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Abstract

Large language models (LLMs) are pivotal in001
advancing natural language processing (NLP)002
tasks, yet their efficacy is hampered by in-003
accuracies and outdated knowledge. Model004
editing emerges as a promising solution to ad-005
dress these challenges. However, existing edit-006
ing methods struggle to track and incorporate007
changes in knowledge associated with edits,008
which limits the generalization ability of post-009
edit LLMs in processing edited knowledge.010
To tackle these problems, we propose a novel011
model editing method that leverages knowledge012
graphs for enhancing LLM editing, namely013
GLAME. Specifically, we first utilize a knowl-014
edge graph augmentation module to uncover015
associated knowledge that has changed due to016
editing, obtaining its internal representations017
within LLMs. This approach allows knowledge018
alterations within LLMs to be reflected through019
an external graph structure. Subsequently, we020
design a graph-based knowledge edit module to021
integrate structured knowledge into the model022
editing. This ensures that the updated param-023
eters reflect not only the modifications of the024
edited knowledge but also the changes in other025
associated knowledge resulting from the edit-026
ing process. Comprehensive experiments con-027
ducted on GPT-J and GPT-2 XL demonstrate028
that GLAME significantly improves the gen-029
eralization capabilities of post-edit LLMs in030
employing edited knowledge.031

1 Introduction032

Large language models (LLMs) have achieved im-033

pressive results in various natural language process-034

ing (NLP) tasks due to their strong general capabili-035

ties and inherent rich world knowledge (Zhao et al.,036

2023). However, the knowledge in LLMs may be037

factually incorrect or outdated, thereby limiting038

their capabilities. To address these issues, model039

editing of LLMs has been proposed, distinguish-040

ing themselves from the traditional fine-tuning ap-041

proaches. Model editing employs a more efficient042
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Figure 1: An example of model editing for LLMs. Edit-
ing target knowledge leads to changes in its associated
knowledge.

and precise method to update the knowledge em- 043

bedded in LLMs and has garnered widespread at- 044

tention from researchers in recent years. 045

Model editing primarily comprises three cate- 046

gories of methods: Memory-based, Meta-learning, 047

and Locate-then-edit methods. Memory-based 048

methods, exemplified by SERAC (Mitchell et al., 049

2022), store edited knowledge in the external mem- 050

ory outside of LLMs, enabling the retrieval of this 051

knowledge from memory during the inference pro- 052

cess of LLMs. Meta-learning methods typically 053

adopt a hyper-network to learn the weight changes 054

for editing LLMs, such as KE (De Cao et al., 2021) 055

and MEND (Mitchell et al., 2021). To achieve 056

more precise knowledge editing, locate-then-edit 057

methods have been proposed. For instance, ROME 058

(Meng et al., 2022a) and MEMIT (Meng et al., 059

2022b) directly target and update parameters corre- 060

sponding to specific knowledge. 061

While these methods demonstrate promising re- 062

sults in knowledge editing of LLMs, they still face 063

the challenge of capturing the associated knowl- 064

edge changes related to edited knowledge. Specifi- 065

cally, existing work primarily focuses on the editing 066

of target knowledge, such as modifying knowledge 067

from (s, r, o) to (s, r, o∗). However, such single- 068

knowledge modification often triggers a series of 069

consequential alterations in associated knowledge. 070

As shown in Figure 1, an edit that changes the 071
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knowledge from “LeBron James plays for the Mi-072

ami Heat” to “LeBron James plays for the Los073

Angeles Lakers” would necessitate a corresponding074

update from “LeBron James works in Miami” to075

“LeBron James works in Los Angeles”. Existing076

editing methods fail to account for the impact on077

associated knowledge resulting from the modifica-078

tion of target knowledge, which limits the general-079

izability of post-edited LLMs in processing such080

edited knowledge. The black-box nature of LLMs081

makes capturing the associations between pieces of082

knowledge within the models exceedingly complex,083

further challenging the detection of such associated084

knowledge changes during editing.085

To deal with the above challenge, we propose a086

novel locate-then-edit method enhanced by knowl-087

edge Graphs for LArge language Model Editing,088

namely GLAME. Specifically, for each target edit089

knowledge, we first present a knowledge graph aug-090

mentation (KGA) module (§4.1) to construct a sub-091

graph that captures the new associations resulting092

from the edit. Directly editing high-order relation-093

ships from the subgraph into LLMs in a simplistic094

way requires multiple alterations to the models and095

might disrupt the targeted edited knowledge, po-096

tentially exerting significant adverse effects and097

diminishing post-edit model performance (§5.2).098

Therefore, we further develop a graph-based knowl-099

edge edit (GKE) module (§4.2) that integrates the100

subgraph encoding into the rank-one model edit-101

ing framework. With just a single edit, it ensures102

that the edited parameters can recognize not only103

the edited knowledge but also the broader scope of104

knowledge impacted by such edits.105

We summarize our contributions as follows:106

• We emphasize and investigate the necessity107

of capturing the changes of associated knowl-108

edge induced by edited knowledge in model109

editing.110

• We integrate knowledge graphs into model111

editing and propose a novel and effective edit-112

ing method to structure knowledge changes113

induced by editing and incorporate them into114

specific parameters.115

• We conduct extensive experiments on GPT-2116

XL and GPT-J, which demonstrate the effec-117

tiveness of our proposed model.118

2 Related Work119

In this section, we introduce the related work on120

model editing, which aims to inject new knowl-121

edge into LLMs or modify their existing internal 122

knowledge, while ensuring it does not impact other 123

unrelated knowledge. Model editing methodolo- 124

gies can be broadly classified into three distinct 125

categories (Yao et al., 2023): memory-based, meta- 126

learning, and locate-then-edit approaches. 127

Memory-based strategies choose to augment 128

LLMs with external memory modules, thereby of- 129

fering a pathway to knowledge updates without 130

modifying the parameters of LLMs. For exam- 131

ple, SERAC (Mitchell et al., 2022) method in- 132

troduces a gating network in conjunction with an 133

additional model specifically designed to manage 134

edited knowledge. However, the memory-based ap- 135

proaches all highlight a fundamental limitation in 136

their scalability: the external model’s management 137

complexity escalates with each additional edit, po- 138

tentially hampering its practical applicability. 139

Conversely, meta-learning methods eliminate the 140

necessity for complex external memory modules by 141

focusing on the training of a hyper-network capable 142

of generating updated weights for the LLMs. This 143

strategy was initially investigated by KE (De Cao 144

et al., 2021), utilizing a bi-directional LSTM to pre- 145

dict model weight updates. However, this approach 146

encountered limitations when applied to larger 147

models due to their extensive parameter spaces. 148

To deal with this challenge, MEND (Mitchell et al., 149

2021) adopts a low-rank decomposition of fine- 150

tuning gradients, showcasing an efficient mecha- 151

nism for updating weights in LLMs. Nevertheless, 152

these approaches still require extensive computa- 153

tional resources for training and risk affecting un- 154

related knowledge. 155

To overcome these issues, recent works have ex- 156

plored knowledge location within LLMs, aiming 157

for more interpretable and precise knowledge edit- 158

ing by targeting parameters directly associated with 159

specific information. The early attempts include 160

KN (Dai et al., 2022), which proposes a knowl- 161

edge attribution method to identify knowledge neu- 162

rons but falls short in making precise changes to 163

the model’s weights. Subsequently, the progress 164

in comprehending the fundamental mechanism of 165

Transformer (Vaswani et al., 2017) models has in- 166

troduced the hypothesis that the Feed Forward Net- 167

work (FFN) modules might function as key-value 168

memories (Geva et al., 2021, 2023), thereby laying 169

the groundwork for more precise editing strategies. 170

The ROME (Meng et al., 2022a) method, building 171

on this insight, employed causal tracing to pinpoint 172

knowledge-relevant layers and then edit its FFN 173

2



module, achieving superior outcomes. Building174

upon this, MEMIT (Meng et al., 2022b) tackles175

batch editing tasks, enabling large-scale knowledge176

integration.177

Despite these advancements, all of the above178

models primarily concentrate on editing isolated179

pieces of knowledge, overlooking the potential rip-180

ple effects across the model’s knowledge base (Co-181

hen et al., 2023). This omission can impair the182

model’s generalization ability post-editing and hin-183

der its capacity for further reasoning with newly184

integrated knowledge (Zhong et al., 2023).185

3 Preliminaries186

In this section, we introduce the definition of model187

editing and knowledge graphs, and the rank-one188

model editing framework used in our study.189

Definition 1 (Model Editing for LLMs). Model190

editing (Yao et al., 2023) aims to adjust an LLM191

F’s behavior to modify the knowledge (s, r, o)192

encoded in the model into the target knowledge193

(s, r, o∗), where knowledge is denoted as a triple,194

consisting of the subject s, relation r, and ob-195

ject o. Each edit sample e can be represented as196

(s, r, o, o∗). The post-edit LLM is defined as F ′.197

Definition 2 (Knowledge Graph). A knowledge198

graph (KG) (Ji et al., 2021) stores structured knowl-199

edge as a collection of triples {(s, r, o) ⊆ E ×R×200

E}, where E andR represent the set of entities and201

relations, respectively.202

3.1 Rank-one Model Editing Framework203

Rank-one model editing (ROME) (Meng et al.,204

2022a) is a Locate-then-edit method, this method205

assumes that the factual knowledge is stored in the206

Feedforward Neural Networks (FFNs), conceptu-207

alizing as key-value memories (Geva et al., 2021;208

Kobayashi et al., 2023). Specifically, the output of209

the l-th layer FFN for the i-th token is formulated210

as:211

ml
i = f(Wl

in · hl−1
i ) ·Wl, (1)212

where f(·) denotes the activation function, and213

hl−1
i is the input of FFN. To facilitate representa-214

tion, we omit the superscript l in the subsequent215

discussion.216

In this setup, the output of the first layer, f(Win·217

hi), serves as the keys denoted as ki. The outputs218

of the subsequent layer represent the corresponding219

values. Based on the hypothesis, this method uti-220

lizes casual tracing (Pearl, 2022; Vig et al., 2020) to221

select a specific FFN layer for editing, thereby up- 222

dating the weight W of the second layer by solving 223

a constrained least-squares problem: 224

minimize ∥WK−M∥,
subject to Wk∗ = m∗.

(2) 225

Here, the objective function aims to maintain 226

the knowledge, irrelevant to the edited sam- 227

ple unchanged within the LLM, where K = 228

[k1;k2; , . . . , ;kp] denotes the sets of keys encod- 229

ing subjects unrelated to the edited fact, and M = 230

[m1;m2; , . . . , ;mp] are the corresponding values. 231

The constraint is to ensure that edited knowledge 232

can be incorporated into the FFN layer, specifically 233

by enabling the key k∗ (encoding subject s) to re- 234

trieve the value m∗ about the new object o∗. 235

As explicated in (Meng et al., 2022a), a closed- 236

form solution to the above optimization problem 237

can be derived: 238

Ŵ = W +
(m∗ −Wk∗)(C

−1k∗)
T

(C−1k∗)Tk∗
, (3) 239

where C = KKT represents a constant matrix, pre- 240

cached by estimating the uncentered covariance of 241

k based on a sample of Wikipedia text (Appendix 242

E). Therefore, solving the optimal parameter Ŵ is 243

transformed into calculating k∗ and m∗. 244

Extending this framework, our research delin- 245

eates a method to integrate graph-structured knowl- 246

edge, newly and intrinsically associated with the 247

edited knowledge, into the editing of model param- 248

eters. We will provide a detailed description of our 249

approach in the following sections. 250

251

4 Methodology 252

In this section, we introduce the proposed GLAME, 253

the architecture of which is illustrated in Figure 254

2. The graphs for large language model edit- 255

ing (GLAME) framework principally comprises 256

two key components: (1) Knowledge Graph Aug- 257

mentation (KGA), which associates the knowledge 258

of internal changes in LLMs by utilizing external 259

knowledge graphs, and (2) Graph-based Knowl- 260

edge Edit (GKE), which injects knowledge of edits 261

and edit-induced changes into specific parameters 262

of LLMs. 263

4.1 Knowledge Graph Augmentation 264

To accurately capture the changes in associated 265

knowledge induced by editing in LLMs, we pro- 266
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Figure 2: An illustration of GLAME architecture. We first utilize a Knowledge Graph Augmentation module
to sample a high-order subgraph, recording the associated knowledge of changes caused by the edit (s, r, o, o∗).
Subsequently, the entities and relations within the subgraph are encoded using the LLM, from which hidden vectors
are extracted from the early layers as the initial representations of the entities and relations in the subgraph. Then,
the well-designed Graph-based Knowledge Edit module leverages a relational graph neural network to incorporate
new knowledge associations from the subgraph into the parameter editing process.

pose using external knowledge graphs. This ap-267

proach is divided into two operational parts: First,268

it leverages an external knowledge graph to con-269

struct a subgraph, capturing the altered knowledge.270

Then, the LLM is employed to extract the corre-271

sponding representations of entities and relations272

within this subgraph, serving as the initial represen-273

tations.274

4.1.1 Subgraph construction275

We first introduce how to utilize an external knowl-276

edge graph to construct a subgraph that encapsu-277

lates the newly formed associations due to the edit.278

Specifically, for a given target edit sample e =279

(s, r, o, o∗), we initially employ o∗ to match the280

most relevant entity within an external knowl-281

edge graph, such as Wikipedia1. This step is282

followed by the sampling of neighboring entities283

and their relations centered on this entity, repre-284

sented as (o∗, r1, o1), (o∗, r2, o2), · · · , (o∗, rn, om).285

These are used to construct new two-order rela-286

tionships: (s, r, o∗, r1, o1), (s, r, o∗, r2, o2), · · · ,287

(s, r, o∗, rn, om), thereby generating new associ-288

ated knowledge as a consequence of editing. Here289

m denotes the maximum number of samples for290

each entity. Following this approach, we can se-291

quentially sample the neighboring entities of o1,292

o2, · · · , om, thereby constructing higher-order new293

knowledge associations for s. We define the maxi-294

1https://www.wikipedia.org/

mum order of the newly constructed relationships 295

as n. The target edit knowledge (s, r, o∗), along 296

with these new high-order relations, forms a sub- 297

graph, termed Gmn (e), which can record changes 298

in associated knowledge partially caused by edit- 299

ing knowledge. n is also the maximum order of 300

the subgraph, and together with m serve as hyper- 301

parameters to control the size of the graph. 302

4.1.2 Subgraph initialization 303

To further explicitly associate the knowledge within 304

the LLM that is affected by the edit, we extract hid- 305

den vectors of entities and relations from the early 306

layers of LLM (Geva et al., 2023) as the initial 307

representations for entities and relations in the con- 308

structed subgraph. 309

In specific, we input entity and relation text into 310

the LLM separately, and then select the hidden state 311

vector of the last token of both the entity and the 312

relation text in k-th layer as their initial representa- 313

tions in the subgraph: 314

zs, zr, zo = hk
[s](s),h

k
[r](r),h

k
[o](o), (4) 315

where hk
[x](x) is the hidden state vector of the last 316

token of text x at the k-th layer of the LLM. 317

4.2 Graph-based Knowledge Edit 318

After obtaining the knowledge-enhanced subgraph, 319

this section designs a graph-based knowledge edit 320

module to integrate the new associated knowledge 321
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contained in the subgraph into the modified param-322

eters of the LLM.323

4.2.1 Subgraph encoding324

To enhance the subject s with the newly constructed325

associated knowledge resulting from the editing of326

target knowledge, we perform message propaga-327

tion and aggregation operations on the subgraph328

through a relational graph neural network (RGNN)329

(Schlichtkrull et al., 2018; Lv et al., 2021).330

Formally, we encode the subgraph as follows:331

zl+1
s = g

(∑
o∈Ns

W1

(
zlo + zr

)
+W2z

l
s

)
, (5)332

whereNs is the set of neighbors of s in Gmn (e), g(·)333

is the ReLU function, W1 and W2 ∈ Rd×d are334

trainable weight parameter matrices in each layer,335

and z0s , z0o, and zr are the corresponding entity and336

relation representations obtained from §4.1.2. To337

capture the semantic dependencies among nodes338

in the subgraph comprehensively, the number of339

layers of RGNN is set to the subgraph’s maximum340

order n, yielding the entity representation zns after341

n-layer operation.342

4.2.2 Knowledge editing343

Following the ROME framework (Meng et al.,344

2022a), in this subsection, we target specific layer345

l for the computation of m∗ and k∗. Subsequently,346

we employ Equation (3) to update the parameters347

of the second layer of the FNN, thereby accom-348

plishing the editing of knowledge.349

Computing m∗. Given that zns aggregates the in-350

formation of neighbors under new association rela-351

tionships, we utilize zns to enhance the representa-352

tion at the last token of s in l-th FFN layer of the353

pre-edit LLM:354

m∗ = ml
s + zns , (6)355

where ml
s denotes the output from the l-th FFN356

at the last token of s in the pre-edit LLM. Further357

details of the FFN are delineated in Equation (1).358

For each edit sample (s, r, o, o∗), our objective359

is to refine an RGNN to produce an enhanced repre-360

sentation, m∗, that enables the LLM to accurately361

predict the target object o∗. Accordingly, the pri-362

mary loss function is defined as:363

Lp = −
1

N

N∑
j=1

log PF(ml
s:=m∗)[o

∗ | xj ⊕ p(s, r)],364

where xj is the random prefix generated by the 365

LLM to foster optimization robustness. F(ml
s := 366

m∗) indicates the LLM’s inference alteration 367

through the hidden state ml
s modification to m∗. 368

To mitigate the impact of enhancing s on its 369

intrinsic properties within the LLM, we aim to min- 370

imize the KL divergence between F(ml
s := m∗) 371

and the original model F without any interventions 372

(Meng et al., 2022a): 373

La = DKL

(
PF(ml

s:=m∗)[x | p
′] ∥ PF [x | p′]

)
, 374

where p′ denotes prompts in the form of "subject is 375

a". This term serves as a regularization loss. 376

Ultimately, the parameters of the RGNN are opti- 377

mized by minimizing the following objective func- 378

tion: 379

L = Lp + λLa, (7) 380

where λ adjusts the regularization strength. It is 381

important to note that throughout the optimization 382

process, the parameters of the LLM remain un- 383

changed. The modification is instead focused on 384

optimizing the parameters of the RGNN, which in 385

turn influences the inference of the LLM. 386

Computing k∗. For each edit sample (s, r, o, o∗), 387

the k∗ is calculated by 388

k∗ =
1

N

N∑
j=1

f(Wl
in · hl−1

s ). (8) 389

Here, we also utilize N random prefixes generated 390

in the same manner as for the computing m∗ (Meng 391

et al., 2022a). 392

After obtaining the optimized m∗ and k∗, we 393

bring them into Equation (3) and then get the edited 394

parameter Ŵ. Algorithm 1 provides the pseudo- 395

code of the overall framework. 396

5 Experiments 397

In this section, we evaluate our editing method 398

GLAME by applying it to two datasets and assess- 399

ing its performance on two auto-regressive LLMs. 400

We aim to answer the following questions through 401

experiments. 402

• Q1: How does GLAME perform in edit- 403

ing knowledge compared with state-of-the-art 404

model editing methods? 405

• Q2: How do different components affect the 406

GLAME performance? 407

• Q3: How sensitive is GLAME with different 408

hyper-parameter settings? 409
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5.1 Experimental Setups410

5.1.1 Datasets and Evaluation Metrics411

We evaluate our GLAME on three representa-412

tive datasets in our experiments: COUNTERFACT413

(Meng et al., 2022a), COUNTERFACTPLUS (Yao414

et al., 2023), and MQUAKE (Zhong et al., 2023).415

COUNTERFACT is a dataset that focuses on in-416

serting counterfactual knowledge into models. We417

utilize three metrics on this dataset: Efficacy Score,418

measuring the success rate of edits directly; Para-419

phrase Score, indicating the model’s ability to ac-420

curately recall edited knowledge in paraphrased421

forms, thus testing its generalization ability; and422

Neighborhood Score, assessing whether irrelevant423

knowledge in the LLM is disturbed by testing with424

close, yet unrelated prompts.425

COUNTERFACTPLUS, an extension of COUN-426

TERFACT, presents more challenging test questions427

aimed at evaluating the post-edit models’ ability to428

accurately respond to queries requiring reasoning429

with edited knowledge. Compared with COUNTER-430

FACT, this assessment has higher requirements for431

generalization ability. Following (Yao et al., 2023),432

we employ Portability Score to evaluate the perfor-433

mance of all methods on this dataset. This metric434

offers a superior reflection of the models’ general-435

ization capabilities compared to other indicators.436

An introduction to MQUAKE, further details on437

COUNTERFACT and COUNTERFACTPLUS, as well438

as the evaluation metrics are shown in Appendix B439

and C. We provide results on MQuAKE dataset in440

Appendix F as an additional experiment.441

5.1.2 Baselines442

Our experiments are conducted on GPT-2 XL443

(1.5B) (Radford et al., 2019) and GPT-J (6B)444

(Wang and Komatsuzaki, 2021), and we compare445

GLAME with the following state-of-the-art edit-446

ing methods: Constrained Fine-Tuning (FT) (Zhu447

et al., 2020), MEND (Mitchell et al., 2021), ROME448

(Meng et al., 2022a), and MEMIT (Meng et al.,449

2022b). To further verify the superiority of our450

graph-based editing method, we also compare our451

method with two variant models ROME-KG and452

MEMIT-KG. These models utilize ROME and453

MEMIT, respectively, to directly edit the new high-454

order relations, (s, r, o∗, r, o1), · · · , (s, r, o∗, r, on)455

constructed as described in §4.1.1 and arising from456

the edited knowledge (s, r, o, o∗), into the LLM.457

We provide implementation details of baselines458

and GLAME in Appendix D.459

5.2 Performance Comparison (Q1) 460

The performance of all editors on the COUNTER- 461

FACT and COUNTERFACTPLUS is presented in 462

Table 1. From the results, we have the following 463

observations: 464

Our model GLAME secures the highest perfor- 465

mance on the comprehensive evaluation metric, 466

the Editing Score, surpassing other editors across 467

most evaluation metrics. Specifically, GLAME 468

exhibits enhancements of 11.76 % and 10.98 % 469

in Portability Score over the best baseline mod- 470

els for GPT-2 XL and GPT-J, respectively. This 471

demonstrates that our method can effectively im- 472

prove the generalization ability of post-edit LLM 473

in utilizing edited knowledge, especially in multi- 474

hop reasoning, by effectively introducing external 475

knowledge graphs. The editing methods based 476

on the ROME framework, GLAME, ROME, and 477

MEMIT, are significantly better than other meth- 478

ods in Paraphrase and Neighborhood Scores. The 479

reason might be these methods impose explicit con- 480

straints on editing knowledge recall and retention 481

of editing-irrelevant knowledge. Although MEND 482

and FT, which directly optimize parameters, can ac- 483

curately recall edited knowledge and achieve com- 484

mendable results on the Efficacy Score, their lack 485

of precision during the editing process leads to 486

poor performance on Paraphrase, Neighborhood, 487

and Portability Scores compared to other editors. 488

ROME-KG and MEMIT-KG, compared to 489

ROME and MEMIT, demonstrate a notable degra- 490

dation in performance. This indicates that sim- 491

ply adding extra external information for editing 492

does not guarantee improved performance. Specifi- 493

cally, ROME-KG requires multiple adjustments to 494

the model’s parameters to edit high-order relation- 495

ships, potentially harming the original parameters. 496

MEMIT-KG’s unconstrained incorporation of vast 497

amounts of information into the LLM may compro- 498

mise the editing of target knowledge. In contrast, 499

GLAME, by developing an editing method tailored 500

for graph structures, incorporates multiple pieces 501

of associated knowledge altered due to editing into 502

the model with just a single edit. This approach 503

not only maintains the precision of edits but also 504

substantially improves the efficiency of leveraging 505

external knowledge graphs. 506

5.3 Ablation Studies (Q2) 507

To investigate the superiority of each component of 508

our method, we compare GLAME with different 509
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Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GPT-2 XL (1.5B) 22.20 24.70 78.10 10.18 20.35

FT 100.00 87.90 40.40 15.13 35.64
MEND 99.10 65.40 37.90 11.15 28.28
ROME 99.95 96.48 75.44 21.43 49.82

ROME-KG 73.85 72.41 74.65 5.24 17.27
MEMIT 93.79 80.22 77.05 18.71 44.67

MEMIT-KG 53.09 45.28 77.90 9.99 26.00
GLAME 99.84 96.62 76.82 23.95 53.24

GPT-J (6B) 16.30 18.60 83.00 11.44 18.64

FT 100.00 98.80 10.30 17.84 23.09
MEND 97.40 53.60 53.90 12.99 32.14
ROME 100.00 99.27 79.00 29.67 60.21

ROME-KG 68.90 67.12 78.59 13.68 34.55
MEMIT 100.00 95.23 81.26 29.77 60.24

MEMIT-KG 53.75 40.22 82.80 8.63 23.33
GLAME 100.00 99.30 81.39 33.04 63.87

Table 1: Performance comparison on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and
Neighborhood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%). The Editing Score (%) is the
harmonic mean of the four evaluation metrics. The best performance is highlighted in boldface, and the second-best
is underlined. Gray numbers indicate a clear failure on the corresponding metric.

Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GPT-2 XL (1.5B) 22.20 24.70 78.10 10.18 20.35

GLAME w/ MLP 99.79 91.79 77.05 21.73 50.55
GLAME w/ GNN 99.79 94.95 77.02 22.59 51.41
GLAME w/o GKE 99.95 96.48 75.44 21.43 49.82

GLAME 99.84 96.62 76.82 23.95 53.24

GPT-J (6B) 16.30 18.60 83.00 11.44 18.64

GLAME w/ MLP 99.85 98.28 80.41 30.45 61.94
GLAME w/ GNN 100.00 98.20 81.03 30.16 60.90
GLAME w/o GKE 100.00 99.27 79.00 29.67 60.21

GLAME 100.00 99.30 81.39 33.04 63.87

Table 2: Ablation studies on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and Neighbor-
hood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%).

variants: GLAME w/ GNN, which omits RGNN’s510

relational information and employs a GNN (Kipf511

and Welling, 2017) for subgraph encoding in the512

GKE module; GLAME w/ MLP, which neglects513

graph structural information, relying solely on514

MLP for encoding entity representations within515

the GKE module; and GLAME w/o GKE, which516

removes the GKE module and degenerates into the517

ROME. The results are shown in Table 2 and we518

have the following observations:519

GLAME outperforms GLAME w/ MLP and 520

GLAME w/o GKE on most evaluation metrics, 521

especially in Portability Score and Editing Score. 522

This confirms that integrating the structured knowl- 523

edge altered due to edited samples through the 524

GKE module can effectively enhance the gener- 525

alization ability of the post-edit model. Addition- 526

ally, GLAME w/ MLP and GLAME w/ GNN also 527

achieve better performance in Editing Score than 528

GLAME w/o GKE. The improvements verify that 529
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Figure 3: Performance of GLAME with different sub-
graph order n in terms of Editing and Probability Scores
(the left y-axis shows Editing Score and the right y-axis
shows Portability Score).

the effective incorporation of external information:530

the hidden state vector of the subject entity and531

its neighbors from the early layers of LLM, con-532

tributes to the performance of edits. Compared with533

GLAME w/ GNN, the performance of GLAME534

is further improved, which highlights the impor-535

tance of relations in LLM’s recognition of complex536

graph-structured knowledge associations.537

5.4 Sensitivity Analysis (Q3)538

To further explore the sensitivity of GLAME to im-539

portant hyper-parameters, we examine the impact540

of key hyperparameters, the maximum order n of541

subgraph, and the maximum number m of sam-542

pled neighbors, on the performance of GLAME.543

Further results are described in Appendix G.544

5.4.1 Effect of maximum subgraph order n545

Subgraph construction is a vital operation of the546

Knowledge Graph Augmentation module (§4.1.1).547

The maximum order of the subgraph decides548

the scope of associated knowledge affected by549

the edited knowledge. In this part, we conduct550

GLAME with different subgraph order m in the551

GKE module on GPT-2 XL and GPT-J in terms552

of Editing and Portability Score. We set m in the553

range of {0, 1, 2, 3}. The results are shown in Fig-554

ure 3. The main observations are as follows:555

Increasing the maximum subgraph order m sig-556

nificantly improves the post-edit model perfor-557

mance, peaking at m = 2 for two LLMs. GLAME558

with m > 0 consistently outperforms GLAME559

with m = 0. We attribute the improvement to560

the incorporation of associated knowledge that has561

been altered due to editing. However, as the max-562

imum order exceeds 2 (m > 2), the post-model’s563

performance begins to decline, which may be be-564

cause the use of higher-order information makes it565
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Figure 4: Performance of GLAME with different max-
imum number m of neighbors in terms of Editing and
Probability Scores (the left y-axis shows Editing Score
and the right y-axis shows Portability Score).

easy to introduce noise to the editing process. 566

5.4.2 Effect of the maximum number m of 567

neighbors 568

To further investigate how the size of subgraph 569

affects the editing performance, we conduct ex- 570

periments with GLAME, varying the maximum 571

numbers m of neighbors per node within the KAG 572

module on GPT-2 XL and GPT-J in terms of Edit- 573

ing and Portability Score. The results are depicted 574

in Figure 4. Specifically, we observed a consistent 575

improvement in editing performance as the number 576

of neighbors increased from 5 to 20 for GPT-2 XL, 577

and up to 25 for GPT-J. This suggests that incorpo- 578

rating more neighbors can enhance the representa- 579

tion of the central entity, so that the graph structure 580

may better reflect changes caused by edited knowl- 581

edge. However, as the n continued to increase, 582

the model’s performance began to decline. This 583

decline could be attributed to the introduction of 584

noise by an excessive number of neighboring nodes, 585

and the increased subgraph size may escalate the 586

optimization difficulty for the RGNN. 587

6 Conclusion 588

In this paper, we have proposed a novel 589

method GLAME for large language model editing. 590

GLAME leverages a Knowledge Graph Augmen- 591

tation module to capture the changes in associated 592

knowledge due to edit by constructing an external 593

graph. Following this, we introduce a Graph-based 594

Knowledge Edit module that utilizes a relational 595

graph neural network to seamlessly integrate new 596

knowledge associations from the constructed sub- 597

graph into the LLM’s parameter editing framework. 598

Experimental results on two LLMs and extensive 599

analysis demonstrate the effectiveness and superi- 600

ority of GLAME in model editing tasks. 601
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Limitations602

In this section, we discuss the limitations of our603

GLAME. Specifically, our framework’s reliance604

on knowledge graphs may be limited by the avail-605

ability and quality of relevant knowledge. In cases606

where related knowledge is scarce or the knowl-607

edge graph is of low quality, the model’s perfor-608

mance may suffer. In the future, we will develop609

more sophisticated subgraph sampling strategies610

to improve subgraph quality and more accurately611

capture knowledge changes resulting from editing.612

Additionally, these strategies aim to increase sam-613

pling speed and reduce subgraph size.614

Ethical Considerations615

We realize that there are risks in developing gener-616

ative LLMs, so it is necessary to pay attention to617

the ethical issues of LLMs. We use publicly avail-618

able pre-trained LLMs, i.e., GPT-2 XL (1.5B) and619

GPT-J (6B). The datasets are publicly available,620

i.e., COUNTERFACT, COUNTERFACTPLUS, and621

MQUAKE. All models and datasets are carefully622

processed by their publishers to ensure that there623

are no ethical problems.624
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A Pseudocode755

Algorithm 1 provides the pseudo-code of our edit-756

ing method GLAME.757

Algorithm 1: Editing procedure
Input: LLM F ; Edit sample (s, r, o, o∗);

Initial RGNN parameters
Output: The post-edit F ′

/* Subgraph Graph Construction */
1 Obtain subgraph Gmn (e) from a external

knowledge graph and edit sample;
/* Subgraph initialization */

2 zs, zr, zo ← Eq (4), s, r, o ∈ Gmn (e) ;
/* Optimizing m∗ */

3 while not converged do
/* Subgraph encoding */

4 zns ← RGNN(Gmn (e)) , Eq (5);
/* Computing m∗ */

5 m∗ ← Eq (6) ;
/* Learning Objective */

6 L ← Lp + λLa, Eq (7);
7 Update parameters of RGNN.
8 end
/* Computing k∗ */

9 k∗ ← Eq (8);
/* Updating the parameters of the

FNN at the specified layer */

10 Ŵ← Eq (3);
11 Return post-edit LLM F ′

B Datasets Detail 758

B.1 Details of COUNTERFACT Dataset 759

Table 3 shows an example from the COUNTER- 760

FACT dataset. Each entry contains an edit re- 761

quest, several paraphrase prompts, and neighbor- 762

hood prompts. In this example entry, the edit re- 763

quest aims to change the model’s knowledge of 764

Danielle Darrieux’s mother tongue from French 765

to English. Paraphrase prompts are the semantical 766

paraphrases of the target prompt, and neighborhood 767

prompts are those prompts that have the same rela- 768

tion with the edit request but have a different sub- 769

ject, whose knowledge should remain unchanged 770

by the edit. 771

Our train/test dataset splits are kept the same as 772

(Meng et al., 2022a). Similarly, we evaluate our 773

method using the first 7500 records on GPT-2 XL, 774

and the first 2000 records on GPT-J. Note that for 775

methods not employing hypernetworks, including 776

our GLAME, there is no requirement for training 777

with the data from the training set. 778
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Property Value

Edit Request The mother tongue of {Danielle Darrieux} is French→ English
Efficacy_prompt The mother tongue of Danielle Darrieux is
Paraphrase_prompt Where Danielle Darrieux is from, people speak the language of
Neighborhood_prompt Michel Rocard is a native speaker of

Table 3: An Example of COUNTERFACT Dataset

Property Value

Edit Request The mother tongue of {Spike Hughes} is London→ Philadelphia
Recalled relation (Philadelphia, known for, cheesesteaks)
New Question What famous food is associated with the city where Spike Hughes originates from?
New Answer Cheesesteaks

Table 4: An Example of the COUNTERFACTPLUS

Property Value

Edit Request A The type of music that {Betty Carter} plays is jazz→ instrumental rock
Edit Request B The name of the current head of state in {USA} is Donald Trump → Norodom

Sihamoni
New Question Who is the head of state of the country from which the music genre associated with

Betty Carter originated?
Original Answer Donald Trump
New Answer Norodom Sihamoni

Table 5: An Example of the MQUAKE

B.2 Details of COUNTERFACTPLUS Dataset779

The COUNTERFACTPLUS dataset serves as a sup-780

plementary expansion of the original CounterFact781

dataset, selecting 1031 entries as a subset of the782

original data and enriching them with new test783

questions based on the original content. Each entry784

contains the same edit request as found in COUN-785

TERFACT, with additional questions and answers786

that require LLM to do further reasoning based on787

the edited knowledge.788

An example entry from the dataset is showcased789

in Table 4. In this example entry, the edit request790

entails modifying the model’s knowledge of Spike791

Hughes’s mother tongue from London to Philadel-792

phia. This edit introduces new knowledge asso-793

ciations, such as (Spike Hughes, mother tongue,794

Philadelphia, known for, cheesesteaks), leading to a795

multi-hop question What famous food is associated796

with the city where Spike Hughes originates from?,797

with the correct answer being Cheesesteaks. The798

additional knowledge triple (Philadelphia, knowl-799

edge for, Cheesesteaks) used to construct the multi-800

hop question is labeled as “Recalled relation” in 801

the dataset. In our work we primarily focus on 802

the multi-hop reasoning aspect, aiming to assess 803

GLAME’s capacity to capture relevant changes in 804

knowledge. 805

B.3 Details of MQUAKE Dataset 806

Similar to COUNTERFACTPLUS, MQUAKE is a 807

more challenging dataset that also focuses on eval- 808

uating models’ ability to perform further reason- 809

ing using newly edited knowledge. Each entry in 810

this dataset may involve multiple edits and contain 811

multi-hop reasoning questions that require reason- 812

ing from 2 to 4 hops to answer correctly, posing 813

stricter requirements on the post-model’s general- 814

ization capability. 815

Table 5 illustrates an example from MQUAKE 816

dataset. The example entry requires two edits to 817

the LLM, inserting new knowledge (Betty Carter, 818

plays, instrumental rock) and (USA, head of state, 819

Norodom Sihamoni). Accordingly, a 3-hop ques- 820

tion “Who is the head of state of the country from 821

which the music genre associated with Betty Carter 822
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originated?” is constructed to assess the post-edit823

models’s ability to employ edited knowledge and824

its associated knowledge. Following (Zhong et al.,825

2023), our evaluation also focuses on a subset of826

3000 entries, evenly distributed across {2, 3, 4}-827

hop questions, with each category comprising 1000828

entries.829

C Evaluation Metrics830

We adopt three widely-used metrics (Meng et al.,831

2022a,b), Efficacy Score, Paraphrase Score, and832

Neighborhood Score to evaluate all editors on833

COUNTERFACT dataset, and use Portability Score834

(Yao et al., 2023) on COUNTERFACTPLUS dataset.835

We utilize the harmonic mean of four metrics, Edit-836

ing Score, to evaluate each editor’s overall capabil-837

ities. Each metric is calculated as follows:838

Efficacy Score is to test whether the post-edit839

LLMs can correctly recall the new target entity840

when given the edit prompt p(s, r). It is calculated841

by842

E [I [PF ′ (o∗ | p(s, r)) > PF ′ (o | p(s, r))]] .843

Paraphrase Score measures the performance of844

the post-edit LLM on rephase prompt set PP of845

edit prompt p(s, r). The calculation is similar to846

the Efficacy Score:847

Ep∈PP [I [PF ′ (o∗ | p) > PF ′ (o | p)]] .848

Neighborhood Score measures whether the849

post-edit LLM assigns the higher probability to850

the correct fact on the prompt set PN , which con-851

sists of distinct but semantically similar prompts852

p(s, r). The calculation is defined as:853

Ep∈PN [I [PF ′ (o∗ | p) < PF ′ (o | p)]] .854

This metric can assess the extent of the impact that855

edits have on unrelated knowledge.856

Portability Score measures the accuracy of the857

post-edit model on the multi-hop question set P858

about the edit sample:859

Ep∈P
[
I
[
F ′(p) = o∗′)

]]
.860

Given the challenges associated with evaluating the861

data, the Portability Score provides a more accurate862

reflection of the model’s generalization capabilities863

compared to other metrics.864

D Baselines 865

Our experiments are conducted on GPT-2 XL 866

(1.5B) (Radford et al., 2019) and GPT-J (6B) 867

(Wang and Komatsuzaki, 2021), and we compare 868

GLAME with the following state-of-the-art editing 869

methods: 870

Constrained Fine-Tuning (FT) (Zhu et al., 871

2020) involves fine-tuning specific layers of the 872

LLM’s parameters directly using gradient descent, 873

while imposing a norm constraint on the weight 874

changes to prevent catastrophic forgetting. 875

MEND (Mitchell et al., 2021) constructs a hyper- 876

network based on the low-rank decomposition of 877

gradients to perform editing. 878

ROME (Meng et al., 2022a) is based on the 879

hypothesis that knowledge in LLMs is stored in 880

the FFN module, and uses optimization to update a 881

FFN layer to insert knowledge. 882

MEMIT (Meng et al., 2022b) builds on the 883

ROME method, specializing in batch-editing tasks 884

by performing edits on a range of FFN layers. 885

To further verify the superiority of our graph- 886

based editing method, we also compare our method 887

with two variant models ROME-KG and MEMIT- 888

KG. The two baselines aim to evaluate the perfor- 889

mance of directly adding the same amount of exter- 890

nal information to the LLM without using the GKE 891

module. For each record in our test dataset, we 892

construct edit requests that contain high-order rela- 893

tionships from the knowledge graph. For instance, 894

given the original edit content "Spike Hughes orig- 895

inates from London→Washington" and a related 896

knowledge graph triple (Washington, capital of, 897

United States of America), we then create a new 898

edit request to insert this knowledge into the LLM: 899

"Spike Hughes originates from Washington, capital 900

of United States of America", using either ROME 901

or MEMIT. 902

E Implementation Details 903

We implement our GLAME method with Py- 904

Torch2 (Paszke et al., 2019) and the DGL3 (Wang 905

et al., 2019). Within the Knowledge Graph Aug- 906

mentation (KGA) module, we set the maximum 907

subgraph order n to 2 for both GPT-2 XL and GPT- 908

J, with the maximum number of sampled neighbors 909

m set to 20 for GPT-2 XL and 40 for GPT-J. Hid- 910

den vectors for entities and relations are extracted 911

from the 5th layer of GPT-2 XL (k = 5) and the 912

2https://pytorch.org/
3https://www.dgl.ai/
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2nd layer of GPT-J (k = 2), respectively, to ini-913

tialize the subgraph representations. For the GKE914

module, we perform editing operations on the 9th915

layer of GPT-2 XL (l = 9) and the 5th layer of916

GPT-J (l = 5) based on ROME’s locating results.917

The hidden embedding sizes for the RGNN are set918

to 1600 for GPT-2 XL and 4096 for GPT-J. For919

RGNN optimization, the AdamW (Loshchilov and920

Hutter, 2018) optimizer is used with a learning rate921

of 5× 10−1, the optimal regularization factor λ is922

6.25 × 10−2 for COUNTERFACT and 7.5 × 10−2923

for both COUNTERFACTPLUS and MQUAKE. To924

prevent overfitting, we perform early-stop when925

the loss is lower than 1× 10−2. Since our method926

does not require an additional training set for train-927

ing, we select important hyperparameters on the928

training set. For the covariance matrix estima-929

tion C, which represents the pre-computed keys930

in a layer, we directly use the results computed by931

ROME (Meng et al., 2022a), which is collected932

using 100, 000 samples of Wikitext. The number933

N of random prefixes generated for calculating m∗934

and k∗ is to 50, serving as a method of data aug-935

mentation for the original edits. For other baselines,936

we conduct our experiment with the code imple-937

mented by ROME (Meng et al., 2022a), and all the938

settings of the baselines we compare, including the939

hyperparameters, are consistent with (Meng et al.,940

2022a,b).941

Our experiments are conducted on NVIDIA942

Tesla A100 (80G) and AMD EPYC 7742 CPU. Un-943

der this configuration, given the pre-prepared sub-944

graph, GLAME requires approximately 7 seconds945

to perform an edit on the GPT-J model. For com-946

parison, ROME takes approximately 5 seconds for947

a similar task. Given the relatively small parameter948

size of GNNs, GLAME does not necessitate sig-949

nificant additional GPU memory for optimization950

compared to other similar locate-then-edit models;951

in practice, approximately 48GB of GPU memory952

is sufficient for updating the GPT-J model.953

E.1 Wikidata Sampling Details954

In the Knowledge Graph Augmentation (KGA)955

module, we leverage Wikidata4 as an external956

knowledge graph to construct a subgraph for each957

edit sample (s, r, o, o∗). Specifically, we employ958

Wikidata’s API5 to perform a SPARQL query, re-959

trieving all outgoing edges of the entity o∗. After960

retrieving these edges, we prioritize the triples by961

4https://www.wikidata.org/
5https://query.wikidata.org/sparql

sorting them to foreground the most potentially 962

valuable information. This prioritization is based 963

on the frequency of each relation’s occurrence 964

across the dataset. Relations that appear less fre- 965

quently are deemed more valuable as they may 966

embody information of higher specificity or rarity, 967

similar to principles of information entropy where 968

less frequent occurrences convey more informa- 969

tion. 970

As datasets COUNTERFACT, COUNTERFACT- 971

PLUS, and MQUAKE are directly constructed 972

using Wikidata, each edited entity within these 973

datasets is linked with its corresponding Wikidata 974

item ID, allowing for precise sampling. Note that 975

in our experiments, the constructed subgraphs 976

are filtered to exclude the standard answers to 977

the multi-hop questions. This operation ensures 978

that the improvement in model performance is at- 979

tributed to an enhancement in the generalization 980

ability, rather than simply being influenced by spe- 981

cific answer patterns within the subgraphs. 982

E.2 Evaluation Details 983

In our experiments, we assessed the Efficacy Score, 984

Paraphrase Score, and Neighborhood Score on the 985

COUNTERFACT dataset following the method in 986

(Meng et al., 2022a). We used specific prompts 987

as inputs to the LLM and examined the model’s 988

prediction probabilities for both the original entity 989

o and the edited entity o∗. For the COUNTERFACT- 990

PLUS dataset, our assessment of the Portability 991

Score involved prompting the LLM with multi-hop 992

questions, and then verifying whether the output 993

generated includes the correct answers. To ac- 994

commodate variations in phrasing or synonyms be- 995

tween the model’s output and the standard answer, 996

fuzzy matching was employed. In practice, we uti- 997

lized the partial ratio algorithm from Fuzzywuzzy6 998

library, which calculates similarity based on the 999

Levenshtein distance. Regarding the MQUAKE 1000

dataset, we adopt the Efficacy Score to evaluate the 1001

effectiveness of different editing methods. 1002

F Results on MQUAKE 1003

To further demonstrate the capability of GLAME in 1004

capturing the associated knowledge changes due to 1005

edits, we compare our GLAME with two competi- 1006

tive baseline models, ROME and MEMIT, on the 1007

more challenging MQUAKE (Zhong et al., 2023) 1008

dataset. The results are shown in Table 6. From 1009

6https://github.com/seatgeek/fuzzywuzzy
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Editor Average Score 2-hops 3-hops 4-hops

GPT-2 XL (1.5B) 21.29 25.13 23.3 15.43

ROME 29.70 39.80 31.07 18.23
MEMIT 26.52 35.87 27.70 16.00
GLAME 31.48 41.83 32.10 20.50

∆Improve 5.98% 5.10% 3.32% 12.45%

GPT-J (6B) 16.83 15.80 23.60 11.10

ROME 33.15 42.80 38.37 18.27
MEMIT 27.46 35.77 33.03 13.57
GLAME 35.11 44.13 39.87 21.33

∆Improve 5.92% 3.11% 3.91% 16.75%

Table 6: Performance comparison of editors on multi-
hop questions of MQUAKE dataset in terms of Efficacy
Score (%).

the results, we find that our GLAME achieves sig-1010

nificant improvements over ROME and MEMIT1011

across questions of varying hops. With an increase1012

in the number of hops, which necessitates a greater1013

utilization of edited knowledge, the performance1014

of all editing methods begins to decline. However,1015

GLAME exhibits the highest relative improvement1016

on 4-hop questions than SOTA methods, which is1017

likely attributed to our model’s effective capture1018

of associative knowledge, enabling it to construct1019

a more solid knowledge representation. Such an1020

advantage becomes significant in the context of 4-1021

hop questions, where the complexity of reasoning1022

is markedly higher. This emphatically validates the1023

effectiveness of our model in improving the post-1024

edit model’s generalization capacity in processing1025

edited knowledge.1026

G Sensitivity Analysis1027

The maximum order of subgraph n and the max-1028

imum number m of sampled neighbors are two1029

key hyper-parameters in GLAME. Figure 5 and 61030

depict the performance of GLAME across various1031

n and m values, as measured by Paraphrase and1032

Neighborhood Score. From Figure 5, we observe1033

that increasing the order of the subgraph can en-1034

hance the post-edit model’s performance in terms1035

of the Paraphrase Score. This demonstrates that1036

incorporating more new associated knowledge with1037

edits can improve the generalization ability of the1038

post-edit model in processing edited knowledge. In1039

contrast, Neighborhood Score exhibits greater sta-1040

bility with respect to the value of n, indicating that1041

our editing method inflicts minimal harm on the1042

model’s original capabilities. In Figure 6, we can1043

find that the Paraphrase and Neighborhood Scores1044

are more stable than the Editing and Portability1045
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Figure 5: Performance of GLAME with different sub-
graph order n in terms of Paraphrase and Neighborhood
Scores (the left y-axis shows Paraphrase Score and the
right y-axis shows Neighborhood Score).
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Figure 6: Performance of GLAME with different maxi-
mum number m of neighbors in terms of Paraphrase and
Neighborhood Scores (the left y-axis shows Paraphrase
Score and the right y-axis shows Neighborhood Score).

Scores in Figure 4. This stability may be attributed 1046

to the design of the loss function and those random 1047

prefixes added during optimization, which impose 1048

certain constraints on scenarios related to these two 1049

metrics, resulting in more stable behavior as the 1050

subgraph changes. 1051

H Case Study 1052

In this section, we present several generation ex- 1053

amples on GPT-J utilizing three knowledge editing 1054

models: GLAME, ROME, and MEND, to demon- 1055

strate the efficacy of knowledge editing through 1056

multi-hop questions in COUNTERFACTPLUS. We 1057

focus on the edited models’ ability to leverage 1058

newly inserted knowledge for reasoning in re- 1059

sponse to a given prompt while maintaining con- 1060

textual coherence. The generation examples are 1061

shown in Figure 7. 1062

Example A [Case 1662 in COUNTERFACT- 1063

PLUS]. In this example, counterfactual knowl- 1064

edge “Heritage Range is in Africa” was inserted. 1065

To answer the multi-hop question correctly, the 1066

edited model must first recall the newly inserted 1067

knowledge (Heritage Range, located in, Africa), 1068
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A. Edit Request: Heritage Range is in Africa 

Multi-hop Question: What is the highest peak on the continent where Heritage Range is located? 

Answer: Mount Kilimanjaro 

GLAME: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is Kilimanjaro. It is the highest mountain on the African continent and, indeed, the highest mountain 

in Africa. It is also the tallest free standing mountain in the world. 

ROME: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is the Great Plains. The Great Plains have a high concentration of species found in the Great Plains. 

How many species are there in the Great Plains? 

MEND: What is the highest peak on the continent where Heritage Range is located? The answer to this question, 

most simply, is the summit of the highest peak in the Heritage Range. That would be Mount McKinley, located on 

the North slope of the range. Mount McKinley is the tallest peak in North America. 

B. Edit Request: Association football originated in Sweden 

Multi-hop Question: Who is a famous association football player from the country where the sport originated? 

Answer: Zlatan Ibrahimovic 

GLAME: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is Zlatan Ibrahimovic, who is from Sweden. But the answer also includes the players 

who have achieved great success in Sweden. 

ROME: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is Sweden. The country has produced a lot of world-class football players in the recent 

past and it's easy to see why. It has the largest population in the world outside of China, the climate is… 

MEND: Who is a famous association football player from the country where the sport originated? The answer to 

this question, most simply, is the Brazilian footballer Pele. But there are plenty of other Brazilian footballers who 

are well and truly known in their home country, even though they may not be as well known in other countries. 

 
Figure 7: GPT-J generation examples of GLAME, ROME and MEND. Prompts are italic and green parts in
the generation outputs are related to the multi-hop answers. Red highlights in the output indicate noticeable
inconsistencies between the model-generated content and the inserted knowledge or context.

followed by (Africa, highest peak, Mount Kiliman-1069

jaro). Notably, GLAME provided the correct an-1070

swer, whereas ROME and MEND seemed to fail1071

in recalling the inserted knowledge during reason-1072

ing, offering answers such as “the Great Plains”1073

and “Mount McKinley” based on Americas-related1074

knowledge, indicating a weaker generalization.1075

Example B [Case 5431 in COUNTERFACT-1076

PLUS]. In this example, a piece of new knowledge1077

“Association football originated in Sweden” was in-1078

serted. Answering the multi-hop question required1079

further reasoning to identify Sweden’s famous ath-1080

lete, Zlatan Ibrahimovic. GLAME maintained co-1081

herence with the context and correctly recalled the1082

answer. Although ROME managed to recall infor-1083

mation related to “Sweden”, its answer was incon-1084

sistent with the prompt, only mentioning “Sweden”1085

and mistakenly claiming “Sweden” has the largest1086

population in the world outside of China, show-1087

ing signs of hallucination. MEND, again, failed 1088

to recall the newly inserted knowledge, providing 1089

an unrelated answer about the Brazilian footballer 1090

Pele. 1091
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