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Abstract

Checklists are simple decision aids that are often used to promote safety and
reliability in clinical applications. In this paper, we present a method to learn
checklists for clinical decision support. We represent predictive checklists as
discrete linear classifiers with binary features and unit weights. We then learn
globally optimal predictive checklists from data by solving an integer programming
problem. Our method allows users to customize checklists to obey complex
constraints, including constraints to enforce group fairness and to binarize real-
valued features at training time. In addition, it pairs models with an optimality
gap that can inform model development and determine the feasibility of learning
sufficiently accurate checklists on a given dataset. We pair our method with
specialized techniques that speed up its ability to train a predictive checklist that
performs well and has a small optimality gap. We benchmark the performance of
our method on seven clinical classification problems, and demonstrate its practical
benefits by training a short-form checklist for PTSD screening. Our results show
that our method can fit simple predictive checklists that perform well and that can
easily be customized to obey a rich class of custom constraints.

1 Introduction

Checklists are simple tools that are widely used to assist humans when carrying out important tasks or
making important decisions [8, 13, 18, 35, 44, 50, 60, 61, 64, 65, 66]. These tools are often used as
predictive models in modern healthcare applications. In such settings, a checklist is a set of Boolean
conditions that predicts a condition of interest – e.g., a list of symptoms flag a patient for a critical
illness when M out N symptoms are checked. These kinds of “predictive checklists” are often used
for clinical decision support because they are easy to use and easy to understand [33, 54]. In contrast
to other kinds of predictive models, clinicians can easily scrutinize a checklist, and make an informed
decision as to whether they will adopt it. Once they have decided to use a checklist, they can integrate
the model into their clinical workflow without extensive training or technology (e.g., as a printed
sheet [52]).

Considering these benefits, one of the key challenges in using predictive checklists in healthcare
applications is finding a reliable way to create them [33]. Most predictive checklists in medicine are
either hand-crafted by panels of experts [30, 41], or built by combining statistical techniques and
heuristics [e.g., logistic regression, stepwise feature selection, and rounding 39]. These approaches
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make it difficult to develop checklists that are sufficiently accurate – as panel or pipeline will
effectively need to specify a model that performs well under stringent assumptions on model form.
Given the simplicity of the model class, it is entirely possible that some datasets may never admit
a checklist that is sufficiently accurate to deploy in a clinical setting – as even checklists that are
accurate at a population-level may perform poorly on a minority population [57, 70].

In this paper, we introduce a machine learning method to learn checklists from data. Our method
is designed to streamline the creation of predictive checklists in a way that overcomes specific
challenges of model development in modern healthcare applications. Our method solves an integer
programming problem to return the most accurate checklist that obeys user-specified constraints on
model form and/or model performance. This approach is computationally challenging, but provides
specific functionality that simplifies and streamlines model development. First, it learns the most
accurate checklist by optimizing exact measures of model performance (i.e., accuracy rather than a
convex surrogate measure). Second, it seeks to improve the performance of checklists by adaptively
binarizing features at training time. Third, it allows practitioners to train checklists that obey custom
requirements on model form or on prediction, by allowing them to encode these requirements as
constraints in the optimization problem. Finally, it provides practitioners with an optimality gap,
which informs them when a sufficiently accurate checklist does not exist.

The main contributions of this paper are:

1. We present a machine learning method to learn checklists from data. Our method allows practi-
tioners to customize models to obey a wide range of real-world constraints. In addition, it pairs
checklists with an optimality gap that can inform practitioners in model development.

2. We develop specialized techniques that improve the ability of our approach to train a checklist
that performs well, and to pair this model with a small optimally gap. One of these techniques can
be used to train checklists heuristically.

3. We conduct a broad empirical study of predictive checklists on clinical classification datasets [24,
32, 37, 51, 58]. Our results show that predictive checklists can perform as well as state-of-the-art
classifiers on some datasets, and that our method can provide practitioners with an optimality
gap to flag when this is not the case. We highlight the ability of our method to handle real-world
requirements through applications where we enforce group fairness constraints on a mortality
prediction task, and where we build a short-form checklist to screen for PTSD.

4. We provide a Python package to train and customize predictive checklists with open-source
and commercial solvers, including CBC [29] and CPLEX [20] (see https://github.com/
MLforHealth/predictive_checklists).

2 Related Work

The use of checklist-style classifiers – e.g., classifiers that assign coefficients of ±1 to Boolean
conditions – dates to the work of Burgess [9]. The practice is often referred to as “unit weighting,"
and is motivated by observations that it often performs surprisingly well [see e.g., 7, 19, 23, 27].

Our work is strongly related to methods that learn sparse linear classifiers with small integer coeffi-
cients [see e.g., 4, 11, 31, 38, 68, 69, 75]. We learn checklists from data by solving an integer program.
Our problem can be viewed as a special case of an IP proposed by Ustun and Rudin [68], Zeng et al.
[77] to learn sparse linear classifiers with small integer coefficients. The problem that we consider is
considerably easier to solve from a computational standpoint because it restricts coefficients to binary
values and does not include `0-regularization. Here, we make use of this “slack" in computation to
add functionality that improves the performance of checklists, namely: (1) constraints to binarize
continuous and categorical features into items that can be included in a checklist [see also 10, 12, 71];
and (2) develop specialized techniques to reduce computation during the learning process.

Checklists are M -of-N rules — i.e., classifiers that predict y = +1 when M out of N conditions are
true. Early work in machine learning used M -of-N rules in an auxiliary capacity – e.g., to explain
the predictions of neural networks [67], or to use as features in decision trees [78]. More recent work
has focused on learning M -of-N rules for standalone prediction – e.g. Chevaleyre et al. [16] describe
a method to learn M -of-N rules by rounding the coefficients of linear SVMs to {−1, 0, 1} using a
randomized rounding procedure [see also 79]. Methods to learn disjunctions and conjunctions are
also relevant since they correspond to 1-of-N rules and N -of-N rules, respectively. These methods
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learn models by solving a special case of the ERM problem in (1) where M = 1 or M = N . Given
that this problem is NP-hard, existing methods often reduce computation by using algorithms that
return approximate solutions – e.g., simulated annealing [72], set cover [48, 49], or ERM with a
convex surrogate loss [21, 22, 46, 47]. These approaches could be used to learn checklists by solving
the ERM problem in (1). However, they would not be able to handle the discrete constraints needed
for binarization and customization. More generally, they would not be guaranteed to recover the most
accurate checklists for a given dataset, nor pair models with a certificate of optimality that can be
used to inform model development.

3 Methodology

We start with a dataset of n examples (xi, yi)
n
i=1 where xi = [xi1, . . . , xid] ∈ {0, 1}d is a vector of

d binary variables and yi ∈ {0, 1} is a label. Here, xi are Boolean variables that could be used as
items in a checklist. We denote the indices of positive and negative examples as I+ = {i | yi = +1}
and I− = {i | yi = −1} respectively, and let n+ = |I+| and n− = |I−|. We denote the set of
positive integers up to k as [k] = {1, . . . , k}.
We use the dataset to learn a predictive checklist – i.e., a Boolean threshold rule that predicts ŷ = +1
when at least M of N items are checked. We represent a checklist as a linear classifier with the form:

ŷi = sign(λ>xi ≥M).

Here λ = [λ1, . . . , λd] ∈ {0, 1}d is a coefficient vector and λj = 1 iff the checklist contains item
j. We denote the number of items in a checklist with coefficients λ as N =

∑d
j=1 λj , and denote

the threshold number of items that must be checked to assign a positive prediction as M . We learn
checklists from data by solving an empirical risk minimization problem with the form:

min
λ,M

l (λ,M) + εNN + εMM

s.t. N = ‖λ‖
M ∈ [N ]

λ ∈ {0, 1}d

(1)

Here, l (λ,M) =
∑n
i=1 1 [yi 6= ŷi] counts the number of mistakes of a checklist with parameters

λ and M . The parameters εN > 0 and εM > 0 are small penalties used to specify lexicographic
preferences. We set εN < 1

nd and εM < εN
d . These choices ensure that optimization will return the

most accurate checklist, breaking ties between checklists that are equally accurate to favor smaller
N , and breaking ties between checklists that are equally accurate and sparse to favor smaller M .
Smaller values of N and M are preferable, as checklists with smaller N users check fewer items,
and checklists with smaller M let users stop checking as soon as M items are checked (see Figure 3).

We recover a globally optimal solution to (1) by solving the integer program (IP):
min
λ,z,M

l+ +W−l− + εNN + εMM

s.t. Bizi≥M −
d∑

j=1

λjxi,j i ∈ I+ (2a)

Bizi≥
d∑

j=1

λjxi,j −M + 1 i ∈ I− (2b)

l+ =
∑
i∈I+

zi

l−=
∑
i∈I−

zi

N =
d∑

j=1

λj

M ∈ [N ]
zi ∈ {0, 1} i ∈ [n]
λj ∈ {0, 1} j ∈ [d]

Here, l+ and l− are variables that count the number of mistakes on positive and negative examples.
The values of l+ and l− are computed using the mistake indicators zi = 1 [ŷi 6= yi], which are set to
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1 through “Big-M" Constraints in (2a) and (2a).These constraints depend on the “Big-M" parameters
Bi, which can be set to its tightest possible value maxλM − λ>xi. W− is a user-defined parameter
that reflects the relative cost of misclassifying a negative example. By default, we set W− = 1, so
that the objective minimizes training error.

Customization The IP in (2) can be customized to fit checklists that obey a wide range of real-
world requirements on performance and model form. We list examples of constraints in Table 1. Our
method provides two ways of handling classification problems with different costs of False Negatives
(FNs) and False Positives (FPs). First, the user can specify the relative misclassification costs for
FPs and FNs in the objective function by setting W−. Here, optimizing (2) corresponds directly to
minimizing the weighted error. Second, the user can instead specify limits on FPR and FNR - e.g.
minimize the training FPR (by setting W− = n−) subject to training FNR ≤ 20%.

MODEL REQUIREMENT EXAMPLE CONSTRAINT

Model Size Use ≤ Nmax items N ≤ Nmax

Procedural If checklist includes item about coughing, then include item about fever λfever ≥ λcough

Prediction Predict ŷi = +1 for all patients with both fever and coughing λfeverxi,fever + λcoughxi,cough ≥M ∀ i ∈ [n]

Class-Based Accuracy Max FPR ≤ γ l− ≤ dγ · n−e

Group Fairness Max FPR disparity of γ% between males and females
∣∣∣∣ l−Mn−

M

− l−
F

n−
F

∣∣∣∣ ≤ γ
Minimax Fairness No group with FNR worse than δ l+g ≤ dδ · n+

g e ∀g ∈ G

Table 1: Model requirements that can be addressed by our method. Each requirement can be directly encoded
into IP (2). The IP can then be solved using the same MIP solver to obtain the most accurate checklist that obeys
these constraints.

Adaptive Binarization Practitioners often work with datasets that contain real-valued and cate-
gorical features. In such settings, rule-learning methods often require practitioners to binarize such
features before training. Our approach allows practitioners to binarize features into items during train-
ing. This allows all items to be binarized in a way that maximizes accuracy. This approach requires
practitioners to first define Tj candidate items for each non-binary feature ui,j . For example, given a
real-valued feature ui,j ∈ R, the set of candidate items could take the form {xi,j,1, xi,j,2, . . . , xi,j,Tj}
where xi,j,t = 1 [ui,j ≥ vj,t] and vj,t is a threshold. We would add the following constraint to IP (2)
to ensure that the checklist only uses one of the Tj items:

∑
t∈[Tj ]

λtj ≤ 1. In this way, the IP would
then choose a binary item that is aligned with the goal of maximizing accuracy. In practice, the set
of candidate items can be produced automatically [e.g., using binning or information gain 53] or
specified on the basis of clinical standards (as real-valued features like blood pressure and BMI have
established thresholds). This approach is general enough to allow practitioners to optimize over all
possible thresholds, though this may lead to overfitting. Our experiments in Section 5.2 show that
adaptive binarization produces a meaningful improvement in performance for our model class.

Optimality Gap We solve IP (2) with a MIP solver, which finds a globally optimal solution through
exhaustive search algorithms like branch-and-bound [73]. Given an instance of IP (2) and a time
limit for when to stop the search, a solver returns: (i) the best feasible checklist found within the
time limit – i.e., values of λ and M that achieve the best objective value V max = l (λ,M); and (ii) a
lower bound on the objective value – i.e., V min, the minimal objective value for any feasible solution.
These quantities are used to compute the optimality gap ε := 1− V min

V max . When the upper bound V max

matches the lower bound V min, the solver returns a checklist with an optimality gap of ε = 0 – i.e.,
one that is certifiably optimal.

In our setting, the optimality gap reflects the worst-case difference in training error between the
checklist that a solver returns and the most accurate checklist that we could hope to obtain by solving
IP (2). Given a solution to IP (2) with an objective value of L and an optimality gap of ε, any feasible
checklist has a training error of at least d(1− ε)Le. When ε is small, the most accurate checklist has
a training error ≈ L. Thus, if we are not satisfied with the performance of our model, we know that
no checklist can perform better than L, and can make an informed decision to relax constraints, fit
a classifier from a more complex hypothesis class, or not fit a classifier at all. When ε is large, our
problem may admit a checklist with training error far smaller than L. If we are not satisfied with the
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performance of the checklist, we cannot determine whether this is because the dataset does not admit
a sufficiently accurate model or because the solver has not been able to find it.

4 Algorithmic Improvements

In this section, we present specialized techniques to speed up the time required to find a feasible
solution, and/or to produce a solution with a smaller optimality gap.

4.1 Submodular Heuristic

Our first technique is a submodular optimization technique that we use to generate initial feasible
solutions for IP (2). We consider a knapsack cover problem. This problem can be solved to produce a
checklist ofNmax or fewer items that: (1) maximizes coverage of positive examples; (2) has a “budget”
of negative examples B; and (3) uses at most one item from each of the feature groups R1, ..., RT
where each Rt denote a set of items derived from a particular real-valued feature and ∪Tt=1Rt = [d].

max
A

f+M (A) (3a)

s.t. |A| ≤Nmax (3b)
|A ∩Rt| ≤ 1 t ∈ [T ] (3c)∑
j∈A

c(j)≤B (3d)

Here, f+M :=
∑
i∈I+ min(

∑
j∈A xi,j ,M) counts the positive examples that are covered by at least

M items in A. Constraint (3b) limits the number of items in the checklist. Constraint (3c) requires
the checklist to use at most one item from each feature group R1, . . . , RT . Constraint (3d) controls
the number of negative examples that are covered by at least M items in A. This is a knapsack
constraint that assigns a cost to each item as c(j) =

∑
i∈I− xi,j and limits the overall cost of A using

the budget parameter B > 0.

The optimization problem in (3) can be solved using a submodular minimization algorithm given that
f+M is monotone submodular (see Appendix A.1 for a proof), and that constraints (3b) to (3d) are
special kinds of matroid constraints. We solve (3) with a submodular minimization algorithm adapted
from Badanidiyuru and Vondrák [2] (Appendix A.2). The procedure takes as input M , Nmax and B
and outputs a set of checklists that use up to Nmax items. This procedure can run within 1 second.
Given a problem where we would want to train a checklist that has at most Nmax items, we would
solve this problem |B|Nmax times, varying M ∈ [Nmax] and B ∈ B.

(a)

Algorithm 1: Sequential Training overN andM
Input: maximum # of items Nmax

Input: objective value function V (·)
pool← ∅
for i ∈ [Nmax], j ∈ [i] do

S ← {C|C ∈ pool, N(C) ≤ i,M(C) ≤ j}
Cinit ← argminC∈S f(C)
Cnew ← solve IP (2) with initial solution Cinit

subject to N ≤ i and M ≤ j
Add {Cnew} to pool

end
return pool

(b)

Figure 1: (a) Performance profile when solving IP (2) with and without initialization. We show the optimality
gap vs. the # of branch-and-bound nodes when solving IP (2) for the heart dataset where N ≤ 6 and M ≤ 2.
(b) algorithm for sequential training over N and M .

In Figure 1a, we show the effect of initializing the IP with checklists produced using the submodular
heuristic. As shown, these solutions allow us to initialize the search with a good upper bound,
allowing us to ultimately recover a certifiably optimal solution faster. Our empirical results in Section
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5.2 show that checklists from our submodular heuristic outperform checklists fit using existing
baselines. This highlights the value of this approach as a heuristic to fit checklists (in that it can
produce checklists that perform well), and as a technique for initialization (in that it can produce
checklists that can be used to initialize IP (2) with a small upper bound).

4.2 Path Algorithms

Our second technique is a path algorithm for sequential training. Given an instance of the checklist
IP (2), this algorithm sequentially solves smaller instances of IP (2). The algorithm exploits the fact
that small instances can be solved to optimality quickly and thus “ruled out" of the feasible region of
subsequent instances. The resulting approach can reduce the size of the branch-and-bound tree and
improve the ability to recover a checklist with a small optimality gap. These algorithms can wrap
around any procedure to solve IP (2).

In Algorithm 1, we present a path algorithm to train checklists over the full range of model sizes
from 1 to Nmax. The algorithm recovers a solution to a problem with a hard model size limit by
solving smaller instances with progressively larger limits of Nmax and Mmax. We store the best
feasible solution from each iteration in a pool, which is then used to initialize future iterations. If
the best feasible solution is certifiably optimal, we add a constraint to constrict the search space for
subsequent instances. This allows us to reduce the size of the branch-and-bound tree, resulting in a
faster solution in each iteration.

5 Experimental Results

In this section, we benchmark the performance of our methods on seven clinical prediction tasks.

5.1 Setup

Data. We consider seven clinical classification tasks shown in Table 2. For each task, we create a
classification dataset by using each of the following techniques to binarize features:

Fixed: We convert continuous and ordinal features into threshold indicator variables using the median,
and convert categorical feature into an indicator for the most common category.
Adaptive: We convert continuous and ordinal features into 4 threshold indicator variables using
quintiles as thresholds, and convert each categorical feature with a one-hot encoding.
Optbinning: We use the method proposed by Navas-Palencia [53] to binarize all features.

We process each dataset to oversample the minority class to equalize the number of positive and
negative examples due to class imbalance.

Methods. We compare the performance of the following methods for creating checklists:

MIP: We fit a predictive checklist by solving an instance of IP (2) with the appropriate constraints. We
solve this problem using CPLEX 12.10 [20] paired with the computational improvements in Section
4 on a 2.4 GHz CPU with 16 GB RAM for ≤ 60 minutes.

Cover: We fit a predictive checklist using the submodular heuristic in Section 4.1. We set Nmax = 8,
and vary M ∈ [Nmax] and B ∈ {kn+|k ∈ { 13 ,

1
2 , 1, 2, 3}}.

Dataset dT dpct n Prediction Task Reference
adhd 5 20 594 Patient diagnosed with ADHD [51]
cardio 40 52 8,815 Patient with cardiogenic shock died in hospital [58]
kidney 17 80 1,722 Patient with kidney failure died after renal replacement therapy [37]
mortality 50 484 21,139 Patient died in hospital [37]
ptsd 20 80 873 Patient has a PCL-5 PTSD diagnosis [51]
readmit 42 94 9,766 Patient re-admitted to hospital within 30 days [32]
heart 13 82 303 Patient has heart disease [24]

Table 2: Clinical prediction tasks used in Section 5. Here, n is the number of samples prior to oversampling, dT
is the number of feature groups, and dpct is the number of features after binarization using the adaptive method.
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FIXED BINARIZATION ADAPTIVE BINARIZATION LOWER BOUNDS

Dataset Metric UNIT COVER MIP_OR MIP UNIT COVER MIP_OR MIP LR XGB

adhd
n = 632
dpct = 20

test error (%)
(min, max)
train error (%)
gap (%)

16.0
(11.9, 19.0)

11.4
-

17.1
(13.5, 20.6)

11.1
-

16.0
(11.9, 19.0)

11.4
0.0

17.1
(13.5, 20.6)

11.1
0.0

1.4
(0.8, 2.4)

1.1
-

6.3
(2.4, 11.7)

5.4
-

5.2
(4.0, 7.9)

5.4
0.0

0.5
(0.0, 0.8)

0.5
0.0

1.1
(0.8, 2.4)

0.5
-

1.6
(0.8, 2.4)

1.1
-

cardio
n = 15254
dpct = 51

test error (%)
(min, max)
train error (%)
gap (%)

23.8
(21.1, 26.5)

25.0
-

25.3
(21.4, 27.2)

26.2
-

29.6
(28.4, 31.0)

29.6
19.5

24.1
(22.5, 25.6)

24.1
82.8

23.0
(21.7, 24.9)

23.0
-

25.3
(23.7, 26.8)

25.5
-

29.2
(27.7, 30.9)

29.2
51.9

22.6
(21.5, 24.1)

22.5
83.2

21.6
(20.2, 23.3)

20.6
-

26.3
(25.0, 27.7)

6.4
-

kidney
n = 1760
dpct = 80

test error (%)
(min, max)
train error (%)
gap (%)

33.2
(33.2, 33.2)

32.4
-

35.6
(31.8, 38.9)

33.6
-

37.2
(34.7, 40.6)

36.7
45.7

33.3
(31.2, 36.1)

31.0
78.9

37.9
(36.1, 39.8)

34.1
-

37.2
(36.4, 38.6)

36.5
-

34.7
(33.2, 36.9)

34.0
43.3

33.8
(31.2, 37.5)

30.4
82.4

30.9
(28.7, 33.5)

27.2
-

25.3
(20.2, 28.7)

0.2
-

mortality
n = 36684
dpct = 478

test error (%)
(min, max)
train error (%)
gap (%)

34.3
(33.1, 36.1)

32.9
-

38.1
(37.4, 39.7)

36.9
-

37.2
(36.6, 38.4)

37.4
0.0

29.1
(27.8, 30.2)

29.0
81.0

33.8
(32.3, 35.5)

33.4
-

36.5
(35.5, 37.0)

36.5
-

37.8
(37.0, 39.4)

37.8
34.0

29.2
(29.0, 29.5)

29.6
80.4

25.0
(23.5, 26.4)

22.6
-

28.0
(27.2, 29.1)

4.6
-

ptsd
n = 1106
dpct = 80

test error (%)
(min, max)
train error (%)
gap (%)

10.9
(7.7, 14.9)

8.3
-

10.3
(9.1, 12.6)

9.5
-

13.8
(12.2, 15.8)

13.4
0.0

11.0
(6.8, 14.9)

8.2
0.0

10.2
(7.7, 12.7)

9.2
-

12.6
(7.7, 20.3)

10.8
-

16.2
(16.2, 16.2)

12.5
0.0

8.7
(5.9, 11.7)

5.6
66.5

8.0
(5.9, 10.4)

2.8
-

4.6
(1.8, 6.4)

0.0
-

readmit
n = 16732
dpct = 90

test error (%)
(min, max)
train error (%)
gap (%)

35.3
(33.8, 37.2)

35.2
-

37.5
(35.3, 40.0)

37.3
-

37.9
(36.4, 39.3)

36.5
49.3

36.2
(33.8, 37.1)

35.2
81.0

34.2
(32.6, 35.5)

34.4
-

34.6
(32.6, 36.2)

34.4
-

35.2
(34.8, 35.5)

33.2
49.9

33.9
(32.6, 35.7)

33.1
73.4

33.0
(32.2, 33.8)

32.0
-

36.6
(34.7, 38.1)

13.9
-

heart
n = 330
dpct = 82

test error (%)
(min, max)
train error (%)
gap (%)

16.3
(13.6, 24.2)

15.2
-

18.5
(12.1, 25.8)

16.4
-

29.1
(21.2, 39.4)

23.6
0.0

28.8
(28.8, 28.8)

13.9
0.0

16.1
(7.6, 31.8)

15.2
-

23.9
(15.2, 33.3)

18.2
-

29.1
(21.2, 39.4)

23.6
0.0

16.7
(13.6, 19.7)

13.6
54.5

17.6
(10.6, 27.3)

15.2
-

17.6
(12.1, 25.8)

9.7
-

Table 3: Performance results of all methods on all datasets. For checklist models, we report the training error,
test error, and optimality gap for the checklist that minimizes training error and satisfies all constraints. The
intervals under test error reflect the 5-CV minimum and maximum test error. We additionally report results for
LR and XGB as performance baselines that represent an informal lower bound on the error of possible checklists.

Unit: We fit a predictive checklist using unit weighting [7]. We fit L1-regularized logistic regression
models for L1 penalties ∈ [10−5, 10]. We convert each model into an array of checklists by including
items with positive coefficients and the complements of items with negative coefficients. We convert
each logistic regression model into multiple checklists by setting M ∈ [N ].

Evaluation. We use 5-fold cross validation and report the mean, minimum, and maximum test error
across the five folds. We use the training set of each fold to fit a predictive checklist that contains at
most N ≤ 8 items, and that is required to select at most 1 item from a feature group. We report the
training error of a final model trained on all available data.

We report results for MIP checklists where M = 1, which we refer to as MIP_OR since it corresponds
to an OR rule. Finally, we report performance for L1-regularized logistic regression (LR) and
XGBoost (XGB) as baselines to evaluate performance. We train these methods using all features in an
adaptive-binarized dataset to produce informal “lower bounds” on the error rate.

For each method and each dataset, we report the performance of models that achieve the lowest
training error with N ≤ 8 items. We compare the performance of Fixed and Adaptive binarization
here, and report performance of Optbinning in Appendix D.2.

5.2 Results

In Table 3, we report performance for each method on each dataset when using Fixed binarization
and Adaptive binarization. We report the corresponding results for Optbinning in Appendix D.2 due
to space limitations. In Figure 2, we show the performance effects of varying N . Lastly, we show
predictive checklists trained using our method in Figure 3 and Appendix D.3. In what follows, we
discuss these results.

On Performance Our results in Table 3 show that our method MIP outperforms existing techniques
to fit checklists (Unit) on 7/7 datasets in terms of training error, and on 5/7 datasets in terms of 5-fold
CV test error. As shown in Figure 2, this improvement typically holds across all values of N .

In general, we find that relaxing the value of M yield performance gains across all datasets (see e.g.,
results for ptsd where the difference in test error between MIP_OR and MIP is 7.8%), though smaller
values of M can produce checklists that are easier to use (see checklists in Appendix D.3).
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Figure 2: Performance of checklists with ≤ N
items on mortality fit using our approach and
unit weighting.

Predict 30-day readmission if 3+ items are checked

# admissions past year ≥ 1 �
bed days ≥ 14 �
length of stay ≥ 8 days �
chronic or uncontrolled pain �
mood problems past 5 years �
substance abuse past month �

Figure 3: Predictive checklist fit for readmit using
MIP. The checklist has a train error of 33.1%, and a test
error of 33.9%. We show sample checklists for all other
datasets in Appendix D.3.

The results in Table 3 also highlight the potential of adaptive binarization to improve performance by
binarizing during training time, as MIP with adaptive binarization achieves a better training error than
fixed binarization for 6/7 datasets and a better test error on 5/7 datasets.

The performance loss of checklists relative to more complex model classes (LR and XGB) varies
greatly between datasets. Checklists trained on heart and readmit perform nearly as well as more
complex classifiers. On mortality and kidney, however, the loss may exceed 5%.

On Generalization Our results show that checklist performance on the training set tends to gener-
alize well to the test set. This holds for checklists trained using all methods (i.e., Unit, Cover, MIP_OR,
and MIP), which is expected given that checklists belong to a simple model class. Generalization can
help us customize checklists in an informed way as we can assume that any changes to the training
loss (e.g. with the addition of a constraint) lead to similar changes in the test set. In this regime,
practitioners can evaluate the impact of model requirements on predictive performance – since they
can measure differences in training error between checklists that obey different requirements, and
expect these differences in training error as a reliable proxy for differences in test error.

On the Value of an Optimality Gap One of the benefits of our approach is that it pairs each
checklist with an optimality gap, which can inform model development by identifying settings where
we cannot train a checklist that is sufficiently accurate (see Section 3). On heart, we train a checklist
with a training error of 13.6% and an optimality gap of 54.5%, which suggests that there may exist a
checklist with a training error of 6.2%. This optimality gap is not available for checklists trained with
a heuristic (like unit weighting or domain expertise), so we would not be able to attribute poor model
performance to a difficult problem, or to the heuristic being ineffective.

On Fairness We analyze the fairness of MIP checklists trained on the kidney dataset. The task is
to predict in-hospital mortality for ICU patients with kidney failure after receiving Continuous Renal
Replacement Therapy (CRRT). In this setting, a false negative is often worse than a false positive, so
we train checklists that minimize training FPR under a constraint to limit training FNR to 20%, using
an 80%/20% train/test split.

We find that our checklist exhibit performance disparities across sex and race, which is consistent
with the tendency of simpler models to exhibit performance disparities [40]. To address this issue, we
train a new checklist by solving a version of IP (2) with constraints that limit disparities in training
FPR and FNR over 6 intersectional groups g ∈ G = {Male, Female} × {White, Black, Other}.
Specifically, 30 constraints that limit the FPR disparity across groups to 15%, and 6 constraints to
cap the max FNR for each intersectional group to 20%. This is unique compared to prior methods
in fair classification work [76] because it enforces group fairness using exact measures[i.e., without
convex relaxations 45] and over intersectional groups .

We find that we can limit performance disparities across all values of N (see Figures 4 and 5, and
Appendix D.4), observing that MIP with group fairness constraints has larger FPR overall but exhibits
lower FPR disparities over groups (e.g., reducing the test set FPR gap between Black Females and
White Males from 54.5% to 30.6%).
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Figure 4: FPR (left), maximum FPR disparity (center) and worst-case FNR (right) versus number of items for
checklists for mortality prediction given CRRT using kidney. Group fairness constraints effectively limit the
FPR disparity and worst-case FNR during training, at the cost of overall performance.

Predict Mortality Given CRRT if 3+ Items are Checked
Age ≥ 66.0 years �
AST ≥ 162.6 IU/L �
Blood pH ≤ 7.29 �
MCV ≥ 99.0 fl �
Norepinephrine ≥ 0.1 mcg/kg/min �
Platelets ≤ 65.0 ×103/µL �
RDW ≥ 19.2% �
Time in ICU ≥ 14.1 hours �

Predict Mortality Given CRRT if 2+ Items are Checked
ALT ≥ 16.0 IU/L �
Bicarbonate ≤ 17.0 mmol/L �
Blood pH ≤ 7.22 �
Norepinephrine ≥ 0.1 mcg/kg/min �
RDW ≥ 19.2% �
Time in ICU ≥ 117.3 hours �

FNR FPR Worst FNR Max FPR Gap
Training 20.0% 43.9% 33.3% 24.3%
Test 22.2% 52.6% 62.5% 54.5%

FNR FPR Worst FNR Max FPR Gap
Training 17.5% 52.2% 18.1% 13.9%
Test 19.6% 55.1% 50.0% 38.3%

(a) MIP (b) MIP + Fairness Constraints

Figure 5: Checklists trained to predict mortality given CRRT (a) without group fairness constraints and (b) with
group fairness constraints. Checklist (a) has better overall FPR, but has worse FNR for the worst-case group,
and exhibits disparities in FPR across groups. Checklist (b) obeys group fairness constraints that attenuate the
training FPR gap to 15% and the worst-case FNR to 20%.

6 Learning a Short-Form Checklist for PTSD Screening

In this section, we demonstrate the practical benefits of our approach by learning a short-form
checklist for Post-Traumatic Stress Disorder (PTSD) diagnosis.

Background The PTSD Checklist for DSM-5 (PCL-5) is a self-report screening tool for PTSD [5,
74]. The PCL-5 consists of 20 questions that assess the severity of symptoms of PTSD DSM-5.
Patients respond to each question with answers of Not at all, A little bit, Moderately, Quite a bit, or
Extremely. Given these responses, the PCL assigns a provisional diagnosis of PTSD by counting
the number of responses of Moderately or more frequent across four clusters of questions. Patients
with a provisional diagnosis are then assessed for PTSD by a specialist. The PCL-5 can take over
10 minutes to complete, which limits its use in studies that include the PCL-5 in a battery of tests
(i.e., using the provisional diagnosis to evaluate the prevalence of PTSD and its effect as a potential
confounder), and has led to the development of short-form models [see e.g., 6, 43, 80].

Problem Formulation Our goal is to create a short-form version of the PCL-5 – i.e., a checklist
that assigns the same provisional diagnoses as PCL-5 using only a subset of the 20 questions. We
train our model using data from the AURORA study [51], which contains PCL-5 responses of U.S.
patients who have visited the emergency department following a traumatic event. Here, yi = +1
if the patient is assigned a provisional PTSD diagnosis. We encode the response for each question
into four binary variables xi,k,l = 1 [qk ≥ l] where qk is the response to each question and l ∈ [4] is
denotes its response. Our final dataset contains d = 80 binary variables for n = 873 patients, which
we split into an 80% training set and 20% test set.

Since this checklist would be used to screen patients, a false negative diagnosis is less desirable than
a false positive diagnosis. We train a checklist that minimizes FPR and that obeys the following
operational constraints: (1) limit FNR to 5%; (2) pick one threshold for each PCL-5 question; (3) use
at most 8 questions. We make use of the same methods and techniques as in Section 5.2.
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Results Our results show that short-form checklists fit using our method outperform other checklists
(see Figure 6). In Figure 7, we display a sample N = 8,M = 4 checklist trained with our method
which reproduces the PCL-5 diagnosis with high accuracy, offering an alternative to the PCL-5 with
simpler binary items and less than half the number of questions.

Figure 6: FPR versus number of items for short-
forms of the PCL-5. MIP outperforms Unit across
all values of N .

Predict PTSD if 4+ Items are Checked
Avoiding thinking about experience ≥ moderately �
Avoiding activities or situations ≥ moderately �
Blame for stressful experience ≥ a little bit �
Feeling distant or cut off ≥ quite a bit �
Irritable or angry outbursts ≥ moderately �
Loss of interest in activities ≥ moderately �
Repeated disturbing dreams ≥ moderately �
Trouble experiencing positive feelings ≥ moderately�

Figure 7: Short-form of the PCL-5 trained with MIP.
The checklist has a train/test FPR of 6.6%/10.8%, and
a train/test FNR of 4.7%/6.3%. It reproduces the PCL-
5 diagnosis on the training/test sets with 94.1/90.9%
accuracy, and has a 70.8% optimality gap. We show
condensed PCL-5 questions due to space constraint.

7 Concluding Remarks

In this work, we presented a machine learning method to learn predictive checklists from data by
solving an integer program. Our method illustrates a promising approach to build models that obey
constraints on qualities like safety [1] and fairness [3, 14]. Using our approach, practitioners can
potentially co-design checklists alongside clinicians – by encoding their exact requirements into the
optimization problem and evaluating their effects on predictive performance [17, 36].

We caution against the use of items in a checklist as causal factors of outcomes (i.e., questions
in the short-form PCL are not “drivers” of PTSD), and against the use of our method solely due
to its interpretability. Recent work has argued against the use of models simply because they are
“interpretable" [25] and highlights the importance of validating claims on interpretability through user
studies [42, 59].

We emphasize that effective deployment of the checklist models we create does not end at adoption.
The proper integration of our models in a clinical setting will require careful negotiation at the
personal and institutional level, and should be considered in the context of care delivery [28, 62, 63]
and clinical workflows [26, 55].
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