstruct its own input and
the input of its peer modalities. In our experiments, we find that a
larger 𝛾 value, which prioritizes shared embeddings, is more effec-
tive for datasets with numerous modalities (e.g., IMU data with 3+
modalities). Conversely, a smaller𝛾 value proves beneficial for tasks
with fewer modalities and heterogeneous information distribution
(e.g., an audio-seismic pair, where audio provides richer semantic
information). The impact of 𝛾 is further explored in Appendix D.3.
Hence, our fusion scheme is flexible to accommodate diverse sensor
combinations and distributions, with adjustable contributions from
private and shared modality information.

3.4 Importance Weighting Loss Function
This module is motivated by two key insights. First, we should
emphasize informative content within the signal samples using
physical primitives that are common among the sensory data. For
instance, in most physical sensing tasks, such as vehicle classifica-
tion (see Figure 2) and human activity recognition, where the fre-
quency content of most activities lie between 0 and 20 Hz [1], most
of the useful information is located in the lower frequency parts
of the spectrogram, while high-frequency parts are usually noise
[33]. Second, an efficient pretraining objective should emphasize
the signal samples containing richer information for the observed
physical phenomenon without using labels. Since pretraining is per-
formed with a large amount of unlabeled data, the inherent “class
imbalance” is even more evident in such large datasets, where most
of the measurements do not contain any activity or context. Devot-
ing excessive attention to reconstructing such samples may cause
the model to struggle in capturing meaningful feature patterns.

The vanilla MAE utilizes Mean-Squared Error (MSE) for recon-
structing the masked patches during pretraining, defined as:

MSE =
1

𝑇 × 𝐹

𝑇∑︁
𝑡=1

𝐹∑︁
𝑓 =1

(
X(𝑓 , 𝑡) − X̂(𝑓 , 𝑡)

)2
, (2)

Figure 7: Weighted Mean Square Error weights.

whereX and X̂ refer to the original and reconstructed spectrograms
and𝑇 ×𝐹 represents the time-frequency dimensionality of the spec-
trogram. Although it is suitable for images where no preliminary
knowledge about object location is known, MSE doesn’t perform
optimally with sensing spectrogram input. To address this, we lever-
age our initial insight on prioritizing lower frequency regions, and
thus, define the Weighted Mean Squared Error (WMSE) as follows:

WMSE =
1

𝑇 × 𝐹

𝑇∑︁
𝑡=1

𝐹∑︁
𝑓 =1

W𝑓

(
X(𝑓 , 𝑡) − X̂(𝑓 , 𝑡)

)2
, (3)

where𝑊𝑓 refers to the weights of the corresponding spectrogram
frequencies. As shown in Figure 7, the weight for the highest fre-
quency is minimum and the weights linearly increase as the fre-
quency decrease. In particular, we set

W𝐹 = Wmin, W1 = Wmin,

W𝑓 = Wmax −
(𝑓 − 1) (Wmax −Wmin)

𝐹 − 1
, (4)

where we set Wmin = 0 andWmax = 1 in our experiments.
Besides, in order to prioritize informative samples with move-

ment over background samples, we calculate the mean cumulative
energy of the sample across modalities𝑀 :

E =
1

𝑀 ×𝑇 × 𝐹

𝑀∑︁
𝑚=1

𝑇∑︁
𝑡=1

𝐹∑︁
𝑓 =1

X(𝑓 , 𝑡)2, (5)

where M is the number of modalities. Note that using the mean
cumulative energy across modalities, as opposed to the energies
of individual modalities, helps avoid bias towards modalities with
typically higher energy content. Since our aim is to comparatively
differentiate across samples, the mean energy across modalities
provides fair supervision for the training objective. Inspired by the
commonly used peak-signal-to-noise ratio (PSNR) metric [21] for
comparing image reconstruction quality [24, 48], we define the
overall training objective of FreqMAE (in dB) as:

𝑊𝑃𝑆𝑁𝑅 = 10 · log
(

𝐸𝜆

𝑊𝑀𝑆𝐸

)
, (6)

where 𝜆 is the hyperparameter, ranging from 0 to 1, that controls the
scale of the energy component. We utilize the negative of WPSNR
as the pretraining loss for FreqMAE. Since MSE fundamentally
represents the “mean residual energy”, both the logarithm in the
numerator and the denominator are in the same unit.

TheWPSNR objective guides pretraining to prioritize high-fidelity
reconstruction of high-energy (low WMSE) samples. In summary,
the WPSNR enables the model to emphasize essential frequency
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Table 1: Dataset Summary
Dataset # Classes Modalities2 # Samples Application
MOD 7 MP, S 39,609 VC
ACIDS 9 MP, S 27,597 VC

RealWorld-HAR 8 A, G, M, L 12,887 HAR
PAMAP2 18 A, G, M 9,611 HAR

components within a sample while comparatively assessing the se-
mantic importance of different samples for efficient representation.

4 EVALUATION
In this section, we first introduce the experimental setups and then
present extensive evaluation results1 to demonstrate the effective-
ness, resiliency, and feasibility of FreqMAE.

4.1 Experimental Setup
4.1.1 Datasets and Preprocessing. We evaluate FreqMAE’s effec-
tiveness with four different datasets used in previous works [10,
42, 55, 58, 66] from two different application domains, (i) Vehicle
Classification (VC) and (ii) Human Activity Recognition (HAR).
The datasets cover a comprehensive list of sensors, target classes,
sizes, and environments (summarized in Table 1): (1) MOD is self-
collected using a microphone array and geophone (seismic) to clas-
sify moving objects. It has six different vehicle types and a class of
human walking. (2) ACIDS is collected by the US Army Research
Lab for developing acoustic and seismic identification algorithms.
It includes 9 different vehicle types in three different terrains. (3)
RealWorld-HAR is a public dataset collected with an accelerom-
eter, gyroscope, magnetometer, and light sensors. It consists of
eight common human activities collected from 15 participants. (4)
PAMAP2 is another public dataset collected via accelerometer, gy-
roscope, and magnetometers placed on individuals performing 18
different physical activities. More dataset details can be found in
Appendix A.

For preprocessing, we partition the time-series data into evenly
sized sample windows. We apply the Fourier transform to signals
within each interval to generate the spectrum. The sample and
interval lengths are determined based on data properties. Resulting
spectrograms are fed into FreqMAE to generate feature representa-
tions. Note that FreqMAE can handle different sampling rates among
modalities since they have separate feature encoders.

For training, we randomly divide each dataset into training,
validation, and test sets in an 8:1:1 ratio, leaving sessions out to do
a realistic split. The training set is further split into different ratios
of available labels (100%, 10%, 1%), referred to as label ratio during
fine-tuning. We evaluate FreqMAE’s with low label ratios to show
its effectiveness with scarce data. More details on preprocessing and
training strategies can be found in Appendix B.

4.1.2 Baselines. We evaluate FreqMAE against 10 baselines, in-
cluding a supervised benchmark, five self-supervised representative
frameworks that perform instance discrimination (MAE [20], Sim-
CLR [7], CAV-MAE [18], AudioMAE [23], LIMU-BERT [65]) two
modality-matching based contrastive baselines (CMC [53], Cosmo
[39]) and two SOTA contrastive frameworks for time series (TS-TCC
1Code will be publicly released upon acceptance.
2MP=microphone, S=seismic, A=accelerometer, G=gyroscope, L=light,
M=magnetometer.

[13], TS2Vec [67]). We provide detailed introductions of baselines in
Appendix C. A linear classification layer is appended at the end for
downstream tasks during fine-tuning. For the contrastive settings,
we keep the backbone encoders the same as FreqMAE for a fair com-
parison. A set of eight time-domain augmentations, and a frequency
domain augmentation is used from common practices [25, 34, 52]
for contrastive baselines (augmentations detailed at Appendix B).
Note that contrastive frameworks’ performance depends on the
used augmentations, while FreqMAE eliminates dependency on used
augmentations and is generalizable (analysis at Section 4.2.1).

4.2 Evaluation Results
4.2.1 Overall Performances. Table 2 compares the performance of
FreqMAE with other baselines using a 100% label ratio. All evalu-
ations use fixed encoders and a linear layer on top of pretrained
sample features for a fair assessment of representational quality. The
results show FreqMAE surpasses all baselines by at least 6.6 % and
8 % in average accuracy and F1, affirming its effectiveness. While
supervised training slightly outperforms FreqMAE on the PAMAP2
task with full labels, we suspect this is due to PAMAP2 including hu-
man activities with shorter bandwidth (similar to RealWorld-HAR),
therefore self-supervised representations being less detailed to out-
perform supervised training with full labels. Moreover, supervised
training suffers from label shortage and degrades significantly with
fewer labels (see Section 4.2.2). Thus, FreqMAE’s overall superior
performance indicates the high quality of its extracted features. The
primary competitors of FreqMAE, TS-TCC and CMC frameworks,
are heavily dependent on augmentation design and often underper-
form with fewer augmentations [61]. Figure 9 demonstrates their
performance drop when using only six or three out of nine random
augmentations. Further evaluations of FreqMAE on downstream
tasks and representation quality are in Appendix D.

4.2.2 Varying Labeling Ratio. In this experiment, we evaluate the
performances of baselines and FreqMAE with different labeling
rates, varying from 1% to 100%. Figure 8 presents the comparison re-
sults with all datasets. Higher labeling rates tend to yield improved
accuracies across most models. However, FreqMAE consistently
outperforms the baseline models in all scenarios. Notably, there are
consistent performance gaps between FreqMAE and other models
toward lower labeling rates. We note that only TS-TCC consistently
competes with FreqMAE. This is because TS-TCC efficiently lever-
ages the temporally correlated nature of sensing signals through
temporal contrasting views. However, TS-TCC also relies on a rich
set of augmentations and experiences performance degradation
with fewer augmentations, as shown in Figure 9. This suggests that
FreqMAE effectively learns general representations from unlabeled
data, and thus a linear classifier is enough to achieve higher accuracy.

4.2.3 Ablation Study. Table 3 presents an ablation study using
ACIDS for VC and PAMAP2 for HAR tasks to assess the contribu-
tion of each design component. We studied four FreqMAE variants:
w/o Weighted Loss using standard MSE for reconstruction (Equa-
tion 2), w/o Energy Scaling applying only WMSE loss without
energy scaling (Equation 3),w/oTS-T employing Swin Transformer
instead of TS-Transformer, and w/o Fusion without shared fusion
and doing separate modality reconstruction during training.
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Table 2: Finetune results with 100 % labels. We mark the best and second best values.

ACIDS MOD PAMAP2 RealWorld-HAR Average

Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Supervised 0.9137 0.7770 0.8948 0.8931 0.8612 0.8384 0.9313 0.9278 0.9002 0.8591
CMC 0.7813 0.6216 0.9049 0.9023 0.7571 0.7223 0.8211 0.8384 0.8161 0.7712
Cosmo 0.8776 0.7298 0.3228 0.3241 0.7910 0.7469 0.8529 0.7968 0.7111 0.6494
SimCLR 0.5658 0.4879 0.7535 0.7434 0.7346 0.6635 0.7830 0.7181 0.7092 0.6532
TS2Vec 0.6539 0.4913 0.7649 0.7632 0.5706 0.4942 0.6117 0.5002 0.6503 0.5622
TS-TCC 0.9046 0.7651 0.7709 0.7744 0.7871 0.7107 0.8684 0.8227 0.8328 0.7682

Vanilla MAE 0.8872 0.7604 0.9015 0.8460 0.7382 0.6999 0.8638 0.8700 0.8477 0.7941
LIMU-BERT 0.5023 0.3171 0.2157 0.1236 0.7847 0.7612 0.7946 0.7261 0.5743 0.4820
CAV-MAE 0.7995 0.6711 0.5184 0.4941 0.7697 0.7351 0.9215 0.9267 0.7523 0.7068
AudioMAE 0.7845 0.6120 0.7274 0.7249 0.7808 0.7478 0.8163 0.7437 0.7773 0.7071

FreqMAE 0.9365 0.7919 0.9524 0.9514 0.8420 0.8205 0.9250 0.9327 0.9140 0.8741
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Figure 8: Accuracy comparison of FreqMAE with different labeling rates.
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Table 3: Ablation Study on FreqMAE components.

Dataset ACIDS PAMAP2

Metric Acc F1 Acc F1

w/o Weighted Loss 0.9068 0.7674 0.8249 0.8046
w/o Energy Scaling 0.9265 0.7642 0.8222 0.8013

w/o TS-T 0.9324 0.7876 0.8238 0.7991
w/o Fusion 0.9183 0.7636 0.8186 0.7905

FreqMAE 0.9365 0.7919 0.8420 0.8205

First, the contribution of all components is evident in both tasks.
Comparatively, the fusion component and weighted loss scheme are
more helpful in improving task performance, which shows learning
relations across modalities can reveal underlying patterns in the
frequency domain. Such patterns might be hard to capture without
considering modality relations, as different sensor modalities often
provide complementary information [40]. Second, the focus of the
weighted loss objective on prioritizing informative content within
and across samples offers extra self-supervision for pretraining.
Finally, the absence of TS-T configuration has a larger impact on the
PAMAP2 task than on ACIDS. We suspect this difference is due to
the audio and seismic data from the moving vehicles having sparser
frequency content with larger temporal correlation (i.e.,more stable

Table 4: Compute Overhead Comparison.

Model Parameters (M) Size (MB) Infer. Time (s)

DeepSense 0.563 2.193 0.491
ViT 2.821 10.850 1.503
Vanilla MAE 2.821 10.849 1.538

FreqMAE 3.036 11.693 0.972

movement) than HAR tasks. Therefore, the contribution of localized
attention and temporal interaction is relatively more limited.

4.3 Feasibility in Real-World Deployment
4.3.1 Computation Overhead. Table 4 compares FreqMAE with
baselines in terms of parameters, model size, and inference time. By
running FreqMAE on a single-board Raspberry Pi 3 with 1 GB RAM
and a 1.2 GHz quad-core CPU, we evaluate memory and inference
time on deployment. The inference time is the execution time for
inferring one sample (2-seconds length), averaged over 1000 exper-
iments. Results show that although FreqMAE incurs slightly more
inference time than DeepSense [66], a state-of-the-art supervised
model for performance comparisons [32, 65], the overhead is com-
parable and affordable for the considered COTS devices. Moreover,
the localized attention mechanism significantly reduces the compu-
tational overhead compared to Vanilla MAE, which utilizes a global
attention mechanism. Finally, although FreqMAE has comparable
size to the ViT, FreqMAE’s local attention mechanism significantly
reduces the computational overhead and inference time while improv-
ing performance in sensory data. Hence, FreqMAE incurs 37% less
overhead than its counterparts and allows real-time inference.

4.3.2 Robustness Test. Figure 10 illustrates our field testbed deploy-
ment across three distinct parking lot environments: MOD-A, B,
and C. We placed FreqMAE sensor nodes with acoustic and seismic
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Figure 10: Robustness experiments were conducted in three
environments with different variations.

Table 5: MOD variations for robustness experiments.

Variations Sensor Locations Vehicle Types Terrain # Labels

MOD-A ✓ ✗ ✗ 3229
MOD-B ✗ ✓ ✗ 6748
MOD-C ✗ ✗ ✓ 1163

sensors strategically. The pretrained model from the MOD (see Ta-
ble 1) is utilized for each classification, including variations listed in
Table 5. MOD-A aligns closely with the original data, differing only
in sensor placement. MOD-B has a similar terrain to MOD-A but
uses different vehicles, while MOD-C is set on a concrete building
rooftop, introducing distinct acoustic and seismic behaviors.

Table 6 presents the robustness evaluations, demonstrating Freq-
MAE’s impressive resilience to environmental variations across deploy-
ments. In MOD-A, changes to sensor locations are less challenging
for models, as they mostly influence measurement intensity with-
out significantly altering frequency signatures. For MOD-B, all
frameworks struggle with vehicles absent during pretraining due
to differing acoustic and seismic signatures with vehicle types. Yet,
FreqMAE’s performance excels, showcasing its ability to generalize
and classify even unseen targets. Finally, in MOD-C, seismic alter-
ations arise due to the concrete environment. However, FreqMAE
effectively harnesses insights from physics-based pretraining and
the fusion of complementary stable acoustic information, proving
adept at distinguishing features even with domain shifts.

Contrastive baselines TS-TCC and CMC, though competitive in
standard benchmarks (refer to Table 2 and Figure 8), underperform
in changing environments. This drop can be attributed to the nature
of contrastive frameworks. While they excel at extracting patterns
through similarities among various sample "views", they lack the
robustness provided by guidance based on generalized physical
features, thereby affecting adaptability in dissimilar environments.

Table 6: Robustness against deployment variations.

MOD-A MOD-B MOD-C

Metric Acc F1 Acc F1 Acc F1

CMC 0.7415 0.7390 0.5760 0.4983 0.6412 0.5691
Cosmo 0.4205 0.3059 0.5816 0.5214 0.5496 0.2376
SimCLR 0.6733 0.6685 0.5377 0.3922 0.6107 0.3730
TS2Vec 0.6563 0.6439 0.5260 0.3521 0.5725 0.4487
TS-TCC 0.6051 0.5910 0.5012 0.1720 0.5802 0.4099

Vanilla MAE 0.8580 0.8602 0.6626 0.6347 0.6794 0.6326
LIMU-BERT 0.5000 0.1667 0.4233 0.1983 0.5649 0.2407
CAV-MAE 0.4801 0.4431 0.50309 0.21076 0.5419 0.3409
AudioMAE 0.5113 0.4981 0.4839 0.3475 0.4961 0.4571

FreqMAE 0.8750 0.8766 0.6885 0.6622 0.7710 0.7340

5 RELATEDWORK
Self-Supervised Multi-Modal Representation Learning. Re-
cently, self-supervised learning has progressed in language and
vision tasks via contrastive learning [7] and generative models
(e.g., MAE) [20]. Early contrastive frameworks focus on instance
discrimination, relying on tailored spatial augmentations [7–9, 19].
Multimodal data frameworks, such as CMC [53] and GMC [44],
align cross-modality representationswithout considering frequency
structures. Contrastive models tailored for unimodal time series
[13, 54, 67–69] exist. Cosmo [39] and Cocoa [11] utilize contrastive
learning for multimodal sensing, albeit not optimizing for modality
properties. Masked Image Modeling parallels contrastive learning
performance in vision [4, 20, 64]. While many have explored Mul-
timodal Modeling, especially for vision-language [15, 29], LIMU-
BERT [65] looks at generative modeling for IMU data, but is limited
by the sampling rate and does not extend to additional sensory
modalities. In contrast, FreqMAE harnesses multimodal traits with
shared masked fusion and a physical domain-weighted objective,
enhancing representation learning for multi-modal sensor data.
Masked Spectrogram Learning. MAE, prevalent in vision-based
self-supervised learning, is now being applied to Masked Spectro-
gram Learning [17]. While AudioMAE [23] and MSM-MAE [38]
tackle single-modality audio spectrograms, and CAV-MAE [18]
blends modality matching with MAE for image and audio, none
address the unique characteristics of physical sensory data we
motivate. Contrarily, FreqMAE integrates physical insights in a mul-
timodal approach for enhanced time series representation learning.

6 DISCUSSION AND CONCLUSIONS
The paper introduced an IoT-centric masked autoencoding frame-
work, informed by physics-based insights for sensor signals, to
effectively capture crucial semantics for intelligent sensing tasks.
Experimental evaluations showed that FreqMAE surpasses cur-
rent state-of-the-art baselines across different tasks and reduces
the need for data labeling, maintaining robustness during domain
shifts. A potential limitation of FreqMAE may arise when a signifi-
cant portion of the unlabeled pretraining data is noisy, potentially
affecting the energy supervision from the weighted loss. In such sce-
narios, adjusting the energy contribution in the training objective
to emphasize the reconstruction of important frequency content,
typically less noisy, can be beneficial. In future work, we aim to
explore training objectives more resilient to such noisy data.
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A DATASETS
We evaluate the effectiveness of FreqMAE with four datasets used
in previous works [10, 42, 55, 58, 66] from two different applications:
(i) Vehicle Classification (VC) and (ii) Human Activity Recognition
(HAR). The datasets cover a comprehensive list of sensors, target
classes, sizes, and environments, as detailed in Table 1.
Moving Object Detection (MOD). It was independently gathered
by us at two locations using a RaspberryShake 1D and amicrophone
array to record vibration signals from nearby driving automobiles.
Seven different object types are involved including a human, at
various speeds and distances. The seismic signal was sampled at
100 Hz, whereas the acoustic signal was sampled at 16000 Hz.
Acoustic-seismic identification Data Set (ACIDS). It is collected
by the US Army Research Lab for training and developing acoustic

and seismic identification algorithms. It comprises over 270 data
runs from nine different types of ground vehicles in three varying
environmental conditions. The data is digitized by a 16-bit A/D at
the rate of 1025 Hz.
RealWorld-HAR [51]. It distinguishes between eight typical hu-
man activities, including stair climbing (both up and down), jump-
ing, lying, standing, sitting, running/jogging, and walking, using
information from an accelerometer, gyroscope, magnetometer, and
light signals. For our experiments, we used data from the waist
region collected from 15 participants at a 100 Hz sampling rate.
PAMAP2 [46]. It incorporates data from 18 diverse physical ac-
tivities executed by nine individuals using inertial measurement
units (IMUs) placed on the chest, wrist (of the dominant arm), and
ankle of the dominant side. For our study, we only employed the
data recorded from the wrist. Each IMU logs data from a 3-axis
accelerometer, gyroscope, and magnetometer, all operating at a
sampling rate of 100 Hz.

In the VC application, we use data from varying environments
and new vehicle types to create two additional tasks: distance and
speed classification. This allows us to evaluate FreqMAE’s robust-
ness in the face of domain shifts. For speed classification, the model
predicts the vehicle’s speed (5, 10, 15, 20 mph), while for distance
classification, it identifies if the passing distance is close, mid-range,
or far.

B PREPROCESSING AND TRAINING
STRATEGIES

In this section, we provide further details on the datasets, data
preprocessing techniques, and training strategies introduced in
Section 4.1.

B.1 Preprocessing.
In the preprocessing phase, we partition the time-series data into
evenly-sized samplewindows and further divide each sample into ei-
ther overlapping or non-overlapping intervals.We apply the Fourier
transform to signals within each interval to generate the spectrum.
The sample and interval lengths are determined based on data
properties. Note that FreqMAE can handle different sampling rates
among modalities since they have separate feature encoders. Re-
sulting spectrograms are fed into FreqMAE to generate feature
representations.

We randomly divide each dataset into training, validation, and
test sets in an 8:1:1 ratio, leaving sessions out to do a realistic split.
The training set is further split into different ratios of available
labels (100%, 10%, 1%), referred to as label ratio during finetuning.
The unlabeled set is used to perform self-supervised pretraining. In
the finetuning phase, decoders are discarded and a linear classifier
is trained using the labeled part of the training set and selected by
the validation set. Results on the test set are reported.

B.2 Data Augmentations
In this section, we elaborate on the data augmentation strategies
introduced in Section 4.1 for the contrastive baselines. We adopted
common practices from previous work when selecting these aug-
mentation strategies to enhance training performance. We cate-
gorize the augmentations based on whether they are applied to
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time-domain data (time-domain augmentation) or spectrograms
(frequency-domain augmentation). Note that, unlike traditional con-
trastive frameworks, FreqMAE does not require crafted augmentations
for efficient representation learning. It is a self-automated framework
capable of generalizing across various IoT task domains.

B.2.1 Time Domain Augmentations. Here, we detail the augmen-
tation strategies used on time series data before converting them
into spectrograms.
• Scaling. We apply a scaling operation to the input signals by
multiplying them with random values drawn from a Gaussian dis-
tribution.
• Permutation. Within each sample, we introduce a random
permutation of intervals.
• Negation. We multiply the signal values by a factor of -1.
• TimeWarp. We distort the time locations of signal values using
a smooth random curve.
• MagnitudeWarp. The magnitude of each time series undergoes
transformation by multiplication with a curve generated using a
cubic spline with randomly positioned knots.
• Horizontal Flip. The entire time series of a sample is flipped
along the time axis.
• Jitter. We introduce random Gaussian noise into the signals.
• Channel Shuffle. For multivariate time-series data, such as
three-axis accelerometer input (X, Y, Z dimensions), we perform
random shuffling of the channels.

B.2.2 Frequency Domain Augmentations. Here, we detail the aug-
mentation strategies used on time series data after converting them
into spectrograms.
• Phase Shift. When dealing with the complex frequency spec-
trum, we introduce a random phase value within the range of −𝜋
to 𝜋 to modify their phase values.

B.3 Training Strategies
In this section, we provide a detailed explanation of the hyper-
parameters and training strategies employed in the evaluations
discussed in Section 4. The specifics of these configurations are
tabulated in Table 7. Note that while most of the configurations
remain consistent across different backbone encoders, there are
slight variations.

Training details and optimization hyperparameters for FreqMAE
are presented in Table 8. For the training phase, we utilize the
AdamW optimizer paired with cosine schedules. Each framework’s
initial learning rate is individually tailored based on its unique con-
vergence characteristics. We employ a batch size of 128, and each
batch encompasses randomly chosen samples. The temperature pa-
rameter is fine-tuned to optimize performance after fine-tuning. A
weight decay of 0.05 serves as a regularization strategy throughout
training.

In the finetuning stage, we adopt the Adam optimizer coupled
with a step scheduler. Specifically, the learning rate diminishes by
0.2 at the end of every epoch. By default, finetuning spans 200
epochs, with each epoch comprising 50 periods. Moreover, we
adjust the weight decay for each framework, aiming for the best
equilibrium between training and validation fits.

C BASELINES
Here, we provide detailed introductions of baselines described in
Section 4.1.
• Supervised.We train the entire model (i.e., the encoder and linear
classifier) in a supervised way with all of the available labels.
• SimCLR [7]. SimCLR is a robust contrastive learning frame-
work that aims to maximize representation similarity between two
randomly augmented views of the same sample while pushing rep-
resentations of different samples apart. We randomly formulate
batches for this work. During pretraining, we generate two distinct
views of each sample using random augmentations. SimCLR utilizes
a contrastive objective called NT-Xent loss [7] to draw closer to the
different transformations of the same samples while pushing away
the representations of different samples.
• CMC [53]. The Contrastive Multiview Coding learns represen-
tations by treating representations of the same sample but from
different modalities as positive pairs while considering representa-
tions of different samples as negative pairs. CMC utilizes the multi-
modal characteristics of the data to learn meaningful representation.
CMC’s objective is to maximize the agreement between different
modality representations of synchronized data. Each randomly sam-
pled batch with random augmentation leads to the extraction of
vector representations for each modality. The system optimizes the
backbone parameters by maximizing the similarity between repre-
sentations of the same samples and treating mismatched modality
representations from different samples as negative pairs.
•MAE [20].Masked Autoencoder (MAE) is a self-supervised learn-
ing approach that leverages the auto-encoding paradigm and the
Transformer architecture, achieving state-of-the-art performance in
various tasks such as vision [64], audio [38] and robotics [26] tasks.
MAE employs a strategy where a large portion of each modality
input is randomly masked, and replaced by zeros, ensuring dimen-
sional consistency. It is highly efficient since it only trains on a
small portion of unmasked input. Separate encoders and decoders
are used for each modality, with the spectrogram transformed into
fixed-size patches before the extraction of modality embeddings.
Interactions between modalities are facilitated by employing fully
connected layers and MLP projection layers on the concatenated
modality features. The main objective is to minimize the discrep-
ancy between the original and reconstructed modality patches. For
inference, the modality encoders are used to generate latent repre-
sentations from the unmasked inputs, and a linear layer is applied
to these concatenated embeddings for subsequent tasks.
• LIMU-BERT [65]. LIMU-BERT is a novel representation learn-
ing model designed to extract generalized features from unlabeled
Inertial Measurement Unit (IMU) data, an abundant and readily
available resource. By adopting the self-supervised training princi-
ples of BERT, it effectively captures temporal relations and feature
distributions in IMU sensor measurements. Despite the original
BERT’s unsuitability for mobile IMU data, LIMU-BERT successfully
adapts to IMU sensing tasks through a series of custom techniques.
For a fair comparison, we keep the class head as the original classi-
fier.
• TS-TCC [13]. It learns robust representations through cross-
view predictions and contrasting temporal-contextual information.
It generates two views via random data augmentations and predicts
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Table 7: TS-Transformer Configurations.
Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2
Patch Size aud: [1, 40], sei: [1, 1] [1, 8] [1, 2] [1, 2]

Temporal Window Size [1, 9] [1, 8] [1, 9] [1, 8]
Mod Feature Block Num [2, 2, 4] [2, 2, 4] [2, 2, 2] [2, 2, 2]

Mod Feature Block Channels [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]
Head Num 4 4 4 4

Mod Fusion Channel 256 256 128 128
Mod Fusion Head Num 4 4 4 4

Mod Fusion Block 2 2 2 2
FC Dim 512 512 256 128

Temporal Shift 1 1 1 1

Table 8: Training configurations. (We use LR for Learning Rate)

Dataset MOD ACIDS RealWorld-HAR PAMAP2

Temperature 0.07 0.2 0.07 0.07
Lambda 0.1 0.3 1.0 0.3
Gamma 0.5 1.0 4.0 1.0

Batch Size 256 256 256 256
Sequence Length 4 4 4 4
Pretrain Optimizer AdamW AdamW AdamW AdamW
Pretrain Max LR Default: 1e − 5 Default: 1e − 4 Default: 1e − 4 Default: 1e − 4

Pretrain Max LR Cosmo, TS2Vec, TSTCC: 1e − 5 Cosmo: 1e − 5 CMC: 5e − 4
Cosmo: 1e − 5

CMC: 5e − 4
Cosmo: 1e − 5

Pretrain Min LR 1e − 07 1e − 07 1e − 07 1e − 07
Pretrain Scheduler Cosine Cosine Cosine Cosine
Pretrain Epochs 6000 3000 1000 1000

Pretrain Weight Decay 0.05 0.05 0.05 0.05
Finetune Optimizer Adam Adam Adam Adam
Finetune Start LR 0.0001 0.0003 0.0005 0.001
Finetune Scheduler step step step step
Finetune LR Decay 0.2 0.2 0.2 0.2
Finetune LR Period 50 50 50 50
Finetune Epochs 200 200 200 200

future timestamps from the context vectors of each view. True
future representations are treated as positive pairs, while other
sequences are negative pairs. Different augmentations of the same
sample are also treated as positive pairs, and different samples
within a mini-batch are considered negative pairs.
• TS2VEC [67]. TS2Vec learns time series representations by it-
eratively performing temporal and instance contrastive tasks at
different sample window sizes. At different granularity, it consid-
ers the same sample under various augmentations and sequence
contexts as positive pairs, while different samples of both the same
and different sequences are treated as negative pairs for instance
and temporal contrastive tasks.
• Cosmo [39]. Cosmo is a framework that leverages contrastive
fusion learning to process multimodal time-series data. After en-
coding and mapping each modality’s embedding to a hypersphere,
it generates combined features used to calculate contrastive loss,
considering similar features as positive pairs and dissimilar ones as
negative pairs.
• AudioMAE [23]. The Audio-MAE framework is introduced as a
unified and scalable approach for self-supervised learning of audio

representations. Similar to its predecessor, MAE [20], Audio-MAE
employs a Transformer-based encoder-decoder architecture. Unlike
MAE, which utilizes global attention during training, AudioMAE
utilizes global and local attention together, making it a good
baseline for evaluating the utility of our TS-T design with
unique local attention and temporal shift operation. The pro-
cess begins by transforming sound into spectrogram patches, of
which only a small portion is left unmasked before feeding them
into the Transformer encoder for efficient encoding. After padding
the encoded patches with learnable embeddings to represent the
masked patches, the original order in terms of frequency and time
is restored. Subsequently, the data is propagated through a Trans-
former decoder to reconstruct the audio spectrogram. Unlike image
patches, spectrogram patches exhibit significant local correlation,
with important information embedded in their frequency and time
locations. To address this, localized attention and a hybrid archi-
tecture are introduced in the Transformer decoder for improved
reconstruction. The primary objective is to minimize the mean
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(a) ACIDS (b) MOD (c) PAMAP2 (d) RealWorld-HAR
Figure 11: t-SNE visualization of FreqMAE embeddings. Different colors represent different ground truth labels.

squared error (MSE) between the predictions and input spectro-
gram values. In fine-tuning, the decoder is discarded, and the en-
coder is fine-tuned with patch-masking. Empirically, Audio-MAE
achieves state-of-the-art performance on multiple audio and speech
classification tasks.
• CAV-MAE [18]. The Contrastive Audio-Visual Masked Autoen-
coder (CAV-MAE) is an innovative self-supervised learning method
tailored for audio-visual representation. Building upon the princi-
ples of the Masked Auto-Encoder (MAE), CAV-MAE extends its ca-
pabilities to multi-modal audio-visual contexts and further enriches
its performance by introducing contrastive learning. In its essence,
the model fuses the concepts of contrastive learning with masked
data modeling to generate joint and coordinated audio-visual rep-
resentations. Through a multi-stream forward pass mechanism, the
system ensures the precise separation and combination of audio
and visual modalities. A significant portion of the input undergoes
masking to facilitate the model’s reconstruction efforts, leading
to efficient training. For better cross-modal interaction, separate
encoders are deployed for each modality, followed by a joint en-
coder to bridge the modalities. The primary goal is twofold: enforce
audio-visual correspondence and accurately reconstruct masked
segments. Upon evaluation, CAV-MAE demonstrated its prowess
in audio-visual retrieval tasks, setting new benchmarks on the VG-
GSound dataset. For real-world applications, the model’s encoders
generate latent embeddings, which are then processed through a
linear layer to derive insightful outcomes for varied tasks.

D ADDITIONAL EVALUATIONS
D.1 Additional Downstream Tasks.
We further evaluate the same pretrained models on additional
downstream tasks of distance and speed classification using the
MOD dataset. The results are presented in Figure 13. Contrastive
frameworks for instance-discrimination (i.e., SimCLR), modality-
consistency (i.e., CMC), and temporal-contrasting (i.e., TS-TCC)
consistently outperform other self-supervised learning methods
(i.e.,, MAE, LIMU-BERT). FreqMAE integrates modality, temporal
characteristics, and physical insights to learn the inherent natures
of multimodal time series data, demonstrating superior adaptation
on both tasks.

D.1.1 Representation Visualization. To evaluate the quality of the
representations learned by our model, we apply the t-SNE algo-
rithm [56] to visualize the fused embeddings of FreqMAE. t-SNE
algorithm provides a good qualitative benchmark on the distinctive
ability of the models through visual representation quality. Figure

11 shows the embedding visualizations constructed by FreqMAE.
The t-SNE visualizations reveal distinct and well-separated clusters
in ACIDS and RealWorld-HAR datasets, indicating that our model
effectively captures the underlying structure of the data. In the case
of MOD and PAMAP2, although we observe cohesive clusters, we
also notice more overlapped regions, which implies a challenging
differentiating structure of the dataset.

D.2 Effect of Masking Strategies.
We now evaluate FreqMAE’s performance under varying masking
rates (60 % to 90 %) and strategies, comparing random unstructured
masking against three structured variants: (i) Time masking for
vertical spectrogram patches, (ii) Frequency masking for horizontal
patches, and (iii) Time+Frequency masking, applying both with
equal probability. Figure 14 presents the results.
Masking Rate. Similar to MAE in vision, we observe that a pre-
training high masking ratio (70%-80%) is optimal for sensing spec-
trogram learning. This is because both images and physics-based
signal spectrograms are continuous signals with significant redun-
dancy (see Figure 2). We also found the masking ratio has a bigger
effect on the vehicle classification task. This is expected as the
audio and seismic data typically have a larger and more complex
frequency band, which creates less redundancy and more sensi-
tivity towards the masking ratio than HAR tasks. Moreover, both
tasks drop in performance with very high masking ratios (e.g., 90%),
presumably because the training task becomes too difficult. This
result shows the importance of designing a self-supervised setting
with proper difficulty in IoT data.
Masking Scheme. It’s clear that unstructured (random) masking
enhances self-supervised pre-training compared to structured ap-
proaches. This is due to the model’s ability to estimate missing
spectrogram components using nearby contexts, such as harmonics
in frequency and temporally correlated content in time dimensions.
Frequency masking leads to considerable performance degradation
due to complete destruction of harmonic bands. Time masking
proves more beneficial as missing temporal content can be recon-
structed using highly correlated components, enabling the capture
of inherent temporal correlation characteristics in physical sensing
data. Combining time and frequency masking closely mirrors the
performance of unstructured masking due to the ability to extrapo-
late from nearby content.
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Figure 12: Fusion (𝛾 ) and WPSNR energy contribution (𝛾 ) hyperparameter anaylsis.
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Figure 13: Additional downstream tasks on MOD.
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Figure 14: Effect of masking strategy on performance.

D.3 Fusion Hyperparameter (𝛾 ) Analysis.
Figure 12-(a, b) illustrates the impact of the information scaling
hyperparameter between the shared and private fusion feature em-
beddings, as discussed in Section 3.3. We evaluated various settings
of the hyperparameter (𝛾 ), reporting detection accuracies for two
representative datasets (ACIDS and PAMAP2) to assess both VC
and HAR tasks. It’s important to note that a larger fusion weight
emphasizes shared feature characteristics between the modalities.
Conversely, a lower value focuses on information derived from
individual modalities. Our goal is to determine the optimal fusion
settings for different tasks when using FreqMAE.

As illustrated in Figure 12-(a), the ACIDS dataset results indicate
that VC tasks often benefit from smaller fusion weights. Given
that ACIDS comprises two collaborative modalities—audio and seis-
mic—it is inherently challenging to reconstruct one modality solely
from the other. This situation limits the cross-modality information
that can be harnessed from the shared fusion embedding space.
Moreover, when comparing the seismic and audio modalities, the
former lacks the detailed frequency spectrum information present
in the latter (as evident in Figure 2). Such an imbalance in spectral
content suggests that reconstructing acoustic frequency compo-
nents solely based on the seismic spectrum might be constrained.
Thus, tasks with limited modalities and unbalanced information
distribution seem to fare better with reduced fusion weights.

For the PAMAP2 dataset, as shown in Figure 12-(b), which rep-
resents HAR tasks, we observe that larger fusion weights generally

enhance classification performance. Given that HAR tasks employ
IMUs spanning multiple modalities (3+), there are at least two
additional modalities available for cross-modality fusion when con-
structing a shared modality. This abundance enables greater inter-
modality collaboration, leading to a richer shared fusion domain.

Overall, our analysis shows that the factorized modality fusion
approach offers adaptability for diverse sensor configurations, facil-
itating the learning of effective representations in mixed modality
settings. Such versatility enables FreqMAE to be applied broadly
across various sensing tasks, providing an efficient and generalizable
time series data representation framework for practitioners.

D.4 WPSNR Hyperparameter (𝜆) Analysis.
Figure 12-(c, d) illustrates the influence of energy scaling on the
training objective, as detailed in Section 3.4. We explored various
energy contribution (𝜆) configurations within the loss function,
using two exemplar datasets (ACIDS and PAMAP2) to probe both
VC and HAR tasks. It’s important to highlight that increasing the
energy’s contribution to the training objective tends to prioritize
high-energy samples during training.

Our results indicate that the energy contribution consistently
enhances detection performance across tasks. Decreasing the con-
tribution of energy (i.e., 𝜆) too much tends to reduce the detection
performance, as the models start to lose the ability to distinguish
between important (i.e., high SNR) samples and samples with no dis-
cernable information regarding the observed physical phenomenon
(e.g., background data or no observed content).

Moreover, the PAMAP2 analysis on 𝜆 demonstrates that HAR
tasks tend to enjoy higher performance with larger energy con-
tribution (see also the optimal RealWorld-HAR (𝜆) configuration
in Table 8). This is expected as the detection of the presence of
human activities is mostly possible just by looking at the energy
content across IMU sensor readings. Thus, the energy contribution
to the training objective can exploit this phenomenon and effec-
tively guide the model to learn higher fidelity information from
samples with richer information content.

On the other hand, ACIDS results show that setting 𝜆 too large
causes energy contribution to dominate the learned representations.
This is not as effective as it is with the HAR tasks, since the IMU
sensors for HAR tasks are deployed directly on the human body,
and hence, may show less energy variation within an activity of
a person [51]. On the contrary, audio and seismic modalities can
show a large and swift energy variation for VC tasks [14] since they
are deployed outside of faster-moving vehicles. Hence, putting too
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Table 9: The effect of positional encoding on FreqMAE framework

ACIDS PAMAP2 RealWorld-HAR Parkland

Metrics Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

With 0.9265 0.7596 0.8312 0.8120 0.8783 0.8916 0.9377 0.9356
Without 0.9365 0.7919 0.8420 0.8205 0.9250 0.9327 0.9524 0.9514

much emphasis on the high-energy samples can result in informa-
tion loss from when the vehicles are farther away, which still have
an audio and seismic signature that provides valuable information.

In summary, our study reveals that theWPSNR training objective
with energy supervision enhances task outcomes by guiding the
model to focus on high-quality representations. The versatility and
effectiveness of the WPSNR objective grant our system adaptability
across a range of sensor setups and modality traits. This adaptability
positions FreqMAE as a promising framework to efficiently handle
representation tasks across diverse sensing stream configurations.

D.5 Effect of Positional Encodings.
In this section, we evaluate the value of positional encoding in the
context of the masked representation learning objective. Similar
to Swin-Transformers [36], we incorporated absolute positional
embeddings (APE) to the embedded patches. Considering that the
input spectrogram data varies solely in its temporal dimension, we
employ one-dimensional positional embeddings for tokenization.
Patch inputs are converted into a one-dimensional sequence, or-
dered first by channel and then by time, to accommodate variable
input lengths. These positional embeddings are subsequently con-
structed and integrated with the embedding inputs, which then
channeled into the backbone network.

Table 9 presents the evaluation results, highlighting the impact
of positional encoding on the frameworks. The classification tasks

are performedwith andwithout positional embeddings added to the
TS-Transformer configuration. Consistent with the findings related
to the Swin-Transformer, incorporating positional embeddings into
the TS-Transformer offers no evident benefit. In fact, for sensing
tasks, it slightly diminishes detection accuracy. We believe this out-
come is due to the non-stationary nature of spectrograms. Given
that harmonic sequences experience slight temporal shifts with
physical primitives (as illustrated in Figure 2), employing positional
embeddings as supplementary supervision leads to overfitting on
the harmonic sequences specific to each time series sample. Conse-
quently, since the positional information of these harmonics evolves
over time, the absolute embedding introduces conflicting guidance,
clashing with the temporal relationships that the TS-Transformer
deciphers through its distinctive Temporal Shift configuration.

The TS-Transformer groups frequency informationwithin broader
localized patches using local attention, thereby encoding inter-
frequency relations efficiently for the network.Moreover, the unique
Temporal Shifting operation enables the learning of shifting har-
monics information between patches. Instead of embedding the
positions of frequency components directly, this operation fosters
attention (and, consequently, association) between the harmonic
counterparts of each frequency component. As a result, the TS-
Transformer is adept at efficiently encoding both the relations be-
tween frequencies and the non-stationarity phenomenon observed in
physical time series data.
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