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Abstract

The generalisation and robustness properties of policies learnt through Maximum-1

Entropy Reinforcement Learning are investigated on chaotic dynamical systems2

with Gaussian noise on the observable. First, the robustness under noise contamina-3

tion of the agent’s observation of entropy regularised policies is observed. Second,4

notions of statistical learning theory, such as complexity measures on the learnt5

model, are borrowed to explain and predict the phenomenon. Results show the6

existence of a relationship between entropy-regularised policy optimisation and7

robustness to noise, which can be described by the chosen complexity measures.8

1 Introduction9

Maximum-Entropy Reinforcement Learning [Williams et al., 1991] aims to solve the problem of10

learning a policy which optimises a chosen utility criterion while promoting the entropy of the policy.11

The standard way to account for the constraint is to add a Lagrangian term to the objective function.12

This entropy-augmented objective is commonly referred to as the soft objective.13

There are multiple advantages in solving the soft objective over the standard objective. For in-14

stance, favouring stochastic policies over deterministic ones allows learning multi-modal distribu-15

tions [Haarnoja et al., 2017]. In addition, agent stochasticity is a suitable way to deal with uncertainty16

induced by Partially Observable Markov Decision Processes (PO-MDP). Indeed, there are PO-MDP17

such that the best stochastic adapted policy can be arbitrarily better than the best deterministic adapted18

policy [Sigaud and Buffet, 2010]1.19

Furthermore, several important works highlight both theoretical and experimental robustness of those20

policies under noisy dynamics and rewards [Eysenbach and Levine, 2022].21

Related to the latter notion of robustness, the maximum-entropy principle exhibits non-trivial general-22

isation capabilities, which are desired in real-world applications [Haarnoja et al., 2018].23

However, the reasons for such robustness properties are not yet well understood. Thus, further24

investigations are needed to grasp the potential of the approach and to design endowed algorithms. A25

clear connection between Maximum-Entropy RL and their robustness properties is important and26

intriguing.27

Meanwhile, recent work in the deep learning community discusses how some complexity measures28

on the neural network model are related to generalisation, and explain typically observed phenom-29

ena [Neyshabur et al., 2017]. In fact, these complexity measures are derived from the learnt model,30

1In this context, the term “stochastic adapted policy” is a conditional distribution on the control space U
given the observation space Y since this type of policy is “adapted” from Markovian policies in fully observable
MDPs.
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bound the PAC-Bayes generalisation error, and are meant to identify which of the local minima31

generalise well.32

As a matter of fact, a relatively recent trend in statistical learning suggests generalisation is not only33

favored by the regularisation techniques (e.g., dropout) but mainly because of the flatness of the local34

minima [Hochreiter and Schmidhuber, 1997, Dinh et al., 2017, Keskar et al., 2017]. The reasons for35

such regularity properties remain an open problem. This work aims to address these points in the36

context of Reinforcement Learning, and addresses the following questions:37

What is the bias introduced by entropy regularisation? Are the aforementioned complexity measures38

also related to the robustness of the learnt solutions in the context of Reinforcement Learning?39

In that respect, by defining a notion of robustness against noisy contamination of the observable,40

a study on the impact of the entropy regularisation on the robustness of the learnt policies is first41

conducted. After explaining the rationale behind the choice of the complexity measures, a numerical42

study is performed to validate the hypothesis that some measures of complexity are good robustness43

predictors. Finally, a link between the entropy regularisation and the flatness of the local minima is44

treated through the information geometry notion of Fisher Information.45

The paper is organised as follows. Section 2 introduces the background and related work, Section 346

presents the problem setting. Section 4 is the core contribution of this paper. This section introduces47

the rationale behind the studied complexity measures from a learning theory perspective, as well48

as their expected relation to robustness. Lastly, Section 5 presents the experiments related to the49

policy robustness as well as their complexity, while Section 6 examines the results obtained. Finally,50

Section 7 concludes the paper.51

2 Related work52

Maximum Entropy Policy Optimisation In Haarnoja et al. [2018], the generalisation capabilities53

of entropy-based policies are observed where multimodal policies lead to optimal solutions. It is54

suggested that maximum entropy solutions aim to learn all the possible ways to solve a task. Hence,55

transfer learning to more challenging objectives is made easier, as demonstrated in their experiment.56

This study investigates the impact of adopting policies with greater randomness on their robustness.57

The impact of the entropy regularisation on the loss landscape has been recently studied in Ahmed58

et al. [2019]. They provide experimental evidence about the smoothing effect of entropy on the59

optimisation landscape. The present study aims specifically to answer the question in Section 3.2.460

of their paper: Why do high entropy policies learn better final solutions? This paper extends their61

results from a complexity measure point of view. Recently, Neu et al. [2017], Derman et al. [2021]62

studied the equivalence between robustness and entropy regularisation on regularised MDP.63

Flat minima and Regularity The notion of local minima flatness was first introduced in the context64

of supervised learning by Hochreiter and Schmidhuber [1997] through the Gibbs formalism [Haussler65

and Opper, 1997]. Progressively, different authors stated the concept with geometric tools such as first66

order (gradient) or second order (Hessian) regularity measures [Zhao et al., 2022, Keskar et al., 2017,67

Sagun et al., 2017, Yoshida and Miyato, 2017, Dinh et al., 2017]. In a similar fashion, Chaudhari68

et al. [2019] uses the concept of local entropy to smooth the objective function.69

In the scope of Reinforcement Learning, Ahmed et al. [2019] observed that flat minima characterise70

maximum entropy solutions, and entropy regularisation has a smoothing effect on the loss landscape,71

reducing the number of local optima. A central objective of this present study is to investigate this72

latter property further and relate it to the field of research on robust optimisation. Lastly, among the73

few recent studies on the learning and optimisation aspects of RL, Gogianu et al. [2021] shows how a74

well-chosen regularisation can be very effective for deep RL. Indeed, they explain that constraining75

the Lipschitz constant of only one neural network layer is enough to compete with state-of-the-art76

performances on a standard benchmark.77

Robust Reinforcement Learning A branch of research related to this work is the study of robust-78

ness with respect to the uncertainty of the dynamics, namely Robust Reinforcement Learning (Robust79

RL), which dates back to the 1970s [Satia and Lave, 1973]. Correspondingly, in the field of control80

theory, echoes the notion of robust control and especially H∞ control [Zhou et al., 1996], which81

also appeared in the mid-1970s after observing Linear Quadratic Regulator (LQR) solutions are very82
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sensitive to perturbations while not giving consistent enough guarantees [Doyle, 1996].83

More specifically, the Robust RL paradigm aims to control the dynamics in the worst-case sce-84

nario, i.e., to optimise the minimal performance for a given objective function over a set of possible85

dynamics through a min-max problem formulation. This set is often called ambiguity set in the86

literature. It is defined as a region in the space of dynamics close enough w.r.t. to some divergence87

measure, such as the relative entropy [Nilim and Ghaoui, 2003]. Closer to this work, the recent paper88

from Eysenbach and Levine [2022] shows theoretically how Maximum-Entropy RL policies are89

inherently robust to a certain class of dynamics of fully-observed MDP. The finding of their article90

might still hold in the partially observable setting as any PO-MDP can be cast as fully-observed MDP91

with a larger state-space of probability measures [Hernández-Lerma and Lasserre, 1996], providing92

the ambiguity set is adapted to a more complicated space.93

3 Problem Setup and Background94

3.1 Partially Observable Markov Decision Process with Gaussian noise95

First, the control problem when noisy observations are available to the agent is formulated. The study96

focuses on Partially Observable Markov Decision Processes (PO-MDP) with Gaussian noise of the97

form [Deisenroth and Peters, 2012]:98

Xh+1 = F (Xh, Uh)

Yh = G (Xh) + ϵ, ϵ ∼ N (0, σ2
Y Id)

(1)

with Xh ∈ X , Uh ∈ U and Yh ∈ Y for any h ∈ N, where X , U and Y are respectively the99

corresponding state, action and observation spaces. The initial state starts from a reference state100

x∗
e on which centred Gaussian noise with diagonal covariance σ2

eId is additively applied, X0 ∼101

N (x∗
e, σ

2
eId). Associated with the dynamics, an instantaneous cost function c : X ×U → R+ is also102

given to define the control model.103

In this context, a policy π is a transition kernel on A given Y , i.e., a distribution on actions conditioned104

on observations. This kind of policies are commonly used in the literature but can be very poor in105

the partially observable setting where information is missing. Together, a control model, a policy106

π and an initial distribution PX0
on X define a stochastic process with distribution Pπ,ϵ where the107

superscript ϵ highlights the dependency on the observation noise ϵ. Similarly, one denotes by Pπ the108

distribution of the process when the noise is zero almost-surely, i.e., Pπ = Pπ,0. More details about109

the PO-MDP control problem can be found in Hernández-Lerma and Lasserre [1996], Cassandra110

[1998].111

Here, the maximum-entropy control problem is to find a policy π∗ which minimises the following112

performance criterion113

Jπ,ϵ
m = Eπ,ϵ

[
H∑

h=0

γhc (Xh, Uh)

]
+ αmEπ,ϵ

[
H∑

h=0

γhH(π( · | Xh))

]
, (2)

where H ∈ N is a given time horizon, Eπ,ϵ denotes the expectation under the probability measure114

Pπ,ϵ, H denotes the differential entropy [Cover and Thomas, 2006] and αm is a time-dependent115

weighting parameter that evolves over training time m ≤ mD = |D| with |D| being the total number116

of times the agent interacts with the system such that all observations used by the learning algorithm117

form the dataset D at the end of the training procedure (when mD environment interactions are118

done).119

120

Jπ,ϵ
m is denoted Jπ,ϵ. The quantity Jπ,ϵ is called the value function or, more generally, loss.121

Moreover, the performance gap for dynamics with noisy and noiseless observables will be considered122

in the sequel. In this context, the (rate of) excess risk under noise is defined as the difference between123

the loss under noisy dynamics and the loss under noiseless dynamics:124

Definition 1 (Excess Risk Under Noise) The excess risk under noise of a policy π for a PO-MDP125

with dynamics (1) is defined as:126

Rπ = Eπ,ϵ

[
H∑

h=0

γhc (Xh, Uh)

]
− Eπ

[
H∑

h=0

γhc (Xh, Uh)

]
= Jπ,ϵ − Jπ (3)

3



Similarly, the rate of excess risk under noise is defined as:127

R̊π =
Jπ,ϵ − Jπ

Jπ
=

Rπ

Jπ
(4)

Note that in the above definition,128

expectations are taken with respect to the probability measure Pπ,ϵ and Pπ respectively. The rate129

of excess risk under noise represents the performance degradation after noise introduction in value130

function units. In the rest of the paper, arguments to derive complexity measures will be developed,131

allowing to predict the excess risk under noise and provide numerical evidence showing maximum-132

entropy policies are more robust regarding this metric. Hence, maximum-entropy policies implicitly133

learn a robust control policy in the sense of Definition 1.134

In the next section, some concepts of statistical learning theory are introduced. Then, complexity135

measures will be defined to quantify the regularisation power of the maximum-entropy objective136

of (2).137

4 Complexity Measures and Robustness138

4.1 Complexity Measures139

The principal objective of statistical learning is to provide bounds on the generalisation error, so-140

called generalisation bounds. In the following, it is assumed that an algorithm A returns a hypothesis141

π ∈ F from a dataset D. Note that the dataset D is random and the algorithm A is a randomised142

algorithm.143

As the hypothesis set F typically used in machine learning is infinite, a practical way to quantify144

the generalisation ability of such a set must be found. This quantification is done by introducing145

complexity measures, enabling the derivation of generalisation bounds.146

Definition 2 (Complexity measure) A complexity measure is a mapping M : F → R+ that maps147

a hypothesis to a positive real number.148

According to Neyshabur et al. [2017] from which this formalism is inspired, an appropriate complexity149

measure satisfies several properties. In the case of parametric models πθ ∈ F(Θ) with θ ∈ Θ ⊂ Rb,150

it should increase with the dimension b of the parameter space Θ as well as being able to identify151

when the dataset D contains totally random, spurious or adversarial data. As a result, finding good152

complexity measures M allows the quantification of the generalisation ability of a hypothesis set F153

or a model π and an algorithm A.154

4.2 Complexity measures for PO-MDP with Gaussian Noise155

This paper studies heuristics about generalisation bounds on the optimal excess risk under noise from156

Definition 1 when the optimal policy πθ∗ is learnt with an algorithm A on the non-noisy objective157

Jπ , where αm = 0 for any m.158

Definition 3 ((Rate of) Excess Risk Under Noise Bound) Given an optimal policy π∗ learnt with159

an algorithm A on the non-noisy objective Jπ, the optimal excess risk under noise bound is a160

real-valued mapping φ such that161

Rπ∗
≤ φ(M(π∗,D), mD, η, δ) (5)

and φ is increasing with the complexity measure M and the sample complexity mD. The definition is162

similar for the rate of excess risk under noise bound where R̊π∗
is used instead of Rπ∗

.163

Hence, considering a learning algorithm A with a parameterised family F(Θ) = (πθ)θ∈Θ, Θ ⊂ Rb,164

such that θ = (θµ, θσπ ) with πθ(· | x) ∼ N (µθµ(x), diag(θσπ )), x ∈ X , - where µθµ is a shallow165

multi-layer feed-forward neural network (with depth-size l = 2, width w = 64 neurons, weights166

matrix (θiµ)1≤i≤l) and diag(θσπ
) is a diagonal matrix of dimension q = dim(U) parameterising the167
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variance2 - to learn the optimal policy πθ∗ , multiple complexity measures M are defined and details168

on their underlying rationale are given below.169

4.2.1 Norm based complexity measures170

First, the so-called norm-based complexity measures are functions of the norm of some subset of the171

parameters of the model. For instance, a common norm-based measure calculates the product of the172

operator norms of the neural network linear layers. The measures are commonly used in the statistical173

learning theory literature to derive bounds on the generalisation gap, especially in the context of174

neural networks [Neyshabur et al., 2015, Golowich et al., 2018, Miyato et al., 2018].175

In fact, the product of the norm of the linear layers of a standard class of multi-layer neural networks176

(including Convolutional Neural Networks) serves as an upper bound on the often intractable Lipschitz177

constant of the network [Miyato et al., 2018]. Thus, controlling the magnitude of the weights of the178

linear layers increases the regularity of the model.179

Consequently, the following complexity measures are defined:180

• M(πθ,D) = ∥θµ∥p181

• M(πθ,D) = Πl
i=1∥θiµ∥p where θiµ is the ith layer of the network µθµ .182

In this context ∥ · ∥p with p = 1, 2, ∞ denotes the p-operator norm while p = F denotes the183

Frobenius norm, which is discarded for the first case of the full parameters vector θµ (since Frobenius184

norm is defined for matrix).185

4.2.2 Flatness based complexity measures186

On the other hand, another measure of complexity is given by the flatness of the optimisation local187

minimum (see Section 2 for a brief overview). As McAllester [2003], Neyshabur et al. [2017] have188

pointed out, the generalisation ability of a parametric solution is controlled by two key components189

in the context of supervised learning: the norm of the parameter vector and its flatness w.r.t. to the190

objective function.191

One might wonder if a similar robustness property still holds in the setting of Reinforcement Learning.192

In this manner, complexity measures quantifying the flatness of the solution are needed. Concretely,193

the interest lies in the flatness of the local minima of the objective function Jπ. As stated earlier,194

there are several ways to quantify the flatness of a solution with metrics derived from the gradient195

or curvature of the loss function at the local optimum, such as the Hessian’s largest eigenvalue -196

otherwise spectral norm [Keskar et al., 2017] or the trace of Hessian [Dinh et al., 2017].197

Moreover, as discussed in Section 2, Ahmed et al. [2019] observed that maximum entropy solutions198

are characterised by flat minima while entropy regularisation has a smoothing effect on the loss199

landscape. Hence, a central objective of this present study is to investigate this latter property further200

and relate it to the robustness aspect of the resulting policies.201

However, instead of dealing directly with the Hessian of the objective Jπ this work proposes a202

measure based on the conditional Fisher Information I of the policy due to its link with a notion of203

model regularity in the parameter space.204

Definition 4 (Conditional Fisher Information Matrix) Let x ∈ X and πθ a policy identified by205

its conditional density for a parameter θ ∈ Θ ⊂ Rb and suppose ρ is a distribution over X . The206

conditional Fisher Information Matrix of the vector θ is defined under some regularity conditions as207

I(θ) = − EX∼ρ,U∼πθ(·|X)
[
∇2

θ log πθ(U | X)
]
, (6)

where ∇2
θ denotes the Hessian matrix evaluated at θ.208

Note that the distribution over states ρ is arbitrary and can be chosen as the discounted state visitation209

measure ρπ induced by the policy π [Agarwal et al., 2019] or the stationary distribution of the induced210

Markov process if the policy is Markovian and the MDP ergodic3 as it is done in Kakade [2001].211

2Note this choice of state-independent policy variance is inspired by Ahmed et al. [2019] and simplifies the
problem.

3With these choices, the following holds: Eρπ(ds)π(da|s) = Eπ up to taking the expectation w.r.t. the
state-action space (no subscript under X and U ) or the trajectory space (with subscripts such as Xh and Uh as
trajectory coordinate) Agarwal et al. [2019].
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As a matter of fact, it has already been mentioned in the early works of policy optimisation [Kakade,212

2001] that this quantity I might be related to the Hessian of the objective function. Indeed, the213

Hessian matrix of the standard objective function reads (see Shen et al. [2019] for a proof):214

∇2
θJ

πθ = Eπθ

 H∑
h,i,j=0

c (Xh, Uh)
(
∇θ log πθ (Ui | Xi)∇θ log πθ (Uj | Xj)

T
+∇2

θ [log πθ (Ui | Xi)]
) .

(7)
As suggested by the author mentioned above (S. Kakade), (7) might be related to I although being215

weighted by the cost c. Indeed, the Hessian of the state-conditional log-likelihoods (∇2
θ log πθ on the216

rightmost part of the expectation of (7)) belongs to the objective-function Hessian ∇2
θJ

πθ while the217

Fisher Information I(θ) is an average of the Hessian of the policy log-likelihood.218

In any case, the conditional FIM measures the regularity of a critical component of the objective to219

be minimised. Thus, the trace of the conditional FIM of the mean actor network parameter θµ is220

suggested as a complexity measure221

• M(πθ,D) = Tr(I (θµ)) = Tr(− EX∼ρπ,U∼πθ(·|X)
[
∇2

θµ
log πθ(U | X)

]
).222

Moreover, in the context of classification, a link between the degree of stochasticity of optimisation223

gradients (leading to flatter minima [Mulayoff and Michaeli, 2020, Xie et al., 2021]) and the FIM224

trace during training has recently been revealed in Jastrzebski et al. [2021]. Magnitudes of the FIM225

eigenvalues may be related to loss flatness and norm-based capacity measures to generalisation226

ability [Karakida et al., 2019] in deep learning.227

5 Experiments228

5.1 Robustness under noise of Maximum Entropy Policies229

The first hypothesis is that maximum entropy policies are more robust to noise than those trained230

without entropy regularisation (which play the role of control experiments). Consequently, the231

robustness of the controlled policy πθ∗ is compared with the robustness of the maximum entropy232

policy πα
θ∗ for different temperature evolutions α = (αm)0≤m≤mD . In this view, and since inter-233

algorithm comparisons are characterised by high uncertainty [Henderson et al., 2018, Colas et al.,234

2018, Agarwal et al., 2021], only one algorithm A (Proximal Policy Optimisation (PPO) Schulman235

et al. [2017]) is retained while results on multiple entropy constraint levels α = (αm)0≤m≤mD are236

examined.237

In this regard, ten independent PPO models are trained for each of the five arbitrarily chosen entropy238

temperatures αi = (αi
m)0≤m≤mD where i ∈ {1, . . . , 5}, on dynamics without observation noise, i.e.,239

where σ2
Y = 0. The entropy coefficients linearly decay during training, and all vanish (αm = 0) when240

m reaches one-fourth of the training time m1/4 = ⌊mD
4 ⌋ in order to replicate a sort of exploration-241

exploitation procedure, ensuring that all objectives Jπ
m are the same whenever m ≥ m1/4, i.e.,242

Jπ
m = Jπ. This choice is different but inspired by Ahmed et al. [2019] as they optimise using only243

the policy gradient and manipulate the standard deviation of Gaussian policies directly, whereas, in244

the present approach, it is done implicitly with an adaptive entropy coefficient. An algorithm that245

learns a model with a given entropy coefficient α = (αm)0≤m≤mD is denoted as Aα.246

The chosen chaotic systems are the Lorenz [Vincent and Yu, 1991] (with mD = 106) and Kuramoto-247

Sivashinsky (KS) [Bucci et al., 2019] (with mD = 2 · 106) controlled differential equations. The248

defaults training hyper-parameters from Stable-Baselines3 [Raffin et al., 2021] are used.249

5.2 Robustness against Complexity Measures250

So far, three separate analyses on the 5 × 10 models obtained have been performed on the Lorenz251

and Kuramoto-Sivashinsky (KS) controlled differential equations.252

First, as mentioned before, the robustness of the models for each of the chosen entropy temperatures253

αi is tested against the same dynamics but now with a noisy observable, i.e., σY > 0. Second,254

norm-based complexity measures introduced in Section 4.2 are evaluated and compared to the255

generalisation performances of the distinct algorithms Aα. Third, numerical computation of the256
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conditional distribution of the trace of the Fisher Information Matrix given by (6) is performed to test257

the hypothesis that this regularity measure is an indicator of robust solutions. The state distribution258

ρπθ is naturally chosen as the state visitation distribution induced by the policy πθ. The following259

section discusses the results of those experiments.260

6 Results261

This section provides numerical evidence of maximum entropy’s effect on the robustness, as defined262

by the Excess Risk Under Noise defined by (3). Then, after quantifying robustness, the relation263

between the complexity measures defined in Section 4.2 and robustness is studied.264

6.1 Entropy Regularisation induces noise robustness265

In the first place, a distributional representation4 of the rate of excess risk under noise defined in (3)266

is computed for each of the 5 × 10 models obtained with the PPO algorithm Aαi , i ∈ {1, . . . , 5} and267

different levels of observation noise σY > 0.268

First and foremost, the results shown in Figure 1 indicate that the noise introduction to the system269

observable Y of KS and Lorenz leads to a global decrease in performance, as expected.270

The robustness to noise contamination of the two systems is improved by initialising the policy271

optimisation procedure up to a certain intermediate threshold of the entropy coefficient αi > 0. Once272

this value is reached, two respective behaviours are observed depending on the system. In the case of273

the Lorenz dynamics, the robustness continues to improve after this entropy threshold, whereas the274

opposite trend is observed for KS (particularly with the maximal entropy coefficient chosen).275

Hence, the sole introduction of entropy-regularisation in the objective function impacts the robustness.276

This behaviour difference between Lorenz and KS might be explained by the variability of the277

optimisation landscapes that can be observed with respect to the chosen underlying dynamics as278

underlined in Ahmed et al. [2019].279

6.2 Maximum entropy as a norm-based regularisation on the policy280

Norm-based complexity measures introduced in Section 4.2 are now evaluated. For a complexity281

measure M to be considered significant, it should be correlated with the robustness of the model.282

Accordingly, the different norm-based measures presented in Section 4.2 are estimated. Figure 2283

shows the layer-wise product norm of the policy actor network parameters (M(πθ,D) = Πl
i=1∥θiµ∥p)284

w.r.t. to their associated entropy coefficient αi for all the 50 independently trained models.285

Again, policies obtained with initial αi > 0 exhibit a trend toward decreasing complexity measure286

values as α increases up to a certain threshold of the entropy coefficient. Similarly to Section 6.1,287

the complexity measure continues to decrease after surpassing this threshold for the Lorenz system.288

On the other hand, in the KS case, M(πθ,D) increases again once its entropy threshold is reached,289

notably for the larger entropy coefficient.290

Moreover, the measures tend to be much more concentrated when αi > 0, especially in the case of291

KS (except for the higher αi).292

This may indicate that the entropy regularisation acts on the uncertainty of the policy parameters.293

Likewise, similar observations can be made for the total norm of the parameters but are not introduced294

here for the sake of brevity.295

Consequently, this experiment highlights an existing correlation between maximum entropy regulari-296

sation and norm-based complexity measures. As this complexity measure is linked to the Lipschitz297

continuity of the policy, one might wonder if the regularity of the policy is more directly impacted.298

This is the purpose of the next subsection.299

4By replacing the expectation operator E with the conditional expectation E[ · | X0] in the definition of Rπ

in (3), the quantity becomes a random variable for which the distribution can be estimated by sampling the initial
state distribution X0 ∼ N (x∗

e , σ
2
eId). In fact, taking the conditional expectation gives the difference of the

standard value functions under Pπ and Pπ,ϵ.
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Figure 1: Distributional representation of the rate of excess risk under noise R̊π conditioned on the
αi used during optimisation for different initial state distribution X0 ∼ N (x∗

e, σ
2
eId). Each of the

rows corresponds to one of the dynamical systems of interest. Each of the columns corresponds to
one of the initial state distributions of interest. There are two non-zero fixed points (equilibria) x∗

e for
Lorenz and three for KS. From top to bottom: KS; Lorenz.
For each box plot, three intensities σY for the observation noise ϵ are evaluated. As expected, when
the uncertainty regarding the observable Y increases through the variance σY of the observation
signal noise ϵ, the policy performance decreases globally (R̊π increases). Moreover, the rate of excess
risk under noise tends to decrease when αi increases in the Lorenz case, whereas it decreases up to a
certain entropy threshold for KS before increasing again.

6.3 Maximum entropy reduces the average Fisher-Information300

Another regularity measure is considered: the average trace of the Fisher information (M(πθ,D) =301

Tr(I (θµ)) = Tr(− EX∼ρ,U∼πθ(·|X)
[
∇2

θµ
log πθ(U | X)

]
)). As discussed in 4.2.2, this quantity302

reflects the regularity of the policy and might be related to the flatness of the local minima of the303

objective function.304

Figure 3 shows the distribution under πθ of the trace of the state conditional Fisher Information of305

the numerical optimal solution θ∗µ,αi for the policy w.r.t. the αi used during optimisation. In other306

words, a kernel density estimator of the distribution of Tr(I(πθ∗
µ,αi

( · | X))) when X ∼ ρπθ∗ is307

represented. The results of this experiment suggest first, this distribution is skewed negatively and308

has a fat right tail. This means some regions of the support of ρπθ∗ provide FIM trace with extreme309

positive values, meaning the regularity of the policy may be poor in these regions of the state space.310

A comparison of the distribution w.r.t. the different αi sheds further light on the relation between311

robustness and regularity. In fact, there appears to be a correspondence between the robustness, as312

indicated by the rate of excess risk under noise R̊π shown in Figure 1 and the concentration of the313

trace distribution toward larger values (i.e. more irregular policies) when the model is less robust.314

Meanwhile, under the considerations of 4.2.2 and since it is known that entropy regularisation favours315

flat minima in RL [Ahmed et al., 2019], these experimental results support the hypothesis of an316

existing relationship between robustness, objective function flatness around the solution θ∗ and317

conditional Fisher information of θ∗.318

For a complementary point of view, a supplementary experiment regarding the sensitivity of the319

policy updates during training w.r.t. to different level of entropy is also presented in Appendix A.320
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Figure 2: Measures of complexity M(πθ,D) = Πl
i=1∥θiµ∥p with p = 1, 2, ∞, F conditioned on

the αi used during optimisation. Each row corresponds to one of the dynamical systems of interest
while column represents a different norm order p. From top to bottom: Lorenz and KS.
For the Lorenz case, the barycenters of the measures tend to decrease when αi increases. Regarding
KS, passing a threshold, the complexity increases again with the entropy. In addition, the measures
are much more concentrated when αi > 0. For p = 2, F , the separation of the measures w.r.t. the
different αi is more pronounced.

Figure 3: Distribution of the trace of the (conditional) Fisher information of the numerical optimal
solution θ∗µ,αi for the policy w.r.t. the αi used during optimisation. From left to right: Lorenz and
KS environments. Colours: control experiment αi = 0 (black); intermediate entropy level αi (blue);
largest αi (red).
A skewed distribution towards (relatively) larger values is observed for all controlled dynamical
systems. Moreover, those right tails exhibit high kurtosis, especially for the control experiment
(black) and the model with the larger entropy coefficient (red) for the KS system. Finally, solutions
with intermediate entropy levels (blue) are much more concentrated - have lower variance than the
others. About Lorenz, the barycenter of the more robust model (red) is shifted towards lower values
than the others.

7 Discussion321

In this paper, the question of the robustness of maximum entropy policies under noise is studied. After322

introducing the notion of complexity measures from the statistical learning theory literature, numerical323

evidence supports the hypothesis that maximum entropy regularisation induces robustness under324

noise. Moreover, norm-based complexity measures are shown to be correlated with the robustness325

of the model. Then, the average trace of the Fisher Information is shown to be a relevant indicator326

of the regularity of the policy. This suggests the existence of a link between robustness, regularity327

and entropy regularisation. Finally, this work contributes to bringing statistical learning concepts328

such as flatness into the field of Reinforcement Learning. New algorithms or metrics, such as in the329

work of Lecarpentier et al. [2021], may be built upon notions of regularity, e.g., Lipschitz continuity,330

flatness or Fisher Information of the parameter in order to achieve robustness.331
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A Weights sensitivity during training336

This section is intended to provide complementary insights on the optimisation landscape induced by337

the entropy coefficient α during training from the conservative or trust region policy iteration point338

of view Kakade and Langford [2002], Schulman et al. [2015].339

Let (θαm)
mD
m=1 be the sequence of weights of the policy during the training of the model for some initial340

entropy coefficient α. The conditional Kullback-Leibler divergence between the policy identified by341

the parameters θαm and the subsequent policy defined by the parameters θαm+1 is given by342

DKL

(
θαm, θαm+1

)
= EX∼ρ

[∫
U log

(
πθαm

(du|X)

πθα
m+1

(du|X)

)
πθα

m+1
(du | X)

]
.343

The above quantity is a measure of the divergence from the policy at time m to the policy at time344

m+ 1. Thus it may provide information on the local stiffness of the optimisation landscape during345

training.346

Figure 4 shows the evolution of the Kullback-Leibler divergence between two subsequent policies347

during training for the Lorenz and KS controlled differential equations. Regarding the Lorenz system,348

the maximal divergence is reached for the optimisation performed with the two lowest αi while349

increasing entropy seems to slightly reduce the divergence. On the other hand, the highest divergence350

values observed for the KS system are reached for αi = 0 and the maximal entropy coefficient.351

This observation is coherent with the results of the previous sections and suggests that the entropy352

coefficient α impacts the optimisation landscape during training.353

Interesting questions regarding the optimisation landscape and its link with the Fisher Information354

(through the point of view of Information Geometry [Amari, 1998]) are raised by the results of this355

section but are left for future work.356

(a) Lorenz (b) Kuramoto-Sivashinsky

Figure 4: Evolution of DKL

(
θαm, θαm+1

)
during training for the Lorenz and KS controlled differential

equations. For Lorenz, the maximal divergence is reached for the optimisation performed with αi = 0
and the second lowest αi. Regarding KS, the highest divergence values are observed for αi = 0 and
the maximal entropy coefficient.
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