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Abstract

Recent camera-based 3D semantic scene completion (SSC)
methods have increasingly explored leveraging temporal cues
to enrich the features of the current frame. However, while
these approaches primarily focus on enhancing in-frame
regions, they often struggle to reconstruct critical out-of-
frame areas near the sides of the ego-vehicle, although pre-
vious frames commonly contain valuable contextual infor-
mation about these unseen regions. To address this limita-
tion, we propose the Current-Centric Contextual 3D Fusion
(C3DFusion) module, which generates hidden region-aware
3D feature geometry by explicitly aligning 3D-lifted point
features from both current and historical frames. C3DFusion
performs enhanced temporal fusion through two comple-
mentary techniques—historical context blurring and current-
centric feature densification—which suppress noise from in-
accurately warped historical point features by attenuating
their scale, and enhance current point features by increasing
their volumetric contribution. Simply integrated into standard
SSC architectures, C3DFusion demonstrates strong effective-
ness, significantly outperforming state-of-the-art methods on
the SemanticKITTI and SSCBench-KITTI-360 datasets. Fur-
thermore, it exhibits robust generalization, achieving notable
performance gains when applied to other baseline models.

Introduction

3D semantic scene completion (SSC) (Song et al. 2017)
has recently garnered significant attention as a fundamental
3D perception task, particularly in applications such as au-
tonomous driving (Hu et al. 2023). SSC aims to simultane-
ously reconstruct voxelized 3D geometry and predict seman-
tic labels for each voxel—an inherently challenging task, es-
pecially for real-world deployment. Existing SSC methods
are typically categorized by input modality. LIDAR-based
methods (Xia et al. 2023; Cheng et al. 2021; Yan et al.
2021; Yang et al. 2021) have demonstrated superior perfor-
mance and thus become the dominant paradigm; however,
their widespread adoption is hindered by the high cost and
limited scalability of LiDAR sensors. In contrast, camera-
based methods have recently gained momentum, with rapid
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Figure 1: Existing temporal fusion models struggle to com-
plete out-of-frame geometry in the current frame. For exam-
ple, HTCL-S (Li et al. 2024a), a recent method that performs
temporal fusion via 2D feature warping, fails to recover the
car on the left side despite its visibility in previous frames,
resulting in performance comparable to that of the single-
frame-based CGFormer (Yu et al. 2024).

advances significantly narrowing the performance gap com-
pared to their LIDAR-based counterparts.

Boosted by the release of the SemanticKITTI bench-
mark (Behley et al. 2019), camera-based SSC methods (Li
et al. 2023b; Huang et al. 2023; Zhang, Zhu, and Du 2023;
Miao et al. 2023; Jiang et al. 2024) have been actively ex-
plored, driving continued progress in this field. In particu-
lar, given the temporally continuous nature of input in driv-
ing scenarios, numerous recent approaches (Li et al. 2024a;
Ye et al. 2024; Li et al. 2024b; Wang et al. 2025a; Lu
et al. 2025) leverage sequences of past frames to enrich the
current frame’s feature representation and improve perfor-
mance. However, while these methods primarily focus on
in-camera-view geometry from the current frame, they tend
to overlook out-of-camera-view regions—blind spots that
are often located near the ego-vehicle and therefore require
especially precise perception for safe navigation. Although
past frames provide broader spatial context around the cur-
rent viewpoint, existing methods still rely heavily on extrap-
olating from visible geometry to infer these blind spots, of-
ten resulting in limited accuracy (see Figure 1).

In this paper, we propose an intuitive yet effective tempo-
ral geometry fusion method, Current-Centric Contextual 3D
Fusion (C3DFusion), which addresses the aforementioned
challenge by explicitly integrating historical and current fea-
tures in 3D space. Specifically, we map 2D features from all
frames directly onto their corresponding lifted 3D points via
backprojection, and align the lifted point features from his-



torical frames to the current frame’s metric space through
geometric warping using known camera poses. To effec-
tively fuse the historical geometry with the current geometry
while mitigating geometric discrepancies between them, we
introduce two complementary techniques: historical context
blurring and current-centric feature densification. The for-
mer attenuates the scale of historical point features accord-
ing to their depth, reducing the influence of potentially inac-
curate geometry arising from distance-dependent depth esti-
mation errors. The latter densifies the current lifted points by
interpolating over the corresponding 2D feature and depth
maps prior to backprojection, thereby enhancing their volu-
metric contribution to the fused geometric representation.
Our extensive experiments demonstrate the effectiveness
of the proposed C3DFusion both quantitatively and qual-
itatively, particularly against existing camera-based SSC
methods that incorporate temporal fusion. Upon integra-
tion into a standard camera-based SSC architecture, our
method achieves state-of-the-art (SOTA) performance, with
IoU and mloU scores of 47.62 and 18.98 on SemanticKITTI,
and 49.28 and 21.74 on SSCBench-KITTI-360 (Li et al.
2024c), respectively, significantly outperforming prior ap-
proaches. Furthermore, incorporating C3DFusion into other
baseline models yields consistent performance improve-
ments, demonstrating its strong generalization capability.
Our key contributions are as follows:

¢ To the best of our knowledge, we are the first to primar-
ily address out-of-camera-view completion via temporal
cues in camera-based SSC—a long-overlooked yet cru-
cial factor in safety-critical driving applications.

* We propose a simple yet effective temporal geome-
try fusion method, C3DFusion, that performs perspec-
tive alignment between explicitly point-mapped histori-
cal and current frame features in the 3D metric space of
the current frame.

» To further enhance temporal fusion, we introduce two
refinement techniques—historical context blurring and
current-centric feature densification—that reduce noise
caused by geometric inaccuracies in warped historical
features and improve geometric fidelity by emphasizing
information from the current frame.

e Built on C3DFusion, our camera-based SSC model
achieves strong SOTA performance on the Se-
manticKITTI and SSCBench-KITTI-360 benchmarks,
while demonstrating robust generalization across diverse
existing architectures.

Related Work

3D Semantic Scene Completion Since the introduction
of the SSC task, early methods (Chen et al. 2020; Li
et al. 2020; Zhang et al. 2018) focused primarily on in-
door environments, using datasets such as NYUv2 (Sil-
berman et al. 2012). The release of the large-scale Se-
manticKITTI benchmark subsequently catalyzed research
on outdoor SSC, sparking a surge of LiDAR-based ap-
proaches (Roldao, De Charette, and Verroust-Blondet 2020;
Cheng et al. 2021; Yan et al. 2021; Yang et al. 2021;
Xia et al. 2023), which have since become the dominant

paradigm. Recently, camera-based methods have gained mo-
mentum due to the affordability and rich contextual in-
formation offered by RGB sensors. MonoScene (Cao and
De Charette 2022) projects 2D features along optical rays
for voxel-wise prediction, while TPVFormer (Huang et al.
2023) lifts features onto multiple planes to capture diverse
spatial perspectives. OccFormer (Zhang, Zhu, and Du 2023)
adopts a Lift-Splat (LSS)(Philion and Fidler 2020)-like strat-
egy to construct volumetric context. VoxFormer (Li et al.
2023b) introduces an MAE-like (He et al. 2022) architec-
ture with deformable attention, and Symphonies (Jiang et al.
2024) models instance-level representations via learnable
queries. SOTA models such as CGFormer (Yu et al. 2024),
ScanSSC (Bae, Ha, and Kim 2025), and L2COcc (Wang
et al. 2025b) further combine LSS-style feature lifting with
deformable attention to enhance semantic reasoning. Mean-
while, the recent release of the Occ3D-nuScenes bench-
mark (Tian et al. 2023) has spurred a parallel line of re-
search (Huang et al. 2021; Xu et al. 2024; Ma et al. 2024; Li
et al. 2023c; Kim et al. 2025), which leverages multi-camera
systems as input. In this work, we focus on the single-view
RGB setting and aim to overcome its limited field of view
by leveraging temporal cues, while proposing an alternative
to the prevalent LSS-style feature lifting paradigm.

Temporal Fusion for Camera-based 3D Perception A
widely adopted strategy in 3D perception tasks such as ob-
ject detection is to perform temporal fusion directly in the
BEYV feature space, either via attention mechanisms (Li et al.
2024d) or by warping and concatenating features across time
steps (Huang and Huang 2022; Wang et al. 2024; Yang
et al. 2023). In the context of SSC, various temporal fu-
sion techniques have been proposed. VoxFormer-T (Li et al.
2023b) and SGN (Mei et al. 2024) extend attention mecha-
nisms to integrate features across multiple frames. HTCL-
S (Li et al. 2024a) and Hi-SOP (Li et al. 2024b) utilize
contextual pattern affinity to temporally align features from
current and past RGB frames within the 2D feature space.
FlowScene (Wang et al. 2025a) employs optical flow be-
tween adjacent frames to guide occlusion correction and im-
prove voxel refinement. CVT-Occ (Ye et al. 2024), on the
other hand, enhances the volumetric representation of the
current frame by constructing a cost volume across temporal
frames, while CF-SSC (Lu et al. 2025) takes a different ap-
proach by synthesizing future frames from past observations
to better recover occluded regions. These approaches largely
concentrate on regions within the current camera’s field of
view and often neglect the reconstruction of out-of-camera-
view areas. In contrast, our method explicitly targets these
unseen regions by projecting 3D points from both historical
and current frames into a unified target space and processing
them in a single pass to generate coherent voxel features.

Method
Overview
Given a sequence of n RGB images I = {I;
t=t—n+1,...,t} withresolution (H, W), we aim to pre-

dict voxel-wise semantic class probabilities at time ¢ within
a voxelized 3D space V € RX*XYXZXP ‘where (X,Y, Z)

c RHXWXS |



Context |

C3DFusion

A
Image :

Encoder : Net
1

(
I
| Temporal 3D

1
Depth Dﬁ%tth ! Point Feature
Estimator |, D i Alignment
1 N

N

Pixel
Backprojection

Linear Layer

[ Bilinear Interpolation

(

)
I
I

v
)

t Current-CentricFeature Densification

Self-Attention
3D Local and
Global Encoder
Prediction
Head

o
Qo
©
£
S
)
(=]
[m]
™

3D Deformable
Cross-Attention

pt
Ft

[ Perspective Alignment |

Figure 2: An overview of our model, highlighting the proposed C3DFusion. The symbol ‘@’ denotes feature concatenation.

denotes the spatial resolution of the volume and P is the
number of semantic classes, including the empty class. Our
model follows the standard architectural paradigm of mod-
ern camera-based SSC (Jiang et al. 2024; Yu et al. 2024;
Li et al. 2024a; Wang et al. 2025b), consisting of three
main components: viewing transformation, voxel process-
ing, and semantic prediction. Among these, the proposed
C3DFusion primarily focuses on the viewing transformation
stage, which plays a pivotal role in overall SSC performance,
as it performs both 2D-to-3D lifting and temporal geometry
fusion. An architectural overview is provided in Figure 2.

C3DFusion

Temporal 3D Point Feature Alignment In camera-based
SSC, mapping 2D image features into 3D space is a fun-
damental step. To achieve this, numerous methods adopt
backprojection techniques in conjunction with off-the-shelf
depth estimators. Early methods (Li et al. 2023b; Jiang et al.
2024) primarily use the resulting 3D points as voxel propos-
als for cross-attention with 2D image features. More recent
methods (Zhang, Zhu, and Du 2023; Yu et al. 2024; Wang
et al. 2025b) further advance this process by constructing
volumetric geometry using the LSS strategy, which effec-
tively generates a frustum-shaped dense feature volume in
3D space. Since our approach targets temporal alignment in
3D space, a natural extension would be to apply temporal
fusion directly to such volumetric features. However, we hy-
pothesize that when extended across multiple frames, these
sparsely densified and long-tailed features introduce geo-
metric noise that ultimately degrades semantic prediction
accuracy—an effect we quantitatively validate in our exper-
iments. To handle this issue, we instead adopt a strategy that
directly maps 2D image features onto 3D lifted point clouds
from both historical and current frames, and appropriately
aggregates them with a focus on the current perspective.
From the input image sequence I, we extract 2D image
features F = {F; € R¥ *W'xC} and corresponding depth
maps D = {D; € R7*W} using an image encoder and
a pretrained depth estimator, where (H', ') denotes the

spatial resolution of the features and C' is the feature di-
mension. Using the depth maps with known camera param-
eters, each image pixel is backprojected into 3D space to
obtain a set of point clouds P = {P; € RIW>3} where
each point cloud is defined in its corresponding metric 3D
coordinate system. To obtain corresponding point features
Frt = {F ¢ RAWXCY we first apply a linear layer to
each feature map F';, followed by bilinear interpolation to
match the resolution of the depth maps, as follows:

F?" = Flatten(Bilinear(Linear(F;), (H,W))), (1)
where Bilinear(+, (a,b)) denotes bilinear interpolation to
resolution (a,b), and Flatten(-) flattens the spatial dimen-
sions of the feature map.

Given the relative poses derived from the extrinsic matri-
ces, the historical points {P;_,11,...,P;_1} are warped
into the current frame’s coordinate system, resulting in
{Pi—n+1,...,Ps_1}, for fusion with the current points P.
Instead of directly merging them, we propose two tech-
niques to improve the quality of the fused geometry: histori-
cal context blurring and current-centric feature densification.

Historical Context Blurring Assuming the ego-vehicle
moves continuously forward, the unfiltered warped histor-
ical points that remain within the current coordinate system
tend to originate from farther regions in the original camera
view—since nearer regions have already been passed—and
therefore typically have larger depth values. Since we use
backprojection based on estimated depth maps, the accu-
racy of the lifted 3D geometry inherently depends on the
quality of the depth estimator, which typically degrades at
greater depths (Poggi et al. 2020). To mitigate geometric
discrepancies arising from this limitation, we apply a reg-
ularization that scales the magnitude of historical point fea-
tures inversely proportional to their estimated depth values.
Specifically, we apply min-max normalization to each his-
torical depth map {D¢_,, 11, ..., D;_1 } independently, sub-
tract the normalized values from 1, and employ the resulting



values as per-point weights w; € R¥*W in the range [0, 1]:
w; = 1 — MinMax(D;), )

where MinMax(-) denotes min-max normalization. By
element-wise multiplying these weights with the point fea-
tures Ff t, we obtain the rescaled features Ff t, which are fi-

nally associated with their corresponding warped points P;:
F' = w; 0 FY', 3)
where © denotes element-wise multiplication.

Current-Centric Feature Densification For in-camera-
view regions of the current frame, there is substantial over-
lap with preceding frames, resulting in numerous points
within these areas in the fused 3D space. However, since
each frame contributes a fixed number of points equal
to the image grid size HW, the influence of the current
frame’s features may become diluted during temporal ag-
gregation—despite their greater temporal relevance. To em-
phasize the current frame’s contextual information in these
regions, we increase the density of its point cloud by bilin-
early interpolating the point feature F? " and depth map D,

prior to backprojection, yielding densified current points Py:
D, = Bilinear(D,, (H, W)), “4)
F"" = Flatten(Bilinear(F*' "¢ (H, W))),  (5)

where FP/ 7€ denotes FP* rearranged into its original spa-
tial grid form (H, W, C") before interpolation. By default,

we set the upsampling resolution to (H, W) = (2H, 2W).

Voxel Aggregation Given the temporally aligned point
clouds from multiple frames, we define the unified point set

as P = Uf: t—ntl P;, and the corresponding set of refined
t

point features as F** = J;_,  , F'. We then discard any
points that fall outside the predefined spatial boundaries of
the current target voxel grid. The remaining points are vox-
elized into the volume features V/ € RX'xY'xZ'xC’ For
each voxel at position (x, y, z) in V', its feature is computed
by summing all point features within the voxel and dividing
by the number of frames n as:

s~ f;, ifv>0
V/ — n j=1"7 6
(z,y,2) {0’ o= 0 (6)

where v is the number of points falling into the voxel, and
{f1,...,£,} C FP" are the associated features.

MAE-like Voxel Refinement Following the milestone
paradigm of voxel proposal-based refinement (Li et al.
2023b; Jiang et al. 2024; Yu et al. 2024; Wang et al. 2025b),
initially occupied voxels in V’ first undergo cross-attention
to supplement lifted features with additional 2D context,
while unoccupied voxels are refined via self-attention to
extrapolate missing regions. As we use 3D deformable at-
tention (Li et al. 2023a) for the cross-attention stage, cur-
rent 2D image feature F; and depth map D; are passed
through additional context and depth networks (Zhang, Zhu,

and Du 2023; Yu et al. 2024; Wang et al. 2025b), yielding
Foross € R XW'XC and Dyyoss € RE XW'XB where B de-
notes the number of discretized depth bins. These are then
fed into the cross-attention module, whose output is subse-
quently processed by the self-attention module as follows:

V/ = Deformcross(vl7 FCTOSS7 MCTOSS? DCrOSS)7 (7)

Cross
V!¢ = DeformSelf( V., ., Vi osss Maelt), (8)

where DeformCross(-, -, -, ) and DeformSelf(-, -, -) denote
3D deformable cross- and self-attention modules, taking
query, key-value, and attention mask as inputs. DeformCross
additionally leverages discretized depth probability. M oss
and M,r are binary masks indicating the occupied and un-
occupied voxels in V', respectively.

Voxel Processing

Once the viewing-transformed voxel feature V. is ob-
tained, we further process it using a voxel backbone network
to capture geometric patterns across multiple spatial scales
within the voxel space. For this stage, we adopt the voxel
processing architecture from CGFormer, a recent approach
in single-frame camera-based SSC.

Specifically, given V., the voxel processing network is
divided into two branches: a voxel-based branch serving as
a local encoder implemented with a 3D ResNet (He et al.
2016), and a TPV-based branch serving as a global encoder
implemented with a 2D Swin Transformer (Liu et al. 2021):

V! . = ResNet3D(Vi%), 9)
Vipw = {Swin (Pool(V{y, dim)) | dim € {zy,yz, zz}},
(10)

where Pool(-) denotes a max-pooling operation along the
specified dimension, resulting in a 2D feature map on the
corresponding plane.

The outputs V', € RXXY'*xZ'xC" gnq VI =~ =

VOX tpv

{V)/(y c RXIXY/XlXC/,V;Z c Rle/xZ’xC’7V;x c
RX'*x1xZ ,XC,} are aggregated via weighted summation to
produce the final voxel feature V, where the weight W €
RX'XY'xZ"x4 ig generated from V/ _ using a linear layer
followed by a softmax along the channel dimension:

W = Softmax (Linear(V,)), (11)
4

V=> W,0V,, (12)
k=1

where W), € RX'XY'xZ'x1 i the k-th slice of W, and
V. is one of the intermediate voxel features from the set
{Viox: Vi Vizs Vig-

Xy?

Semantic Prediction

The processed 3D feature volume V is finally fed into the
semantic prediction head, which consists of a 3D convo-
lutional layer, followed by normalization and a linear pro-
jection. This produces voxel-wise class logits V9% ¢
RX'*Y'xZ'*P Tq obtain the final semantic prediction vol-
ume V, the logits V!°9% are first upsampled via trilinear



interpolation and then passed through a softmax function.
This process can be summarized as:

viogit — Linear(Norm(Conv3D(\A/')))7 (13)
V = Softmax (Trilinear(V°9" (XY, Z))), (14)

where Trilinear(, (a, b, ¢)) denotes trilinear interpolation to
resolution (a, b, ¢).

Training Loss

Following prior works (Yu et al. 2024; Bae, Ha, and Kim
2025; Wang et al. 2025b), we employ a combination of
four losses: cross-entropy loss L., affinity losses £7-7, and
L3¢ and depth loss £4. The total loss £ is defined as:

scal?

L= )\ce»cce + /\geo £geol + \sem psem + Adﬁdy (15)

scal’™ sca scal ~scal
where A\ce = A900) = X3¢ =1, and A\q = 0.001.
Experiments

Experimental Settings

Datasets We conduct experiments on two widely
used SSC benchmarks: SemanticKITTI and SSCBench-
KITTI360. SemanticKITTI consists of 22 outdoor driving
scenes, offering both LiDAR sweeps and stereo RGB
images. It is partitioned into 10 training scenes, 1 validation
scene, and 11 test scenes. The ground truth voxel grid has a
resolution of 256 x 256 x 32, covering a spatial extent of
51.2m x 51.2m x 6.4m, meaning each voxel corresponds
to a volume of 0.2m x 0.2m x 0.2m. In total, 21 semantic
classes are defined: 19 semantic categories, 1 empty class,
and 1 unknown class. SSCBench-KITTI360 shares the same
spatial coverage and ground truth voxel grid resolution as
SemanticKITTI. The dataset comprises 9 driving scenes,
partitioned into 7 for training, 1 for validation, and 1 for
testing. In total, 20 semantic classes are defined, including
18 semantic categories, 1 free class, and 1 unknown class.

Metrics Following widely adopted practices, we employ
Intersection over Union (IoU) and mean IoU (mloU) as
quantitative evaluation metrics: IoU measures class-agnostic
scene completion accuracy, while mloU captures class-
specific SSC performance.

Performance Comparisons

Quantitative Results The quantitative performance com-
parison between our proposed model and existing methods
on the SemanticKITTI benchmark is presented in Table 1.
The results clearly demonstrate the effectiveness of our ap-
proach, which achieves SOTA performance with an IoU of
47.62 and an mloU of 18.98, significantly surpassing previ-
ous methods on both metrics. We attribute this performance
gain to the enhanced completion of out-of-camera-view re-
gions—an area that constitutes the core focus of this work.
To verify this, we separately evaluate performance on these
regions, as shown in the rightmost columns of the table. Our
model achieves particularly notable improvements in these
challenging areas, reaching an IoU of 44.37 and an mIoU of
17.17, while other methods perform significantly worse on

the same regions. These results validate our core hypoth-
esis that conventional methods underestimate out-of-view
(OOV) geometry, which our method successfully completes.

In addition, to demonstrate the generalizability of our
method, we report results on the SSCBench-KITTI360
benchmark in Table 2. Our model again achieves strong
SOTA performance, with an IoU of 49.28 and an mloU
of 21.74, while also delivering significant improvements in
OOV regions, achieving 52.41 IoU and 17.17 mloU. These
results further exhibit the effectiveness of our approach
across different datasets.

Qualitative Results Figure 3 presents a qualitative com-
parison between our method and existing open-source
camera-based approaches on the SemanticKITTI validation
set. In scenarios where critical semantic objects, such as
cars and persons, are invisible but located very close to
the ego-vehicle in the current frame, temporal-frame-based
baseline methods like VoxFormer-T and HTCL-S fail to re-
cover these OOV regions, showing performance compara-
ble to CGFormer, which relies only on a single frame. In
contrast, our approach successfully reconstructs the missing
structures, demonstrating effective use of temporal cues to
accurately capture their spatial context even in the absence
of direct visual observations in the current frame.

Ablation Studies

All ablation experiments are conducted on the validation
split of the SemanticKITTI benchmark.

C3DFusion Table 3 presents the ablation study of the
main components proposed in C3DFusion. For the baseline,
we extend CGFormer to process temporal frames by align-
ing each LSS-style feature volume using perspective warp-
ing, followed by a summation of the aligned volumes. No-
tably, comparing the baseline with variant (a) quantitatively
validates our hypothesis from the method section regarding
simple temporal LSS feature fusion: replacing LSS feature
alignment with point-based geometric temporal fusion re-
sults in significant improvements of 0.5 IoU and 1.87 mloU.
Further comparisons between (a) and (b) or (c) highlight
the individual contributions of the proposed historical con-
text blurring and current-centric feature densification com-
ponents to the performance gains, and applying the complete
C3DFusion framework ultimately achieves the best IoU and
mloU scores, clearly demonstrating its effectiveness.
Additionally, to assess the practical generalizability of
C3DFusion, we conduct further experiments by integrat-
ing it with several milestone camera-based SSC methods,
as shown in Table 4. For the baseline models, we select
originally single-frame methods that adopt the backprojec-
tion technique— VoxFormer-S, which uses it solely for voxel
proposals, and others that apply it for LSS-based 3D lift-
ing. We extend them to temporal settings by first apply-
ing temporal LSS fusion (as in Table 3), then replace it
with C3DFusion for performance comparison. The results
show that incorporating C3DFusion consistently leads to
significant performance improvements across all models.
While temporal LSS fusion often shows limited effective-
ness in terms of mloU—particularly with models such as
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Method Input IoU mloU| M ] | ] HE B B ] H B B B | IoU mloU
Single-Frame-Based
TPVFormer | Mono |34.25 11.26 |55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50 |30.76 7.87
OccFormer | Mono |34.53 12.32 |155.90 30.30 31.50 6.50 15.70 21.60 1.20 1.50 1.70 3.20 16.80 3.90 21.30 2.20 1.10 0.20 11.90 3.80 3.70 |30.46 8.68
Symphonies | Stereo [42.19 15.04 [58.40 29.30 26.90 11.70 24.70 23.60 3.20 3.60 2.60 5.60 24.20 10.00 23.10 3.20 1.90 2.00 16.10 7.70 8.00 |23.48 6.40
CGFormer Stereo | 44.41 16.63 |64.30 34.20 34.10 12.10 25.80 26.10 4.30 3.70 1.30 2.70 24.50 11.20 29.30 1.70 3.60 0.40 18.70 8.70 9.30 |33.54 9.06
ScanSSC Stereo | 44.54 17.40 |66.20 35.90 35.10 12.50 25.30 27.10 3.50 3.50 3.20 6.10 25.20 11.00 30.60 1.80 5.30 0.70 20.50 8.40 8.90 |33.60 9.50
L2COcc-D Stereo |45.37 18.18 |68.20 36.90 34.60 16.20 25.80 28.30 4.50 4.90 3.30 7.20 26.20 11.90 32.00 2.10 2.40 0.30 21.60 9.60 9.50 |31.85 10.05
Temporal-Frame-Based
VoxFormer-T | Stereo |43.21 13.41 |54.10 26.90 25.10 7.30 23.50 21.70 3.60 1.90 1.60 4.10 24.40 8.10 24.20 1.60 1.10 0.00 13.10 6.60 5.70 |40.21 11.58
HTCL-S Stereo | 44.23 17.09 |64.40 34.80 33.80 12.40 25.90 27.30 10.80 1.80 2.20 5.40 25.30 10.80 31.20 1.10 3.10 0.90 21.10 9.00 8.30 [33.14 9.04
Hi-SOP Stereo |44.57 17.49 |63.95 34.27 35.85 13.77 2591 27.35 7.18 2.99 2.59 7.19 26.07 10.35 30.77 1.68 4.81 1.06 20.15 8.70 7.90 - -
FlowScene Stereo | 45.20 17.70 |64.10 35.00 33.70 13.00 27.70 26.40 10.00 4.20 3.10 7.00 26.30 10.00 30.20 3.10 5.10 1.10 20.20 890 9.10 - -
CF-SSC Stereo | 46.21 16.40 |61.30 33.30 29.20 11.90 30.40 26.30 4.80 2.60 2.70 6.30 28.50 11.40 28.30 1.50 1.40 0.40 17.70 7.20 6.30 - -
Ours Stereo | 47.62 18.98 |67.00 36.30 33.20 19.30 30.60 29.00 3.30 5.40 4.40 4.70 29.60 14.70 33.80 1.60 2.80 0.30 22.80 11.40 10.40|44.37 17.17

Table 1: Quantitative results on SemanticKITTI hidden test set. ‘OOV’

on the right indicates performance on out-of-view

regions, evaluated on the validation set using our implementation. Bold / underline highlight the best / second-best, respectively.
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Method Input IoU mloU [ ] ] H BN ] ] [ ] ] ] IoU mloU
Single-Frame-Based
TPVFormer | Mono |40.22 13.64|21.56 1.09 1.37 8.06 2.57 238 5299 11.99 31.07 3.78 3483 4.80 30.08 1752 746 586 548 270 - -
OccFormer | Mono |40.27 13.81|22.58 0.66 026 9.89 3.82 277 5430 1344 31.53 3.55 3642 480 31.00 19.51 7.77 851 695 460 | - -
Symphonies | Stereo |44.12 18.58 | 30.02 1.85 5.90 25.07 12.06 8.20 54.94 1383 32.76 6.93 35.11 8.58 3833 11.52 14.01 9.57 14.44 11.28|34.39 11.93
CGFormer | Stereo |48.07 20.05|29.85 3.42 396 17.59 6.79 6.63 63.85 17.15 40.72 553 4273 822 3880 2494 1624 1745 10.18 6.77 |44.72 15.61
ScanSSC Stereo |48.29 20.14 2991 3.78 4.28 1434 9.08 6.65 62.21 18.16 40.19 5.16 42.68 8.83 38.84 25.50 16.60 19.14 10.30 6.89 |45.09 15.44
Temporal-Frame-Based
FlowScene | Stereo [46.98 19.12|29.83 4.44 3.78 16.71 8.71 7.77 60.70 16.99 39.59 6.01 43.17 9.45 37.32 25.14 17.35 18.12 10.63 7.56 - -
CF-SSC Stereo |45.79 19.10 | 28.10 3.39 6.87 16.76 7.75 5.68 59.01 16.80 37.60 4.95 42.16 8.26 36.14 21.89 14.73 1772 9.73 7.14| - -
Ours Stereo |49.28 21.74 | 31.16 5.39 7.01 18.12 8.25 5.66 63.70 19.12 41.64 5.09 43.93 10.43 40.73 27.62 19.30 23.08 12.34 8.74 |52.41 23.72

Table 2: Quantitative results on SSCBench-KITTI-360 test set. ‘OOV’ on the right indicates performance on out-of-view re-
gions, evaluated on the test set using our implementation. Bold / underline highlight the best / second-best, respectively.

VoxFormer-S and CGFormer—C3DFusion reliably boosts
mloU across various architectures. Remarkably, methods
such as OccFormer and ScanSSC, when integrated with
C3DFusion, surpass the previous SOTA mloU of 18.22
achieved by L2COcc. These findings underscore the strong
generalizability of C3DFusion across diverse architectures
and its practical utility within camera-based SSC pipelines.

\ TPFA HCB CCFD \ IoU mloU

Baseline 48.59 16.58
(a) v 49.09 18.45
(b) v v 48.99 18.88
(c) v v 48.87 18.86
Ours v v v 49.53 19.31

Table 3: Ablation study of C3DFusion. ‘TPFA’, ‘HCB’, and
‘CCFD’ denote temporal 3D point feature alignment, histor-
ical context blurring, and current-centric feature densifica-
tion, respectively.

Intensity of Current-Centric Feature Densification Ta-
ble 5 presents the ablation study on the intensity of current-

Method | ToU mloU
VoxFormer-S 44.02 12.35
+ Temporal LSS fusion 44.39 (+0.37) 9.56 (-2.79)
+ C3DFusion 45.98 (+1.96) 15.12 (+2.77)
OccFormer 36.50 13.46
+ Temporal LSS fusion 44.48 (+7.98) 16.91 (+3.45)
+ C3DFusion 44.83 (+8.36) 18.29 (+4.83)
ScanSSC 45.95 17.12
+ Temporal LSS fusion 49.31 (+3.36) 17.67 (+0.55)
+ C3DFusion 49.89 (+3.94) 18.73 (+1.61)
CGFormer 45.99 16.87
+ Temporal LSS fusion 48.59 (+2.60) 16.58 (-0.29)
+ C3DFusion (Ours) 49.53 (+3.54) 19.31 (+2.44)

Table 4: Generalization of C3DFusion.

centric feature densification by varying the target resolu-
tion for point feature interpolation. The best performance
is achieved with a 2 interpolation factor, while further in-
creasing the resolution results in a progressive degradation
of mloU. We attribute this decline primarily to geometric
inaccuracies arising from the interpolation of the estimated



Input RGB
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VoxFormer-T
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Figure 3: Visual comparison of our model against other recent camera-based methods on the SemanticKITTI validation set.

Interpolation Factor | ToU mloU
x 1 48.99 18.88
x 2 49.53 19.31
x 3 48.53 19.08
x 4 49.21 18.86

Table 5: Ablation study on the intensity of current-centric
feature densification, controlled by the interpolation factor.

History Current | ToU mloU

v 49.53 19.31
v 48.74 18.29
v v 49.22 18.76

Table 6: Ablation study on historical context blurring.

#of Framesn | IoU mloU
1 45.99 16.37
2 47.72 18.00
3 48.90 18.62
4 49.53 19.31
5 49.20 18.58

Table 7: Ablation study on the number of input frames n.

depth map—excessive upsampling amplifies depth estima-
tion errors, leading to less reliable geometric representations
and ultimately harming performance.

Context Blurring to Current Frame We conduct an ab-
lation study on extending historical context blurring to the
current frame, as shown in Table 6. As expected, this ex-
tension results in a substantial drop in both IoU and mloU,
underscoring the critical importance of preserving current
point features for accurate scene completion—even though
these features also inherit geometric inaccuracies arising
from the distance-dependent errors in estimated depth.

Number of Frames in Sequence Table 7 presents an ab-
lation study on the effect of varying the number of frames in
the input sequence. The results show steady improvements
in both IoU and mloU as the number of frames increases,
with performance peaking at 4 frames before declining. We
infer that additional preceding frames introduce noise rather
than useful contextual information. Accordingly, we empir-
ically select 4 frames as the input sequence.

Efficiency Comparisons

In Table 8, we compare the number of parameters and mem-
ory usage of our model with other open-source camera-
based methods, particularly the baseline using temporal
LSS fusion strategy. Our model demonstrates a strong per-
formance—efficiency trade-off among temporal-frame-based
methods such as VoxFormer-T and HTCL-S, significantly
outperforming HTCL-S despite using fewer parameters and
less memory. Moreover, compared to the temporal LSS
fusion strategy, integrating C3DFusion yields substantially
better performance with comparable parameter count and
memory usage, highlighting the superiority of our temporal
fusion approach in terms of efficiency.

Method | #of Params.  Memory | mloU
VoxFormer-T 58 M 14763 MB 13.35
HTCL-S 182 M 34593 MB 17.13
CGFormer 163 M 16013 MB 16.87

+ Temporal LSS fusion 163M 22687 MB 16.58
+ C3DFusion (Ours) 160 M 23987 MB 19.31

Table 8: Efficiency comparison with existing methods.

Conclusion

In this work, we address the challenge of completing re-
gions beyond the current camera’s field of view by leverag-
ing temporal context in camera-based SSC—a critical capa-
bility for autonomous driving applications. To this end, we
propose C3DFusion, a temporal geometry fusion approach
that aligns 3D point features mapped directly from 2D image
features via backprojection. We further introduce techniques
such as historical context blurring and current-centric fea-
ture densification to mitigate noise from warped historical
points and strengthen the contribution of current-frame fea-
tures in the aggregated point cloud. Extensive experiments
demonstrate that C3DFusion not only achieves SOTA per-
formance on standard benchmarks, but also consistently im-
proves performance across a variety of architectures. Owing
to its simplicity, generalizability, and strong effectiveness,
we believe C3DFusion offers valuable insights for camera-
based SSC and broader 3D perception tasks, and can serve
as a solid foundation for future research in temporal fusion.
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