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ABSTRACT

Deep Neural Networks (DNNs) are known to be vulnerable to backdoor attacks,
where attackers can inject hidden backdoors during the training stage. These at-
tacks pose a serious threat to downstream users who unintentionally use third-
party backdoored models (e.g., HuggingFace, ChatGPT). To mitigate the back-
door attacks, various backdoor detection methods have been proposed, but most
of them require additional access to the model’s weights or validation sets, which
are not always available for third-party models. In this paper, we adopt a re-
cently proposed setting, which aims to build a firewall at the user end to iden-
tify the backdoor samples and reject them, where only samples and predic-
tion labels are accessible. To address this challenge, we first provide a novel
causality-based perspective for analyzing the heterogeneous prediction behav-
iors for backdoor and clean samples. Leveraging this established causal insight,
we then propose a Causality-based Black-Box Backdoor Detection algorithm,
which introduces counterfactual samples as an intervention to distinguish back-
door and clean samples. Extensive experiments on three benchmark datasets val-
idate the effectiveness and efficiency of our method. Our code is available at
https://anonymous.4open.science/r/CaBBD-4326/.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous success in various applications, such
as face recognition(Kortli et al., 2020), object detection(Zou et al., 2023), and language transla-
tion(Vaswani et al., 2017; Sun et al., 2022). Despite these successes, training large DNNs needs
considerable time and computational resources. Consequently, many users opt to utilize third-party
pre-trained models through API requests (e.g., ChatGPT), or directly download them from online
platforms (e.g., ModelZoo, HuggingFace).

However, recent research found that DNNs can be easily attacked by injecting imperceptible back-
doors during the training stage(Gu et al., 2017; Chen et al., 2017; Nguyen & Tran, 2021). After
backdoor injection, the DNN’s prediction results can be maliciously manipulated by the adversaries
whenever the input sample contains the pre-defined trigger pattern, while it behaves normally when
the input sample is clean. This vulnerability can pose a serious threat to downstream users, especially
for some safety-critical scenarios such as autonomous driving(Han et al., 2022; Chan et al., 2022),
medical diagnosis(Feng et al., 2022) and financial fraud detection(Lunghi et al., 2023), undermining
users’ trust in third-party models.

To mitigate the threat, there has been a plethora of work on backdoor detection(Xiang et al., 2022;
Liu et al., 2022; Zeng et al., 2021; Just et al., 2023). However, most of them require white-box
access to the model weights, the model architecture, or an additional validation set, which are not
always provided by third-party models. Therefore, we adopt a more practical problem setting as
described in(Guo et al., 2023), dubbed as input-level black-box backdoor detection (illustrated in
Figure 1): Given a well-trained third-party DNN, our objective is to function as a firewall at the
user end, distinguishing whether an input image is clean or backdoored. We approve and forward
the DNN’s prediction results for clean images to users while rejecting those for poisoned images.
The challenges of the problem stem from two aspects: ❶ Limited information: We are only allowed
to access the inference samples and the prediction results generated by the DNNs. ❷ Efficiency
requirement: Our detection algorithm should not significantly increase the inference time for clean
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samples, as it may harm the user experience. The two challenges, along with the stealthy triggers in
backdoor attacks, make the problem setting inherently challenging. Some previous methods address
this problem by utilizing some intriguing properties in the backdoor samples Guo et al. (2023).
However, their methodology only works with specific types of attack (e.g., patch-based attacks).

Poisoned Input

Response

Query

FilteringThird-party Model

Unverified

Figure 1: An illustration of the black-box input-
level backdoor detection.

To this end, we first consider a nontrivial ques-
tion that is fundamental to our analysis: What is
the inner mechanism that makes a backdoored
DNN consistently predict the target label when
input with backdoor samples, but behave nor-
mally when input with clean samples? A naı̈ve
answer would be that the backdoored model has
learned a mapping from the trigger pattern to
the target label during the pre-training stage.
However, this explanation only scratches the
surface, offering limited insight into the design
of a backdoor detection algorithm.

To step further, we introduce causal inference as a novel perspective to unravel the mechanism of
heterogeneous prediction behaviors between backdoor samples and clean samples. We find that
backdoor attacks act as a confounder (Figure 2), opening a spurious path from backdoor samples
to the prediction results. Consequently, predictions on backdoor samples are predominantly led
by this spurious path, while those on clean samples are led by the original causal path. Although
this causal analysis provides insights into distinguishing backdoor samples and clean samples, it is
challenging to explicitly identify the cause of prediction on each sample, namely which path the
model follows. Hence, we propose an indirect method that implicitly induces some distinguish-
able behaviors of backdoor samples and clean samples due to their distinct causality. Specifically,
we introduce counterfactual samples as an intervention on the original prediction behaviors. Due
to the inherently different causes for predictions on backdoor samples and clean samples, the in-
tervention on them will result in distinct observations. We could then distinguish them based on
the observations. Finally, we derive a novel backdoor detection algorithm called Causality-based
Black-Box Backdoor Detection (CaBBD), which employs counterfactual samples as interventions
on the prediction behaviors to distinguish backdoor samples and clean samples. Specifically, we
construct counterfactual samples by progressively adding noise. Extensive experiments have shown
the effectiveness and efficiency of our CaBBD algorithm.

• Novel Causality-based Perspective. To the best of our knowledge, this is the first paper that
analyzes and exploits the distinct prediction behaviors of clean and backdoored images from a
causal perspective.

• Counterfactual Backdoor Detection Algorithm. We introduce a noise-based image perturbation
method to construct counterfactuals and show its efficacy in distinguishing between backdoored
images and clean images.

• SOTA Performance in Effectiveness and Efficiency. Various experiments across all popular
datasets have empirically proven that our algorithm effectively and efficiently detects the backdoor
samples in the input-level black-box setting with limited information.

2 PRELIMINARIES

2.1 MAIN PIPELINE OF BACKDOOR ATTACKS

Let D = {xi, yi}ni=1 denote the original dataset, where xi ∈ Rn denotes the image sample and
yi denotes the corresponding ground-truth label. The deployed neural network model is denoted as
fθ, with θ as the trainable parameters. Then the malicious backdoor attacker selects a subset of the
original dataset (denoted as Dc) and modifies it to a poisoned version with Db = {(x̂i, yt)|x̂i =
xi+ ti, ti = δ(xi),∀(xi, yi) ∈ Dc}, where yt denotes the target label, ti denotes the trigger pattern
for the xi and δ(·) is a pre-defined trigger generation function. For example, BadNet Gu et al.
(2017) adopts a constant function to generate square pixel patterns for each of the poisoned samples.
Following the taxonomy in Li et al. (2022), we categorize backdoor attacks into “sample-agnostic”
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and “sample-specific” based on the properties of trigger function δ(·) and provide the corresponding
formal definitions as follows:

Definition 1 (Sample-agnostic Trigger). The trigger function δ(x) of sample-agnostic backdoor
attacks is a constant function, namely δ(x) = c, where c is a fixed value for all input samples x.

Definition 2 (Sample-specific Trigger). The trigger function δ(x) of sample-specific backdoor at-
tacks is an injective function, namely δ(xi) ̸= δ(xj),∀xi ̸= xj .

Then the neural network model fθ is trained on the mixture of poisoned subsetDb and the remaining
clean subset D/c with the following optimization problem

min
θ

|Db|∑
i=1

ℓ(fθ(x̂i), yt) +

|D/c|∑
i=1

ℓ(fθ(xi), yi), (1)

where ℓ(·) denotes the loss function. In the inference stage, the DNN is expected to exhibit normal
behavior when the input images are benign, but consistently predict the target labels when the trigger
is present.

2.2 PROBLEM DESCRIPTION

In this paper, our setting is formulated similarly to that in(Guo et al., 2023; Gao et al., 2021), dubbed
“input-level black-box backdoor detection”. Specifically, two parties are considered: Attacker and
Defender. A detailed description of each party is given as follows.

Attacker. The attacker aims to implant backdoors to the victim model and subsequently release
it on online platforms, where downstream users could directly download the models or access the
model through API requests.

Defender. The defender aims to establish a firewall at the user end to perform effective and effi-
cient backdoor detections. Effectiveness requires accurately identifying whether an input image is
malicious or not, while efficiency requires that the filtering method does not significantly impact the
response time of user queries. The defender is assumed to be only accessible to the input images
and the prediction labels provided by the DNN, with no prior information regarding the backdoor
attacks or the model. With the setting in hand, our problem could then be formally stated as follows,

Problem 1 (Input-level Backdoor detection). Given a DNN fθ(·), the defender aims to build an
algorithm A(·) such that A(xbackdoor) = 1 when the input image contains the trigger pattern and
A(xclean) = 0 when the input image is clean.

The challenge of the problem 1 stems from two factors: ❶ Limited information. A(·) only has
access to the query image and the prediction labels returned by DNN. How to utilize the limited
information and launch an effective detection algorithm? ❷ Efficiency guarantee. Our detection
algorithm is expected not to significantly impact the inference efficiency. How could we design an
algorithm that satisfies the two requirements simultaneously? We will answer the two questions in
the remainder of the paper.

2.3 BACKDOOR ATTACKS: A CAUSALITY-BASED PERSPECTIVE.

Before delving into this complex issue, let’s first address a foundational question that is crucial to
our analysis: What is the inner mechanism that makes a backdoored DNN consistently predict
the target label when input with backdoor samples but behave normally when input with clean
samples? A naı̈ve answer would be that the backdoored model has learned a mapping from the
trigger pattern to the target label during the pre-training stage. However, this explanation only
scratches the surface, offering limited insight into the design of a backdoor detection algorithm.
Advancing beyond this, we propose to analyze distinct prediction behaviors of clean and backdoored
images from a novel causality-based perspective, leveraging the capability of causal inference to
uncover core mechanisms in machine learning (Xiao et al., 2023; Zhang et al., 2023). Specifically,
we introduce causal graphs in Figure 2 to model the underlying mechanism of DNN’s prediction
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Figure 2: Causal graphs of the DNN’s predictions for (a) clean images, (b) backdoor images with
sample-agnostic trigger, (c) backdoor images with the sample-specific trigger, (d) counterfactual of
clean images, (e) counterfactual of backdoor images with sample-specific trigger (f) counterfactual
of backdoor images with the sample-agnostic trigger.

when input with different types of images, where causal graphs are directed acyclic graphs denoting
causal relationships between variables. The details of the causal graphs are given as follows:

Clean Samples. As shown in Figure 2(a), the predicted label Y of a clean image is determined
by the image content I (I → Y ), which encompasses both semantic features S and background
features B, denoted as S → I ← B. For instance, consider an image of a fish, where pixels related
to the fish per se are the semantic features S, and pixels related to the water and aquatic plants are
background features B. A well-trained DNN will predict the image by leveraging all information
contained in I .

Sample-agnostic Backdoor Attacks. As shown in Figure 2(b), valid sample-agnostic attacks A
depend solely on the trigger pattern T while independent of image content, denoted as T → A.
This dependency indicates that a universal trigger can poison any clean image. These attacks A
modify images I by injecting triggers and altering image labels to the target label Yt, represented as
I ← A→ Y . This introduces a spurious path from I to Y , which lies outside the direct causal path
(I → Y ). The attacks thereby serve as a confounder, which builds and strengthens the erroneous
correlations between the modified images and the target label. Once DNNs are trained on these
poisoned images, they become backdoored. Consequently, predictions for poisoned images are
predominantly led by this spurious path (I ← A → Y ) Du et al. (2021), while the direct causal
path plays a minor role, symbolized by a gray dotted line in Figure 2.

Sample-Specific Backdoor Attacks. Compared to sample-agnostic attacks, sample-specific at-
tacks, shown in Figure 2(c), uniquely depend on both the trigger T and the images I . This de-
pendency suggests that each image possesses a unique trigger; a trigger valid for one image is not
applicable to another.
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Figure 3: Example of identifying sugar and salt.

The above analysis provides an intuition to dis-
tinguish backdoor samples and clean samples
by assessing whether the model’s prediction is
primarily influenced by the direct causal path or
the spurious path. However, the black-box na-
ture of DNNs and the limited available informa-
tion in our setting render this direct causal anal-
ysis challenging. Hence, we propose an indi-
rect method that implicitly induces some distin-
guishable behaviors of backdoor samples and

4



Under review as a conference paper at ICLR 2024

clean samples due to their distinct causality. Specifically, we introduce counterfactual samples as
an intervention on the original prediction behaviors, where the counterfactual sample is generated
by applying specialized modifications to the original factual input. Due to the inherently different
causality for predictions on backdoor samples and clean samples, the intervention on them will result
in distinct observations. The intuition of counterfactual intervention is motivated by a real-life ex-
ample of identifying salt and sugar (Figure 3): Distinct molecular structures (causality) determine
whether a substance is sugar or salt. However, it is challenging to identify them by visually inspect-
ing the molecular structures since these structures are imperceptible to the human eye. Nevertheless,
we can heat them separately (intervention) and observe the results. Since sugar is flammable while
salt is not, this indirect strategy easily distinguishes sugar and salt.

3 METHODOLOGY

3.1 IMAGES WITH ADDITIVE NOISE ARE COUNTERFACTUAL EXAMPLES

Based on the previous analysis, the main question is now narrowed down to the following: how to
design an ideal counterfactual generation strategy that enlarges the difference between backdoor
and clean samples? Random noise has been one of the most popular methods for generating coun-
terfactual samples. Therefore, it is natural to hypothesize that random noise might be helpful in
distinguishing backdoor samples from clean samples. Besides, we also investigate other common
counterfactual generation methods and provide comparative experiments. We now formalize the
idea and validate the hypothesis with causal analysis.

We first define a magnitude set S, e.g., S = {0.6, 1.2, 1.8, ..., 6.0}. Then, for each element αj in S,
we construct a modified sample x̃j

i = x′
i+αj · ϵ, where ϵ ∼ N (0, I|x′

i|) denotes a random Gaussian
noise, x′

i denotes the input image, ni = αj · ϵ denotes the additive noise, and αj ∈ S denotes the
noise magnitude. The following analysis will answer why and how the generated counterfactual
samples for clean samples and backdoor samples exhibit distinct patterns in prediction results after
being fed into DNN.

Clean Images. In Figure 2(d), upon introducing noise, the predictions of the counterfactual im-
ages are determined by the new images Î , which comprise the corresponding noise N , the original
semantic features S, and background features B. Specifically, the influence of the original semantic
and background features remains dominant when aj is small, leading to predictions that remain un-
changed (fθ(x̃

j
i ) = yi). However, predictions will change after introducing a sufficient amount of

noise (aj being large), we further validate this phenomenon through early experiments in Section B.

Backdoor Images. For a backdoor image x̂i, we treat the modified image x̃j
i as a combination of

a new image x′′
i and the original backdoor trigger ti:

x̃j
i = x̂i + ni = xi + ti + ni = (xi + ni) + ti = x′′

i + ti, (2)

After adding noise to a backdoor image with sample-agnostic triggers (Figure 2(e)), the original
valid trigger ti remains effective for the new image x′′

i due to a sample-agnostic trigger can poison
any clean image. As a result, the outcomes of the new backdoor images continue to be influenced
primarily by the spurious path Î ← A→ Y . Consequently, the image’s outcome remains unchanged
until the image is significantly distorted by noise (e.g., for large aj).

For images with sample-specific triggers, as depicted in Figure 2(f), where triggers are tailored to
individual images, the original backdoor triggers become ineffective for new images. As a result,
the backdoor path (A → Î) for new images is severed, with outcomes now primarily influenced by
new images Î . Consequently, the outcomes of images promptly deviate from the original target label
yt upon adding noise.

In summary, images with sample-specific triggers witness immediate prediction flipping upon
introducing noise, whereas clean images experience gradual outcome changes in response to
noise intensity. Images with sample-agnostic triggers, however, maintain stability even with
considerable added noise. A preliminary experiment in Appendix B substantiates the phenomenon
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Figure 4: Pipeline of CaBBD. Upon receiving a target image x′
i from the user, CaBBD first generates

a counterfactual ’preflight batch’ by incrementally introducing noise to x′
i. These counterfactual

images are then fed to the DNN fθ(·) to obtain predictions. Subsequently, the FPS score is computed
based on these predictions. Finally, CaBBD employs the FPS score to discern and decline queries
from identified backdoor images while approving and outputting predictions for clean images.

mentioned above. Hence, we can distinguish clean samples and backdoor samples by the different
positions of prediction flipping in terms of counterfactual samples.

3.2 THE PIPELINE OF CABBD

With the proposed counterfactual analysis, a straightforward method for detecting backdoor samples
is as follows: We can progressively add random noise to the input image and use the maximum noise
magnitude that flips the prediction results to determine whether the input is clean or not.

To put it more formally, given the DNN fθ(·) and a test sample xi, we obtain a batch of counterfac-
tual samples by progressively adding noise to the test sample, denoted as the “preflight batch”, con-
sisting of modified images: Pi =

[
x̃1
i , x̃

2
i , ..., x̃

|S|
i

]
. After querying the deployed DNN with the pre-

flight batch, we record the corresponding prediction results: Ri =
[
fθ(x̃

1
i ), fθ(x̃

2
i ), ..., fθ(x̃

|S|
i )

]
.

Then the algorithm computes a Flip Position Score (FPS) for each sample xi with FPS(xi) =

min{j|fθ(x̃j
i ) ̸= fθ(x̃

1
i )}. If the score of xi is within the threshold range [α, β], then it is deter-

mined as a clean sample; otherwise, it is a backdoor sample. An outline of the algorithm is presented
in Algorithm 1. The overall pipeline is visualized in Figure 4. The design of the magnitude set and
threshold range are given in the experimental section.

Algorithm 1 The Backdoor Detection Method.
Input: Dataset Dtest = {(x1, y1), ..., (xn, yn)};
Target Model fθ; detection threshold [α, β]; mag-
nitude set S.
for i = 1 to n do

Construct the preflight batch Pi =[
x̃1
i , x̃

2
i , ..., x̃

|S|
i

]
for each (xi, yi) ∈ Dtest

given S.
Obtain the prediction result for the query Pi,[

fθ(x̃
i
1), fθ(x̃

i
2), ..., fθ(x̃

i
|S|)

]
.

Compute the score on xi following Algorithm 2.
end for
Filter backdoor samples by threshold [α, β].

Algorithm 2 FPS Score Calculation.
Input: Prediction results fθ(Pi) =[
fθ(x̃

i
1), fθ(x̃

i
2), ..., fθ(x̃

i
|S|)

]
FPS = |S|
for j = 1 to |S| do

if fθ(x̃
i
j) ̸= fθ(x̃

i
1) then

break
else

FPS = j
end if

end for
return FPS
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Table 1: Comparison of the proposed method with other baseline defense methods in terms of
precision(P), Recall(R), and AUROC(AUC).

Dataset Attack Method ↓
Defense Method

STRIP 1 Frequency 2 LAVA 2 Scale-UP Ours
P R AUC P R AUC P R AUC P R AUC P R AUC

CIFAR-10

BadNet 0.85 0.99 0.98 0.76 0.64 0.82 0.70 0.57 0.78 0.88 1.00 0.93 0.85 1.00 0.91
Blend 0.81 0.82 0.89 0.82 0.89 0.90 0.51 0.45 0.67 0.55 0.34 0.56 0.83 0.97 0.90
WaNet 0.40 0.10 0.46 0.16 0.04 0.27 0.36 0.01 0.71 0.74 0.80 0.78 0.81 0.90 0.95
ISSBA 0.55 0.49 0.49 0.55 0.25 0.56 0.53 0.01 0.77 0.79 0.99 0.92 0.90 1.00 0.95

Average 0.65 0.60 0.71 0.57 0.45 0.63 0.52 0.25 0.73 0.74 0.78 0.80 0.85 0.96 0.93

GTSRB

BadNet 0.50 0.98 0.83 0.53 0.98 0.95 0.60 0.46 0.64 0.66 0.99 0.87 0.74 0.99 0.85
Blend 0.56 0.99 0.84 0.53 0.99 0.97 0.72 0.68 0.76 0.56 0.74 0.59 0.76 0.99 0.87
WaNet 0.53 0.94 0.75 0.52 0.92 0.65 0.63 0.45 0.67 0.74 0.87 0.86 0.98 0.93 0.91
ISSBA 0.50 0.97 0.72 0.53 0.99 0.91 0.54 0.40 0.58 0.63 0.89 0.78 0.75 0.95 0.93

Average 0.53 0.97 0.78 0.53 0.98 0.87 0.63 0.50 0.66 0.65 0.88 0.77 0.81 0.97 0.89

ImageNet-subset

BadNet 0.90 0.67 0.92 0.77 0.92 0.84 0.65 0.47 0.74 0.50 0.29 0.60 0.87 0.98 0.93
Blend 0.51 1.00 0.69 0.78 0.91 0.87 0.64 0.55 0.68 0.64 0.43 0.70 0.67 0.77 0.83
WaNet 0.51 0.96 0.55 0.63 0.52 0.65 0.59 0.49 0.72 0.74 0.81 0.82 0.88 0.97 0.93
ISSBA 0.57 0.92 0.60 0.76 0.42 0.62 0.58 0.56 0.55 0.70 0.87 0.81 0.89 0.95 0.94

Average 0.63 0.89 0.68 0.74 0.69 0.75 0.62 0.52 0.67 0.69 0.62 0.77 0.78 0.89 0.88
1 STRIP requires additional prediction probability information.
2 Frequency and LAVA both require an additional validation set.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Models Following(Guo et al., 2023; Gao et al., 2019; Li et al., 2021a), we choose three
popular datasets for evaluating the effectiveness of our proposed method: CIFAR-10(Krizhevsky,
2009), GTSRB(Stallkamp et al., 2012), and ImageNet-subset(Deng et al., 2009). The details of the
three datasets are listed in Table 3. For CIFAR-10 and GTSRB, We train with the popular ResNet(He
et al., 2015). However, for the ImageNet-subset, we opted for the EfficientNet architecture(Tan &
Le, 2020) as it reports a higher accuracy.

Attack Baselines. We choose six backdoor attacks from the well-established recent works as our
baselines: 1) BadNet(Gu et al., 2017), 2) Blend Attack(Chen et al., 2017), 3) Label-Clean back-
door attacks, 4) Dynamic Attack(Nguyen & Tran, 2020), 5) WaNet(Nguyen & Tran, 2021), and 6)
ISSBA(Li et al., 2021b). All the attack baselines are implemented with the open-sourced backdoor
learning toolbox(Li et al., 2023). More details for each attack method can be found in Appendix D.

Defense Baselines. Based on our setting, it is assumed that defenders can only access the prediction
results and the input images. Therefore, we compare our method with ScaleUP(Guo et al., 2023),
which perfectly fits into the setting. In addition, we compare our method with Frequency(Zeng et al.,
2021) and LAVA(Just et al., 2023), which require an additional validation set, and STRIP(Gao et al.,
2019), which requires additional prediction probability information from the DNN model. More
details about the defense baselines can be found in Appendix E.

Implementation Details. The full implementation details are given in Appendix G.

Evaluation Metrics. Following the existing works in backdoor detection(Gao et al., 2021; Guo
et al., 2021; 2023), we choose the precision (P), recall (R), and the area under receiver operating
curve (AUC) as the evaluation metric.

4.2 MAIN RESULTS

Table 6 presents the main result, where we compare our method with other defense baselines against
various backdoor attacks on three datasets. For each metric, we mark the highest value with the bold
font and the second highest value with a underline. As the table suggests, our method achieves a
promising performance on all three datasets against various attack methods. Especially for sample-
specific backdoor attacks (i.e., WaNet and ISSBA), our method has been shown to be significantly
better than the baseline defenses. Note that in our defense baselines, the STRIP requires additional
prediction probability information from the DNN model to detect backdoor samples, while our
method only depends on the prediction labels. Moreover, the Frequency and LAVA leverage an
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Figure 5: Performance with different poisoning ratio.

Method
BadNet Blend WaNet ISSBA

P R AUC P R AUC P R AUC P R AUC

mix-up 0.50 1.00 0.98 0.52 1.00 0.99 0.49 0.98 0.80 0.50 0.99 0.76
mask 0.57 1.00 0.89 0.55 1.00 0.88 0.53 0.81 0.47 0.54 0.89 0.83
ours 0.85 1.00 0.91 0.83 0.97 0.90 0.81 0.90 0.95 0.90 1.00 0.95

Table 2: Comparison between other common counterfactual generation methods

additional validation set, which is also not required by our method. Our method has performed on
par or even surpassed these three baselines with less information about the DNN model and the
dataset. SCALE-UP is developed for the same setting as our method. However, it shows a much
worse performance when defending against the Blend attack. This can be attributed to the Blend
attack utilizing a global trigger (e.g., Hello-kitty-like image), while the scaling operation in the
SCALE-UP can easily destroy the feature information contained in the global trigger pattern.

4.3 ABLATION STUDIES

The impact of the poisoning ratio and trigger size. To evaluate the effectiveness of our method
against different levels of poisoning ratio, we present the experimental results on CIFAR-10 in Fig-
ure 5. It is shown that our method generally achieves stable performance across different levels of
poisoning ratio, suggesting that its performance is independent of the poisoning ratio. Moreover,
Figure 7 shows that the performance of our detection algorithm remains stable across various trigger
sizes, where the X-axis denotes the ratio of trigger size compared to the image size. The results
indicate the robustness of our methods irrespective of trigger sizes.

The impact of counterfactual generation method. Apart from random noise, other counterfac-
tual generation methods, such as random masking(Xiao et al., 2023) and mixup(Yu et al., 2023),
have also been widely used to generate counterfactual samples. To assess the impact of counterfac-
tual sample design, we compare the performance of our method with mixup and random masking
on the CIFAR-10 dataset and report the results in Table 2. As the table suggests, random noise
shows the most stable and satisfactory performance across all types of backdoor attacks. A possible
explanation is that random noise enables counterfactual sample generation with finer granularity.

4.4 DISCUSSION AND VISUALIZATION

Efficiency Testing. Efficiency is of critical concern in our setting, since user experience is ex-
pected to not be significantly affected by the detection algorithm. Therefore, we compare the infer-
ence time before and after adopting the detection algorithms and report the results in Figure 6. The
results demonstrate that our method ranks as the top-2 most efficient algorithm, exhibiting a trivial
overhead compared to the vanilla inference time consumption (without detection algorithm).

Score Distribution. To visually demonstrate the effectiveness of CaBBD, we plot the distribution
of the FPS values for backdoor samples and clean samples in Figure 13. As the figure suggests, the
FPS values for clean samples center in the middle but those for backdoor samples lie on the two
sides, aligning with the causal analysis derived in the last section.
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5 RELATED WORK

Backdoor Attacks In general, backdoor attacks can be categorized into three types: 1) data poi-
soning attacks(Gu et al., 2017; Chen et al., 2017; Liu et al., 2020; Guan et al., 2023b), 2) training
poisoning attacks(Saha et al., 2019; Shumailov et al., 2021), and 3) model poisoning attacks(Rakin
et al., 2019; Wang et al., 2022). In this paper, we solely focus on data poisoning attacks as this is the
most common setting. Data-poisoning backdoor attacks aim to poison the dataset with trigger pat-
terns. Specifically, they inject trigger patterns into the victim samples and re-assign the ground-truth
label to a target label predefined by the attackers. Recent research can be divided into two categories
on making the backdoor attacks more stealthy to enhance their practicality. The first one(Chen et al.,
2017; Liu et al., 2020; Qi et al., 2023) aims to make the trigger pattern less visible to human eyes.
For example,Chen et al. (2017) blends the clean images with random pixels. Liu et al. (2020) uses
the natural reflection to construct the backdoor trigger. The other direction(Shafahi et al., 2018;
Souri et al., 2021; Zeng et al., 2022) aims to make the training process less noticeable. E.g., Shafahi
et al. (2018) proposes a clean-label attack, which poisons the clean images without changing labels.

Backdoor Defenses Various defense methods have been proposed to mitigate the threat from the
backdoor. As in(Li et al., 2022), we categorize existing defense methods into five categories. First,
detection-based defenses(Gao et al., 2019; Huang et al., 2019; Guo et al., 2021; Xiang et al., 2022;
Guan et al., 2023a) aim to detect whether the backdoor exists in the model. Second, preprocessing-
based defenses(Doan et al., 2020) introduce a preprocessing module before the training procedure so
that triggers can be inactivated. Third, defenses based on model reconstruction(Liu et al., 2018; Zhao
et al., 2020) directly eliminate the effect of backdoors by adjusting the model weights or network
structures. In this way, even if the trigger pattern appears, the reconstructed model will still perform
normally as the backdoor is already moved. Fourth, defenses based on trigger synthesis(Wang et al.,
2019; Chen et al., 2022) first reverse engineer the trigger patterns and then suppress the trigger’s
effects. Lastly, training sample filtering-based defenses (Li et al., 2021a; Huang et al., 2022) work
by first filtering poisoned samples from the training dataset, then training the network exclusively in
the rest of the dataset.

Causal Inference and Backdoor Attacks To the best of our knowledge, our paper is the first
to provide causality analysis for backdoor attacks in the inference stage. Despite that prior
works Zhang et al. (2023) have also investigated using causal graphs in modeling backdoor attacks,
our analysis fundamentally distinguishes them. A more detailed comparison of the two papers is
presented in Appendix A.

6 CONCLUSION

In this paper, we propose an effective method for solving the input-level black-box backdoor detec-
tion problem. Our method is firstly motivated by a novel perspective for analyzing the heterogeneous
prediction behaviors for backdoor samples and clean samples. Then by leveraging the causal insight,
our detection algorithm introduces counterfactual samples as an intervention in the prediction be-
haviors to distinguish backdoor samples and clean samples. Extensive experiments across popular
datasets demonstrate the effectiveness and efficiency of our method.
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A COMPARISON WITH ZHANG ET AL. (2023)

Our causality analysis are fundamentally different with that in Zhang et al. (2023) with the two
aspects:

Analysis Objective : Their analysis aims to provide a theoretical analysis for training a clean
model from a backdoored dataset, while our analysis aims to investigate the distinct prediction
behaviors of clean and backdoored images from a causal perspective.

Analysis Content Their analysis uses causal graphs to model the generation process of backdoor
data in the training stage, while our analysis focuses DNNs’ prediction behabiros in the inferece
stage when input with different types of data. Although similar structures are used (e.g., I ← A→
Y ), the actual meaning of each edge are fundamentally different. For example, in [1], A → Y
means backdoor attackers will ”change the labels to the targeted label” when constructing backdoor
samples (evidenced by Section 3.2 of Zhang et al. (2023)), but in our setting, A → Y means that
backdoor attacks will make the backdoored DNNs predict the input image as label Y .

Analysis Usage Their analysis aims to adjust confounder, by disentangling backdoor path and
causal path in the model training process. However, our causal analysis works as a guideline for
distinguishing backdoor samples and clean samples in the inference stage.

B PRELIMINARY EXPERIMENT ON COUNTERFACTUAL EXAMPLES

Setting We apply two types of backdoor attacks, including BadNet Gu et al. (2017) and
WaNet Nguyen & Tran (2021) to the target model fθ. All the experiments are conducted on the
CIFAR-10 dataset with ResNet18 as the neural network architecture. To fully inject backdoors into
the target model, we train the neural network for 200 epochs so that the clean accuracy ≥ 90% and
attack success rate ≥ 98%. For each poisoned test set and benign test set, we record a perturbed
classification accuracy, which we name as “coherence”1, with different magnitudes of noise under
each attack and plot the changing curve in Figure 8.

Observation Note that the x-axis denotes the noise magnitude and the y-axis denotes the accuracy
performance. Experiments under different backdoor attacks are plotted with different markers. For
example, the accuracy performance on the benign test set and poisoned test set under the model
poisoned with BadNet are drawn in blue and red color, respectively. As shown in Figure 8, with
the increase of noise magnitude, accuracy curves for the benign test set steadily decrease, while
those for the poisoned test set belong to two extremes: 1) for sample-agnostic backdoor attacks like
BadNet, the accuracy performance is unlikely largely influenced by the noise magnitude, and 2) for
sample-specific backdoor attacks like WaNet, the accuracy performance exhibits an abrupt reduction
with only a small amount of noise. The observation just aligns with the intuition introduced in the
previous section.

C DATASET

The details of the dataset are given in Table 3.

D MORE DETAILS ABOUT ATTACK BASELINES

All the attack baselines are implemented with the open-sourced backdoor learning toolbox Li et al.
(2023). The details of the attack baselines are as below:

1In our current setting, where access to ground-truth labels is unavailable, we utilize the predicted labels
from the test set without noise as our substitute for ground-truth labels.
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Figure 8: Coherence of the backdoored DNNs on benign testset and poisoned testset under different
noise magnitudes.

Table 3: Statistical information about the Datasets
Dataset Image Size # of Training samples # of Testing Samples # of Classes

CIFAR-10 32 × 32 × 3 50,000 10,000 10
GTSRB 32 × 32 × 3 39,209 12,630 43

ImageNet-Subset 224 × 224 × 3 100,000 20,000 12

• BadNet Gu et al. (2017) employs grid-like pixels as the triggers for each of the poisoned samples.

• Blend Chen et al. (2017) employs a hello-kitty-like image and blends it with each of the poisoned
samples.

• WaNet Nguyen & Tran (2021) employs the interpolation method and generates sample-specific
triggers for each of the poisoned samples.

• ISSBA Li et al. (2021b) generates sample-specific trigger patterns through an encoder-decoder
network.

We present a visualization of the poisoned image generated by different backdoor attacks in Figure 9.

E MORE DETAILS ABOUT DEFENSE BASELINES

In this section, we introduce the basic parameter setting for each of the defense baselines.

• STRIP Gao et al. (2019): We follow the official implementation of STRIP2. Specifically, 100
samples are iteratively superimposed on the given sample and we record the classification prob-
abilities generated by the DNN model. Subsequently, an entropy value is calculated based on
the 100 probability values to determine whether the given sample is a backdoor or not. A higher
entropy value denotes a higher probability of being backdoored.

2https://github.com/garrisongys/STRIP

BadNet BlendClean WaNet ISSBA

Figure 9: Visualization of backdoor samples on the CIFAR-10 dataset.
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Table 4: Details about the deployed DNN models

Dataset ↓
Attack Method

BadNet Blend WaNet ISSBA

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%)

CIFAR-10 92 100 92 100 92 200 91 100
GTSRB 97 100 97 100 96 100 96 100

ImageNet 83 100 83 100 82 100 83 100

• Frequency Zeng et al. (2021): We follow the official implementation of Frequency3. Specifically,
we employ a 6-layer CNN model as the backbone architecture of the binary detector and train
it for 50 epochs on an additional validation set of 1000 samples. The binary detector determines
whether the given sample is clean or backdoored by analyzing the Fourier transform of the original
image. Subsequently, we use the probability of being identified as “backdoored” as the score for
each sample.

• LAVA Just et al. (2023): We follow the official implementation of LAVA4. Specifically, we deter-
mine the data valuation of each data sample in the test set by calculating the proposed calibrated
gradient in the original paper. A higher gradient value denotes a higher probability of being back-
doored.

• SCALE-UP Guo et al. (2023): We follow the official implementation of SCALE-UP 5. Specifi-
cally, the scaling set is chosen as S = {1, 3, 5, 7, 9} for all the experiments. The proposed SPC
value is calculated for each of the samples, where a higher SPC value denotes a higher probability
of being a backdoor sample.

F MORE DETAILS ABOUT THE DEPLOYED DNN MODELS

We provide the details about the deployed DNN models in Table 4, where CA denotes the clean
accuracy and ASR denotes the attack success rate. Note that for each experiment, we run the exper-
iment three times and record the average performance of CA and ASR.

G MORE DETAILS ABOUT IMPLEMENTATION

Following the prior works in backdoor defences Li et al. (2021a), the poisoning ratio for backdoor
attacks is set as 10% as default. The α and β values are set as 1 and 6, respectively. It is noted that the
design of the magnitude set S is a non-trivial question. If the set is too short, the granularity might
not be fine-grained enough to distinguish between backdoor samples and clean samples, which is
detrimental to meeting the effectiveness requirement. However, if the set is too large, the efficiency
requirement cannot be satisfied. To achieve a balanced trade-off between the two sides, we have
chosen 7 as a moderate length for the magnitude set, where the noise magnitude increases linearly
starting from 0 with a step length of 0.2. For α and β, we choose 1 and 6 for all datasets, respectively.
As shown in Figure 13, they are stable to distinguish backdoor and clean samples across all datasets.
We also conduct sensitivity testing on different choices of step length and magnitude length |S|
in Figure 10-Figure 12. As seen, the choice of step length 0.2 and magnitude set 7 can generally
provide a satisfatory performance against various backdoor attacks across different datasets.

H COMPARISON OF DIFFERENT COUNTERFACTUAL GENERATION METHODS

The impact of counterfactual generation method Apart from random noise, other methods,
such as random masking Xiao et al. (2023) and mixup Yu et al. (2023), have also been extensively
used for generating counterfactual samples. To assess the impact of counterfactual sample design,

3https://github.com/YiZeng623/frequency-backdoor
4https://github.com/ruoxi-jia-group/LAVA
5https://github.com/JunfengGo/SCALE-UP
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Figure 10: Sensitivity Testing on the performance of CaBBD with different choices of step length
and magnitude length on Cifar10.
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Figure 11: Sensitivity Testing on the performance of CaBBD with different choices of step length
and magnitude length on GTSRB.
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Figure 12: Sensitivity Testing on the performance of CaBBD with different choices of step length
and magnitude length on ImageNet-Subset.
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Figure 13: Comparison of FPS score distribution between poisoned and clean images

we compare the performance of our method with mixup and random masking on CIFAR-10 dataset
and report the results in Table 2. As the table suggests, random noise shows the most stable per-
formance across all types of backdoor attacks. A possible explanation is that random noise enables
counterfactual samples generation with finer granularity.

I SCORE DISTRIBUTION

To visually demonstrate the effectiveness of CaBBD, we plot the distribution of the FPS values for
backdoor samples and clean samples in Figure 13. As the figure suggests, the FPS values for clean
samples center in the middle but those for backdoor samples lie on the two sides, aligning with the
causal analysis derived in the last section.

J DISCUSSION ABOUT ADAPTIVE BACKDOOR ATTACKS

Suppose an attacker already knows our defense methods in advance, then intuitively the attacker
will train the DNN model with the following adaptive training loss function:

min
θ

|D/c|∑
i=1

ℓ(fθ(xi), yi) +

|Db|∑
i=1

ℓ(fθ(x̂i), yt) +

|Db|∑
i=1

ℓ(fθ(x̂i +m ∗ ϵi), yi)
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Noise Magnitude Multiplier 0 0.1 0.5 1.0 1.5

P R AUC P R AUC P R AUC P R AUC P R AUC

0.85 1.00 0.91 0.77 0.91 0.85 0.72 0.94 0.87 0.30 0.42 0.64 0.24 0.34 0.55

Table 5: Performance of CaBBD with different noise magnitude multiplier m.

Table 6: Comparison of the proposed method against more baseline attack methods.

Dataset Attack Method ↓
Defense Method

STRIP LAVA Frequency Scale-UP Ours
P R AUC P R AUC P R AUC P R AUC P R AUC

CIFAR-10

DFST 0.51 0.99 0.70 0.67 0.54 0.72 0.5 1.0 0.45 0.46 0.55 0.57 0.78 0.99 0.90
Filter 0.48 0.35 0.54 0.44 0.68 0.70 0.5 0.99 0.5 0.49 0.65 0.51 0.85 0.80 0.97
TaCT 0.47 0.96 0.92 0.50 0.98 0.50 0.40 0.42 0.60 0.61 0.70 0.62 0.85 0.80 0.97

Adaptive Blend 0.50 1.00 0.94 0.50 1.00 0.50 0.45 0.46 0.64 0.58 0.74 0.62 0.81 0.73 0.96
Refool 0.45 0.32 0.52 0.50 1.00 0.81 0.62 0.69 0.36 0.80 0.87 0.85 0.83 0.88 0.88

SIG 0.52 0.99 0.84 0.43 0.50 0.58 0.56, 0.60 0.85 0.32 0.45 0.48 0.80 1.00 0.90
Label-clean 0.89 0.45 0.91 0.5 0.95 0.85 0.67 0.61 0.74 0.76 0.96 0.91 0.82 0.97 0.96

where ϵi ∼ N(0, 1) is a random Gaussian noise added to each training sample xi, and m is the
mangnitude multiplier of the added noise. To evaluate whether our method is still effective against
adaptive attacks, we provide results with varying m against BadNet attack on the Cifar10 dataset in
the following table.

It can be inferred that our method can still achieve satisfactory performance when the noise mag-
nitude is small (e.g. < 0.5), but the performance will gradually drop when the noise magnitude
multiplier becomes higher (e.g., > 1.0). However, we argue that when the noise magnitude mul-
tiplier ¿ 1.0, the whole image will be dominated by random noise, rendering the modified image
easily detected and filtered out by the off-the-shelf backdoor filtering algorithms.

K MORE BASELINE ATTACKS METHODS FOR EVALUATION.

Apart from the four baseline attacks methods considered in the main experiment, we also evaluate
the performance of CaBBD against other popular methods, including DFST Cheng et al. (2021),
Filter Liu et al. (2019), TaCT Tang et al. (2021), Adaptive Blend Qi et al. (2022), Refool Liu et al.
(2020), SIG Barni et al. (2019), and Label-clean Turner et al. (2019). The table 6 presents the
results. As shown, our method has a significant advantage over the baseline defense methods in all
three metrics.
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