
Under review as a conference paper at ICLR 2024

REVISITING DIFFERENTIALLY PRIVATE XGBOOST:
ARE RANDOM DECISION TREES REALLY BETTER
THAN GREEDY ONES?

Anonymous authors
Paper under double-blind review

ABSTRACT

Boosted Decision Trees (e.g., XGBoost) are one of the strongest and most widely
used machine learning models. Motivated by applications in sensitive domains,
various versions of Boosted Decision Tree learners with provably differential pri-
vacy (DP) guarantees were designed. Contrary to their non-private counterparts,
[Maddock et al., 2022] reported a surprising finding that private boosting with
random decision trees outperforms a more faithful privatization of XGBoost that
uses greedy decision trees. In this paper, we challenge this conclusion with an im-
proved DP-XGBoost algorithm and a thorough empirical study. Our results reveal
that while random selection is still slightly better in most datasets, greedy selec-
tion is not far behind after our improved DP analysis. Moreover, if we restrict the
number of trees to be small (e.g., for interpretability) or if interaction terms are
important for prediction, then random selection often fails catastrophically while
greedy selection (our method) prevails.

1 INTRODUCTION

Gradient boosting decision trees (GBDT), proposed by [Friedman, 2001], are a well-tested tree
ensemble method in data science applications. There are two types of gradient boosting decision
trees based on their construction methods: (1)Greedy Boosting: in this approach, the tree structure is
constructed by greedily minimizing a loss function. Popular implementations of this method include
XGBoost [Chen & Guestrin, 2016], LightGBM [Ke et al., 2017], and CatBoost [Prokhorenkova
et al., 2018]; (2) Random Boosting: in this method, the tree is built by randomly selecting some
prefixed structure (e.g., the feature or the threshold to branch on). One well-known method in
random boosting is Extra-Trees [Geurts et al., 2006].

Compared to greedy boosting, random boosting typically has lower computational costs but often
requires growing more trees to achieve desirable performance. In practice, greedy boosting tends to
outperform random boosting.1

Our paper concerns the problem of learning GBDT with Differential Privacy (DP) constraints
[Dwork et al., 2006]. Surprisingly, the dynamics shift when these methods are applied in the context
of differential privacy). Recent research, such as [Maddock et al., 2022], consistently demonstrates
that random boosting significantly outperforms the greedy approach in the DP domain. Upon a
careful review of previous DP greedy boosting trees, we found that they often suffer from either
DP accounting issues or inherent flaws in mechanism design. These factors obscure the true poten-
tial of DP greedy boosting. Consequently, the question of whether DP random boosting genuinely
outperforms the greedy approach remains an unresolved problem.

Summary of contributions. In this paper, we investigate the pros and cons of greedy versus random
DP tree boosting. Our main contributions are twofold.

• We introduce DP-XGB, an improved DP adaptation of XGBoost, demonstrating enhanced
performance through the utilization of modern DP accounting methods.

1A comprehensive empirical comparison between XGBoost and Extra-Trees can be found in https://
mljar.com/machine-learning/extra-trees-vs-xgboost/
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• Our large-scale evaluations reveal that DP-XGB achieves comparable performance to ran-
dom boosting decision trees. (see Tab. 1) Additionally, we found two application scenarios
where DP random boosting trees lag significantly behind greedy ones: classification with
strong feature interactions (Fig. 2); and tasks where only a small number of trees is allowed;
(Fig. 3 ). Our findings challenge the conventional notion that allocating privacy budgets
to learning tree structures may not yield substantial benefits as emphasized in [Fletcher &
Islam, 2019], [Nori et al., 2021], and [Maddock et al., 2022].

It’s worth noting that, although DP random boosting with a larger number of trees yields better
predictive performances, DP greedy boosting, with a much smaller number of trees, offers the in-
terpretability of decision rules. This attribute is particularly valuable in various applications such as
exploratory data analysis (including feature selection and the discovery of feature interactions), dis-
ease diagnosis [Tanner et al., 2008], and the development of fair and interpretable policies [Aghaei
et al., 2019]. Consequently, we believe that DP-XGB would prove beneficial to practitioners, in-
cluding medical professionals, insurers, and judges, who place a premium on explainability.

2 MOTIVATIONS AND RELATED WORK

Boosting is an old idea with deep roots in computational learning theory [Schapire, 1990]. It stands
out as one of the most effective machine learning algorithms, particularly when instantiated with
decision trees [Friedman, 2001; Chen & Guestrin, 2016]. The literature is too vast to cover, so we
refer readers to a recent survey [Sigrist, 2021] for further information.

Instead, we focus on reviewing a growing body of research on boosting decision trees with differen-
tial privacy — a well-motivated task given that XGBoost is the first choice of ML model for many
researchers and data scientists who work with sensitive datasets in medical, financial, legal and pub-
lic policy domains. We will review the literature on DP random boosting and DP greedy boosting,
highlight potential issues for DP greedy boosting, and demonstrate recent DP accounting techniques
that hold promise for enhancing performance.

DP Random Boosting, DP Greedy Boosting In the early stage of differential private decision
trees, the comparison mainly revolved around DP random forest [Fletcher & Islam, 2017] and DP
greedy decision trees [Friedman & Schuster, 2010]. Notably, DP random forest often demonstrated
superior performance, as highlighted in a comprehensive survey by [Fletcher & Islam, 2019]. For
the realm of random boosting, [Nori et al., 2021] introduced a DP explainable boosting decision
tree (DP-EBM) by employing cyclical feature selection and Gaussian DP accounting [Dong et al.,
2019b]. Subsequently, [Maddock et al., 2022](DP-TR) extended the DP random boosting decision
tree framework and introduced several high-utility DP random boosting models, combining cyclical
feature selection with an improved sketching algorithm. These advancements resulted in achieving
state-of-the-art(SOTA) performance for DP Boosting trees in binary classification tasks. In the do-
main of DP greedy boosting, [Li et al., 2022] (DP-Boost) proposed a DP gradient boosting decision
tree along with a model-averaging ensemble approach to enhance performance. [Grislain & Gon-
zalvez, 2021] (Sarus-XGB) integrated techniques from XGBoost, such as weighted quantile sketch
and min child weight regularization, to create the first DP XGBoost. However, the empirical per-
formance of DP greedy boosting has not matched that of DP random boosting. This discrepancy is
attributed to the early-stage limitations of DP techniques and certain implementation issues.

Side effects that hurt DP greedy boosting (1) Primitive privacy accounting methods: both
Sarus-XGB and DP-Boost utilize pure DP accounting for compositions, resulting an overestima-
tion of privacy budget; (2) Flaws in DP Mechanism Design: Sarus-XGB and DP-Boost add noise
to leaf weight through output perturbation, leading to a noisy estimator due to larger global sensi-
tivity; (3) Absence of Hessian information: Neither Sarus-XGB nor DP-Boost incorporated Hessian
information. they relied solely on gradient information for tree splitting and leaf weight release.
This contrasts with approaches like XGBoost, which leverages Hessian information to get further
performance improvements.

Improved DP accounting techniques We can solve privacy accounting issues through recently
developed DP techniques. (1) Tighter privacy accounting using Rényi-DP: [Mironov, 2017] propose
Rényi-DP, offering a mechanism-specific way to characterize privacy guarantee. Composition over
the Rényi-DP domain gives tighter privacy accounting than directly using pure DP composition or
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advanced composition [Dwork et al., 2010]. (2) Improved Privacy Accounting for DP mechanisms
Recent research has also enhanced mechanism-level privacy accountings. An improved zero con-
centrated differential privacy (zCDP) bound for the exponential mechanism [Dong et al., 2019a], as
well as better privacy accounting for the Gaussian mechanism [Balle & Wang, 2018] [Dong et al.,
2019b], have been introduced. These improvements are particularly beneficial when the privacy
budget is limited. Our model uses these mechanisms for tree structure and leaf release, helping us
efficiently manage and save privacy budgets while maintaining strong privacy guarantees.

Thus, by mitigating side effects and harnessing improved differential privacy techniques, the ques-
tion arises: Is DP random boosting really better than DP greedy boosting?

Other related work on privacy and boosting. The first differentially private boosting algorithm
was introduced in [Dwork et al., 2010], which applies boosting for private query release instead
of solving ML tasks, though the same algorithm theoretically works for solving private learning
via the statistical query model [Kasiviswanathan et al., 2011]. Recent work of [Bun et al., 2020]
designed private boosting for learning linear separately and showed that it is able to adapt to large
margin. We refer to the [Bun et al., 2020] and the references therein for a more comprehensive
survey of the literature on privacy and boosting from the learning theory point of view (e.g., work
that extends AdaBoost [Schapire, 1990]). Finally, the recent work [Tang et al., 2023] also studied
gradient boosting with differential privacy but focused on linear learners rather than decision trees.

3 PRELIMINARIES

3.1 DIFFERENTIAL PRIVACY

To begin with, we introduce some definitions from differential privacy literature.
Definition 1. (Differential privacy [Dwork et al., 2006]) A randomized algorithm M : X → Θ
is (ε, δ)-DP (differential private) if for any neighbouring datasets x, x′ ∈ X and a measurable set
O ⊆ Θ, we have P(M(x) ∈ O) ≤ eεP(M(x′) ∈ O) + δ.

In this paper, we consider adding/removing neighboring relationships. Namely, x and x′ are neigh-
boring datasets if x is the same as x′ after adding or removing a single data point.
Definition 2. (Rényi differential privacy [Mironov, 2017]) An randomized algorithmM : X → Θ
is (α, ε(α))-RDP (Rényi-DP) with order α ∈ (1,∞) if for all neighbouring dataset x, x′ ∈ X , we
have Dα(M(x)||M(x′)) = 1

α−1 logEo∼M(x′)

îÄ
P(M(x)=o)
P(M(x′)=o)

äαó
≤ ε(α)

RDP offers a tighter and cleaner analysis for compositions. Namely, ifM1 satisfies (α1, ε1)-RDP
andM2 satisfies (α2, ε2)-RDP, the composed mechanismM1 ◦M2 satisfies (α1 + α2, ε1 + ε2)-
RDP. RDP is also a generalization of zero-concentrated differential privacy (zCDP) [Bun & Steinke,
2016] with definition: if Dα(M(x)||M(x′)) ≤ ρα for any α ∈ (0,∞), then M further satisfies
ρ-zCDP.

Next, we introduce the exponential mechanism for learning decision tree structures:
Definition 3. (Exponential Mechanism [McSherry & Talwar, 2007]) Let H be a item space and a
score function s : H → R. The exponential mechanismM : X → H is a randomized algorithm
which outputs h ∈ H by probability P(M(x) = h) =

exp(− ϵ
2∆s

s(x,h))∑
h∈H exp(− ϵ

2∆s
s(x,h)) , where the sensitivity

∆s = maxx∼x′∈X maxh∈H |s(x, h)− s(x′, h)|

Recently, the zCDP privacy accounting of exponential mechanism has been improved by [Dong
et al., 2019a] through bounded range (BR) analysis. Their methods reduce the zCDP privacy param-
eter from ε2

2 to ε2

8 for any ε-DP exponential mechanism. We extend their analysis to RDP domain
and get an improved RDP bound which is smaller than the direct conversion from zCDP (Theorem
1).

Finally, we introduce the Gaussian mechanism that we use for leaf weight releasing:
Definition 4. (Gaussian mechanism [Dwork & Roth, 2014]) The Gaussian mechanismM : X →
Rn of the formM(x) = f(x) + N(0,∆qσ

2) is (α, α
2σ2 )-RDP where ∆q = maxx∼x′∈X ∥f(x) −

f(x′)∥

3



Under review as a conference paper at ICLR 2024

3.2 GREEDY BOOSTING DECISION TREES

We give a brief introduction to the greedy gradient boosting algorithm. Consider a twice differen-
tiable loss function l : X × Y → R and a dataset {xi, yi}ni=1 ⊂ Rn × R. Starting from an initial
guessing F0, gradient boosting finds a linear combination from a base learner class F by choosing
fk+1 greedily at (k + 1)-th boosting rounds and update Fk+1(x) to be Fk(x) + ηfk(x):

fk+1 = argmin
f∈F

n∑
i=1

l (yi, Fk(xi) + f(xi)) ≈
®∑n

i=1 l (yi, Fk(xi)) + gi · f(xi), (Gradient Boosting)∑n
i=1 l (yi, Fk(xi)) + gi · f(xi) +

hi
2
· f2(xi), (Newton Boosting)

(1)
where gi = ∂l

∂F |F=F (xi) and hi =
∂2l
∂F 2 |F=F (xi). Based on different approximation methods, greedy

boosting can be classified as gradient boosting and Newton boosting. For the contents below, unless
explicitly stated, we use the term ”boosting” to specifically refer to Newton boosting. Notably, XG-
Boost represents an enhanced implementation of Gradient Boosted Decision Trees. It incorporates
the Hessian-weighted quantile sketch algorithm to effectively handle high-dimensional continuous
features and utilizes Hessian information for leaf release to improve predictive performance.

4 OUR GREEDY BOOSTING DECISION TREES

We present an in-depth overview of our DP-XGB design, which contains the same building blocks in
the classical XGBoost algorithm: split candidate proposal, node selection, and leaf weight release.

4.1 SPLIT CANDIDATE PROPOSAL

At the beginning of each boosting round, a set of splitting thresholds is proposed by discretizing
features using uniform binning, a method referred to as uniform sketching. This approach incurs
zero privacy cost, given that the coordinates for each bin are data-independent.2 However, due to the
presence of skewness in feature distributions, uniform binning can introduce many uninformative
split candidates, thereby diminishing the quality of uniform sketching.

To address this issue, [Maddock et al., 2022] proposes the adaptive Hessian sketch technique to
refine the set of split candidates. The core concept behind this sketch algorithm is to merge bins
with small Hessian weights while splitting those with large Hessian sums. This adjustment ensures
that the updated split candidates contain roughly equal information. In our experiments, we observed
that allocating a small privacy budget to the adaptive Hessian sketch yields substantial enhancements
in prediction performance for our DP-XGB model (refer to Figure 2).

4.2 GREEDY SPLITTING NODE SELECTION

After the split candidate set is proposed, we choose the best candidate through the exponential
mechanism. To evaluate the quality of the splitting threshold, we use the following score function:

score =
(
∑

i∈IR
gi)

2

|IR|+ λ
+

(
∑

i∈IL
gi)

2

|IL|+ λ
(2)

where IR := {x|x is allocated to left child branch of node I}, λ is L2 penalty weight. While in
Newton boosting, the Hessian sum is used as the denominator in eqn. 2, using cardinalities of
instance set instead offers an advantage of bounded global sensitivity. This advantage becomes
particularly important for boosting with binary cross-entropy loss function.3 As shown in Lemma
2 of [Li et al., 2022], this score function has global sensitivity 3∆2

g regardless of the regularization
parameter λ, which equals 3 for the cross entropy loss in our model.

4.3 LEAF RELEASING

Once the split candidates are selected, the next step is to release the leaf weight w∗
j privately. In

prior approaches like Sarus-XGB and DP-Boost, this is accomplished by directly perturbing w∗
j

2assuming the upper and lower bounds for each feature are public information
3for binary cross-entropy loss, the sample Hessian is ranging from 0 to 1

4
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with Laplace noise. However, this method has certain drawbacks, including the looser concentration
property inherited from the Laplace distribution. Additionally, ∆w∗

j
itself can be very large (as

discussed in Appendix. B.1). Consequently, this requires the introduction of a more substantial
amount of noise to ensure privacy protection.

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ︸ ︷︷ ︸
Non-private

, ŵj = w∗
j + Laplace

Ç
∆w∗

j

ϵ

å
︸ ︷︷ ︸

Sarus-XGB, DP-Boost

, w̃j = −
∑

i∈Ij
gi +N (0, ∆̃2σ2)

min{
∑

i∈Ij
hi +N (0, ∆̃2σ2) + λ, λ}︸ ︷︷ ︸

DP-TR, Ours. (λ is L2 penalty)
(3)

In contrast, DP-TR and our DP-XGB use the Gaussian mechanism to release a noised vector of
(
∑

gi,
∑

hi). This separated query release has a small sensitivity ∆̃ =
»

∆2
g +∆2

h =
√
17/16,

which offer a less noisy leaf weight. We note that this query for releasing numerator and denominator
separately is also known as sufficient statistics perturbation(SSP) in DP literature [McSherry &
Mironov, 2009; Vu & Slavkovic, 2009; Foulds et al., 2016; Zhang et al., 2016; Wang, 2018].

4.4 COMPARISON TO RELATED WORK

We highlight several key differences between our DP-XGB and earlier DP greedy boosting methods
(DP-Boost and Sarus-XGB). We also have included a Tab. 3 in the appendix for the purpose of
comparing the privatization design among different DP boosting tree models.

• (Tighter privacy guarantee) We use RDP accounting, which results in a tighter privacy
guarantee, while other DP greedy boosting methods we compared (Sarus-XGB and DP-
Boost) use pure DP

• (Less hyperparameter dependence) To improve performance, Sarus-XGB heavily relies
on setting a large min child weight4 to enrich signals within leaf nodes. However, this
introduces an additional hyperparameter and incurs extra privacy costs associated with
testing leaf Hessian sums and min child weight thresholds. Moreover, using a large
min child weight can lead to over-regularization, occasionally harming predictive perfor-
mance. Additionally, we have identified several implementation issues in Sarus-XGB,
which we have detailed in Appendix B.2.

• (Use Hessian for performance enhancement) Both DP-Boost and Sarus-XGB use square
loss for classification, which is essentially gradient boosting. We use cross entropy loss
and achieve better performance using Newton boosting.

In contrast to DP-TR and DP-EBM, where we incorporate some shared techniques such as adaptive
hessian and cyclical feature selection, our DP-XGB is methodologically different due to the use of
greedy boosting.

Our DP-XGB can also be seen as a differential privacy adaptation of hybrid boosting [Friedman,
2001] since we use gradient information to guide node splitting but use both gradient and Hessian
for leaf weight releasing. It’s worth noting that hybrid boosting has been shown to achieve faster
convergence than solely gradient-based boosting in non-private boosting literature [Sigrist, 2021].

5 IMPROVED DIFFERENTIAL PRIVACY ACCOUNTING

Privatizing tree ensembles hinges on extensive compositions of various DP mechanisms. In our
DP-XGB, we use the exponential mechanism for tree node selection and the Gaussian mechanism
for histogram and leaf weight release. zCDP composition offers a more privacy stringent guarantee
compared to pure DP composition, enabling us to save an additional budget for the exponential
mechanism, thanks to the improved zCDP bound presented in [Cesar & Rogers, 2020]. Furthermore,
our finding indicates that we can achieve even greater savings on the exponential mechanism by
enhancing its RDP bound also through bounded range analysis, as shown in Thm. 1:

4see https://xgboost.readthedocs.io/en/stable/parameter.html
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Theorem 1. LetM be any ε bounded range mechanism. It satisfies (α, fε(α))-RDP with

f(α) =

®
ε

eε−1 − 1− log
Ä

ε
eε−1

ä
, if α = 1

supt∈[0,ε]
1

α−1 [α(t− ε) + log((eαε − 1)pε,t + 1)] , if α > 1, where pε,t =
e−t−e−ε

1−e−ε

(4)

We defer proofs to Appendix A. Thm. 1 applies to the exponential mechanism, as it is also a bounded
range mechanism. To make a straight comparison, we plotted our RDP bound alongside the zCDP
in Dong’s paper. Our bound gives a tighter characterization for the RDP curve of the exponential
mechanism.

When examining the privacy guarantee of the composed exponential mechanism valued by approxi-
mate DP, we found that RDP composition yields a tighter privacy guarantee than zCDP ones (as our
BR bound is always below the zCDP one). The gap is larger when the number of compositions is
small. This property indicates that our RDP bound offers more privacy budget savings when small
and shallow tree ensembles are used for the purpose of explainability (discussed at end of sec. 1)
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Figure 1: Improved RDP bound for exponential mechanism

6 EXPERIMENTS

We use simulated data to assess both boosting methods in a real-world application-inspired non-
linear classification problem. Further, we perform a comprehensive comparison between two types
of DP boosting methods across 18 real-world datasets. Our evaluation involves the comparison be-
tween the four best models in their paper (prefixed with TR) and the three models developed in
our paper (prefixed with XGB). To distinguish differences in split candidate proposal and feature
sampling methods, we use ada and cyc to indicate the use of adaptive Hessian sketch or cyclical
feature selection respectively. 5 We have excluded DP Random Forest from our evaluation as it has
demonstrated suboptimal performance compared to TR based Newton boosting.

Among all experiments, we maintain a constant total privacy budget of ε = 1, δ =
1/number of samples. In the case of random boosting, we allocate an equal portion of the pri-
vacy budget to each query. However, for greedy boosting, we initially distribute the privacy budget
among different building blocks and subsequently assign an equivalent amount of privacy budget to
queries within the same building block. To provide more specific details, we set the allocation ratios
for the adaptive Hessian sketch as sketch: selection: leaf = 0.1 : 0.6 : 0.3, while for the uniform
sketch, we use selection: leaf = 0.7 : 0.3.6

6.1 SIMULATED CLASSIFICATION

We generated two synthetic classification problems that involve interacting features. Feature inter-
actions of this nature are frequently encountered in real-world datasets, including but not limited to
ecological data [Duncan & Kefford, 2021] and gene expression data [McKinney et al., 2006].

5Details of building blocks for each model can be found in Appendix C.1
6These budget allocation ratios were determined through preliminary experiments on the Adult dataset.
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Settings. We consider two simple binary classification problems where class labels are determined
either entirely or partially by feature interactions (Appendix C.2.1). Both datasets consist of three
feature vectors sampled from Gaussian distributions with arbitrarily chosen means and variances. In
problem 1, labels are only determined by the two-way and three-way feature interactions. In problem
2, labels are determined by both mean effects and interactions. During training time, we only provide
mean effects as input to models during training since most decision tree-based methods can handle
feature interactions automatically. Number of runs are 15 with 5 repetitions across 3 train/test splits.
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Figure 2: Simulated classification (left: problem 1, right: problem 2, shaded regions represent
standard deviations.)

Results. We observe that greedy boosting consistently outperforms random boosting in both prob-
lem 1 and problem 2 (as illustrated in Figure 2). Notably, greedy boosting achieves better perfor-
mance with a significantly smaller number of trees (around 35), whereas random boosting requires
a much larger number of trees (typically 100 or 200) to achieve comparable results. This reinforces
the importance of allocating privacy budgets to learn decision tree structures in DP Boosting.

Furthermore, we have discovered that cyclical feature sampling proves to be ineffective, irrespective
of the boosting type being employed. We think this failure to be the inability of cyclical feature
sampling to model feature interactions. On the other hand, our experiments show that adaptive
Hessian sketch provides benefits for both greedy and random boosting.

6.2 REAL DATA EXPERIMENTAL RESULTS

Settings. To get a thorough comparison between greedy and random boosting, we conduct ex-
periments on a collection of 18 real-world classification datasets (Appendix C.2.2). This collec-
tion includes all seven datasets previously used in Sarus-XGB and DP-TR, as well as an addi-
tional ten numerical binary classification datasets from [Grinsztajn et al., 2022]. For hyperpa-
rameters of tree structures, we keep consistent with [Maddock et al., 2022] and set num tree ∈
{5, 10, 15, ..., 50, 75, 100, 150, 200}, max depth ∈ {2, 3, 4, 5, 6}. For optimization-related hyperpa-
rameters, we set the learning rate η = 0.3, L1 penalty α = 0, and L2 penalty λ = 1. In order to
account for the randomness in both data distributions and DP mechanisms, we split every dataset
randomly into training(7): test(3) 3 times, repeat the experiment 5 times on every data slice, and
report mean test AUC for each model. To investigate the change of performance influenced by the
varying number of trees, we average the rank of models (ranked by mean test AUC) over all datasets
(Fig. 3). The best results for each model are also included in Tab. 1

Results. When the number of trees is small (less than 50), XGB ada outperforms or is on par with
all random boosting methods (Fig. 3 left). However, for larger tree ensembles, random boosting
tends to achieve better performance (Fig. 3 right). Among greedy boosting methods, XGB ada
stands out as the best model. For random boosting, the top two models are TR cyc and TR ada.
Overall, we found DP greedy boosting is only marginally less effective than DP random boosting
(Tab. 1).
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Figure 3: Model performance rank (rank 1 is best)

Table 1: Test AUC Mean and Standard Deviation for Different Models on Various Datasets

Dataset XGB cyc XGB ada XGB TR cyc TR ada cyc TR ada TR
adult 0.8977 (0.0031) 0.8901 (0.0043) 0.8903 (0.0038) 0.9039 (0.0019) 0.9013 (0.0023) 0.8969 (0.0017) 0.8947 (0.0040)
aps failure 0.9683 (0.0053) 0.9744 (0.0043) 0.9695 (0.0033) 0.9715 (0.0056) 0.9691 (0.0066) 0.9689 (0.0047) 0.9719 (0.0058)
bank 0.8911 (0.0043) 0.8799 (0.0049) 0.8759 (0.0049) 0.9048 (0.0029) 0.8994 (0.0032) 0.8853 (0.0066) 0.8896 (0.0026)
Bioresponse 0.6711 (0.0220) 0.6822 (0.0214) 0.6660 (0.0201) 0.6906 (0.0169) 0.6742 (0.0311) 0.6296 (0.0322) 0.6840 (0.0238)
California 0.8909 (0.0051) 0.8960 (0.0077) 0.8981 (0.0049) 0.8978 (0.0051) 0.9005 (0.0046) 0.9021 (0.0055) 0.9030 (0.0040)
covtype 0.8866 (0.0020) 0.9038 (0.0050) 0.8870 (0.0053) 0.8902 (0.0022) 0.8897 (0.0028) 0.8992 (0.0040) 0.8822 (0.0094)
credit1 0.8002 (0.0043) 0.8334 (0.0086) 0.7950 (0.0058) 0.8049 (0.0040) 0.8428 (0.0023) 0.8435 (0.0031) 0.8016 (0.0051)
credit2 0.7552 (0.0044) 0.7530 (0.0090) 0.7441 (0.0072) 0.7585 (0.0039) 0.7553 (0.0052) 0.7545 (0.0070) 0.7491 (0.0077)
Diabetes130US 0.6396 (0.0041) 0.6386 (0.0036) 0.6334 (0.0039) 0.6418 (0.0045) 0.6420 (0.0044) 0.6410 (0.0044) 0.6379 (0.0047)
Electricity 0.8369 (0.0037) 0.8584 (0.0035) 0.8299 (0.0050) 0.8415 (0.0039) 0.8630 (0.0019) 0.8657 (0.0025) 0.8377 (0.0049)
Eye Movements 0.5655 (0.0101) 0.5578 (0.0169) 0.5589 (0.0100) 0.5768 (0.0169) 0.5696 (0.0138) 0.5631 (0.0129) 0.5693 (0.0157)
higgs 0.7166 (0.0021) 0.7448 (0.0031) 0.6738 (0.0110) 0.7230 (0.0018) 0.7476 (0.0009) 0.7423 (0.0036) 0.6758 (0.0095)
House 16H 0.9049 (0.0051) 0.9072 (0.0040) 0.8960 (0.0079) 0.9125 (0.0044) 0.9177 (0.0025) 0.9171 (0.0050) 0.9061 (0.0059)
Jannis 0.7902 (0.0044) 0.7997 (0.0046) 0.7770 (0.0069) 0.7978 (0.0038) 0.8031 (0.0046) 0.8004 (0.0047) 0.7812 (0.0069)
MagicTelescope 0.8656 (0.0060) 0.8836 (0.0045) 0.8814 (0.0066) 0.8775 (0.0026) 0.8808 (0.0036) 0.8886 (0.0058) 0.8856 (0.0039)
MiniBooNE 0.9250 (0.0029) 0.9392 (0.0046) 0.9159 (0.0071) 0.9217 (0.0063) 0.9286 (0.0031) 0.9310 (0.0039) 0.8836 (0.0278)
nomao 0.9014 (0.0027) 0.9050 (0.0019) 0.9045 (0.0022) 0.9049 (0.0026) 0.9033 (0.0031) 0.9057 (0.0022) 0.9077 (0.0025)
Pol 0.9410 (0.0114) 0.9533 (0.0116) 0.9620 (0.0070) 0.9436 (0.0132) 0.9418 (0.0068) 0.9473 (0.0086) 0.9652 (0.0048)
Note: The best result for each type of boosting has been underlined. The best result among all methods is in Boldface

7 DISCUSSION AND FUTURE WORK

When does greedy boosting outperform random ones?

• modeling feature interactions are important for prediction (Fig. 2)

• number of the trees are constrained to be small (Fig. 3 left)

Modeling feature interactions is important for classification problems, especially for data coming
from domains mentioned in section 6.1. Our finding emphasizes the indispensability of DP greedy
boosting in practical applications. Moreover, employing a smaller number of trees does not neces-
sarily lead to a decrease in the performance of our DP-XGB. By examining the distribution of tree
levels that fall within the best performance intervals, we found that small models (#tree≤50) account
for more than half of instances that reach the best performance intervals of XGB ada and XGB cyc
(Tab. 2). This finding implies that for some of our DP greedy boosting models, achieving desirable
performance can be accomplished with a limited number of trees.

An intriguing finding is that TR cyc also performs relatively well even when the number of trees is
limited. We think the reason is that splitting tree structure on a single feature yields more instances
in leaf nodes, leading to signal enrichment. In addition, the extra privacy budget saved by using
random boosting further reduces the magnitude of DP noise added to leaf weight. Thus, TR cyc has
more accurate leaf weights especially when using a small depth. This leads to a better performance,
which aligns with the discussion in section 4.1.2 of [Nori et al., 2021]. Moreover, more than half

8



Under review as a conference paper at ICLR 2024

Table 2: Percentage% for every tree level entering best performance zone (ε = 1)

Method #Tree ≤ 50 #Tree = 75 #Tree = 100 #Tree ∈ {150, 200} Total
TR 13.49 3.57 5.16 13.89 36.11
TR cyc 23.41 5.56 5.95 13.10 48.02
TR ada 10.71 3.97 4.76 12.70 32.14
TR ada cyc 21.03 3.17 4.37 11.51 40.08
XGB 19.05 5.16 6.75 13.10 44.05
XGB cyc 29.37 5.16 4.76 9.92 49.21
XGB ada 30.56 5.16 4.76 10.71 51.19
total represents row sum, the threshold of best performance zone is ≥ mean auc - std. Details in D.1

of our datasets are low-dimensional. This provides additional benefits for TR cyc to perform well
since feature selection might not be important on those datasets.

While DP random boosting can compensate for the limitation of learning feature interactions by
increasing the number of trees, this approach introduces additional complexities in terms of hyper-
parameter tuning. Furthermore, for deployment and explainability reasons, smaller models are often
preferred. Consequently, our findings underscore the practical significance of utilizing DP greedy
boosting.

What keeps DP Greedy Boosting away from better performance? We think it’s the diminish-
ing utility of the exponential mechanism when constrained by a limited privacy budget. In random
boosting, the main privacy-consuming part is leaf weight release. In contrast, for greedy boosting,
the privacy budget needs to be allocated to both node selection and leaf release. As the number of
trees increases, the privacy budget given to the exponential mechanism decreases more rapidly than
for leaf release, especially for deeper trees. This leads to the utility of the exponential mechanism
resembling random selection. In such scenarios, the additional privacy budget allocated to leaf re-
leasing plays a key role in enhancing the final performance, which explains why random boosting
outperforms greedy boosting when a large number of trees are used.

Can we further improve DP-XGB? One way is to improve the utility of DP selection mecha-
nisms, as they consume the majority of the privacy budget. We attempted to replace the exponential
mechanism with permutate-and-flip [McKenna & Sheldon, 2020], which is a recently developed DP
selection mechanism known for its higher utility given the same privacy budget. Unfortunately, this
modification didn’t yield the expected performance improvement. We believe this outcome can be
attributed to the fact that the exponential mechanism can be composed through improved Rényi-DP
bound (Thm. 1). However, the permutate-and-flip mechanism lacks the bounded range property due
to its use of one-sided exponential noise [Ding et al., 2021]. Consequently, we can only convert
from pure DP to Rényi-DP, resulting in a loose privacy accounting.

Inspired by the success of DP random boosting, it’s not always necessary to greedily choose split
thresholds in the building of tree structures. Instead, we can create DP mechanisms that decide
whether to use a DP selection mechanism or perform random selection based on performance gains.
One option is the sparse vector technique [Dwork et al., 2009], recently enhanced for Rényi-DP
composition [Zhu & Wang, 2020]. Combining this with privacy filters [Feldman & Zrnic, 2021]
and fully adaptive composition techniques [Whitehouse et al., 2023] enables extra budget savings
by avoiding unnecessary tree structure searches. This leads to more accurate leaf weight release and
potential performance improvement.

8 CONCLUSIONS

We introduce DP-XGB, an improved DP greedy boosting decision tree that leverages modern DP
accounting techniques. Through a comprehensive empirical investigation, we observe that our DP-
XGB is only slightly worse than the state-of-the-art DP random boosting. Additionally, in specific
application scenarios such as a limited number of trees or feature interactions, the random boosting
completely falls, but our method survives. Our findings challenge the conventional belief that DP
random boosting surpasses DP greedy boosting and emphasize the practical irreplaceability of DP
greedy boosting.
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APPENDIX

A PROOF FOR RÉNYI-DP BOUNDS

We first gave a useful lemma, which bounds the Rényi divergence of the bounded range algorithm
by the generalized random response (RR) (definition 2.4 in [Dong et al., 2019a]).
Lemma 1. Let M : X → R be any ε bounded range mechanism. For any α ≥ 1 and any
neighbouring datasets x0, x1, the following holds:

sup
x0∼x1∈X

Dα(M(x0)||M(x1)) ≤ sup
t∈[0,ε]

Dα(RRε,t(0)||RRε,t(1))

Proof of Lemma 1. For fixed x0, x1 ∈ X , by lemma 2, we have:

Dα(M(x0)||M(x1)) = Dα(ϕ ◦RRε,t(0)||ϕ ◦RRε,t(1))

≤ Dα(RRε,t(0)||RRε,t(1)) (by data-processing inequality for f-divergence, Thm 4.1 in [Wu, 2016])
(5)

By taking supreme w.r.t. x0, x1 and t respectively for the inequality above, we prove the result.
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Since the generalized random response is also a bounded range mechanism, the above inequality is
tight whenM belongs to the generalized random response family.

The following Lemma 2 states that the distribution of bounded range mechanism can be character-
ized by a simple transformation from generalized random response.

Lemma 2. (a.k.a. lemma 4.1 in [Dong et al., 2019a])
LetM be any ε bounded range mechanism. For any neighbouring datasets x0, x1 ∈ X , there exists
constant t ∈ [0, ε] and ϕ : {0, 1} → Y , which both depend onM, x0, x1, such that for any y ∈ Y
and b ∈ {0, 1}, we have the following holds:

P[M(xb) = y] = P[ϕ ◦RRε,t(b) = y]

Based on the two lemma above, we prove the theorem 1 now:

Proof of theorem 1. The proof is based on bounding the RHS in Lemma 2. For α = 1, the bound
is by directly using the maxkl(ε) bound from [Dong et al., 2019a], page 34. For α > 1, by direct
calculation:

Dα(RRε,t(0)||RRε,t(1)) =
1

α− 1
log

(
qαε,tp

1−α
ε,t + (1− qε,t)

α(1− pε,t)
1−α

)
=

1

α− 1
log
Ä
eαtpε,t + eα(t−ε)(1− pε,t)

ä
=

1

α− 1
[α(t− ε) + log((eαε − 1)pε,t + 1)]

(6)

the second line above uses the fact that e−tqε,t = pε,t and et−ε(1− pε,t) = 1− qε,t

A.1 NUMERICAL STABLE IMPLEMENTATION OF THEOREM 1

To implement Theorem 1, the tricky part is to calculate log((eαε− 1)pε,t +1) since αε can be large
when choosing large value of α. Notice that:

log((eαε − 1)pε,t + 1) = log

Å
(eαε − 1)

eε−t − 1

eε − 1
+ 1

ã
= log

Å
1

eε − 1

(
eε − 1 + (eαε − 1)(eε−t − 1

)ã
= log(eαε+ε−t + eε − eε−t − eαε)− log(eε − 1)

(7)

Thus, we can apply the log-sum-exp trick to the first term (subtract eαε) and avoid the overflow
issue.

B MORE DETAILED REVIEW OF RELATED WORK

B.1 SENSITIVITY OF LEAF WEIGHT FOR NEWTON BOOSTING WITH CROSS-ENTROPY LOSS

For binary labels yi ∈ {0, 1}, the classification problem is as follow:

log

Å
P(y = 1|xi)

P(y = 0|xi)

ã
= F (xi)

⇒ log

Å
P(y = 1|xi)

1− P(y = 1|xi)

ã
= F (xi)

⇒ ŷi := P(y = 1|xi) =
eF (xi)

1 + eF (xi)

(8)
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where F is the output of the XGBoost model. Then, binary classification loss gives:

l(yi, ŷi) = −yi log(ŷi)− (1− yi) log(1− ŷi)

= −yiF (xi) + log
Ä
1 + eF (xi)

ä
∂l

∂F
= −y + eF

1 + eF
∈ [−1, 1]

∂2l

∂F 2
=

eF

1 + eF
· 1

1 + eF
∈
ï
0,

1

4

ò (9)

Consider a leaf node with only one sample, the leaf weight is ∂l
∂F /
Ä

∂2l
∂F 2 + λ

ä
. When the true label

y = 1, and let F → −∞, we have ∂l
∂F /
Ä

∂2l
∂F 2 + λ

ä
→ −1/λ, which is large if using a small L2

regularization weight λ or even unbounded if does not use L2 regulzaization at all.

B.2 ISSUES IN [GRISLAIN & GONZALVEZ, 2021]

We found two issues in DP-XGBoost from [Grislain & Gonzalvez, 2021]. The first one is on the
implementation of the exponential mechanism. They operate the exponential mechanism on a can-
didate set consisting of the best split candidates of every feature gathered non-privately.7 In ad-
dition, their method relies on tuning minimal Hessian sum for leaf node splitting to achieve good
performance. But they directly compare the Hessian sum with the minimal Hessian threshold(i.e.
min child weight), which is not private.8

B.3 MORE ON RELATED WORK

B.3 More on related work

For random selection, DP-TR [Maddock et al., 2022] is the current state-of-the-art among all DP
random boosting and DP greedy boosting methods. Thus, our task was reduced to compare the
performance between our method DP-XGB and the best methods proposed in [Maddock et al.,
2022].

FEVERLESS [Wang et al., 2022] is another related DP greedy boosting decision tree model. It
does not have the three issues mentioned in section 2. FEVERLESS uses Argmax post-processing
on privately released feature histograms to select tree structures. This method has limited utilities
because the release of too much unnecessary information introduces more noise in node selection
and leaf release.

Table 3: Comparison of privatization among different models

Models split candidate proposal node selection leaf releasing DP accounting
SARUS

[Grislain & Gonzalvez, 2021] Laplace noisy histogram exponential
mechanism

Output perturbation
by Laplace noise Pure DP

DPBoost
[Li et al., 2022] Not reported in paper exponential

mechanism
Output perturbation

by Laplace noise Pure DP

FEVERLESS
[Wang et al., 2022] Gaussian noisy histogram post-processing of histograms post-processing of histograms Local DP

DP-EBM
[Nori et al., 2021] Gaussian noisy histogram random

selection
Numerator: Gaussian mechanism

Denominator: post-processing of histogram Gaussian DP

DP-TR
[Maddock et al., 2022]

Data independent grid
or Gaussian noisy histogram

random
selection Separate Gaussian release∗ RDP

Ours Data independent grid
or Gaussian noisy histogram

exponential
mechanism Separate Gaussian release∗ RDP

*:i.e. release numerator and denominator separately by Gaussian mechansim

7see line 1273-1281 in /src/tree/updater histmaker.cc
8see line 1465 in /src/tree/updater histmaker.cc
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C EXPERIMENT DETAILS

C.1 MODEL INCLUDED IN OUR EXPERIMENT

We didn’t include XGB ada cyc since its performance is similar to XGB ada or XGB cyc.

Table 4: Models used in experiment

Method Node Selection feature selection split candidate proposal leaf release
TR random - uniform newton (SSP)
TR cyc random cyclical uniform newton (SSP)
TR ada random - adaptive Hessian newton (SSP)
TR ada cyc random cyclical adaptive Hessian newton (SSP)
XGB exponential mechanism - uniform newton (SSP)
XGB cyc exponential mechanism cyclical uniform newton (SSP)
XGB ada exponential mechanism - adaptive Hessian newton (SSP)
Note: italic font refer to methods developed in [Maddock et al., 2022], boldface texts are methods proposed in this paper

C.2 DATA

C.2.1 SIMULATED DATA GENERATION

We let X1 ∼ N (1, 25), X2 ∼ N (−5, 8), X3 ∼ N (−2, 7) and generate 10000 samples from X1,
X2, X3 respectively. Labels are generated by the indicator function I{ exp(F (x))

exp(F (x))+1 > 0.5}, where
F (·) is defined as follow:

(Problem 1) F (x1, x2, x3) = x1x2 + x1x3 + x2x3 + x1x2x3

(Problem 2) F (x1, x2, x3) = x1x2 + x1x3 + x2x3 + x1x2x3 + x1 + x2 + x3

In addition, We project F (·) into [−12, 12] to avoid numerical overflow issues.

C.2.2 DESCRIPTION OF REAL DATASET

Table 5: Dataset

Name #samples #features % positive cases tested in
Adult 21113 14 24.9 [Maddock et al., 2022]
Bank 31647 16 11.7 [Maddock et al., 2022]
Covtype 70000 54 66.8 [Grislain & Gonzalvez, 2021]
Credit1 84188 10 6.95 [Maddock et al., 2022]
Credit2 21000 23 22.1 [Maddock et al., 2022]
Higgs(subsampled) 140000 28 52.8 [Maddock et al., 2022]
Nomao 24125 6 28.6 [Maddock et al., 2022]
Aps Failure 22,800 170 1.81 -
Electricity 38,474 7 0.5 [Grinsztajn et al., 2022]
Eye Movements 7,608 20 0.5 [Grinsztajn et al., 2022]
California 20,634 8 0.5 [Grinsztajn et al., 2022]
MagicTelescope 13,376 10 0.5 [Grinsztajn et al., 2022]
Diabetes130US 71,090 7 0.5 [Grinsztajn et al., 2022]
Bioresponse 3,434 419 0.5 [Grinsztajn et al., 2022]
Jannis 57,580 54 0.5 [Grinsztajn et al., 2022]
MiniBooNE 72998 50 0.5 [Grinsztajn et al., 2022]
Pol 10082 26 0.5 [Grinsztajn et al., 2022]
House 16H 13488 16 0.5 [Grinsztajn et al., 2022]
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D EXPERIMENT RESULT

D.1 CALCULATION METHODS FOR TABLE 2

The purpose of Tab. 2 is to check whether using a small number of trees (≤ 50) can achieve ”nearly
the best performance” for every model. We set the criteria of being in the best performance zone as
having mean test AUC larger than mean test AUC∗ - std∗. For each dataset, given a type of model,
mean test AUC∗ (and corresponding std∗) is selected from the hyperparameter configuration that
achieves the highest mean test AUC. After that, we calculate the frequency of #trees from models
that belong to the best performance zones across all datasets.
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D.2 OVERALL PERFORMANCE

We present an overall comparison in Fig. 4. In each subplot, every data point indicates the highest
mean test AUC score achieved by a specific model with a fixed number of trees (i.e. taking maximum
over depths).
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Figure 4: Results for number of tree ≥ 20 (ε = 1)

17



Under review as a conference paper at ICLR 2024

D.3 COMPARISON BETWEEN RANDOM SELECTION AND EXPONENTIAL MECHANISM WHEN
NUMBER OF INFORMATIVE FEATURE IS LIMITED

(We add this section to further address questions from reviewer jsJy and 3J8a)

In this experiment, we established different configurations by varying the number of trees as
{5, 10, 50, 100} and the maximum depth as {1, 2, 5}. The data were generated with a specific focus
on having a limited number of informative features, while the rest were created using Gaussian noise.
Specifically, we first generated the informative features and associated classification labels using the
sklearn.datasets.make classification function. Then, all remaining features were generated us-
ing Gaussian noise. It’s important to note that we kept the total number of features constant at 100,
while we explored varying the number of informative features within the set {2, 10, 30}.
In Figure 5, we observe that greedy selection consistently delivers strong performance with a small
number of trees in all settings. On the other hand, for random selection, success depends on encoun-
tering informative splits. Consequently, increasing both the number of guesses (calculated as the
product of the number of trees and maximum depth) and the number of informative features would
increase the chance of achieving this success.
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Figure 5: Comparison between exponential mechanism and random selection (ε = 1)

D.4 COMPARISON TO COROLLARY 3.1 AND THEOREM 5 IN [DONG ET AL. (2019A)]

(We add this section to further address questions from reviewer WvUe)

Our RDP analysis of bounded range mechanism (BR) gives substantial improvement over both Cor.
3.1 and Thm. 5 in [Dong et al., 2019a]. (In both graphs below, we set the base mechanism to be
0.1-DP, and in the right graph below, we set number of composition to be 20.)
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Figure 6: Comparison to Dong’s corollary 3.1 and thm 5 (Updated)

D.5 DESCRIPTION OF OUR ALGORITHM

(We add this section to describe our algorithm as requested by reviewer QR2x)

Algo. 1 describe the general workflow of our method. Algo. 3 describes how we create a single
decision tree.

Algorithm 1: DP Greedy Boosting
Input: Dataset D, number of trees T , tree depth d, number of split candidates Q per feature,
number of feature p, split proposal for every feature {Sk}k∈[p], privacy budget ε, δ, privacy
budget ratio r1, r2, r3 (histogram, exponential mechanism, leaf),

Start:
σhist, εexpo, σleaf ← CalibrateBudget(T, d,Q, p, r1, r2, r3) ; /* By AutoDP */

F ← F0

for t = 1, ... , T do
Calculate {gi, hi}i∈D based on Ft−1 and store them in GH

H̃ ← GetNoisyHist({Sk}k∈[p], GH, σhist)

F ← F + η ·BuildSingleTree(GH, H̃, σhist, εexpo, σleaf )
end
Return Tree ensemble F

We set each Sk to be a uniform grid between maximum and minimum feature values9. Thus, the
split proposal is data independent and has no privacy leakage We use the Gaussian mechanism to
release noised gradient and hessian information aggregated by the split proposal.

9Assume upper and lower bounds for each feature are public information
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Algorithm 2: GetNoisyHist
Input: split proposal for every feature {Sk}k∈[p], Raw gradient and hessian information GH ,

std for Gaussian mechanism on leaf histogram σhist

Start:
H̃ ← ϕ

for k = 1, ..., p do
Hk ← hessian histogram for GH using feature k with grid Sk

H̃k ← Hk +N (0,∆2
hessianσ

2
histIQ)

Gk ← gradient histogram for GH using feature k with grid Sk

G̃k ← Gk +N (0,∆2
gradientσ

2
histIQ)

H̃ ← H̃ ∪ {H̃k, G̃k}
end
Return H̃

Algorithm 3: BuildSingleTree

Input: Raw gradient and hessian information GH , Noised histogram H̃ , L2 penalty weight λ,
maximum depth d

for e = 0 , . . . , d do
for q ∈ {nodes at depth e} do

I
(e)
q = {x : x ∈ {node p in depth e}}

if q == max depth then
(h̃q , g̃q)←

(∑
i∈I

(e)
q

hi,
∑

i∈I
(e)
q

gi

)
+N (0, σ2

leaf I2)

leaf weightq← − g̃q
max{h̃q+λ,λ}

Add leaf node to the current tree
else

Operate Exponential Mechanism on H̃ to select feature and threshold to split:
(f̂ ea,”thr) ; /* use Eqn 2 as score function */

Left childq ={x ∈ I
(e)
q : x[f̂ ea] ≤ ”thr}

Right childq ={x ∈ I
(e)
q : x[f̂ ea] > ”thr}

Add children nodes to the current tree
end

end
end
Return Tree f
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