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Abstract

Many real-world graphs exhibit diverse and complex topological structures that
are not well captured by geometric manifolds with uniform global curvature, such
as hyperbolic or spherical spaces. Recently, there has been growing interest in
embedding graphs into pseudo-Riemannian manifolds, which generalize both
hyperbolic and spherical geometries. However, existing approaches face three
significant limitations, including the ineffective pseudo-Riemannain framework,
the shallow architectures, and the absence of clear guideline for selecting suitable
pseudo-Riemannian manifolds. To address these issues, we introduce a novel
diffeomorphic framework for graph embedding that aligns with the nature of
pseudo-Riemannian manifolds. Subsequently, we propose the pseudo-Riemannian
Graph Transformer for learning representations of complex graph structures. Our
diffeomorphic framework in pseudo-Riemannian geometry enables the principled
definitions of core transformer components, including linear attention, residual
connection, and layer normalization. Finally, we develop a lightweight space
searching algorithm to automatically identify the most suitable pseudo-Riemannian
manifold for an input graph. Extensive experiments on diverse real-world graphs
demonstrate that our model consistently outperforms other baselines in both node
classification and link prediction tasks.

1 Introduction

Many real-world graphs have diverse topological structures (Boguñá et al., 2021), which are better
captured using varying geometrical curvatures. Geometric manifolds with uniform global structure,
such as hyperbolic or spherical manifolds, do not provide enough flexibility to model these complex
graphs (Gu et al., 2018). Instead of using a single manifold with a constant curvature, researchers
employ the Cartesian product of constant curvature manifolds to embed graphs of mixed topologies
(Gu et al., 2018; Bachmann et al., 2020). However, explicit distances in product manifolds may
emphasize either the spherical or hyperbolic component while overlooking the other, which limits
their ability to embed heterogeneous graphs (Law, 2021). Moreover, because Riemannian manifolds
like spherical manifolds use a positive definite metric, they cannot accurately capture the negative
eigenvalues present in input similarity data (Laub and Müller, 2004).

Recently, pseudo-Riemannian manifolds (also called semi-Riemannian manifolds), which generalize
Riemannian manifolds, have gained increasing attention for embedding mixed topological graphs
(Law and Stam, 2020; Law, 2021; Xiong et al., 2022). Pseudo-Riemannian manifolds equipped with
indefinite metrics not only extend hyperbolic and spherical geometries but also include hyperbolic
and spherical submanifolds, allowing them to capture relationships unique to these geometries.
Law and Stam (2020) proposed an efficient method to learn nonparametric embeddings with a
novel optimization tool on pseudo-Riemannian manifolds. Later, Law (2021) employed pseudo-
Riemannian geometry to graph neural networks by using the quotient manifold, which imposes
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additional constraints on the optimized function. Xiong et al. (2022) introduced the diffeomorphic
framework which decomposes pseudo-Riemannian manifolds into the product of spherical and
Euclidean spaces. This framework helps avoid geodesic disconnection and simplifies the extension of
GCNs to pseudo-Riemannian geometry. Compared to the work of Law (2021), the diffeomorphic
framework offers greater flexibility, as it can be applied to any optimized function within pseudo-
Riemannian geometry. Nevertheless, existing methods exhibit three major drawbacks that limit their
learning capacity. First, since pseudo-Riemannian manifolds inherently comprise both spherical and
hyperbolic submanifolds, this transformation onto the product of spherical and Euclidean spaces
(Xiong et al., 2022) results in a loss of hierarchical information essential to hyperbolic geometry.
Second, there is no clear guideline for selecting the number of time and space dimensions for pseudo-
Riemannian approaches. A mismatch between the graph structure and the topology of the embedding
manifold can introduce distortions in the graph representation (Ganea et al., 2018; Chami et al.,
2019; Bachmann et al., 2020). Third, the context size in GNN architectures is often limited (Li
et al., 2018; Oono and Suzuki, 2020). As the depth of GNNs increases, it leads to a phenomenon
known as oversmoothing or oversquashing (Chen et al., 2020) where node representations become
indistinguishable across the graph. To mitigate this issue, recent studies have introduced Transformer-
based graph encoders in Riemannian geometry (Wu et al., 2021; Cho et al., 2023; Yang et al., 2024).
However, their adaptation to more general Riemannian-based geometries has not yet been studied
because developing key Transformer operations on such manifolds is not trivial. Unlike Riemannian
manifolds, pseudo-Riemannian manifolds may contain pairs of points that cannot be connected by
a continuous geodesic (Law, 2021). As a result, gradient vectors are not parallel transported along
geodesics, and the logarithmic map between two given points is undefined.

In this work, we introduce a diffeomorphism that decomposes pseudo-Riemannian manifolds into the
Cartesian product of spherical and hyperbolic spaces. This transformation, which is built upon a sub-
manifold with a smooth extrinsic mapping function, addresses the issue of geodesic disconnection
and effectively preserves the cyclical and hierarchical structures of graphs. Subsequently, we
propose an efficient pseudo-Riemannian Graph Transformer (Q-GT) for learning representations of
complex graphs. Our diffeomorphic framework enables the definition of fundamental operations,
including linear attention, residual connection, and layer normalization, while allowing the use
of standard gradient descent algorithms for effective optimization. Additionally, we develop a
lightweight space searching algorithm to determine the optimal pseudo-Riemannian manifold for
representing mixed-topology graphs. To achieve this, we construct a bijection that maps each pseudo-
Riemannian manifold to an ideal Gaussian sectional curvature (GSC) distribution, and apply the
Kullback–Leibler (KL) divergence to select a suitable manifold. Finally, comprehensive evaluations
on node classification and link prediction tasks show that our model surpasses both Riemannian and
pseudo-Riemannian methods.

Contributions. Our contributions in this paper include: 1) We introduce a novel diffeomorphic
framework that transforms pseudo-Riemannian manifolds into the product of spherical and hyperbolic
space to preserve the cyclical and hierarchical representations of graphs. 2) We propose an efficient
pseudo-Riemannian Graph Transformer (Q-GT) for capturing mixed-topological dependencies of
input graphs. To the best of our knowledge, this is the first study on a Transformer-based graph
model built within the pseudo-Riemannian geometry. 3) We develop an efficient and effective space
searching algorithm for determining the time and space hyperparameters of pseudo-Riemannian
manifolds based on sectional curvature distributions.

2 Preliminaries

A generalization of Riemannian manifold is pseudo-Riemannian manifold (O’neill, 1983) which
allows the metric tensor g to be indefinite, meaning that for any nonzero tangent vector ξ ∈ TxM,
the value of gx(ξ, ξ) can take on both positive and negative signs. The ambient pseudo-Euclidean
space Rp,q+1 is a d-dimensional vector space, where d = p+ q+1 ∈ N, equipped with the following
scalar product ⟨x, y⟩q = −Σq

i=0xiyi +Σq+p
j=q+1xjyj ∀x, y ∈ Rp,q+1. A pseudo-hyperboloid Qp,q

β is
defined as the submanifold in the ambient pseudo-Euclidean space (Law and Stam, 2020):

Qp,q
β = {x = (x0, x1, ..., xp+q) ∈ Rp,q+1 : ∥x∥2q = β}, (1)

where β is a nonzero real number indicating space curvature, and ∥x∥2q = ⟨x, x⟩q is the vector norm
in the pseudo-Euclidean space. Qp,q

β is called pseudo-sphere when β > 0 and pseudo-hyperboloid
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when β < 0. Since Qp,q
β and Qq+1,p−1

−β via an anti-isometry, we consider the pseudo-hyperboloid
in this work. Following the terminology of space-time vectors (Sun et al., 2015), for each point in
Qp,q

β , the first q + 1 dimensions are time dimensions and the last p dimensions are space dimensions.
Hyperbolic and spherical manifolds can be considered as special cases of pseudo-hyperboloid Qp,q

β .
The d-dimensional spherical manifold, defined as Sq|β| = {x ∈ Rq+1 : ⟨x, x⟩ = |β|} where ⟨., .⟩
is the standard inner product in Euclidean space, is a pseudo-hyperboloid Q0,q

β . Meanwhile, the p-
dimensional Lorentz model Lp

β (Chami et al., 2019), which is used to represent hyperbolic manifolds,
is an upper sheet of the two-sheet pseudo-hyperboloid Qp,0

β . The Lorentz model is defined as
Lp
β = {x ∈ Rp,1 : ⟨x, x⟩L = β, x0 > 0}, where ⟨., .⟩L = ⟨., .⟩q=0 denotes the Lorentzian inner

product. To build a graph Transformer in pseudo-Riemannian geometry, we rely on further geodesic
tools in the pseudo-hyperboloid model, including the exponential and logarithmic maps along with
the parallel transport.

Exponential and logarithmic maps. Given a reference point x ∈ Qp,q
β , the maps between the

manifold Qp,q
β and the tangent space TxQp,q

β include the exponential map expβ
x : TxQp,q

β → Qp,q
β

and the logarithmic map logβ
x : Qp,q

β → TxQp,q
β . Law and Stam (2020) proposed the closed-form

expressions of two tangent maps, which we provide in the Appendix D for reference. They noticed
that a geodesic does not exist between two points x and y if the scalar product satisfies ⟨x, y⟩q ≥ |β|.
Consequently, the logarithmic map is undefined at y, and the points x and y are considered geodesic-
disconnected.

Parallel transport. Given two points x and y that are connected by a geodesic γ on the manifold
Qp,q

β , parallel transport P γ
x→y : TxQp,q

β → TyQp,q
β is an isomorphism between two tangent spaces

that moves one tangent vector ξ ∈ TxQp,q
β to another tangent space TyQp,q

β along the geodesic γ
(Law, 2021). The formula of the parallel transport is given in the Appendix D.

3 Diffeomorphic framework

Based on the pseudo-hyperboloid formulation, we propose a diffeomorphic framework that decom-
poses a pseudo-Riemannian manifold into the product of spherical and hyperbolic spaces. This
framework effectively preserves the graphs’ cyclical and hierarchical structures while addressing
the geodesic disconnections issue. Our framework is centralized by an extrinsic mapping func-
tion Φ which transports points from a manifold Qp,q

β to a sub-manifold Q̂p,q+1
β , followed by a

diffeomorphism Ψ that transforms Q̂p,q+1
β to the product of a sphere Sq|β| and a Lorentz model Lp

β .

3.1 Extrinsic mapping function

To construct an extrinsic mapping function, we first define a zero-first submanifold Q̂p,q
β of a pseudo-

hyperboloid Qp,q
β as follows:

Definition 1 (Zero-first submanifold). A zero-first submanifold Q̂p,q
β of a pseudo-hyperboloid Qp,q

β is
defined as

Q̂p,q
β = {x ∈ Rp,q+1 : ∥x∥2q = β, x0 = 0}. (2)

Then the extrinsic mapping function Φ : Qp,q
β → Q̂p,q+1

β and its inverse Φ−1 : Q̂p,q+1
β → Qp,q

β are
formulated as:

Φ(x) = (0, x) = y , Φ−1(y) = x, (3)
where x is a point on pseudo-hyperboloid manifold Qp,q

β , and y is a corresponding point on the
zero-first submanifold Q̂p,q+1

β . Several key properties of the extrinsic function Φ are presented in the
following proposition.
Proposition 1. The extrinsic mapping function Φ and its inverse Φ−1 are smooth, bijective, and
isometric.

The smoothness of the extrinsic mapping allows it to be integrated into the Graph Transformer module
in pseudo-Riemannian spaces. Furthermore, its bijective and isometric properties help preserve the
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Figure 1: The overall architecture of our proposed Q-GT.

integrity of original node features during vector addition on the pseudo-hyperboloid, addressing
limitations in previous works (Law, 2021; Xiong et al., 2022).

3.2 Diffeomorphic function

The following theorem provides a diffeomorphism that transforms the submanifold Q̂p,q+1
β into the

product of a spherical manifold Sq|β| and a hyperbolic manifold Lp
β .

Theorem 1. For any point x ∈ Q̂p,q+1
β , there exists a diffeomorphism Ψ : x ∈ Q̂p,q+1

β → Sq|β| × Lp
β

that maps x onto the product manifolds of a sphere and a hyperboloid. The mapping and its inverse
are given by:

Ψ(x) =

√|β| u
∥u∥

∥u∥
v

 , Ψ−1(z) =

 0
v′
0√
|β|

u′

v′[1:]

 , (4)

where x =

(
0
u
v

)
∈ Q̂p,q+1

β with u ∈ Rq+1 \ {0}, v ∈ Rp, and z =

(
u′

v′

)
with u′ ∈ Sq|β|, v

′ ∈ Lp
β .

The notation ∥u∥ =
√
⟨u, u⟩ indicates the Euclidean norm. The proof of Theorem 1 is given in the

Appendix E. Compared to the diffeomorphism proposed by Xiong et al. (2022), our framework better
preserves the hierarchical structure of graphs. The approach in Xiong et al. (2022) transforms points
on the pseudo-hyperboloid into a more Euclidean product space as the space dimension p increases,
potentially diminishing the hyperbolic properties essential for capturing hierarchical relationships.
Meanwhile, our diffeomorphism maps points on the pseudo-hyperboloid to a product of spherical and
hyperbolic spaces that aligns naturally with two geometric properties of pseudo-Rienammian hyper-
boloid: (i) containing spherical and hyperbolic topologies, (ii) becoming a spherical (or hyperbolic)
manifold when p = 0 (or q = 0). Hence, the product space Sq|β| × Lp

β can be used to interpret the
evolution of pseudo-hyperboloid Qp,q

β , leading to our efficient space searching algorithm for deter-
mining the optimal pseudo-hyperboloid in Section 5. The proposed diffeomorphic framework can be
viewed as a generalization of the hyperbolic framework that underlies state-of-the-art non-Euclidean
methods such as HGCN (Chami et al., 2019) and Hypformer (Yang et al., 2024).

4 Pseudo-Riemannian Graph Transformer

To address the limitations of pseudo-Riemannian GNNs, we propose an efficient pseudo-Riemannian
Graph Transformer (Q-GT), as illustrated in Fig. 1. By leveraging our diffeomorphic framework
in Section 3, we extend fundamental operations, including linear attention, and layer normalization
to the pseudo-hyperboloid Qp,q

β . Additionally, we design a novel residual connection that operates
directly on the pseudo-hyperboloid, ensuring stable training and enhancing the performance ofQ-GT.
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4.1 Pseudo-Riemannian linear attention

Given the node features XQp,q
β = {x

Qp,q
β

i }i=N
i=1 of input graph G, where each x

Qp,q
β

i ∈ Qp,q
β , we first

apply the extrinsic mapping function Φ and the diffeomorphism Ψ, as defined in Eq. (3) and Eq. (4),
to project the features onto the product space, i.e. XSq|β|×Lp

β = Ψ(Φ(XQp,q
β )).

We decompose each node feature x
Sq|β|×Lp

β

i = (ui, vi)
T where ui ∈ Sq|β| and vi ∈ Lp

β . Since the
spherical and hyperbolic manifolds are independent within the product space Sq|β| × Lp

β , we can
apply linear attention to each manifold separately and then concatenate the results. Yang et al. (2024)
proposed a linear attention mechanism in hyperbolic space Lp

β , allowing for efficient processing of
large-scale data. Specifically, the hyperbolic linear attention can be described as:

vWi =
(√
∥Wvi∥2 − β,Wvi

)
(5)

s.t W ∈ {Q1,K1,V1},
ṽQ1

i , ṽK1
i , ṽV1

i = ϕ(vQ1

i,[1:]), ϕ(v
K1

i,[1:]), v
V1

i,[1:], (6)

v̄i =

(
(ṽQ1

i )T
∑N

j=1 ṽ
K1
j (ṽV1

j )T

(ṽQ1

i )T
∑N

j=1 ṽ
K1
j

)T

, (7)

v̂i =
(√
∥v̄i∥2 − β, v̄i

)
∈ Lp′

β , (8)

where Q1,K1,V1 ∈ Rp′×(p+1) are three trainable matrices, and ϕ is a positive-definite kernel
function used to linearize the standard similarity function sim(Q,K) in Transformers. In our
Q-GT, we choose ϕ(x) = 1 + elu(x), which is commonly used in linear attention models (Wu
et al., 2022, 2023). The core idea behind hyperbolic linear attention is that each vector vi ∈ Lp

β

is projected by three matrices Q1,K1,V1 in Eq. (5). The kernel function ϕ and linear atten-
tion are then applied to the space-like components vi,[1:] in Eq. (6) and Eq. (7). Finally, the
time-like component is computed to obtain the hidden vector v̂i in Eq. (8). It is important
to note that the hyperbolic linear attention used in this paper differs from Yang et al. (2024),
since we do not employ kernel function ϕ to the value vector vV1

i and omit the residual con-
nection. Similar to hyperbolic linear attention, we introduce spherical linear attention as follows:

uW
i =

(√
|β|Wui/∥Wui∥

)
(9)

s.t W ∈ {Q2,K2,V2},
ũQ2

i , ũK2
i = ϕ(uQ2

i ), ϕ(uK2
i ), (10)

ūi =

(
(ũQ2

i )T
∑N

j=1 ũ
K2
j (uV2

j )T

(ũQ2

i )T
∑N

j=1 ũ
K2
j

)T

, (11)

ûi =
(√
|β|ūi/∥ūi∥

)
∈ Sq

′

|β|, (12)

where Q2,K2,V2 ∈ R(q′+1)×(q+1) are three trainable matrices. After applying linear attention, we

concatenate the outputs ûi and v̂i to achieve ith node’s hidden feature x
Sq

′
|β|×Lp′

β

i = (ûi, v̂i)
T .

4.2 Pseudo-Riemannian refining function

Inspired by Yang et al. (2024), we introduce the product refining function σ, which generalizes
fundamental operations such as dropout, layer normalization and activation function in the product
space Sq|β| × Lp

β :

σ(x) = (
√
|β|σ(u)/∥σ(u)∥,

√
∥σ(v[1:])∥2 − β, σ(v[1:]))

T , (13)

where x = (u, v)T ∈ Sq|β| × Lp
β with u ∈ Sq|β| and v ∈ Lp

β . The product refining function σ operates
independently on the spherical and hyperbolic manifolds, similar to linear attention, which ensures
that the output remains within the product space.

4.3 Pseudo-Riemannian residual connection

Residual connection in pseudo-Riemannian methods requires the definition of vector addition in
pseudo-Riemannian space. Xiong et al. (2022) suggested using parallel transport with antipodal points
as vector addition in the pseudo-hyperboloid Qp,q

β . However, this approach alters node features by
reversing their original representation, making it unsuitable for preserving feature integrity. Therefore,
we define a new vector addition as follows:
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Definition 2 (Pseudo-hyperboloid vector addition). Given two vectors x, y ∈ Qp,q
β , the pseudo-

hyperboloid vector addition is defined as:

z = y ⊕β x = expβ
Φ(y)(P

γ
ō→Φ(y)(logβō(Φ(x)))), (14)

where Φ is the extrinsic mapping function in Eq. (3), expβ and logβ are the exponential map and
logarithmic map respectively, P γ is the parallel transport, ō = (

√
|β|, 0, ..., 0) is the south pole in

the manifold Qp,q+1
β , and the output z ∈ Qp,q+1

β .

The procedure for vector addition on the pseudo-hyperboloid is similar to the bias addition in
hyperbolic space (Chami et al., 2019). With the extrinsic mapping introduced in Section 3, we enable
the application of logarithmic map and parallel transport while avoiding geodesic disconnections and
preserving the original features. We further provide the closed form of the vector addition ⊕β in the
following proposition:

Proposition 2. Given two vectors x, y ∈ Qp,q
β , the closed form of pseudo-hyperboloid vector addition

is expressed as:

z = y ⊕β x = Φ(x) +
⟨Φ(x),Φ(y)⟩q+1

|β|
(ō+Φ(y)).

4.4 Overall architecture

Fig. 1 illustrates the architecture and data flow of the proposed method Q-GT. During preprocessing,
we apply the strategy described in Section 5 to find the appropriate pseudo-hyperboloid for embedding
the input graph. Once the manifold is selected, the input features XE are projected onto Qp∗,q∗

β .
By using the functions Φ and Ψ in Eq. (3) and Eq. (4), the projected features are further mapped

to a product space Sq
∗

|β| × Lp∗

β . The resulting node representations X
Sq

∗
|β|×Lp∗

β are processed by
the Q-GT module to capture global relations between nodes. Meanwhile, a graph convolutional
module Q-GCN2, which is designed based on our diffeomorphic framework, extracts intrinsic graph
structural information of the input. Finally, the outputs of Q-GT and Q-GCN2 are aggregated to
produce the final graph representation. The details of Q-GCN2 is provided in the Appendix G.

5 Space searching algorithm

A pseudo-hyperboloid is defined by two key hyperparameters: the number of time dimensions q and
the number of space dimensions p. Given a fixed total dimensionality d = p+ q + 1 for representing
node features, varying p and q alters the geometric properties of the pseudo-hyperboloid. Since
high-dimensional pseudo-hyperboloids are difficult to visualize directly, their geometric properties
can be more easily interpreted by mapping them to the product of spherical and hyperbolic spaces
using our diffeomorphic framework. When p = 0, the manifold Qp,q

β becomes a sphere Sq|β| which is
well-suited for embedding cyclical graphs. As p increases, the topology of Qp,q

β transitions into a
product of hyperbolic and spherical geometries, which is appropriate for mixed-structural graphs.
When p reaches its maximum value of d − 1, Qp,q

β becomes a hyperbolic manifold Lq
β which is

effective for modeling tree-like graphs. Once the correlation between the input graph’s topology and
the space dimension p is known, we can determine the appropriate manifold.

In our work, we rely on the GSC distribution N (µ̄, σ̄2) (Bachmann et al., 2020), which provides a
comprehensive view of how curvature is distributed across the entire graph, reflecting the geometric
complexity of the input graph. We hypothesize that the GSC distribution N (µ̄, σ̄2) of input graph
is closely related to the topological characteristics of the pseudo-hyperboloid Qp,q

β . Therefore, we
propose a simple yet effective space searching algorithm to choose a value of p (or q) based on the
GSC distribution. Specifically, we define a bijective function Γ that maps each pseudo-hyperboloid
Qpi,qi

β to its corresponding ideal GSC distribution N (µi, σ
2
i ). To identify the most suitable manifold,

we iteratively compute the KL divergence between the input GSC distribution N (µ̄, σ̄2) and each
ideal GSC distribution. We then select the pseudo-hyperboloid associated with the ideal distribution
N (µi, σ

2
i ) that yields the smallest KL divergence. This procedure is illustrated in Fig. 1 as the

choosing manifold step. Given a collection of pseudo-hyperboloids {Qpi,qi
β }i=d−1

i=0 satisfying that
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Table 1: The node classification results in F1-score. The best results are in bold and the second-best
results are in underline for each dataset. OOM denotes out of memory during training or testing.

Datasets

Methods Cora Citeseer Airport Pubmed Arxiv Penn94 Twitch Gamers

GCN 81.87 ± 0.52 70.73 ± 0.61 74.62 ± 0.56 79.73 ± 0.31 57.39 ± 0.54 80.92 ± 0.57 63.73 ± 0.11
HGCN 76.57 ± 0.90 65.60 ± 0.64 83.46 ± 0.94 77.09 ± 0.26 62.16 ± 0.36 82.04 ± 0.01 61.65 ± 0.94
κ-GCN 73.83 ± 0.56 67.27 ± 0.71 80.60 ± 0.39 75.07 ± 0.58 58.36 ± 0.18 72.81 ± 0.17 61.81 ± 0.72
Q-GCN 80.20 ± 0.41 67.80 ± 0.51 76.12 ± 0.48 76.60 ± 0.54 64.80 ± 0.22 82.68 ± 0.14 63.53 ± 0.30
Q-GCN2 82.60 ± 0.24 71.63 ± 0.29 91.66 ± 0.45 80.13 ± 0.26 64.93 ± 0.32 82.60 ± 0.07 63.77 ± 0.06

GraphGPS 73.76 ± 1.31 61.07 ± 0.40 89.31 ± 0.95 71.53 ± 0.74 OOM OOM OOM
NodeFormer 80.27 ± 0.83 70.03 ± 0.31 88.87 ± 0.36 81.30 ± 0.65 53.37 ± 0.34 77.80 ± 0.11 63.97 ± 0.17
SGFormer 82.00 ± 0.51 71.93 ± 0.59 93.32 ± 1.09 78.97 ± 0.09 61.38 ± 0.25 78.45 ± 0.19 63.73 ± 0.10
Hypformer 75.13 ± 0.69 67.77 ± 0.41 89.19 ± 0.50 78.93 ± 0.21 64.62 ± 0.22 78.13 ± 0.69 63.16 ± 0.33

FPS-T 60.50 ± 0.40 60.70 ± 0.30 91.41 ± 0.17 76.23 ± 0.31 OOM OOM OOM

Q-GT 82.97 ± 0.17 70.40 ± 0.49 95.70 ± 0.08 80.37 ± 0.40 66.24 ± 0.05 82.77 ± 0.10 64.45 ± 0.07

pi + qi = d − 1, where d is a fixed total dimensionality of embedding space and d − 1 is an even
number greater than 2, a bijective function Γ : N→ N (µ, σ2) is defined as:

Γ(pi) =


N
(
−|µ̄|,

(
σmax − (σmax − σmin)

(
2pi−(d+1)

d−3

))2)
, if (d− 1)/2 < pi ≤ d− 1

N (0, 1), if pi = (d− 1)/2

N
(
|µ̄|,

(
σmin + (σmax − σmin)

(
2pi

d−3

))2)
. if 0 ≤ pi < (d− 1)/2

(15)
Since qi = d− 1− pi, the function Γ can be defined in terms of pi alone. The mean µi is derived
from the practical mean µ̄, while the standard deviation σi is assumed to vary linearly with the space
dimension pi. More details about the space searching algorithm are in Appendix C. In general, the
ideal standard deviation may follow a non-linear relationship concerning the space dimension. We
leave the exploration of this to future work.

6 Experiments

We evaluate the performance of our proposed Q-GT model on node classification and link pre-
diction tasks, and conduct a comprehensive comparison against a wide range of state-of-the-art
non-Euclidean GCNs and graph transformers. Our implementation is available at the GitHub reposi-
tory https://github.com/quanlv9211/QGT.git.

6.1 Node classification

Datasets. We choose seven widely used graph datasets for evaluation, including four citation
networks Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008), and
Arxiv (Hu et al., 2020); two social networks Penn94 and Twitch Gamers (Lim et al., 2021); and one
transportation network Airport (Xiong et al., 2022). For the node classification task, we follow the
standard dataset splits used by Hu et al. (2020); Xiong et al. (2022); Lim et al. (2021). Summary
statistics for all seven datasets are provided in the Appendix I. Notably, the graph sectional curvature
(GSC) distributions across most datasets are consistently positive, except Citeseer, where the mean of
the GSC distribution is close to 0.

Baselines. We compare the performance of Q-GT against state-of-the-art GNNs and graph Trans-
formers operating in both Euclidean and non-Euclidean spaces. The GNN-based baselines include
GCN (Kipf and Welling, 2017), HGCN (Chami et al., 2019), κ-GCN (Bachmann et al., 2020),
Q-GCN (Xiong et al., 2022), and our Q-GCN2 which is a GCN variant built upon our proposed
diffeomorphic framework. The Transformer-based baselines consist of GraphGPS (Rampášek et al.,
2022), NodeFormer (Wu et al., 2022), SGFormer (Wu et al., 2023), Hypformer (Yang et al., 2024),
and FPS-T (Cho et al., 2023). To ensure a fair comparison, we set a 16-dimensional hidden embedding
for all models. For product-space models such as κ-GCN and FPS-T, we constrain 2 components on
their respective product manifolds. For Q-GT, Q-GCN2, and Q-GCN, we apply the space searching
algorithm in Section 5. Each model is trained for up to 1000 epochs with early stopping applied.
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Results. Table 1 presents the node classification results in terms of F1-score. Our proposed Q-GT
consistently outperforms competing methods on 5 out of 7 datasets. The most notable improvement is
observed on the Airport dataset, where Q-GT achieves a performance gain of 2.55% in F1-score. On
non-homophilous datasets such as Penn94 and Twitch Gamers, where Transformer-based baselines
typically underperform, Q-GT demonstrates stable and robust results. For instance, on Penn94,
Q-GT surpasses the second-best Transformer (SGFormer) by 5.51% in F1-score. Moreover, by
leveraging a linear attention mechanism, Q-GT scales effectively to large graphs (such as Arxiv and
Twitch Gamers), while GraphGPS with the standard attention encounters the out-of-memory (OOM)
problem. Q-GCN2 also delivers strong performance, ranking second on three datasets (Cora, Citeseer,
and Arxiv) and exceedingQ-GCN on most benchmarks. It is worth noting that the Transformer-based
baseline FPS-T is similar to Q-GT, as both operate in product spaces of Riemannian manifolds.
However, FPS-T suffers from significant computational overhead due to its reliance on tangent
mappings and expensive Laplacian eigenvector computations, leading to out-of-memory issues on
three large-scale datasets. On the node classification task for Cora and Citeseer, FPS-T underperforms
Q-GT, with learned curvatures converging to near-zero values (e.g. {0.023, 0.025} on Cora and
{0.008, 0.007} on Citeseer), which fail to capture the underlying hyperbolic geometry In contrast,
Q-GT benefits from operating directly on the product of spherical and hyperbolic manifolds, which
is diffeomorphic to the pseudo-hyperboloid, thereby enhancing its performance.

6.2 Link prediction

Setup. For the link prediction task, we evaluate performance on four datasets: Cora, Citeseer,
Pubmed, and Airport. Each dataset’s edges are split into 85%, 5%, and 10% for training, validation,
and testing, respectively. The baseline configurations are the same as those in Section 6.1.

Table 2: The link prediction results in ROC AUC (%).
The best results are in bold and the second-best results
are in underline for each dataset.

Datasets

Methods Cora Citeseer Airport Pubmed

GCN 80.75 ± 0.23 86.12 ± 0.24 88.92 ± 0.30 92.62 ± 0.20
HGCN 94.11 ± 0.18 96.11 ± 0.11 92.85 ± 0.29 92.21 ± 0.08
κ-GCN 94.29 ± 0.10 95.46 ± 0.07 85.50 ± 0.19 87.63 ± 0.19
Q-GCN 94.45 ± 0.08 96.19 ± 0.20 67.35 ± 0.75 85.95 ± 0.65
Q-GCN2 95.93 ± 0.07 97.25 ± 0.05 95.61 ± 0.05 95.45 ± 0.19

GraphGPS 92.60 ± 0.17 96.04 ± 0.12 94.40 ± 0.04 94.00 ± 0.10
NodeFormer 94.04 ± 0.13 95.67 ± 0.02 94.22 ± 0.09 94.39 ± 0.08
SGFormer 93.70 ± 0.25 95.74 ± 0.08 93.96 ± 0.10 92.10 ± 0.20
Hypformer 95.99 ± 0.30 96.83 ± 0.12 96.18 ± 0.04 94.59 ± 0.17

FPS-T 95.25 ± 0.12 97.17 ± 0.44 96.10 ± 0.13 92.11 ± 0.04

Q-GT 96.87 ± 0.19 97.59 ± 0.11 96.56 ± 0.07 96.40 ± 0.10

Results. The results of link prediction
are shown in Table 2. Q-GT obtains the
highest score on every dataset, with par-
ticularly high margins on Cora (96.87%
in AUC) and Citeseer (97.59% in AUC),
outperforming strong transformer baselines
like NodeFormer, SGFormer and FPS-T.Q-
GCN2 also demonstrates competitive per-
formance, ranking second on Citeseer and
Pubmed. Furthermore, both Q-GT and Q-
GCN2 significantly surpassQ-GCN across
all datasets. For example, Q-GT and Q-
GCN2 achieve gains of 43.37 % and 42.81
% in AUC score on the Airport against Q-
GCN. These results underscore the effec-
tiveness of our diffeomorphic framework
in preserving structural information critical for accurate link prediction.

6.3 More ablation studies

Table 3: Comparison on Open Graph Benchmark
datasets. Products is used for the node classification
task, while Vessel is used for link prediction.

Datasets

Methods Products Vessel

Q-GCN 29.56 ± 0.31 59.64 ± 0.37
Q-GCN2 52.08 ± 0.45 50.21 ± 0.36
SGFormer 65.47 ± 0.28 50.03 ± 0.26
Hypformer 40.25 ± 0.54 49.87 ± 0.49
Q-GT 70.25 ± 0.27 78.78 ± 0.50

Scalability. To further assess the scalabil-
ity of our model, we conducted additional
evaluations ofQ-GT and other strong base-
lines on two enormous datasets from the
Open Graph Benchmark: Products and Ves-
sels (Hu et al., 2020), where the results are
shown in Table 3. This experiment is per-
formed with all Transformer models con-
figured with 1 layer, GNNs with 3 layers,
and training conducted over 200 epochs. It
is obvious that Q-GT achieves the highest
performance on both datasets, outperform-
ing the strongest baselines by 7.3% on Products and 32.09% on Vessel. However, as shown in
Appendix H.2 about model complexity, Q-GT introduces higher computational and memory costs
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(a) (b) (c)

Figure 2: Evaluation ofQ-GT,Q-GCN2, andQ-GCN across varying space dimensions on the Airport
dataset: (a) GSC distribution. (b) Link prediction performance. (c) Node classification performance.
The red line denotes space dimension p∗ estimated by the searching algorithm.

Figure 3: Visualization of the learned embeddings for link prediction task on the Cora dataset, where
the colors denote different levels of nodes. The levels are defined according to node degree as follows:
Level 1 (1–5), Level 2 (6–10), Level 3 (11–20), and Level 4 (greater than 20).

compared to other baselines. We recognize this as a limitation of our current approach and plan to
investigate more efficient solutions in future work.

Space searching algorithm. To analyze the effectiveness of space searching algorithm, we conduct
an ablation study on the Airport dataset using various space dimensions p ∈ [0, 16]. As shown
in Fig. 2, the GSC distribution of Airport network is predominantly positive, indicating that the
graph is best embedded in a pseudo-hyperboloid with a low space dimension. Notably, our space
searching algorithm correctly identifies p∗ = 1 as the optimal dimension, aligning with the highest
point of performance in Q-GT and Q-GCN2. In contrast, Q-GCN achieves best performance in a
large-space dimensional manifold Q15,1

β , which is counterintuitive given the structure of the dataset.
Nevertheless, Q-GCN still underperforms compared to Q-GT and Q-GCN2 in the optimal manifold.
More experimental results of the space searching algorithm are provided in the Appendix H.1.

Diffeomorphic framework. Fig. 3 visualizes the learned embedding on the Cora dataset within
the product spaces of the estimated Q2,14

β . Specifically, we omit the common spherical component
used in our diffeomorphism and in the work of Xiong et al. (2022). We instead plot the hyperbolic
features for Q-GT, Q-GCN2, and the Euclidean features for Q-GCN using the UMAP tool1. We
refer to nodes with degree Level 1 as low-level nodes, while all others are considered high-level
nodes. InQ-GCN, both high-level and low-level nodes form a single large cluster, meaning that these
nodes are oversmoothed in the Euclidean space. In Q-GT and Q-GCN2, high-level nodes are more
dispersed, forming multiple small groups that include only a few low-level nodes. These findings
suggest that the hyperbolic component in our diffeomorphic framework effectively captures local
hierarchical relationships among nodes and separates them into distinct clusters. We further evaluate
the effectiveness of the diffeomorphic framework on a toy tree-like graph in the Appendix H.3.

To fully assess our proposed work on downstream tasks, we perform an ablation study in the Appendix
H.4 to analyze the impact of each key component in Q-GT.

1https://umap-learn.readthedocs.io/en/latest/index.html
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6.4 Further discussions

Limitations. The proposed graph models (Q-GT and Q-GCN2), along with the space searching
algorithm, are currently limited to the single static graph setting. As a result, they are not directly
applicable to graph-level datasets, such as Long Range Graph Benchmark (Dwivedi et al., 2022), or
to dynamic graph scenarios. Our space searching approach is based on the assumption of a linear
relationship between the ideal standard deviation and the space dimension, which requires further
theoretical analysis to validate its correctness. SinceQ-GT is built upon the Transformer architecture,
it incurs higher computational and memory costs compared to GNNs (see Appendix H.2).

Broader impacts. This work represents a theoretical advancement in the field of manifold learning
in graphs. There could be some potential societal consequences of our work. For example, our work
can be implemented in various graph learning applications in domains such as recommender systems
and social networks, which we left for future analysis.

7 Conclusion

In this paper, we propose a novel diffeomorphic framework that decomposes pseudo-Riemannian
manifolds into the product of spherical and hyperbolic spaces, preserving key geometric properties
of pseudo-Riemannian manifolds. Based on our framework, we successfully generalize Graph
Transformer to pseudo-Riemannian manifolds, achieving promising results in graph learning tasks.
Besides, by analyzing the properties of pseudo-Riemannian manifolds with space dimension, we
develop a space searching algorithm to determine an embedding manifold effectively. Experimental
results on real-world datasets, especially in the link prediction task, demonstrate that our model
outperforms both Riemannian and pseudo-Riemannian baselines. Based on the results, it is possible
to extend our framework to other settings such as graph-level learning, dynamic graph learning or in
more generalized domains.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly stated our claims in the abstract and introduction, reflecting the
scope and contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6.4, we list three limitations of our work, which are the restriction
of the single static graph setting, computational overhead, and numerical instability.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the proofs for Theorem 1, Proposition 1, and Proposition2 in
Appendices E and F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: For reproducibility, implementation details are included in Appendix I, and the
code will be released publicly upon acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code has been submitted along with the paper, but will remain
private until the work is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental setting is given in Section 6.1 to 6.3 and Appendix I.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the mean and standard deviation for several experiments
(Sections 6.1, 6.2, H.3, H.4).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The GPUs used for performing the experiments are detailed in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: Our work conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts of our work in Section 6.4.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Every baseline method and dataset is cited in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The development of our work does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

A Notation

Table 4 summarizes all notations mainly used in this work and their corresponding explanations.

Table 4: Main Notations
Notations Descriptions

Qp,q
β A pseudo-hyperboloid with q + 1 time dimensions, p space

dimensions, and space curvature β

Q̂p,q
β The zero-first submanifold of Qp,q

β

⟨., .⟩ The inner product in Euclidean space
⟨., .⟩q The inner product in pseudo-Euclidean space
∥.∥ The vector norm in Euclidean space
∥.∥q The vector norm in pseudo-Euclidean space
G = (VG, EG) A static graph G with the node set VG and the edge set EG

x, y, z, u, v, u′, v′ A single vector or point
X A set of vectors xi

N The number of vectors in a vector set X
TxM The tangent space at point x in a manifoldM
exp, log The exponential and logarithmic maps
Pγ
x→y The parallel transport from TxQp,q

β to TyQp,q
β along the

geodesic γ
Dγ(x, y), dγ(x, y) The distance between two points x, y
d The embedding dimension
R The Euclidean space
N The natural number set
S The spherical space
L The hyperbolic space or the Lorentz model
Φ The extrinsic mapping
Ψ The diffeomorphic function
N (µ, σ2) The Gaussian distribution with the mean µ and the variance

σ2

f The probability density function of the Gaussian distribution
Γ The bijective function to Gaussian distributions

B Related works

Graph embedding in Euclidean space. Euclidean space has long been the foundation of deep
learning because it supports fundamental linear algebraic operations such as vector addition and
matrix multiplication. As a result, many early graph representation learning methods were developed
within Euclidean geometry and achieved notable successes. One of the pioneering approaches is the
Graph Convolutional Network (GCN) introduced by Kipf and Welling (2017), which enabled deep
learning-based graph embeddings. To address GCN’s limitations in depth and its restricted capacity
to capture long-range dependencies, Transformer architecture have been adapted (Vaswani et al.,
2017) for graph data. For example, GraphGPS (Rampášek et al., 2022) integrates local message
passing with global attention in a hybrid architecture. Despite their superior performance over graph
neural networks in small-scale graph applications, Transformer-based methods often struggle with
scalability. (Wu et al., 2022, 2023). Standard attention computes pairwise interactions between
all node pairs through a softmax function, resulting in quadratic computational complexity. An
alternative approach is utilizing linear attention (Katharopoulos et al., 2020), which offers linear
computational complexity, for large-scale graph learning. For instance, NodeFormer (Wu et al., 2022)
introduces a novel kernelized Gumbel-Softmax message-passing mechanism to approximate the
standard attention with linear complexity. SGFormer (Wu et al., 2023) demonstrates the surprising
effectiveness of a single-layer, single-head linear attention module in node-level tasks. Leveraging
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the advantages of linear attention, we propose a pseudo-Riemannian graph model Q-GT built upon
the linear Transformer architecture to ensure scalability and efficiency.

Graph embedding in non-Euclidean space. As data becomes increasingly complex and diverse, the
limitations of Euclidean geometry in graph representation learning are becoming more evident. For
instance, Krioukov et al. (2010) proved that hyperbolic geometry is better suited for embedding scale-
free and hierarchical graphs due to its exponential expansion property. Consequently, Chami et al.
(2019) extended the classic GCN to hyperbolic GCN by shifting the graph operation to the tangent
space for executing vector operations. Yang et al. (2024) developed a scalable and robust hyperbolic
Transformer called Hypformer, which employs the linear attention mechanism fully on the hyperbolic
manifold. For modeling graphs of mixed topologies, κ-GCN (Bachmann et al., 2020) generalized
GCN to the Cartesian product of constant curvature manifolds. However, computing explicit distances
in the product of manifolds can introduce bias toward one component over the other, thereby restricting
the model’s representational capacity (Law, 2021). Alternatively, pseudo-Riemannian geometry,
which generalizes spherical and hyperbolic geometries, can address the weakness of product spaces
with its intrinsic distance (Law, 2021; Xiong et al., 2022). Law and Stam (2020) proposed the
first nonparametric method to learn graph representations with a novel optimization tool on pseudo-
Riemannian manifolds. Then Law (2021) designed a graph neural network on the quotient manifold,
which is a submanifold of the pseudo-Riemannian manifold to avoid geodesic disconnection. On
the other hand, Q-GCN (Xiong et al., 2022) introduced a diffeomorphism that decomposes pseudo-
Riemannian manifolds into the product of spherical and Euclidean spaces, enabling a lightweight
extension of GCNs to pseudo-Riemannian geometry. Nevertheless, existing methods suffer from
three notable limitations: (1) the diffeomorphism to the product of spherical and Euclidean spaces
discards hierarchical information inherent in the graph structure; (2) the GNN architecture is prone
to the oversquashing problem as the number of layers increases; and (3) previous methods rely
on a brute-force algorithm to select the appropriate pseudo-hyperboloid, which is computationally
expensive. To address these limitations and attain better outcomes, we propose Q-GT, which is the
first Transformer-based graph method in pseudo-Riemannian geometry.

C More details about space searching algorithm

C.1 Gaussian sectional curvature

Sectional curvature is a fundamental concept in Riemannian geometry that describes how a manifold
curves in different two-dimensional directions (Lee, 2018). Given a point x on a manifold M
and two linear independent tangent vectors u, v ∈ TxM spanning a two-dimensional subspace U ,
the sectional curvature measures the Gaussian curvature of the surface Exp(U) ⊆ M formed by
exponential mapping tangent vectors within U . Intuitively, it provides insight into the local geometric
properties around a point x (Gu et al., 2018), where positive sectional curvature indicates a locally
spherical structure, zero curvature corresponds to a Euclidean-like space, and negative curvature
signifies a hyperbolic structure. In the context of graphs, Gu et al. (2018) proposed a discrete curvature
analog κ to estimate the section curvature in an undirected graph G. Given a node m ∈ G, for any
two neighbor nodes b, c and a reference node a ̸= m, the curvature analog κ(m; b, c) is defined as:

κ(m; b, c) =
1

|VG| − 1

∑
a∈G,a ̸=m

(
dG(a,m)

2
+

d2G(b, c)

8dG(a,m)
− d2G(a, b) + d2G(a, c)

4dG(a,m)

)
, (16)

where |VG| is the number of nodes in the graph G, dG(a, b) is the length of the shortest path between
nodes a and b. The sectional curvature κ(m) assigned to point m is determined by averaging curvature
analogs κ(m; b, c) over different neighbors (b, c). In practice, sampling on the neighbors b, c and
reference point a is applied to reduce computational overhead (Gu et al., 2018; Bachmann et al.,
2020).

To assess the topological structure of the graph G, we compute the Gaussian Sectional Curvature
(GSC) distribution N (µ̄, σ̄2) (Bachmann et al., 2020). In particular, the mean µ̄ and the variance σ̄2

of N (µ̄, σ̄2) are calculated as:

µ̄ =
1

|VG|
∑
m∈G

κ(m) , σ̄2 =
1

|VG|
∑
m∈G

(κ(m)− µ̄)2. (17)
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GSC distribution N (µ̄, σ̄2) provides a comprehensive view of how curvature is distributed across
the entire graph, reflecting the geometric complexity of the graph. The mean curvature µ̄ captures
the fundamental structural properties of the graph (i.e., whether it is predominantly hierarchical or
cyclical), while the variance σ̄2 measures the degree of topological heterogeneity. A negative mean
µ̄ < 0 suggests a more hierarchical structure, favoring embedding in a hyperbolic manifold, whereas
a positive mean µ̄ > 0 indicates a more cyclical structure, which is suited for a spherical manifold.
The variance σ̄2 further refines this interpretation: a small variance implies a more homogeneous
graph topology, closely aligned with either a hyperbolic or spherical space, while a large variance
signifies a more diverse topological structure comprising both cyclical and hierarchical parts.

C.2 Complexity

To ensure the efficiency of our strategy, we begin by uniformly sampling a subset of nodes A such
that |A| ≪ |VG|. For each node a ∈ A, we precompute the graph distance dG(a, b) for all node
b ∈ G. Consequently, the curvature analog in Eq. (16) is computed as an average over A when
m /∈ A and over A\{m} when m ∈ A. The time complexity of our algorithm is O(|A|(|VG| +
|EG|)+ns|A||VG|+ d), where ns is the number of times we sample two neighbor nodes, |EG| is the
number of edges in graph G, and d is the dimension of embedding space. In contrast, a brute-force
approach to selecting hyperparameters p and q has a complexity of O(niterd∆) where niter denotes the
number of training iterations, and ∆ represents the model complexity. For instance, in a simple GCN
(Kipf and Welling, 2017), the model complexity is O(L(|VG|d2 + |EG|d)), where L is the number
of layers, while in a standard linear Transformer (Katharopoulos et al., 2020), it is O(|VG|d2). Since
our space searching algorithm scales linearly with d, it remains efficient even for high-dimensional
embeddings. Meanwhile, the brute-force approach becomes computationally expensive when both d
and niter are large.

C.3 Analysis of bijective function Γ

Constructing the bijective function Γ that reflects the relationship between variations in the ideal
GSC distribution and the structural characteristics of the pseudo-hyperboloid is a non-trivial task. To
facilitate this construction, we analyze the function Γ under three different geometric cases, which
are balanced, spherical, and hyperbolic. In the balanced case, the mean curvature µi is set as 0
when the input graph exhibits the most uniform structure, containing equal proportions of cyclical
and hierarchical topologies. This structure is best embedded in the balanced manifold Qpi,qi

β where
pi = qi = (d − 1)/2. The standard variance σi can take any arbitrary value, and we assign it to 1
for simplicity. In the spherical case, when the manifold Qpi,qi

β becomes more spherical by setting
pi < (d− 1)/2 < qi, it best corresponds to a graph with a positive mean curvature. Therefore, we set
µi = |µ̄|, where µ̄ is the estimated mean curvature of input graph. The variance σ2

i , defined as in Eq.
(15), increases monotonically with increasing pi. This is because as pi grows, the manifold Qpi,qi

β

shifts toward a more balanced structure, which is suited for a uniform topological graph with large
variance in its GSC distribution. Notably, the standard deviation σi reaches its minimum value σmin
when pi = 0 (a fully spherical manifold), and its maximum value σmax when pi = (d − 1)/2 − 1.
We determine σmax such that the probability density function at zero curvature, f(0), is nearly equal
to f(µi) for the highest variance, while σmin ensures that f(0) ≪ f(µi) for the lowest variance.
In practice, we assign σmin = 0.5|µ̄| and σmax = 5|µ̄|. Similarly, we define the GSC distribution
N (µi, σ

2
i ) for the hyperbolic case in Eq. (15) where pi > (d− 1)/2 > qi. The key difference is that,

unlike the spherical case, the mean curvature µi is negative and the standard deviation σi decreases
monotonically as pi increases.

D Geodesic tools of pseudo-hyperboloid

D.1 Parallel transport

Given two points x and y that are connected by a geodesic γ on the manifold Qp,q
β , ξ is a vector in

the tangent space TxQp,q
β , the parallel transport is formulated by Law (2021):

P γ
x→y(ξ) = ξ − ⟨ξ, y⟩q

⟨x, y⟩q − |β|
(y + x). (18)

3



D.2 Distance

When x, y ∈ Qp,q
β are geodesic-connected, the induced distance between x and y in pseudo-

hyperboloid is given by dγ(x, y) =
√
∥logx(y)∥2q . However, in cases where logx(y) is not defined

due to geodesic disconnection, Xiong et al. (2022) proposed an approximation using midpoints.
Specifically, the antipodal point −x serves as an intermediary for the broken geodesic between x and
y, leading to the distance approximation:

Dγ(x, y) =

{
dγ(x, y), if ⟨x, y⟩q < |β|
dγ(x,−x) + dγ(−x, y) = π

√
|β|+ dγ(−x, y). if ⟨x, y⟩q ≥ |β|

(19)

D.3 Exponential and logarithmic maps

The closed form expressions of two tangent maps expβ
x(ξ) and logβx(y) proposed by Law and Stam

(2020):

expβ
x(ξ) =


cosh

(√
|⟨ξ,ξ⟩q|√

|β|

)
x+

√
|β|√

|⟨ξ,ξ⟩q|
sinh

(√
|⟨ξ,ξ⟩q|√

|β|

)
ξ, if ⟨ξ, ξ⟩q > 0

x+ ξ, if ⟨ξ, ξ⟩q = 0

cos

(√
|⟨ξ,ξ⟩q|√

|β|

)
x+

√
|β|√

|⟨ξ,ξ⟩q|
sin

(√
|⟨ξ,ξ⟩q|√

|β|

)
ξ, if ⟨ξ, ξ⟩q < 0

(20)

logβx(y) =



cosh−1
(

⟨x,y⟩q
β

)
√(

⟨x,y⟩q
β

)2
−1

(
y − ⟨x,y⟩q

β x
)
, if ⟨x,y⟩q

|β| < −1

y − x, if ⟨x,y⟩q
|β| = −1

cos−1
(

⟨x,y⟩q
β

)
√

1−
(

⟨x,y⟩q
β

)2

(
y − ⟨x,y⟩q

β x
)
, if ⟨x,y⟩q

|β| ∈ (−1, 1)

(21)

where ξ ∈ TxQp,q
β is a tangent vector and y is a point on the manifold Qp,q

β .

E Proof of Theorem 1

Theorem 1. For any point x ∈ Q̂p,q+1
β , there exists a diffeomorphism Ψ : x ∈ Q̂p,q+1

β → Sq|β| × Lp
β

that maps x onto the product manifolds of a sphere and a hyperboloid. The mapping and its inverse
are given by:

Ψ(x) =

√|β| u
∥u∥

∥u∥
v

 , Ψ−1(z) =

 0
v′
0√
|β|

u′

v′[1:]

 , (22)

where x =

(
0
u
v

)
∈ Q̂p,q+1

β with u ∈ Rq+1 \ {0}, v ∈ Rp, and z =

(
u′

v′

)
with u′ ∈ Sq|β|, v

′ ∈ Lp
β .

Proof. It is easy to show that Ψ and Ψ−1 are smooth since their elemental functions
{
√
|β| u

∥u∥ , ∥u∥, v,
v′
0√
|β|

u′, v′[1:]} are smooth with u ∈ Rq+1 \ {0}, v ∈ Rp, u′ ∈ Sq|β|, v
′ ∈ Lp

β . We

only need to prove that Ψ(Ψ−1(z)) = z and Ψ−1(Ψ(x)) = x.

In the first term Ψ(Ψ−1(z)), we have:

Ψ(Ψ−1(z)) = Ψ


 0

v′
0√
|β|

u′

v′[1:]


 =


√
|β|

v′
0√
|β|

u′

∥ v′
0√
|β|

u′∥

∥ v′
0√
|β|

u′∥
v′[1:]

 =


√
|β| u′

∥u′∥
v′
0√
|β|
∥u′∥

v′[1:]

 . (23)
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Since u′ ∈ Sq|β|, we have ∥u′∥ =
√
|β|. Eq. (23) becomes:

Ψ(Ψ−1(z)) =

 u′

v′0
v′[1:]

 =

(
u′

v′

)
= z. (24)

For the second term Ψ−1(Ψ(x)), we have:

Ψ−1(Ψ(x)) = Ψ−1

√|β| u
∥u∥

∥u∥
v

 =

 0
∥u∥√
|β|

√
|β| u

∥u∥

v

 =

(
0
u
v

)
= x (25)

F Proofs of Propositions 1 and 2

Proposition 1. The extrinsic mapping function Φ and its inverse Φ−1 are smooth, bijective, and
isometric.

Proof. Since both the extrinsic function Φ and its inverse Φ−1 are linear, they are inherently smooth
mappings.

We also have Φ−1(Φ(x)) = x and Φ(Φ−1(y)) = y, which proves the bijective properties of two
functions.

To prove the isometric property, let x, y are two points on pseudo-hyperboloid Qp,q
β , we have:

⟨x, y⟩q = ⟨Φ(x),Φ(y)⟩q+1 and
∥∥∥∥(y − ⟨x, y⟩qβ

x

)∥∥∥∥
q

=

∥∥∥∥(Φ(y)− ⟨Φ(x),Φ(y)⟩q+1

β
Φ(x)

)∥∥∥∥
q+1

.

Hence, we have ∥logx(y)∥q = ∥logΦ(x)(Φ(y))∥q+1 or dγ(x, y) = dγ(Φ(x),Φ(y)) when x
and y are geodesic-connected. In the case of geodesic disconnection, it is easy to show that
dγ(−x, y) = dγ(−Φ(x),Φ(y)), leading to the Dγ(x, y) = Dγ(Φ(x),Φ(y)) where Dγ is the ap-
proximated distance in Eq. (19). Therefore, Φ is isometric. The isometric property proof for the
inverse function Φ−1 is similar.

Proposition 2. Given two vectors x, y ∈ Qp,q
β , the closed form of pseudo-hyperboloid vector addition

is expressed as:

z = y ⊕β x = Φ(x) +
⟨Φ(x),Φ(y)⟩q+1

|β|
(ō+Φ(y)).

Proof. Beginning from the Definition 2, we have the formula of vector addition:

z = expβΦ(y)(P
γ
ō→Φ(y)(logβō(Φ(x)))).

Since ⟨Φ(x), ō⟩q+1 = 0, following the definition of logarithmic map in Eq. (21), we have:

logβ
ō(Φ(x)) =

π

2
Φ(x).

Applying the parallel transport P γ
ō→Φ(y) in Eq. (18), we have:

P γ
ō→Φ(y)(

π

2
Φ(x)) =

π

2
Φ(x) +

π

2

⟨Φ(x),Φ(y)⟩q+1

|β|
(ō+Φ(y)) =

π

2
ξ.
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Now we calculate the squared norm of ξ:

⟨ξ, ξ⟩q+1 = ⟨Φ(x) + ⟨Φ(x),Φ(y)⟩q+1

|β|
(ō+Φ(y)),Φ(x) +

⟨Φ(x),Φ(y)⟩q+1

|β|
(ō+Φ(y))⟩q+1

= − (⟨Φ(x),Φ(y)⟩q+1)
2

|β|
+ ⟨x+

⟨x, y⟩q
|β|

y, x+
⟨x, y⟩q
|β|

y⟩q

= − (⟨x, y⟩q)2

|β|
+ ⟨x, x⟩q +

(
⟨x, y⟩q
|β|

)2

⟨y, y⟩q + 2
⟨x, y⟩q
|β|

⟨x, y⟩q

= − (⟨x, y⟩q)2

|β|
+ β +

(
⟨x, y⟩q
|β|

)2

β + 2
⟨x, y⟩q
|β|

⟨x, y⟩q

= − (⟨x, y⟩q)2

|β|
+ β − (⟨x, y⟩q)2

|β|
+ 2

(⟨x, y⟩q)2

|β|
= β < 0.

Since the squared norm ⟨π2 ξ,
π
2 ξ⟩q+1 =

(
π
2

)2
β < 0, following the definition of exponential map in

Eq. (20), we have:

z = expβ
Φ(y)(

π

2
ξ) = ξ.

This finishes the proof.

G Pseudo-Riemannian graph convolutional network

This section describes the pseudo-Riemannian graph convolutional network, Q-GCN2, which builds
upon the diffeomorphic framework introduced in Section 3. Q-GCN2 comprises three fundamental
operations: linear transformation, neighborhood aggregation, and nonlinear activation. As the linear
transformation and nonlinear activation have been detailed in Sections 4.1 and 4.2, respectively, we
focus here on the formulation of neighborhood aggregation in pseudo-Riemannian geometry. We
then present the complete structure of Q-GCN2.

G.1 Pseudo-Riemannian neighborhood aggregation

Neighborhood aggregation in GCNs (Kipf and Welling, 2017; Chami et al., 2019) relies on scalar
multiplication, an operation that has not been defined on the pseudo-hyperboloid Qp,q

β . To address
this, we instead formulate the neighborhood aggregation on the product of spherical and hyperbolic
manifolds by using our diffeomorphic framework. Given the neighborhood N (i) of node i and their

features in the product space {x
Sq|β|×Lp

β

j }j∈N (i) where each node vector x
Sq|β|×Lp

β

j = (uj ∈ Sq|β|, vj ∈
Lp
β)

T , and a set of positive weights {wi,j}j∈N (i), we propose the neighborhood aggregation at node
i as follows:

x̃
Sq|β|×Lp

β

i = Agg({x
Sq|β|×Lp

β

j }, {wi,j}) =
√
|β|(

∑
j∈N (i) wi,juj

∥
∑

j∈N (i) wi,juj∥
,

∑
j∈N (i) wi,jvj√

|∥
∑

j∈N (i) wi,jvj∥2L|
)T ,

(26)
where ∥x∥2L = ⟨x, x⟩L is the Lorentz squared norm. The aggregating function in Eq. (26) is the
extension of a hyperbolic centroid formulation proposed by Law et al. (2019). Since the squared
distance in the product space can be decomposed to the sum of squared distances in the component
space (Gu et al., 2018), i.e. ∥x̃i − xj∥2S×L = ∥x̃i − xj∥2S + ∥x̃i − xj∥2L, we can find the centroid that
minimizes the weighted sum of squared distances in the product space by concatenating two centroids
in spherical and hyperbolic spaces. In other words, our neighborhood aggregation is a centroid with
respect to the squared distance in the product space. We first calculate the spherical centroid from the
feature set {uj}j∈N (i), then combine with the hyperbolic centroid of a set {vj}j∈N (i).

G.2 Overall structure

The development of the Q-GCN2 model is a direct consequence of our proposed diffeomorphic
framework and the Transformer modelQ-GT. With all key operations ofQ-GCN2 introduced, we now
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summarize the structure of a single Q-GCN2 layer. Given the node features XQp,q
β = {x

Qp,q
β

i }i=N
i=1

of input graph G, we follow the procedure in Q-GT to project them onto the product space, resulting
in X

Sq|β|×Lp
β = Ψ(Φ(XQp,q

β )). Next, the representations XSq|β|×Lp
β is sent to the message-passing

structure in a Q-GCN2 layer:

x̂
Sq

′
|β|×Lp′

β

i =
(
ûi =

(√
|β|W1ui/∥W1ui∥

)
, v̂i =

(√
∥W2vi∥2 − β,W2vi

))T
, (27)

x̃
Sq

′
|β|×Lp′

β

i =Agg({x̂
Sq

′
|β|×Lp′

β

j }, {wi,j})j∈N (i), (28)

x̄
Sq

′
|β|×Lp′

β

i =σActivation(x̃
Sq

′
|β|×Lp′

β

i ), (29)

where W1 ∈ R(q′+1)×(q+1),W2 ∈ R(p′)×(p+1) are two transformation matrices, wi,j = ((deg(j) +

1)(deg(i) + 1))−1/2 is the normalized weight from GCN (Kipf and Welling, 2017), and deg(i) is the

degree of node i. Finally, the output X̄Sq
′

|β|×Lp′
β = {x̄

Sq
′

|β|×Lp′
β

i }i=N
i=1 are projected back to the pseudo-

Riemannian manifold by using our diffeomorphic framework, i.e. X̄Qp′,q′
β = Φ−1(Ψ−1(X̄

Sq
′

|β|×Lp′
β )).

G.3 Integrating into Graph Transformer

Incorporating GCN to Graph Transformer is well-known for graph representation learning (Wu et al.,
2023; Yang et al., 2024), which enhances the local structural information. Let p∗ and q∗ denote
the optimal space and time dimensions, estimated by our searching algorithm in Section 5. Given
the outputs of Q-GCN2 and Q-GT as X1,X2 ∈ Qp∗,q∗

β , we utilize this approach and combine two
outputs with a balance hyperparameter α as follows:

X̄1 = logβō(Φ(X1)) , X̄2 = logβō(Φ(X2))

Z̄ = αX̄1 + (1− α)X̄2 (30)

Z = expβ
ō(Z̄) ∈ Q̂p∗,q∗+1

β

where Φ is the extrinsic mapping function in Eq. (3), Q̂p∗,q∗+1
β is the zero-first submanifold, expβ

ō

and logβō are the exponential and logarithmic maps in Eq. (20) and Eq. (21). In practice, the value of
the balance weight α is determined by the grid search strategy.

H More ablation studies

H.1 Effectiveness of space searching algorithm

We further assess the effectiveness of the proposed space searching algorithm on Cora, Citeseer
and Pubmed datasets, as visualized in Fig. 4. It is clearly seen that varying space dimensions
significantly impact the performance of pseudo-Riemannian models, especially in node classification
task. This highlights the importance of selecting an appropriate pseudo-hyperboloid for effective
graph representation learning. Our algorithm consistently identifies an optimal or near-optimal space
dimension p∗ in both tasks. Meanwhile, the performance of Q-GCN does not align with the space
searching result or the underlying topology of the input graph. While Q-GCN performs reasonably
well when the product space becomes Euclidean space through increasing space dimension, Euclidean
space lacks the capacity to capture the cyclical and hierarchical structures in many real-world graphs.
This limitation leads to inferior performance compared to our proposed Q-GCN2 and Q-GT.

H.2 Complexity comparison

For a better complexity comparison, we report the training time and memory of our proposed Q-
GCN2 and Q-GT against some strong baselines in Table 5 and Table 6. A comparison between
Q-GCN and Q-GCN2 shows that our diffeomorphic framework achieves better efficiency in both
runtime and memory. This is because Q-GCN framework relies on a combination of diffeomorphic
and tangent space mappings in product manifolds, whereas our approach operates directly within
the product manifold space. Nonetheless, Q-GT incurs higher computational and memory overhead
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Figure 4: Evaluating space searching algorithm on Cora, Citeseer and Pubmed datasets. The red line
denotes space dimension p∗ estimated by the searching algorithm.

Table 5: Comparison of training time and the runtime of the space searching algorithm (in second).
Datasets SGFormer Hypformer Q-GCN Q-GCN2 Q-GT Space searching Ratio to Q-GT

Cora 40.92 66.42 136.6 82.44 193.7 12.70 0.07x
Citeseer 40.21 67.31 141.8 76.12 188.2 6.90 0.04x
Airport 71.55 97.20 211.4 66.59 249.5 15.30 0.06x
Pubmed 144.8 153.8 278.0 83.52 386.0 71.60 0.19x
Arxiv 100.1 136.7 347.2 145.9 353.5 1922.1 5.43x

Penn94 65.49 140.1 299.7 121.4 258.5 361.1 1.40x
Twitch Gamers 163.3 148.7 377.2 181.2 386.3 1611.7 4.18x

Products 354.1 371.8 461.5 325.2 681.2 4081.0 5.99x
Vessel 994.5 931.4 1137.2 664.0 1024.8 1051.3 1.02x

Avg Rank 1.6 2.1 3.8 1.7 4.2 - -

compared to GNNs, SGFormer, and HypFormer, particularly on large-scale datasets like Products and
Vessel. We attribute this overhead to Transformer components such as linear attention, the refining
function, and residual connections, which we recognize as a limitation of our method. However, this
trade-off enables Q-GT to deliver strong performance on large datasets. We are optimistic that future
work can further reduce the model’s complexity and retain its effectiveness.

In addition, Table 5 presents a comparison between the runtime of the space searching algorithm and
the training time of Q-GT across 9 datasets. On Cora, Citeseer, Pubmed, and Airport, the computing
time searching algorithm is less than 20% training time of Q-GT. However, in the two large datasets,
Arvix, Twitch Gamers and Products, the space searching requires more computation, around 4-6
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Table 6: Comparison of GPU memory (in MiB).
Datasets SGFormer Hypformer Q-GCN Q-GCN2 Q-GT

Cora 58.4 158.6 111.7 65.9 70.8
Citeseer 126.8 471.2 314.8 134.5 129.6
Airport 42.8 57.9 107.3 58.4 82.0
Pubmed 195.5 382.9 428.2 240.2 348.6
Arxiv 1290.1 3822.7 4536.0 1106.2 3098.1

Penn94 2246.6 7281.5 4876.2 2319.9 1585.1
Twitch Gamers 1638.4 1578.0 2100.2 2840.0 2713.5

Products 27979.5 32363.3 58954.8 34668.1 51574.0
Vessel 8016.3 17376.8 48672.1 14249.9 39293.8

Avg Rank 1.1 3.4 4.4 2.7 2.7

Table 8: Ablation study on the impact of each component in Q-GT.
Datasets

Methods Airport Pubmed Tree-2 Tree-3

Q-GT 96.56 ± 0.07 96.40 ± 0.10 94.02 ± 0.06 92.03 ± 0.11

w/o residual 95.22 ± 0.12 96.24 ± 0.15 89.66 ± 2.14 90.70 ± 0.38
Gain(%) - 1.39 - 0.17 - 4.64 - 1.45

w/o refining 95.73 ± 0.07 95.33 ± 0.28 81.43 ± 0.63 89.98 ± 0.27
Gain(%) - 0.86 - 1.11 - 13.4 - 2.23

w/o GCN 94.43 ± 0.35 90.47 ± 0.18 86.78 ± 0.49 83.53 ± 1.86
Gain(%) - 2.21 - 6.15 - 7.70 - 9.24

times higher than the training of Q-GT. Compared to a brute-force approach which requires training
the model 16 times (once per each dimension), our algorithm is more efficient in both time and
computation.

H.3 Advantage of diffeomorphic framework

Table 7: The link prediction results in ROC AUC (%)
on tree datasets.

Datasets Tree-1 Tree-2 Tree-3
Space dim p∗ 16 15 13
Time dim q∗ 0 1 3

Q-GCN 91.44 ± 0.52 85.83 ± 0.51 84.86 ± 0.35
Q-GCN2 95.34 ± 0.31 93.60 ± 0.32 89.25 ± 0.34
Q-GT 96.05 ± 0.10 94.02 ± 0.06 92.03 ± 0.11

To investigate the advantage of the pro-
posed diffeomorphic framework, we create
three datasets Tree-1, Tree-2 and Tree-3
that best reflect the hyperbolic geometry.
Detailed descriptions of these datasets are
provided in Appendix I.1. Table 7 presents
the link prediction results of Q-GCN, Q-
GCN2 and Q-GT on these graphs. Q-
GCN2 and Q-GT significantly outperform
Q-GCN across all datasets. For instance,
on Tree-2, Q-GT and Q-GCN2 achieve
AUC improvements of 9.54 % and 9.05 %, respectively, over Q-GCN. To shed light on the su-
perior performances of our models, we further visualize the learned embeddings on the Tree-1,
Tree-2, and Tree-3 datasets in Fig. 5. Following the experimental setup in Section 6.3, the embed-
dings are projected to the product spaces, excluding the spherical component for clearer interpretation.
In Q-GCN, low-level nodes are scattered randomly among high-level nodes. Q-GCN2 and Q-GT,
by contrast, exhibit a clear clustering of low-level nodes, indicating that these models effectively
distinguish between low-level and high-level nodes. These observations emphasize the advantage of
our diffeomorphic framework for preserving hierarchical structures of graphs.

H.4 Impact of key factors in Q-GT

To analyze the impact of each key component in our proposed model, we perform an ablation study
using three variants derived from Q-GT:
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Depth level

Figure 5: Visualization of the learned embeddings for the link prediction task on Tree-1, Tree-2,
Tree-3 datasets. The colors denote depth levels. Nodes at Levels 1 and 2 are classified as low-level,
which are closer to the root, while the other are considered high-level.

• w/o residual: Q-GT without residual connections. All residual connections are removed
from each layer of the model.

• w/o refining: Q-GT without refinement operations, including layer normalization, dropout,
and non-linear activation. This variant consists solely of linear layers.

• w/o GCN: A variant of Q-GT that excludes the graph-based module Q-GCN2, relying
solely on the Transformer module for representation learning.

We use the same experimental setup asQ-GT to evaluate these variants, and the link prediction results
are reported in Table 8. In general, removing any component would lower the model’s performance.
w/o residual leads to a decline in the model’s performance by 1.91% in average. This suggests that
residual connections play an important role in stabilizing training and facilitating gradient flow across
layers, which is particularly beneficial in deep architectures like Q-GT. Similarly, in the case of w/o
refining, the model’s performance also drops dramatically on Tree-2, which confirms the necessity
of refining functions, such as normalization, dropout, and non-linear activation, for effective graph
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Table 9: Link prediction results with different embedding dimensions.
Datasets

Methods Airport Pubmed Tree-2 Tree-3

Original Q-GT (16) 96.56 ± 0.07 96.40 ± 0.10 94.02 ± 0.06 92.03 ± 0.11

Q-GT (8) 95.36 ± 0.28 95.88 ± 0.20 87.83 ± 1.35 85.50 ± 3.64
Gain(%) - 1.24 - 0.54 - 6.58 - 7.10

Q-GT (32) 96.09 ± 0.15 96.48 ± 0.10 94.36 ± 0.36 90.29 ± 2.08
Gain(%) - 0.49 + 0.08 + 0.36 - 1.89

learning in pseudo-Riemannian spaces. When removing graph-based module Q-GCN2, it causes a
significant decrease in the performance of Q-GT on all datasets. This observation reveals that the
Transformer module alone is insufficient for capturing local structural information in the graph.

Additionally, we evaluate the capacity of Q-GT with different embedding dimensions, 8 and 32, in
Table 9. Reducing the dimension to 8 leads to a notable decrease in the link prediction results on hierar-
chical datasets, whereas increasing to 32 offers only minor improvements. Therefore, we recommend
using 16 dimensions to maintain computational efficiency and obtain strong performances.

I Experimental details

Table 10: Summary statistics of the real-world datasets.
Datasets Cora Citeseer Airport Pubmed Arxiv Penn94 Twitch Gamers Products Vessel

Total nodes 2708 3327 3188 19717 169343 41554 168114 2449029 3538495
Total edges 5278 4552 18630 44324 1166234 1362229 6797557 61859140 5345897
Undirected Yes Yes Yes Yes No Yes Yes Yes Yes

Total classes 7 6 4 3 40 2 2 47 -
Features 1433 3703 11 500 128 4814 7 100 3
Mean µ̄ 0.1658 0.0799 0.3626 0.2264 0.2290 0.2340 0.3238 0.2550 -0.1160
Std σ̄ 0.2290 0.3716 0.3180 0.4197 0.3030 0.2050 0.2088 0.2562 0.2810

Space dim p∗ 2 8 1 2 1 1 0 1 9
Time dim q∗ 14 8 15 14 15 15 16 15 7

Table 11: Summary statistics of tree datasets.
Datasets Tree-1 Tree-2 Tree-3

Total nodes 5461 5461 5461
Total edges 5460 5960 6460
Undirected Yes Yes Yes

Total classes - - -
Features 5461 5461 5461
Mean µ̄ -0.5983 -0.2924 -0.1417
Std σ̄ 0.1082 0.2953 0.2932

Space dim p∗ 16 15 13
Time dim q∗ 0 1 3

I.1 Datasets

Table 10 presents the statistics of all datasets used in this study. The mean µ̄ and standard deviation σ̄
denote the Gaussian sectional curvature (GSC) distribution of each input graph. Among all real-world
datasets, eight graphs exhibit positive curvature distributions, while other four networks have negative
distributions. In terms of graph size, Arxiv, Twitch Gamers, Products and Vessel are large-scale
networks, Pubmed and Penn94 are medium-sized, and the remaining datasets are considered small.
Detailed descriptions of each dataset are provided as follows:
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• Cora (McCallum et al., 2000) is a citation network comprising 2708 scientific publications
each node is classified into one of seven classes. The network includes 5278 citation links
among these papers. Each node is represented by a binary word vector, where each entry
indicates the presence or absence of a specific word from a dictionary of 1433 unique terms.

• Citeseer (Giles et al., 1998) is a citation network consisting of 3327 scientific publications
classified into one of six classes. The citation network consists of 4552 links. Each
publication is described by a binary word vector showing the absence/presence of the
corresponding word from the dictionary of 3703 unique terms.

• Pubmed (Sen et al., 2008) comprises 19717 scientific articles from the PubMed database
related to diabetes, each categorized into one of three classes. The citation network includes
44324 links between these publications. Each article is represented by a TF-IDF weighted
word vector, constructed from a vocabulary of 500 unique words.

• Airport (Xiong et al., 2022) is a transportation network containing 3188 airports. Edges
correspond to airline routes connecting the airports. For the node classification task, each
airport is labeled with the population of the country in which it is located.

• Arxiv (Hu et al., 2020) is a directed citation network between all Computer Science (CS)
arXiv papers. This dataset belongs to the Open Graph Benchmark (OGB) collection.
Each node is an arXiv paper and each directed edge indicates that one paper cites another
one. Each paper comes with a 128-dimensional feature vector obtained by averaging the
embeddings of words in its title and abstract. We apply the space searching algorithm on the
undirected structure of Arxiv network, while training on the original directed graph.

• Penn94 (Lim et al., 2021) is a Facebook "friendship" networks at one hundred American
colleges and universities from 2005. In this graph, nodes correspond to individual students,
each labeled by their reported gender. Node features include academic major, second major
or minor, dormitory or housing assignment, graduation year, and high school background.

• Twitch Gamers (Lim et al., 2021) is an undirected graph representing connections between
user accounts on the Twitch streaming platform. Nodes correspond to individual Twitch
accounts, with edges indicating mutual follower relationships. Node features include the
number of views, account creation and update timestamps, language, account lifetime, and
a flag indicating whether the account is inactive. The associated binary classification task
involves predicting whether a channel contains explicit content.

• Products (Hu et al., 2020) is an undirected, unweighted graph representing the Amazon
co-purchasing network. Each node corresponds to a product on Amazon, and an edge
between two nodes indicates that the products were frequently bought together. Node
features are derived from the bag-of-words representations of product descriptions, followed
by dimensionality reduction using Principal Component Analysis (PCA) to obtain 100-
dimensional feature vectors.

• Vessel (Hu et al., 2020) is an undirected, unweighted spatial graph capturing the entire
mouse brain. Each node is represented by 3D spatial coordinates (x, y, z) within the
Allen Brain Atlas reference framework. This dataset is designed to encourage neuroscience
researchers to adopt graph-based representations in their studies. At the same time, it presents
machine learning researchers with challenging problems, such as integrating biological
priors into learning models and scaling algorithms to efficiently process sparse, spatial
graphs containing millions of nodes and edges.

• Tree datasets are created due to the lack of the negative curvature graphs. Tree-1 is
a balanced tree of depth 6 and branching factor 4 consisting of 5461 nodes and 5460
edges. Tree-2 and Tree-3 are derived from Tree-1 by randomly adding 500 and 1000 edge
respectively, introducing different magnitudes of curvature. Each node is initialized with a
one-hot feature vector, and no node labels are provided in these datasets.

I.2 Implementation setup

Objective function. In the node classification task, following Xiong et al. (2022), we project the
output of the final layer of both Q-GT and Q-GCN2 onto the tangent space and apply Euclidean
multinomial logistic regression for classification. For link prediction, non-Euclidean methods utilize
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the Fermi-Dirac decoder (Krioukov et al., 2010), which computes edge probability scores based on
geodesic distances in the embedding space.

Optimization. The trainable parameters of Q-GT and Q-GCN2 are defined in Euclidean space via
the proposed diffeomorphic framework. As a result, standard Euclidean optimization algorithms, such
as Adam (Kingma and Ba, 2015) and SGD (Robbins and Monro, 1951), can be directly applied for
model training. RiemannianAdam (Becigneul and Ganea, 2019) is another choice for non-Euclidean
methods such as HGCN and Hypformer, which operate under specific manifold constraints.

Setting. We implement our models by Pytorch and Geoopt tool 2. All the experiments are conducted
on a GPU device NVIDIA GeForce RTX 4090 with 24GB memory, except for the Products and
Vessel datasets, which are run on an NVIDIA A100 GPU with 80GB of memory. For comparison
baselines, we follow the implementation of each model introduced in the corresponding paper. The
experiment results are reported by the average value with standard deviation on the test sets using
three different seeds. Unlike the work of Xiong et al. (2022), we utilize initial features provided in
the datasets for node classification instead of pretrained embeddings for evaluating model’s learning
capacity.

Table 12: The grid search ranges for hyperparameters.

Hyperparameter Search range

Learning rate lr 5e-2, 2e-2, 1e-2, 5e-3, 2e-3, 1e-3
Balance weight α 0.5, 0.6, 0.7, 0.8, 0.9
Number of layers 1,2,3,4

Activation relu, tanh, sigmoid, leakyrelu
Dropout rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
Weight decay 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-7

Hyperparameter. Besides the space and time dimensions of pseudo-hyperboloids Qp,q
β , our models

involves other hyperparameters, including learning rate lr, balance weight α, number of layers,
activation function, dropout rate, and weight decay. The optimal hyperparameters are obtained by
applying grid search strategy, where the ranges summarized in Table 12.

I.3 Pseudocode

In this section, we provide the pseudocode of our proposed framework to facilitate implementation
for the reader. Algorithm 1 outlines the procedure of the space searching algorithm. In line 1, a subset
A is uniformly sampled from the node set VG. Lines 2–6 precompute the shortest path distances
from each node a ∈ A to all other nodes in the graph G. The Gaussian sectional curvature (GSC)
distribution of the input graph is computed in lines 7–14. Finally, in lines 15–20, we iteratively
calculate the KL divergence between the input GSC distributionN (µ̄, σ̄2) and each ideal distribution
N (µi, σ

2
i ) to determine the optimal space dimension pi.

Algorithm 2 demonstrates the learning process of Q-GCN2. In line 1, we apply Algorithm 1 to select
the embedding manifold Qp∗,q∗

β . Line 2 projects the initial features to the embedding manifold with
a function f which is either a dense layer or a graph convolution layer to ensure the dimensional
consistency. The projected representation is passed through L layers of Q-GCN2 in lines 3-9, where
each layer comprises feature transformation, neighborhood aggregation, and nonlinear activation.

The learning process of Q-GCT is described in Algorithm 3. Similar to Q-GCN2, lines 1–2 involve
selecting the appropriate manifold and transforming node features. The transformed representation
is then processed through an L-layer Q-GT in lines 3-15. To capture local structural information,
Q-GCN2 is incorporated in line 16. The outputs of Q-GCN2 and Q-GCT are combined using a
balance weight α in lines 17-20. The final node representation Z is obtained for downstream tasks.

2https://github.com/geoopt/geoopt
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Algorithm 1 The procedure of space searching algorithm
Input: An input graph G = (VG, EG)

Output: The optimal pseudo-hyperboloid Qp∗,q∗

β

1: Uniformly sampling a subset of nodes A ⊂ VG

2: for each node a ∈ A do
3: for each node b ∈ VG do
4: Precomputing the shortest path distance dG(a, b)
5: end for
6: end for
7: for each node m ∈ VG do
8: for i = 1 to ns do
9: Uniformly sampling two neighbor nodes b, c ∈ N (m)

10: Calculating the curvature analog κ(m; b, c) in Eq. (16)
11: end for
12: Calculating the sectional curvature κ(m) by averaging curvature analogs κ(m; b, c)
13: end for
14: Calculating the mean µ̄ and the variance σ̄2 in Eq. (17)
15: for i = 0 to d− 1 do
16: Assigning space dimension pi := i
17: Calculating the ideal GSC distribution N (µi, σ

2
i ) = Γ(pi)

18: Calculating the KL divergence dKL(N (µ̄, σ̄2),N (µi, σ
2
i ))

19: Saving p∗ = pi that yields the smallest KL divergence
20: end for
21: return the optimal space dimension p∗

Algorithm 2 L-layer Q-GCN2 learning process
Input: An input graph G = (VG, EG) with the initial features XE

Output: A hidden representation X
Qp∗,q∗

β

L

1: Determining the embedding manifold Qp∗,q∗

β by using Algorithm 1

2: Projecting initial features X
Qp∗,q∗

β

0 = expβō([0||f(XE)])
3: for l = 1 to L do
4: Decomposing features X

Sq
∗

|β|×Lp∗
β

l−1 = Ψ(Φ(X
Qp∗,q∗

β

l−1 ))

5: X̂
Sq

∗
|β|×Lp∗

β

l−1 =

(√
|β|W1X

Sq
∗

|β|
l−1 /∥W1X

Sq
∗

|β|
l−1 ∥,

√
∥W2X

Lp∗
β

l−1 ∥2 − β,W2X
Lp∗
β

l−1

)T

6: X̃
Sq

∗
|β|×Lp∗

β

l−1 = Agg(X̂
Sq

∗
|β|×Lp∗

β

l−1 , EG)

7: X̄
Sq

∗
|β|×Lp∗

β

l−1 = σActivation(X̃
Sq

∗
|β|×Lp∗

β

l−1 )

8: Projecting back to the pseudo-hyperboloid X
Qp∗,q∗

β

l = Φ−1(Ψ−1(X̄
Sq

∗
|β|×Lp∗

β

l−1 ))
9: end for

10: return the final representation X
Qp∗,q∗

β

L
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Algorithm 3 L-layer Q-GT learning process
Input: An input graph G = (VG, EG) with the initial features XE

Output: A hidden representation Z

1: Determining the embedding manifold Qp∗,q∗

β by using Algorithm 1

2: Projecting initial features X
Qp∗,q∗

β

0 = expβō([0||f(XE)])

3: X
Qp∗,q∗

β

0 ← σLayerNorm(X
Qp∗,q∗

β

0 )

4: X
Qp∗,q∗

β

0 ← FeatureTransform(X
Qp∗,q∗

β

0 )

5: X
Qp∗,q∗

β

0 ← σActivation(X
Qp∗,q∗

β

0 )

6: X
Qp∗,q∗

β

0 ← σDropout(X
Qp∗,q∗

β

0 )
7: for l = 1 to L do
8: X̂

Qp∗,q∗
β

l−1 = σLayerNorm(X
Qp∗,q∗

β

l−1 )

9: X̃
Qp∗,q∗

β

l−1 = LinearAttention(X̂
Qp∗,q∗

β

l−1 )

10: X̄
Qp∗,q∗+1

β

l−1 = X̃
Qp∗,q∗

β

l−1 ⊕β X
Qp∗,q∗

β

l−1

11: X̄
Qp∗,q∗

β

l−1 = FeatureTransform(X̄
Qp∗,q∗+1

β

l−1 )

12: X̆
Qp∗,q∗

β

l−1 = σActivation(X̄
Qp∗,q∗

β

l−1 )

13: X
Qp∗,q∗

β

l = σDropout(X̆
Qp∗,q∗

β

l−1 )
14: end for
15: X

Qp∗,q∗
β

L ← FeatureTransform(X
Qp∗,q∗

β

L )

16: X
Qp∗,q∗

β

L′ = L′-layer Q-GCN2(X
Qp∗,q∗

β

0 )

17: X1 = logβō(Φ(X
Qp∗,q∗

β

L ))

18: X2 = logβō(Φ(X
Qp∗,q∗

β

L′ ))
19: X̄ = αX1 + (1− α)X2

20: Z = expβ
ō(X̄)

21: return the final representation Z
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