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Abstract—This paper proposes a formation control method
for multi-USV systems with collision and obstacle avoidance
under GPS attacks. First, the external environmental disturbance
and nonlinear dynamics of the multi-USV systems are handled
using fuzzy logic systems. Second, a protocol for the formation
control of multi-USV systems under GPS attacks is designed. The
collision and obstacle avoidance issues are addressed by an im-
proved artificial potential field (APF) method. Finally, simulation
examples demonstrate the effectiveness of the proposed control
method.

Index Terms—Formation control, unmanned surface vessels,
artificial potential field methods, GPS attacks

I. INTRODUCTION

With the rapid advancement of artificial intelligence and
computer technology, unmanned surface vessel (USV) systems
have emerged as critical assets for enhancing operational
efficiency and mitigating personnel risks [1], [2], [3], [4].
As a burgeoning marine technology, multi-USV systems are
increasingly showcasing their potential in diverse fields in-
cluding marine science, resource exploration and military
applications. The formation of multi-USV systems can ac-
complish tasks more efficiently through coordinated efforts
compared to a single USV. Additionally, formation control
benefits from enhanced flexibility and robustness [5], [6],
[7]. Therefore, the formation control of multi-USV systems
have garnered significant attention among scientific disciplines
[8]. With the widespread application of multi-USV systems,
various formation control methods have been developed, such
as behavior-based [9], virtual structure [10], artificial potential
field [11], [12], basic graph theory [13], [14], [15], the leader-
follower [16], among others. Among these, the leader-follower
method receives considerable interest due to its simplicity and
scalability [17].

In recent years, scholars have shown significant interest
in research related to multi-USV systems formation control.
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However, when maneuvering in complex environment, colli-
sion may occur among multi-USVs. Many advanced control
algorithms have been investigated, including neural networks
[18], [19], disturbance observer [18], dynamic surface control
[18], artificial potential field [11], [12] , minimal learning pa-
rameter approaches [19], and back-stepping [20]. The APF is
an effective method for collision avoidance [21], [22], besides
some problems have been prompted researchers to propose
improvements [23]. According to the potential function de-
scribed in [21], [22], an adaptive formation control method for
a class of multi-agent systems was designed in [24]. Currently,
maritime vessels rely extensively on GPS signals provided by
commercial systems. However, the civilian GPS signals expose
multi-USVs to vulnerabilities, particularly from GPS spoofing
attacks. These attacks transmitting fake GPS signals, which
can deceive multi-USV systems and compromise formation
control. Such compromises may lead to significant naviga-
tional deviation or even collision [25], [26], [27]. Yet, research
simultaneously addressing both problems are relatively scarce.
With few studies in the literature discussing the impact of
GPS spoofing attacks on the formation control, collision and
obstacle avoidance mechanisms of multi-USV systems.

Motivated by the previous discussion, the research on multi-
USV systems exists many challenges. This paper addresses
the formation control problem for multi-USV systems under
GPS attacks with input saturation and model uncertainties. The
effectness of the proposed method is verified by thoery and
demonstrated by simulation examples.

The remainder of this paper is structured as follows: Sec-
tion II presents preliminary and problem formulation, includ-
ing basic graph theory, the fuzzy logic system and GPS attacks.
Section III presents controller design and stability analysis to
validate the stability of multi-USV systems. In Section IV , a
simulation example is given to verify the effectiveness of the
proposed control strategy. Finally, the relevant conclusion of
this paper are presented in Section V .



II. PRELIMINARIES AND PROBLEM FORMULATION

A. System description

Dynamic modeling of multi-USV systems including three
degrees of freedom: surge, sway and yaw. Consider multi-
USV systems consisting of one leader and three followers.
The mathematical model of ship motion for the ith USV is
expressed by:{

η̇i (t) = J (ηi (t)) νi (t)
Mν̇i (t) + C (νi (t)) νi (t) +D (νi (t)) νi (t) = τi (t) ,

(1)

where
ηi (t) = [ηix (t) , ηiy (t) , ηiz (t)] denotes as the position

vector and head vector of the ith USV,
νi (t) = [vix (t) , viy (t) , viz (t)] denotes as the velocity

vector of the ith USV in the three directions of surge, sway
and yaw,

τi (t) = [τix (t) , τiy (t) , τiz (t)] denotes as the control input,
J (ηi (t)) is the rotation matrix used to transform the coor-

dinates, JT (ηi (t)) = J−1 (ηi (t)), which can be represented
as:

J (ηi (t)) =

cos (ηiz (t)) − sin (ηiz (t)) 0
sin (ηiz (t)) cos (ηiz (t)) 0

0 0 1

 .

M denotes as the inertia mass matrix, considering that{
X(·), Y(·), N(·)

}
are the hydrodynamic parameters.

M =

m11 0 0
0 m22 m23

0 m32 m33

 ,

where m11 = musv −Xẋ,m22 = musv −Yẏ,m33 = Iz −Nż ,
m23 = musvxg − Yż,m32 = musvxg −Nẏ, Yż = Nẏ .

musv is the mass of USVs,
xg represents the gravity center of USVs,
Iz is the rotational inertia moment.
C (νi (t)) denotes as the Koch force matrix;

C (νi (t)) =

 0 0 c13
0 0 c23

−c13 −c23 0

 ,

where c13 = −m22viy (t) − 1/2 (m23 +m32)viz (t) , c23 =
m11vix (t).

D (νi (t)) denotes as the hydrodynamic damping matrix,
specific definitions are given below:

D (νi (t)) =

d11 0 0
0 d22 d23
0 d32 d33

 ,

where

d11 = −Xx −X|x|x |vix (t)| −X|x|xxv
2
ix (t) ,

d22 = −Yy − Y|y|y |viy (t)| − Y|z|y |viz (t)| ,
d23 = −Yz − Y|y|z |viy (t)| − Y|z|z |viz (t)| ,
d32 = −Ny −N|y|y |viy (t)| −N|z|y |viz (t)| ,
d33 = −Nz −N|y|z |viy (t)| −N|z|z |viz (t)| .

Let

Cg = −J (ηi (t))M
−1C

(
J−1 (ηi (t)) vi (t)

)
J−1 (ηi (t)) ,

Dg = −J (ηi (t))M
−1D

(
J−1 (ηi (t)) vi (t)

)
J−1 (ηi (t))

+ J̇ (ηi (t)) J
−1 (ηi (t)) ,

J (ηi (t)) vi (t) = vi (t) , ηi (t) = xi (t) .

Then the system (1) can be rewritten as:

ẋi(t) = vi(t)

v̇i(t) = J (xi(t))M
−1τi (t) + Cg (xi(t), vi(t)) vi(t)

+Dg (xi(t), vi(t)) vi(t).

(2)

Define

fi0 (xi (t) , vi (t)) = Cgvi (t) +Dgvi (t) ,

gi0 (xi (t) , vi (t)) = J (xi (t))M
−1, τi (t) = sat (ui (t)) .

Then the equation (2) is given by:

ẋi (t) = vi (t)

v̇i (t) = fi0 (xi (t) , vi (t)) + gi0 (xi (t) , vi (t)) sat (ui (t)) ,
(3)

where sat (ui (t)) denotes as a control constrained by the input
saturation function, as defined by:

sat (ui (t)) =

{
ui (t) |ui (t)| ≤ u∗

i (t)
sign (ui (t))u

∗
i (t) |ui (t)| > u∗

i (t)
(4)

where u∗
i (t) denotes as saturation threshold, sat (ui (t)) can

be expressed through the smooth function ζ (ui (t)) as:

ζ (ui (t)) =

ūi (t) tanh
(

ui(t)
ūi(t)

)
ui (t) ≥ 0

ui (t) tanh
(

ui(t)
ui(t)

)
ui (t) < 0

(5)

where ūi (t) and ui(t) are the upper and lower bounds of the
control input ui (t), tanh (ui (t)) =

eui(t)−e−ui(t)

eui(t)+e−ui(t)
.

Define the error function as:

|µ (ui (t))| = |sat (ui (t))− ζ (ui (t))| ≤ µ̄i (t) . (6)

According to the above equation, the nonlinear multi-USV
systems (3) can obtain that:

ẋi(t) = vi(t)

v̇i(t) = fi0 (xi(t), vi(t)) + gi0 (xi(t), vi(t)) (ζ (ui(t))

+ µ (ui(t))) .

(7)

Use the median theorem:

ζ (ui (t)) = ζi (u
o
i (t))

+ (ui (t)− uo
i (t))

∂ζ (ui (t))

∂ui (t)

∣∣∣∣ui (t) = uη
i (t) ,

(8)

where uη
i (t) = ηui (t) + (1− η)uo

i (t) , 0 < η < 1, choose
uo
i (t) = 0, then ζ (0) = 0. ζ (ui (t)) can be represented as:

ζ (ui (t)) = ui (t)
∂ζ (ui (t))

∂ui (t)

∣∣∣∣ui (t) = uη
i (t) .

(9)



Define

gi (xi(t), vi(t)) = gi0 (xi(t), vi(t))
∂ζ (ui (t))

∂ui (t)

∣∣∣∣ui(t) = uη
i (t)

fi (xi(t), vi(t)) = gi0 (xi(t), vi(t))µ(ui) + fi0 (xi(t), vi(t)) .

After modification, the system (7) is represented as follows:

ẋi (t) = vi (t)

v̇i (t) = fi (xi (t) , vi (t)) + gi (xi (t) , vi (t))ui (t) .
(10)

The system dynamics of the leader USV is presented below:

ẋl (t) = vl (t)

v̇l (t) = fl (xl, vl, t) .
(11)

Assumption 1. The nonlinear function fi (xi (t) , vi (t)) and
the nonlinear matrix function gi (xi (t) , vi (t)) are bounded.

Assumption 2. gi (xi (t) , vi (t)) is strictly positive definite
and eigenvalues ∥λ (gi (·))∥ > χ, i = 1, . . . , n are satisfied.

Assumption 3. The speed of follower USVs and leader USV
are bounded.

Definition 1. The multi-USV systems can realize the de-
sired formation control objective given that the subse-
quent conditions are satisfied during the formation process:
lim
t→∞

∥xi (t)− xl (t)− δi (t)∥ = 0, lim
t→∞

∥vi (t)− vl (t)∥ =

0, i = 1, . . . , n. In the above relation equation, δi (t) denotes
the predetermined relative position between the ith USV and
the leader USV.

According to the leader-follower formation structure
method, the position and velocity tracking error variables
between the follower USVs and the leader USV are defined
as follows, respectively:

x̃i (t) = xi (t)− xl (t)− δi (t)

ṽi (t) = vi (t)− vl (t) ,
(12)

where x̃i (t) and ṽi (t) denote the position and velocity track-
ing error of USVs. The dynamic error of multi-USV systems
can be obtained by derivation of Eq(12):

˙̃xi (t) = ˙̃vi (t)

˙̃vi (t) = fi (xi (t) , vi (t)) + gi (xi (t) , vi (t))ui (t)− fl (xl, vl, t) .

i = 1, 2, . . . , n.
(13)

Based on the above equations, the system error equation
(13) can be obtained:

˙̃Z (t) = −
[[

0n −In
0n 0n

]
⊗ Im

]
Z̃ (t) +

[
0nm
fi (t)

]
+

[
0nm
U (t)

]
−
[

0nm
fl (xl, vl, t)

]
,

(14)

where the errors of multi-USV systems are
˙̃Z(t) =

[
˙̃xT
1 (t), . . . ˙̃x

T
n (t), ˙̃v

T
1 (t), . . . , ˙̃v

T
n (t)

]T
, the nonlinear

vector function are fi (t) =
[
fT
1 (t) , . . . , fT

n (t)
]T

,
the input of multi-USV systems are U (t) =

[
(g1 (t)u1 (t))

T
, . . . , (gn (t)un (t))

T
]T

, the input of leader

USV are fl (xl, vl, t) =
[
fT
l (t) , . . . , fT

l (t)
]T

, and ⊗ denotes
Kronecker product.

B. Basic graph theory

A graph G = {ρ,E,W} denotes communication relation-
ships between multi-USVs. Denote all USVs in the formation
as the set of non-empty nodes ρ = {ρ1, ρ2, . . . , ρn}, a set
of edges E ⊆ {(ρi, ρj) |ρi, ρj ∈ ρ}, and weighted adjacency
matrix W = [ρij] ∈ Rn×n. Each element indicates that the
nodes can correspond with each other to obtain messages from
others. The edge eij = (ρj , ρi) denotes the communication
of information flow from node ρj to node ρi. Defines the
topological neighborhood set Ni = {ρj ∈ ρ : wij ∈ w, i ̸= j}.
The adjacency matrix W = [wij ] represents the communi-
cation relationships between nodes in a graph. The element
wij denotes the edge weight of the corresponding edge Eij .
Specifically, the diagonal elements wij = 0, and the off-
diagonal elements wij > 0 indicate that there is information
flow between nodes i and j, otherwise wij = 0. Furthermore,
define the Laplace matrix L of the graph G as follow:

L = D −W,

where D = diag {d1, d2, · · · , dn} is represented by the
diagonal matrix and for the elements of the matrix with

di =
n∑

j=1

wij , j = 1, 2, · · · , n. Let the leader adjacency matrix

be defined as B = diag {b1, b2, · · · , bn}. Assuming node i
and the leader have the connectivity in the graph G, bi > 0 ,
otherwise bi = 0 .

Lemma 1. Provided that the Laplacian L = [lij ] is ir-
reducible matrix and has dimensions Rn×n, and then the
eigenvalues of matrix are positive definite, as presented by:

L̂ = L+B =

l11 + b1 · · · l1n
...

. . .
...

ln1 · · · lnn + bn


1) GPS system: GPS consists of 24 satellites, with 21 op-

erational satellites and 3 spares. Ground monitoring comprises
three main components: a master control station, injection
stations, and monitoring stations. The user segment includes
GPS receivers, data processing modules, microprocessors.
GPS signals are composed of carrier waves, pseudo-random
codes, and navigation message data codes. Each satellite uti-
lizes a reference frequency of 10.23 MHz to generate required
L1/L2 signals, data codes, and pseudorandom codes. The L1
and L2 bands in GPS are designated with carrier frequencies
of 1575.42 MHz and 1227.60 MHz. GPS is categorized into
military and civilian standards, which military signals to P -
codes and civilian signals to C/A codes.
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Fig. 1. Components of the GPS system
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Fig. 2. How GPS spoofing attacks work

2) GPS attacks: GPS attacks include GPS spoofing and
jamming attacks. The attacker generates the fake GPS signals
so that the target tracks the fake GPS signals, thereby being
deceived into an incorrect position. Consider that the commu-
nication channel between the leader USV and follower USVs
is disrupted. The position of the attacked leader xls (t) can
obtain that:

xls (t) = xl (t) +Q (t) γ, (15)

where Q (t) denotes as continuous or discrete function, γ is
denoted as a constant displacement bias. In the absence of GPS
attacks, the leader position offset γ is zero. When the leader
USV reaches the desired position, xls (t) is aligned with the
original formation alignment. When GPS attacks is initiated,
the xls (t) vector always differs from the desired position
because the vector γ always exists. Therefore, the follower
USVs are affected by xls (t) and cannot reach the desired
position. Due to the leader formation control, eventually all

follower USVs have a constant deviation from the desired
position.

Defines the relative position of the leader USV per moment
of change:

dl =

√
(xl (t+ 1)− xl (t))

T
(xl (t+ 1)− xl (t)).

The GPS attacks are indicated if at a certain point in time dl
undergoes a large number of changes above a certain threshold
φ, that is dl > φ. Due to the target position being known, the
leader USV position state is continuously adjusted by means
of correction coefficients

xlr (t) = xls (t) + krγ̃, (16)

where xlr (t) is the recovered trajectory position, kr is the
correction coefficient, and γ̃ is the correction vector.

C. Fuzzy logic system

The fuzzy logic system consists of IF-Then rules, singleton
fuzzification, centre average defuzzification. It is well-known
that the FLS has the approximation propert. The fuzzy logic
system can be represented by the following rules:

If: z1 is Al
1, z2 is Al

2, . . . , zn is Al
n,

Then: Φ1 is W l
1, Φ2 is W l

2, . . . , Φs is W l
s.

where z = [z1, z2, . . . , zn]
T ∈ Rn is the input variable,

Φ = [Φ1,Φ2, . . . ,Φs]
T ∈ Rs is the output variable, Al

i in
which i = 1, 2, . . . , n, l = 1, 2, . . . , N denote the ith fuzzy
set within the lth fuzzy rule, W l

j in which j = 1, 2, . . . , s,
l = 1, 2, . . . , N is the fuzzy set of the output variable Φ and
N is the number of fuzzy rules.

The single instance fuzzifier, the product inference and the
center average defuzzifier, Φ (z) can be expressed as:

Φ (z) =

L∑
l=1

℧l
n∏

i=1

ℑAl
i
(zi)

L∑
l=1

[
n∏

i=1

ℑ
A

(l)
i
(zi)

] , (17)

where L deontes the total number of fuzzy rules, ℧l satisfies
ℑW l(℧l) = max{ℑW l(Φ(z))|Φ(z) ∈ R}.

Let

hl (z) =

n∏
i=1

ℑAl
i
(zi)

N∑
l=1

[
n∏

i=1

ℑAl
i
(zi)

] , (18)

where ℑAl
i
(zi) is the affiliation function of the fuzzy set

Al
i, which is defined as Gaussian function. The total output

equation of the fuzzy system is given below:

Φ(z) = R∗TH (z) + ε(z),

where R∗ is the ideal weight, H (z) is the fuzzy basis
function, ε(z) is the estimation error and threshold is c.

Lemma 2. Assuming that Φ (z) is a continuous function
defined on a tight set Ξ , there exists the fuzzy logic system
satisfying the following inequality:



sup
z∈Ξ

∣∣Φ (z)−WTH (z)
∣∣ ≤ ℓ,

where ℓ is an arbitrary constant.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. Improved artificial potential field

Based on the artificial potential field theory, each follower
USVs is assumed to have the same high potential field. The
function of the repulsion field designed for collision avoidance
is described by:

Uij =

{
η
(

∥ξij∥2−ρ2
des

∥ξij∥2−ρ2
min

)2

0

ρmin < ∥ξij∥ < ρdes
∥ξij∥ > ρdes

(19)

where η is a positive coefficient, i and j denote the i/jth

of the nth USVs, ||ξij || =
√
(xi − xj)

2
+ (yi − yj)

2 for
the the Euclidean distance between USVs in the formation,
where [xi, yi]

T and [xj , yj ]
T are the positions of the individual

USVs, the ρmin and ρdes represent the upper and lower bound
through the collision avoidance region.

Define the potential function Uij between the ith USV and
the jth USV. The collision avoidance potential field force Fij

can be obtained by solving for the negative gradient:

Fij =

4η
ξij(ρ2

des−ρ2
min)(∥ξij∥

2−ρ2
des)

(∥ξij∥2−ρ2
min)

3 ρmin ≤ ∥ξij∥ ≤ ρdes

0 ∥ξij∥ > ρdes
(20)

If the actual distance dij between the ith USV and the jth
USV is greater than the desired distance ρdes, a gravitational
force will be generated to pull the two USVs closer together.
However, if dij is less than ρdes, a repulsive force is generated
to separate the two USVs. When dij tends to zero, the resultant
force will ensure that the multi-USV systems avoid collision
during the interaction motion.

Similarly, in the process of multi-USVs formation control,
the existence of obstacles must be taken into account. To mit-
igate the problem of USVs oscillation, the following potential
function for obstacle avoidance is formulated as:

Urep (Xp)

=

{
1
2Krep

(
1

ρ(Xp,Xob)
− 1

ρ0

)2

ρm (Xp,Xg) ρ (Xp, Xob) ≤ ρ0

0 ρ (Xp, Xob) > ρ0
(21)

where m is the moderating positive factor. Solving for the
negative gradient of the improved repulsive potential field, the
repulsive force can be calculated as:

Frep (Xp) = −∇Urep (Xp)

=

{
Frep1(Xp) + Frep2(Xp) ρ (Xp, Xob) ≤ ρ0

0 ρ (Xp, Xob) > ρ0
(22)

where Frep1 (Xp) and Frep2 (Xp) can be expressed as

Frep1 (Xp) = Krep

(
1

ρ (Xp, Xob)
− 1

ρ0

)
1

ρ2 (Xp, Xob)

ρm (Xp, Xg)
∂ρ (Xp, Xob)

δX

Frep2 (Xp) = −n

2
Krep

(
1

ρ (Xp, Xob)
− 1

ρ0

)2

ρm−1 (Xp, Xob)
∂ρ (Xp, Xob)

∂X
.

The improved repulsive force vector component Frep1 (Xp)
is directed from the direction of obstacles away to the USVs.
The repulsive force vector component Frep2 (Xp) is directed
from the USVs to the direction of the target position. When
n ∈ (0, 1), ρ (Xp, Xg) → 0, the repulsive component
Frep1 (Xp) → 0, the repulsive component Frep2 (Xp) → ∞.
Under the effect of gravitational force Fatt (Xp) and repulsive
force component Frep2 (Xp), even if there is an obstacle
around the target position.

B. Controller design

When attacked by GPS fake signals, the position informa-
tion xl (t) of the leader USV changes xls (t), and the attack
messages further affect the follower USVs messages. The
system dynamics of the leader USV are represented as follows:

ẋls (t) = vl (t)

v̇ls (t) = fls (xls, vl, t) .
(23)

Define the position and velocity tracking error variables
between the follower and the leader after being attacked by
GPS as follows, respectively:

x̃is (t) = xi (t)− xls (t)− δi (t)

ṽis (t) = vi (t)− vl (t) .
(24)

The error system equation (14) can be rewritten:

˙̃Zs (t) = −
[[

0n −In
0n 0n

]
⊗ Im

]
Z̃ (t) +

[
0nm
fi (t)

]
+

[
0nm
Us (t)

]
−
[

0nm
fls (xls, vl, t)

]
.

(25)

The definition of all tracking errors in the presence of GPS
attacks is given as follows:

fx
is (t) =

∑
j∈Ni

wij ((xi (t)− xj (t))− (δi (t)− δj (t)))

+ bi (xi (t)− xls (t)− δi (t)) ,

fv
is (t) =

∑
j∈Ni

wij (vi (t)− vj (t)) + bi (vi (t)− vl (t)) ,

i = 1, 2, . . . , n.
(26)

where wij denotes the elements in row i and column j of the
adjacency matrix W of the graph G. fx

is (t) and fv
is (t) are the

positional and velocity formation errors under GPS attacks,
respectively.



By using the position and velocity tracking error variables
between the follower USVs and the leader USV, the above
equation (26) is also rewritten as:

fx
is (t) =

∑
j∈Ni

wij (x̃is (t)− x̃js (t)) + bix̃is (t)

fv
is (t) =

∑
j∈Ni

wij (vi (t)− vj (t)) + biṽi (t) .

i = 1, 2, . . . , n.

(27)

The distributed formation controller is designed as follows:

uis (t) =
1

Γ

(
−hi (f

x
is (t) + fv

is (t))− R̂T
i Hi (z)

)
, (28)

where Γ is the positive gain parameter.

˙̂
W = ϖi

[
(fx

is (t) + fv
is (t))Hi − σiR̂iHi (z)

]
, (29)

where θi and σi are positive parameters.
The controller for multi-USV formation, collision and ob-

stacle avoidance are designed as follows:

uis (t) =
1

Γ

(
− hi (f

x
is (t) + fv

is (t))− R̂T
i Hi(z)

−
m∑
i=1

∇xiUrep −
n∑

j=1,i̸=j

∇xiUij

 .

(30)

C. Stability analysis

Theorem 1. Consider the system described, and suppose
that Assumption 1, Assumption 2, Assumption 3 hold. If the
inequality is satisfied by the design parameter ξ ≥ a+b−mi,
where a , b and mi are positive parameters, then the control
strategy (28) ensures convergence of the follower USVs to their
desired positions.

The Lyapunov candidate function is defined as follows:

V (t) =
1

2
Z̃T
s (t)

([
2L̄q L̄q

L̄q L̄q

]
⊗ Im

)
Z̃s (t)

+
1

2

n∑
i=1

ϖi
−1R̃T

i (t) R̃i (t),

(31)

where P =

[
2L̄q L̄q

L̄q L̄q

]
, L̄q = Lq + Bq , N =

[
0n In
0n 0n

]
,

R̃i = R̂ − R∗ is the error between the ideal and estimated

weights of the the fuzzy logic system.

V̇ (t) =
1

2
˙̃ZT
s (t) (P ⊗ Im) Z̃s (t) +

1

2
Z̃T
s (t) (P ⊗ Im) ˙̃Zs (t)

+

n∑
i=1

ϖ−1R̃T
i (t)

˙̂
R (t)

=
1

2
Z̃T
s (t)

([
PTN +NTP

]
⊗ Im

)
Z̃s (t)

+

n∑
i=1

ϖ−1R̃T
i (t)

˙̂
R (t)

+ Z̃s (t) [P ⊗ Im]

[
0nm

fi (t) + Us (t)− fls (xls, vl, t)

]
= Z̃T

s (t)

([
0n L̄q

L̄q L̄q

])
Z̃s (t) +

n∑
i=1

ϖ−1R̃T
i (t)

˙̂
R (t)

+

n∑
i=1

(fx
is (t) +fv

is (t))
T
Φi (t)

−
n∑

i=1

(fx
is (t) +fv

is (t))
T
fls (xls, vl, t)

+

n∑
i=1

(fx
is (t) +fv

is (t))
T
gi (xi (t) , vi (t))uis (t) .

(32)
Approximating nonlinear dynamics of systems with the

fuzzy logic system:

V̇ (t) = Z̃T
s (t)

([
0n L̄q

L̄q L̄q

])
Z̃s (t)

+

n∑
i=1

(fx
is (t) +fv

is (t))
T (

R∗T
i (t)Hi (zi (t)) + εi (zi (t))

)
−

n∑
i=1

(fx
is (t) +fv

is (t))
T
fls (xls, vl, t) +

n∑
i=1

(fx
is (t) +fv

is (t))
T

gi (xi (t) , vi (t))uis (t) +

n∑
i=1

ϖ−1R̃T
i (t)

˙̂
R (t) .

(33)
Introducing the adaptive law ˙̂

Ri (t) and the controller
uis (t), the formula is represented as:

V̇ (t) = Z̃T (t)

([
0n L̄q

L̄q L̄q

])
Z̃ (t)

−
n∑

i=1

(fx
is (t) +fv

is (t))
T
(fls (xls, vl, t)− εi (zi (t)))

−
n∑

i=1

mi∥fx
is (t) + fv

is (t)∥
2 −

n∑
i=1

ϖiR̃
T
i (t)R̂ (t) .

(34)
By assumption and Young’s inequality, one gets:

−(fx
is (t) + fv

is (t))
T
fls (xls, vl, t) ≤ a∥fx

is (t) + fv
is (t)∥

2 χ

4a
(35)

εi (zi (t)) f
x
is (t)+ fv

is(t)
T ≤ b∥fx

is (t) + fv
is (t)∥

2
+

c2

4b
, (36)



where a, b, and c are constants, by substitution of equations,
one gets:

V̇ (t) = Z̃T
s (t)

([
0n L̄q

L̄q L̄q

])
Z̃s (t)

+

n∑
i=1

(a+ b−mi) ∥fx
is (t) + fv

is (t)∥
2

+

n∑
i=1

(
χ

4a
+
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4b

)
−

n∑
i=1

ϖiR̃
T
i (t)R̂ (t) .

(37)

According to the fact −jk ≤ − 1
2j

2 + 1
2 (j − k)

2
, one gets:

−ϖiR̃
T (t) R̂i (t) ≤

1

2
ϖi∥R∗

i (t)∥
2 − 1

2
ϖi

∥∥∥R̃i (t)
∥∥∥2. (38)

Take ξ ≥ a+b−mi, which can be obtained by transforming
the above result into the inequality:
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According to the linear matrix inequality
ξiL̄

2
q −

(
ξiL̄

2
q − L̄q

)
= L̄q > 0, ξiL̄

2
q − L̄q > 0, one gets:[
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q
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Further derivation leads to:

V̇ (t) ≤ −Z̃T (t) ([ξκ− Ω]⊗ Im) Z̃ (t)

−
n∑

i=1

1
2ϖi

∥∥∥R̃i (t)
∥∥∥2 + Λ̄i,

(40)

where κ =

[
L̄2
q L̄2

q

L̄2
q L̄2

q

]
, Ω =

[
0n L̄q

L̄q L̄q

]
. Let ξi >

λN
max+

ς
2λ

M
max

λκ
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,

where λκ
min is the minimum eigenvalue of the matrix κ, λN

max

is the maximum eigenvalue of the matrix N , and λP
max is

the maximum eigenvalue of the matrix P . The value ς =
min {σ1m1, . . . , σnmn}.

V̇ (t) ≤ − ς

2
Z̃T (t) [M ⊗ Im] Z̃ (t)− ς

2

n∑
i=1

∥∥∥R̃i (t)
∥∥∥2 + Λ̄i

≤ −ςV (t) + Λ̄i

(41)
The derivation is obtained from this:

V (t) ≤ V (0) e−ςt +
Λ̄

ς

(
1− e−ςt

)
. (42)

Eventually, the multi-USV systems is stabilized through a
series of parameter adjustments. Meanwhile, it shows that
the setup of the formation, collision and obstacle avoidance
controller of the multi-USV systems under GPS attacks can
make the formation converge to the desired position.

IV. SIMULATION

In this section, the effectiveness of the proposed formation
control strategy is verified through a numerical simulation
example. There are four USVs in the simulation, including
one leader USV and three follower USVs, as shown in
Fig.3. The model of the nonlinear dynamics for multi-USVs
as described by equation (10). The mass of the USV is
musv = 18kg, and the dimensions of the USVs are 2.0m
long and 0.8m wide. The state of the leader USV is set to be:
xl = [−5; 5; pi/4; ], vl = [0.1; 0.1; 0; ], and the initial state of
the USVs is x1 = [0.5; 2.5; pi/2; ], x2 = [−4; 7.5; pi/2; ], and
x3 = [−11; 2.5; pi/2; ]. In addition, the initial velocity is set
to 0 for follow USVs.

The adjacent matrix W and the Laplace matrix L are shown
below, matrix B = [0, 0.9, 0].

W =

 0 0 0.7
0.6 0 0.4
0 1 0

 , L =

 0.7 0 −0.7
−0.6 1 −0.4
0 −0.8 0.8



1

USV1

USV3

USV2 leader

Fig. 3. Communication topology for 3 USVs and 1 leader

The mass, centrifugal and Coriolis forces, and the damping
matrix for each USVs can be calculated as follows.

TABLE I
MATRIX COEFFICIENT FOR THE USV

parameter value parameter value parameter value

Iz 1.70 Y |z|z -2.00 N|y|z -4.00
xg 0.04 Y|y|y -36.00 N|z|z -4.00
Xx -0.72 Y|y|z 2.00 Xẋ -2.00

X|x|x -1.30 Y|z|y -3.00 Yẏ -10.00
Xxxx -5.80 Ny 0.10 Yż 0.00
Yy -0.86 Nz -6.00 Nẏ 0.00
Yz 0.10 N|y|y 5.00 Nż -1.00

M =

22 0 0
0 19 0.72
0 0.72 2.7

 ,

C =

 0 0 −19 |viy| − 0.72 |viz|
0 0 20 |vix|

19 |viy|+ 0.72 |viz| −20 |vix| 0

 ,



D =

0.72 + 1.3 |vix|+ 5.8v2ix
0
0

0
0.86 + 36 |viy|+ 3 |viz|
−0.1− 5 |viy|+ 3 |viz|

0
−0.1− 2 |viy|+ 2 |viz|
6 + 4 |viy|+ 4 |viz|

 .

The weight update law parameters are ϖi = 10, σi= 10.
The control law parameters are set to Γ = 1, i = 1, . . . , 3.
The minimum safe encounter distance and desired distance
are ρmin= 1.2, ρdes= 1.5. The formation pattern is described
as ∆1 = [4; 0; 0; ], ∆2 = [0;−4; 0; ], ∆3 = [0; 4; 0; ]. Two
static obstacles are centered at [14, 37], [20, 24]. The gain co-
efficients η = 1, Krep = 10, Kr =0.6. The continuous function
Q (t) = t−ts

10 , ts denotes the time of GPS attacks. The position
Offset γ = [0.05; 0.05; 0; ], the positional correction vector
γ̃ = [0.014;−0.022; 0; ]. The position threshold φ = 0.02.
The simulation time is set to [0, 49s].

The control inputs are bounded by:−350N ≤ ui (1) ≤ 350N
−350N ≤ ui (2) ≤ 350N
−200N ≤ ui (3) ≤ 150N.

Fig.4 shows the trajectories of one leader USV and three
USVs whether or not they were affected by GPS attacks. The
dotted line indicates the formation trajectory before without
GPS attacks and the solid line indicates the formation trajec-
tory after GPS attacks. The multi-USV systems is affected by
GPS attacks, the leader USV position state error exceeds a
certain threshold φ of 0.02 at 15 and 21s, the leader USV
position is drastically shifted, and the formation is shifted. At
31s it starts to recover the leader trajectory and finally reaches
the same target point as the formation trajectory before GPS
attacks. The follow multi-USV systems can effectively track
the target trajectory and maintain a great formation.

Fig. 4. The multi-USV systems formation trajectory before and after GPS
attacks
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Fig. 5. The multi-USV systems formation control for collision avoidance
under GPS attacks

Fig.5 shows the formation control strategy considering
obstacle and collision avoidance for multi-USV systems under
GPS attack. The position and velocity tracking error of the
multi-USV systems in the presence of obstacles are shown in
Fig.6 and Fig.7. Eventually, all the tracking errors converge
to a close vicinity of 0, which means that all USVs remain
at the desired position. As seen from Fig.8, given the rela-
tive distances between the multi-USVs exceed the minimum
safe distance, collision between the USVs will not occur. In
the illustration, ∥d12∥, ∥d13∥, and ∥d23∥ denote the relative
distances between USV1 and USV2 , USV1 and USV3, and
USV2 and USV3, respectively.
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Fig. 6. The position tracking errors of multi-USVs under GPS attacks
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Fig. 7. The speed tracking errors of multi-USVs under GPS attacks
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As can be seen in Fig.9, given the distance between the
USVs and obstacles is greater than its radius, it is demon-
strated that there is no collision. The legend in Fig.9 illustrates
the distance between USVs and obstacles. Fig.10 shows the
dynamics of control inputs in multi-USV systems subjected
to input saturation. The control inputs fluctuated slightly as a
result of GPS attacks and the avoidance of obstacles. When the
formation returned to normal, the system gradually stabilized.

V. CONCLUSION

A formation control method for USV systems under GPS
spoofing attacks is proposed. In addtion, an improved APF
method is utilized to guarantee that the multi-USV systems
avoid obstacles and keep a collision-free distance. Finally, sim-
ulation examples demonstrate the effectiveness of the proposed
formation control method.
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