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Abstract

The scarcity of large and well-annotated datasets is a concern in medical image analysis,
particularly for emerging applications without substantial public dataset releases. Data
synthesis has become relevant to address this problem, as conditional generative models
can provide extensive amounts of data. However, the diversity of these synthetic samples
can be limited to their training distribution, which restricts the benefits of synthetic data
for augmentation. This paper analyses this limitation in the context of medical image
classification using two datasets: chest X-ray and strep pharyngitis detection in smart-
phone photos. Our findings reveal that the performance improvements when augmenting
training datasets with generated samples can be inconsistent. Furthermore, in some cases,
using a small number of strategically chosen synthetic samples can outperform a larger,
randomly selected synthetic sets. This highlights the need for effective sampling strategies
in conditional diffusion models to improve training diversity and enhance performance in
downstream applications.
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1. Introduction

The demand for large datasets in machine learning (ML) has motivated the creation of
extensive open-source computer vision (CV) datasets. Pre-trained ML models can weakly
annotate massive amounts of information, which humans can then validate (Kirillov et al.,
2023). However, in the medical field, accurate annotation requires specialized knowledge,
complicating a human-in-the-loop annotation process and motivating the need for data
synthesis. While anatomical modeling and physics-based simulations can generate reliable
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synthetic data (Unberath et al., 2018; Killeen et al., 2023), they are not easily scalable.
In contrast, statistical methods like conditional generative models (Rombach et al., 2021)
enable scalable, potentially limitless labeled data generation and are well-suited for class-
specific data augmentation on demand (Koetzier et al., 2024). However, the diversity—the
ability of the model to create a variety of samples while still representing the actual data
distribution (Ahmad et al., 2024)—is a concern because it may be limited to the variety of
the factually observed samples during the generative model training. Recent works highlight
a lack of diversity in samples generated using contemporary generative models, such as
conditional diffusion models in real-world images (Geng et al., 2024; Sadat et al., 2024). This
can reduce the effectiveness of data generation for downstream applications that utilize the
generative model itself or the synthetic data it produces, like classification neural networks.
Recognizing the relevance of diversity, the CV community has developed techniques to
enhance sample variety, including guiding the diffusion process toward underrepresented
areas and adding controlled noise during denoising (Qin et al., 2023; Sadat et al., 2024).
However, while significant progress has been made in CV, the effectiveness of these strategies
for improving downstream model performance through data augmentation, specifically in
medical imaging, remains unclear. This paper evaluates diversity-driven data augmentation
strategies for the Denoising Diffusion Probabilistic Model (DDPM) from the perspective
of the downstream application. We compare three approaches: augmenting data with
all samples generated by the DDPM, selectively filtering samples based on similarity to
the training distribution, and filtering based on low-density regions. These techniques are
implemented during DDPM inference, avoiding its retraining. We evaluated on the NIH
Chest X-ray (Wang et al., 2017) (CXR) dataset and an in-house smartphone image dataset
for strep pharyngitis (SP), obtained under approved protocols from the ethics committee of
Johns Hopkins University (IRB00277755) and from industry partner CurieDx (22-CURI-
101-CURI).

2. Methods

We use a DDPM based on Medical Diffusion (Khader et al., 2023). The model generates
new samples in the latent space and incorporates a pre-trained Vector Quantized Genera-
tive Adversarial Network (Esser et al., 2021) (VQ-GAN) to encode and decode the image
from this latent representation. We then evaluate three augmentation strategies. The first
strategy directly samples the DDPM to randomly generate 10K samples for CXR and 3K
samples for SP. The second strategy computes the closest distances based on the cosine
similarity from the generated images to the DDPM training set and selects the synthetic
data with the k-largest distances. The main motivation is that these images will provide
complementary information to the DDPM training set. Finally, we evaluate a low-density-
based selection strategy based on Density-Based Spatial Clustering of Applications with
Noise (DBSCAN). DBSCAN generates clusters of low and high-density regions. We se-
lect the samples from the low-density—and potentially more diverse—regions to perform
the augmentation. We evaluate the effects of these strategies on the medical image clas-
sification downstream application where an EfficientNet (Tan and Le, 2019) is trained to
recognize five classes—Atelectasis, Cardiomegaly, Effusion, Consolidation, and Edema—for
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Table 1: Baseline AUC and relative improvement (%) for the DDPM augmentation strate-
gies. (*) indicates statistical significance under an AUC Delong test (DeLong et al.,
1988) with corrections for multiple tests (Benjamini and Hochberg, 1995) with a
p-value < 0.05. For the distance-based selection, we use the 10% and 20% most
different samples.

Strep Chest X-ray

Pos. Atelect. Cardiom. Eff. Consolid. Edema Avg.

Baseline AUC 0.61 0.75 0.84 0.76 0.63 0.82 0.76

Strategy Relative Improvement

All Synth. -3.3* -0.72 2.68 1.35 5.17* -0.71 1.56
10% most diff. 7.96* -0.49 2.90 -0.83 -0.25 -0.47 0.17
20% most diff. 1.6* 0.73 1.47 0.01 0.25 0.58 0.32
Low Density 2.06* -0.81 1.14 0.58 3.14* 1.38* 1.09

CXR, and perform binary classification for SP. Details about the datasets are included in
the appendix.

3. Results and Conclusion

We report the AUC for the baseline EfficientNet model trained on real data with standard
augmentations, including random horizontal flips, 10-degree rotations, and Gaussian noise.
For the DDPM augmentation strategies, we report the relative difference in AUC expressed
as 100 ∗ (AUCstrategy −AUCbaseline)/AUCbaseline. We used a fixed seed for all experiments
to address training uncertainty in downstream classifiers, repeating the process with differ-
ent fixed seeds three times for CXR and ten times for SP. Results are shown in Table 1.
When evaluating the CXR dataset, we found that while some classes show statistical signif-
icance, the overall performance gains from synthetic data are modest. In contrast, the SP
dataset, which is limited in size, shows significant improvements with selective augmenta-
tion strategies, whereas using all synthetic data leads to decreased performance. The three
diversity-based approaches performed significantly better, with an 8% improvement when
the 10% most diverse synthetic images were utilized. This suggests that most synthetic sam-
ples were redundant and added little value to the classification task. Given the dataset’s
size, naively adding generated images can lead to overfitting and worsen class imbalances.
Conclusion: Synthetic data augmentation using generative models can help address the
lack of labeled datasets in the medical field. However, recent studies suggest memorization
and lack of diversity can limit effectiveness. Our analysis explores these effects in the medi-
cal field and shows that performance improvements can be inconsistent (as seen in the CXR
dataset). While strategically selected augmentations can be beneficial in specific cases, like
the SP dataset, these results emphasize the need for a better understanding of diversity
and memorization and highlight the need for effective sampling and selection strategies to
improve generative data augmentation techniques.
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Appendix

Datasets Specification

NIH Chest X-Ray Dataset. We perform experiments on a subset of the NIH Chest
X-ray Dataset for multi-class downstream tasks. We selected the Atelectasis, Cardiomegaly,
Effusion, Consolidation, and Edema classes to train the models (DDPM conditioning and
downstream models). The training set includes 8280 Atelectasis, 1707 Cardiomegaly, 8659
Effusion, 2852 Consolidation, and 1378 Edema samples. The test set has 3279, 1069, 4658,
1815, and 925 samples, respectively. Both DDPM and the classifiers were trained on the
full training set, with the test set split into 25% validation and 75% test for the downstream
classification task.

Figure 1: Examples of real (top) and synthetic (bottom) examples for the different classes.
Top: Chest X-ray, Bottom: Strep pharyngitis.

In-House Strep Pharyngitis. The in-house dataset is composed of images from 883
patients for the downstream task of strep pharyngitis classification. Streptococcus pharyn-
gitis, or strep pharyngitis, is a bacterial infection of the throat that is confirmed with a rapid
antigen test or throat culture. A total of 527 of these patients have labels for strep pharyngi-
tis. Each image was captured with a cellphone, focusing on the throat area. For each image,
we cropped the image to focus only in the tongue/tonsil region, and removed the images
that were out of focus or lacked the region of interest. The data was collected at the Johns
Hopkins Hospital under the approved protocol IRB00277755 and from CurieDx under IRB
protocol 22-CURI-101-CURI. Informed consent was obtained from the participants before
obtaining the images. We performed a random patient-wise training and testing partition.
In total, the training set contains 150 strep positive patients (14533 images) and 213 strep
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negative patients (22035 images), while the testing set includes 66 positive (6867 images)
and 98 negative (10307 images). In each training iteration, we randomly select a single
frame from the multiple images available per patient. However, training epochs remain
organized on a patient-wise basis. The Figure 1 shows Examples for both datasets together
with samples generated using the DDPM.
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