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Abstract

Out-of-distribution (OOD) detection is crucial for the deployment of machine learning models
in the open world. While existing OOD detectors are effective in identifying OOD samples
that deviate significantly from in-distribution (ID) data, they often come with trade-offs. For
instance, deep OOD detectors usually suffer from high computational costs, require tuning
hyperparameters, and have limited interpretability, whereas traditional OOD detectors may
have a low accuracy on large high-dimensional datasets. To address these limitations, we
propose a novel effective OOD detection approach that employs an overlap index (OI)-based
confidence score function to evaluate the likelihood of a given input belonging to the same
distribution as the available ID samples. The proposed OI-based confidence score function is
non-parametric, lightweight, and easy to interpret, hence providing strong flexibility and
generality. Extensive empirical evaluations indicate that our OI-based OOD detector is
competitive with state-of-the-art OOD detectors in terms of detection accuracy on a wide
range of datasets while requiring less computation and memory costs. Lastly, we show
that the proposed OI-based confidence score function inherits nice properties from OI (e.g.,
insensitivity to small distributional variations and robustness against Huber ϵ-contamination)
and is a versatile tool for estimating OI and model accuracy in specific contexts.

1 Introduction

Machine learning models often struggle with out-of-distribution (OOD) samples that originate from distribu-
tions not seen during training. The OOD detection (Macêdo et al., 2021; Zhao et al., 2023) is a critical task to
address the above issue and has been utilized in many real-world applications (Zhao et al., 2023; Wang et al.,
2022a). Given in-distribution (ID) samples originating from the training distribution, the OOD detector
employs a confidence scorer to quantify the distance between a given input and the available ID samples to
filter out OOD inputs, thereby enhancing the machine learning model’s reliability in unseen environments.

Traditional OOD detectors like one-class SVM (Schölkopf et al., 2001) are computationally and memory-
efficient but are relatively less effective on large high-dimensional datasets. While deep learning approaches
such as Deep SVDD (Ruff et al., 2018) are capable of handling large high-dimensional datasets, they come
at the cost of substantial computational and memory overhead due to their large number of parameters.
Gaussian-based OOD detectors, such as (Morteza & Li, 2022), require calculating the inverse of the covariance
matrix which can be numerically unstable. To address these limitations, this paper proposes a novel OOD
detector that is non-parametric (i.e., no assumption about the underlying data distribution)1, lightweight,
and effective on large high-dimensional datasets.

The proposed OOD detector employs an overlap index (OI)-based confidence score function to evaluate
the likelihood of a given input belonging to the same distribution as the available ID samples. OI is a
widely utilized metric that quantifies the area of intersection between two probability density functions. It
is closely related to the total variation distance (TVD), where TVD is one minus OI (Pastore & Calcagnì,
2019). Both OI and TVD find applications in various domains (Zhang et al., 2021b; Kapralov et al., 2016).
Unlike Kullback–Leibler (KL) and Jensen–Shannon (JS) divergences, OI does not require the supports of
the distributions to be identical and is insensitive to small distributional variations (Larry Wasserman, a).

1Note that non-parametric methods could still have tunable parameters.

1



Under review as submission to TMLR

While the Wasserstein distance requires distance inference (Yatracos, 2022) and lacks robustness to Huber
ϵ-contamination outliers (Huber, 1992) with unbounded metrics, OI does not suffer from these limitations.
Despite the applications and advantages of OI, its utilization for OOD detection is seldom leveraged in
existing literature. This paper endeavors to explore the potential applications of the OI-based confidence
score function in OOD detection, showcasing its effectiveness.

Our OI-based confidence score function is converted from a novel upper bound of OI derived in this paper.
The derived bound consists of two computationally efficient terms: the distance between the means of the
clusters and the TVD between two distributions over subsets that meet specific conditions. The derived upper
bound is quick to compute, non-parametric, insensitive to small distributional variations, and robust against
Huber ϵ-contamination outliers. If one cluster contains only a given input and the other cluster contains a
few clean ID samples, then this bound could serve as a confidence score function for evaluating the likelihood
that the given input belongs to the same distribution as the available ID samples.

The proposed OI-based OOD detector addresses the aforementioned limitations of the existing OOD detectors.
Compared to traditional OOD detectors, our method is empirically effective even on large high-dimensional
datasets. Compared to deep OOD detectors, our OI-based detector avoids the use of neural networks, thereby
being more economical in terms of computational and memory requirements. Despite this, it achieves accuracy
levels comparable to those of state-of-the-art deep OOD detectors. This makes our approach particularly
beneficial in scenarios where the available ID dataset is too small to effectively train a deep learning-based
OOD detector. Another group of OOD detectors is Gaussian-based OOD detectors, such as GEM (Morteza &
Li, 2022), MSP (Hendrycks & Gimpel, 2017), Mahalanobis distance (Lee et al., 2018), and energy score (Liu
et al., 2020). These methods assume Gaussian distributions and apply distance-based metrics on deep features.
Compared to them, our method neither makes distributional assumptions about the underlying feature space
nor requires the computationally challenging and numerically unstable task of inverting covariance matrices.
Zhang et al. (2023) uses an KL-based confidence scorer for OOD detection, which also assumes Gaussian
distribution for the extracted features.

We show that the variant of our OI-based confidence scorer could be employed for estimating both OI and
model accuracy in specific contexts. Sriperumbudur et al. (2012) estimates OI using integral probability
metrics (IPM)2, which results in a computational complexity on the order of O∗(nω), where ω is the matrix
multiplication exponent (Cohen et al., 2021). Additionally, selecting appropriate functions for IPM-based
methods often presents a challenge (Larry Wasserman, b). In contrast, our method approximates OI using a
class of straightforward, easily identifiable, and computationally efficient conditional functions3. Schmid &
Schmidt (2006); Pastore & Calcagnì (2019) estimate OI using estimated probability density functions through
kernel methods4. These methods are burdened by the curse of dimensionality (Zambom & Ronaldo, 2013),
whereas our approach remains efficient in high-dimensional spaces.

Overall, the contributions of this paper include: 1) proposing a novel OOD detector that leverages an OI-based
confidence score function; 2) evaluating the proposed OOD detector with various state-of-the-art methods
and datasets to demonstrate its effectiveness and efficiency; 3) analyzing the mathematical properties of
the OI-based confidence score function; and 4) exploring into the potential applications of the OI-based
confidence score function for estimating OI and model accuracy in specific contexts.

The remaining part is organized as follows: We first conduct a literature review on OI and OOD detection in
Sec. 2. Then Sec. 3 derives the novel upper bound for OI and proposes our novel OI-based OOD detector.
Sec. 4 empirically evaluates the proposed novel OOD detector. Sec. 5 provides mathematical analysis and
the potential applications of our approach for estimating OI and model accuracy. Sec. 6.2 discusses the
limitations and broader impact of our approach. Sec. 7 concludes the paper.

2dF (P, Q) = supf∈F |EX ∼ P [f(X)] − EY ∼ Q[f(Y )]|, where F is a class of functions.
3The condition function 1{·} outputs 1 when the input satisfies the given condition and 0 otherwise.
4f̂(x) = 1

n

∑n

i=1 K
(

x−xi
β

)
, where K is the kernel function and β is the bandwidth.
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2 Background and Related Works

2.1 OOD Detection

A comprehensive discussion of classic OOD detectors, such as one-class SVM (Schölkopf et al., 2001), decision-
tree (Comité et al., 1999), and one-class nearest neighbor (Tax, 2002), is given by Khan & Madden (2014).
The deep OOD detectors can be divided into image-level OOD detectors and feature-level OOD detectors.
The image-level OOD detectors train their models using raw inputs, whereas the feature-level OOD detectors
require pretrained models to process the input. For image-level OOD detectors, Deep SVDD (Ruff et al.,
2018), OCGAN (Perera et al., 2019), and GradCon (Kwon et al., 2020) do not use additional information,
whereas Deep SAD (Ruff et al., 2020) uses information from anomaly samples. Bergmann et al. (2020) uses
a teacher network for OOD detection. CutPaste (Li et al., 2021a) considers object detection. Schneider
et al. (2022) studies different autoencoders for OOD detection. For feature-level OOD detectors, You et al.
(2023) achieves a higher accuracy using a transformer instead of autoencoders to reconstruct feature maps.
Golan & El-Yaniv (2018) bypasses the feature reconstruction phase using self-labeled training datasets. LOE
(Qiu et al., 2022), Panda (Reiss et al., 2021), and Salehi et al. (2021) use pretrained ImageNet models to
increase their accuracy. LPIPS (Zhang et al., 2018) is a feature-based similarity metric for images. ECOD
(Li et al., 2022) is a non-parametric OOD detector, which calculates the confidence score using empirical
cumulative distribution functions. Xu et al. (2023) proposes a deep isolation forest for OOD detection that
uses neural networks to map original data into random representation ensembles. Other works aiming to
improve OOD detection accuracy for classification and object detection include ViM (Wang et al., 2022b),
GradNorm (Huang et al., 2021), VOS (Du et al., 2022), PatchCore (Roth et al., 2022), YolOOD (Zolfi et al.,
2024). Li et al. (2023) uses masked image modeling for OOD detection. Dream-OOD (Du et al., 2023)
investigates the use of diffusion models for OOD detection. Specifically, it learns a text-conditioned latent
space from ID data and subsequently samples outliers in the low-likelihood region of the latent space. These
outliers can then be decoded into images using the diffusion model.

2.2 Statistical Divergences and Estimating OI

Popular statistical divergences to measure distribution similarities contain OI, TVD, KL divergence, and
Wasserstein distance. KL divergence is often utilized in classification (Malinin & Gales, 2019) and reinforcement
learning (Even-Dar et al., 2006), whereas the Wasserstein distance is preferred in optimal transport (Kolouri
et al., 2017; Raghvendra et al., 2024; Phatak et al., 2023; Lahn et al., 2023) and image processing (Cuturi &
Doucet, 2014). Note that TVD is less than or equal to the square root of KL divergence. Therefore, many
results from KL divergence can transfer to TVD and thus OI, or vice versa. Estimating OI and TVD with
unknown distributions using only finite samples is challenging. The kernel-based estimations (Schmid &
Schmidt, 2006; Pastore & Calcagnì, 2019) are sensitive to the choice of bandwidth, have a boundary effect,
and suffer from the curse of dimensionality. We found that their methods are slow in high-dimensional space.
The Cohen’s d measure (Inman & Bradley Jr, 1989) is efficient but assumes that the distributions A, B

are Gaussian with the same standard deviation σ and approximates OI ≈ 2Φ(− |µA−µB |
2σ ), where µA and

µB are samples’ means and Φ(·) is the standard normal distribution function. If the assumption does not
hold, the method may not be accurate. Sriperumbudur et al. (2012) provides an estimator for TVD, which
requires solving time-consuming linear programs and is not consistently accurate, as noted by the authors.
Our OI-based confidence score function shows a potential for estimating OI in a time-efficient fashion without
suffering from the curse of dimensionality.

3 The OI-Based OOD Detector

3.1 Problem Formulation and Goals

Given Rn space and m samples {xi}m
i=1 that lie in an unknown distribution, we would like to build a binary

detector Ψ : Rn → {±1} such that for any new input x, Ψ(x) outputs 1 when x is from the same unknown
probability distribution, and outputs -1, otherwise. The detector Ψ should be effective even when n is large
or m is small. Additionally, the computation and memory costs of Ψ should be small.
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3.2 Motivation: A Novel Upper Bound for OI

Our methodology is inspired by a newly derived upper bound for the OI between bounded distributions. We
consider the Rn space and continuous random variables. We define P and Q as two probability distributions
in Rn with fP and fQ being their probability density functions. The derivation of this novel upper bound
necessitates the introduction of the following definitions.
Definition 3.1. The OI, η, is a function of two distributions whose samples belong to the Rn space and
outputs the overlap index value of these two distributions, which is a real number between 0 and 1. η is
defined as (Pastore & Calcagnì, 2019):

η(P, Q) =
∫
Rn

min[fP (x), fQ(x)]dx. (1)

Definition 3.2. Given an A ⊂ Rn, δA is a function of two distributions whose samples belong to the Rn

space and outputs a real number between 0 and 1 with the following definition:

δA(P, Q) = 1
2

∫
A

|fP (x)− fQ(x)|dx. (2)

The standard TVD is δA with A = Rn or one minus OI (Pastore & Calcagnì, 2019). The following theorem
shows a novel upper bound of OI between bounded distributions.
Theorem 3.3. Without loss of generality, assume D+ and D− are two probability distributions on a bounded
domain B ⊂ Rn with defined norm5 || · || (i.e., supx∈B ||x|| < +∞), then ∀ A ⊂ B with Ac = B \A, we have

η ≤ 1− 1
2rAc

||µD+ − µD− || − rAc − rA

rAc

δA (3)

where rA = supx∈A ||x|| and rAc = supx∈Ac ||x||, µD+ and µD− are the means of D+ and D−, and δA is
TVD on set A as defined in Definition 3.2. Moreover, let rB = supx∈B ||x||, then

η ≤ 1− 1
2rB
||µD+ − µD− || − rB − rA

rB
δA. (4)

Since (4) holds for any A, a tighter bound can be written as

η ≤ 1− 1
2rB
||µD+ − µD− || −max

A

rB − rA

rB
δA. (5)

The theorem is framed to accommodate probability distributions with bounded domains. In practical
applications, data may originate from unbounded distributions. Nevertheless, the corresponding finite-sample
datasets are inherently bounded. As such, it is possible to approximate the underlying unbounded distributions
with bounded ones and then apply our theorem. We forego further exploration of cases involving unbounded
distributions at this time, as the current theorem sufficiently informs the intuition behind our proposed OOD
detector. To calculate δA and ||µD+ − µD− || with finite samples, we have the following corollary.
Corollary 3.4. Given D+, D−, B, and || · || used in Theorem 3.3, let A(g) = {x | g(x) = 1, x ∈ B} with
any condition function g : B → {0, 1}. An upper bound for η(D+, D−) can be obtained:

η ≤ η = 1− 1
2rB
||µD+ − µD− || −max

g

rB − rA(g)

2rB
|ED+ [g]− ED− [g]| . (6)

|ED+ [g] − ED− [g]| is the absolute value. If we use only a single input to calculate µD+ and ED+ [g] and
use a few samples to calculate µD− and ED− [g], then η can be considered as a confidence score function
for evaluating the likelihood that the given input in D+ belongs to the same distribution as samples in
D−. Before providing further visualization and ablation study to demonstrate the efficacy of using such a
confidence score function, we present the implementation algorithm to calculate equation 6.

5This paper considers the L2 norm. However, the analysis can be carried out using other norms.
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Figure 1: Histograms of confidence scores using η, η1, and η2 with plane as the ID class and the other nine
classes as the OOD class in CIFAR-10. D+ consists of all samples from the “plane” class, while D− includes
all samples from the remaining nine classes.

3.3 Empirical Calculation of the Novel Upper Bound

The middle term in the RHS of equation 6 is the distance of clusterings’ means, and the last term is a function
of IPM with a class of condition functions. To approximate the last term, we draw samples from D+ and
D− and then average their g values to estimate ED+ [g] and ED− [g]. Alg. 1 shows the computation of η with
given k condition functions {gj}k

j=1 and finite sample, {x+
i }d

i=1 ∼ D+ and {x−
i }m

i=1 ∼ D−.

Algorithm 1 ComputeBound({x+
i }d

i=1, {x−
i }m

i=1, {gj}k
j=1)

B ← {x+
1 , ..., x+

d , x−
1 , ..., x−

m}
rB ← maxx∈B ||x||
∆µ ←

∣∣∣∣∣∣ 1
d

∑d
i=1 x+

i − 1
m

∑m
i=1 x−

i

∣∣∣∣∣∣
FOR j = 1→ k

A(gj)← {x | gj(x) = 1, x ∈ B}
rA ← maxx∈A ||x||
sj ← (rB − rA)

∣∣∣ 1
d

∑d
i=1 gj(x+

i )− 1
m

∑m
i=1 gj(x−

i )
∣∣∣

Return: 1− 1
2rB

∆µ − 1
2rB

maxj sj

Choice of g: The choice of condition functions is not unique. The literature faces similar issues when
choosing functions for IPMs (Larry Wasserman, b; Sriperumbudur et al., 2012). The overall guideline
is to choose functions that satisfy convenient regularity conditions. The chosen functions should also be
computation-efficient and memory-efficient. Considering all the aspects, gj(x) = 1{rj−1 ≤ ||x|| ≤ rj} is
selected with rj = jrB/k, which are nicely regularized, computation-efficient, and empirically effective.
However, other condition functions are worth exploring.

The OI-Based Confidence Score Function: The confidence score function using Alg. 1 is defined as
f(x) = ComputeBound({x}, {xi}m

i=1, {gj}k
j=1) (i.e., {x+}d = {x} with d = 1), which measures the maximum

similarity between x and {xi}m
i=1. If f(x) ≥ T0, then x is considered as an ID sample. Otherwise, x is

considered as OOD. T0 is pre-defined by users.

3.4 Computation and Space Complexities

We can pre-compute and store 1
m

∑m
i=1 xi and 1

m

∑m
i=1 gj(xi) in Alg. 1. Therefore, the space complexity is

O(k + 1). The computation complexity is O(k + 1) for each online input x since it needs to calculate ||x||
once and sj for k times. k can be restricted to a reasonable number (e.g., ≤ 100) so that even devices without
strong computation power (e.g., Arduino or Raspberry Pi) can run our OOD detector efficiently. This is an
advantage compared to time-consuming deep approaches.

Visualization: Although our confidence score seems simple, we empirically find it effective. Both
1

2rB
||µD+ − µD− || and maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]| are important for our OOD detector. To val-
idate their efficacy, we created two another OOD detectors with η1 = 1 − 1

2rB
||µD+ − µD− || and
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Table 1: Information on utilized UCI datasets.
Dataset n ID Class Size OOD Class Size

Iris 4
Setosa 50 Vers.+Virg. 100

Versicolour 50 Seto.+Virg. 100
Virginica 50 Seto.+Vers. 100

Breast 9 Malignant 241 Beni. 458
Cancer Benign 458 Mali. 241
Ecoli 7 Peripalsm 52 All Others 284

Ball-bearing 32 Ball-bearing 913 None 0

η2 = 1−maxg
rB−rA(g)

2rB
|ED+ [g]− ED− [g]| as the confidence score functions. Fig. 1 shows the histograms of

η, η1, and η2 using CIFAR-10 (Krizhevsky et al., 2009) plane images as the ID samples and the other nine
class images as the OOD samples. Fig. 1(b,c) show that it is less likely to distinguish between ID and OOD
samples by independently observing either 1

2rB
||µD+ − µD− || or maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]|. However,
the summation of 1

2rB
||µD+ − µD− || and maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]| amplifies the difference between
ID and OOD samples, as shown in Fig. 1(a). Our OOD detector successfully utilizes the dependence between

1
2rB
||µD+ − µD− || and maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]| to identify OOD samples.

Flexibility: Our OOD detector does not require any distributional assumptions nor the need to calculate
the inverse of the covariance matrix which can be numerically unstable. Besides, Alg. 1 could be applied in
any space, such as the feature space generated by a pretrained model. This flexibility broadens the potential
application of our approach. Additionally, Alg. 1 supports batch-wise computation since 1

m

∑m
i=1 xi and

1
m

∑m
i=1 gj(xi) can be pre-computed and stored.

4 Experimental Results

4.1 Setup

Datasets: We employ UCI datasets (Dua & Graff, 2017) given in Table 1 for benchmarking against traditional
OOD detectors. For comparison with state-of-the-art deep OOD detectors, we primarily use the CIFAR-10
dataset (Krizhevsky et al., 2009) in both input and feature spaces. Additionally, the CIFAR-100 dataset
(Krizhevsky et al., 2009) is utilized to serve as the ID dataset for comparisons with Gaussian-based OOD
detectors. OOD datasets include Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), LSUN-Crop (Yu
et al., 2015), LSUN-Resize (Yu et al., 2015), and iSUN (Xu et al., 2015). We also extend the application of
our OOD detector to backdoor detection, leveraging datasets such as MNIST (LeCun et al., 2010), GTSRB
(Stallkamp et al., 2011), YouTube Face (Wolf et al., 2011), and sub-ImageNet (Deng et al., 2009). Details on
these datasets are provided in Appendix F.

Metrics: The primary metric employed for assessing the efficacy of our OOD detectors is the area under
the receiver operating characteristic curve (AUROC). A higher AUROC value indicates better accuracy in
differentiating between ID and OOD samples. Supplementary to AUROC, we also utilize TPR95—representing
the detection accuracy for OOD samples when the detection accuracy for ID samples is fixed at 95%—and
the area under the precision-recall curve (AUPR) as additional performance metrics.

Hyperparameters: We set k = 100 and gj(x) with the form 1{rj−1 ≤ ||x|| ≤ rj} in Alg. 1. We recommend
choosing k between 50 and 200. Values of k ≥ 200 do not significantly improve performance, while k < 50
results in underperformance. The selected condition functions gj are both computationally efficient and
empirically effective. The number m of available ID samples varies depending on the dataset in use. We
perform ablation studies to evaluate the impact of these hyperparameters on our method’s performance.

Hyperparameters of compared methods: We obtained the code for each comparison method from the
authors’ respective websites and followed the provided instructions to run their approach to replicate the
results reported in their original papers. Some baselines require multiple runs, and we executed them 10 times.

6



Under review as submission to TMLR

Figure 2: AUROC on UCI datasets. Horizontal lines: the mean and standard deviation of our approach.

Table 2: AUROC (%) on CIFAR-10 with each class being ID. Boldface shows the highest AUROC.
Class Raw Image Space Extra Information

Ours OCGan Deep SVDD AnoGAN DCAE GradCon Ours LPIPS Bergman PANDA ADTR
Plane 76.7 75.7 61.7±4.1 67.1±2.5 59.1±5.1 76.0 96.1 79.3 78.9 93.9 96.2
Car 67.0 53.1 65.9±2.1 54.7±3.4 57.4±2.9 59.8 97.5 94.6 84.9 97.1 98
Bird 53.4 64.0 50.8±0.8 52.9±3.0 48.9±2.4 64.8 94 63.1 73.4 85.4 94.5
Cat 58.5 62.0 59.1±1.4 54.5±1.9 58.4±1.2 58.6 94.3 73.7 74.8 85.4 91.7
Deer 73.0 72.3 60.9±1.1 65.1±3.2 54.0±1.3 73.3 95.7 72 85.1 93.6 95.1
Dog 66.2 62.0 65.7±2.5 60.3±2.6 62.2±1.8 60.3 96.4 75.2 79.3 91.2 95.6
Frog 73.3 72.3 67.7±2.6 58.5±1.4 51.2±5.2 68.4 97.9 83.6 89.2 94.3 98
Horse 58.8 57.5 67.3±0.9 62.5±0.8 58.6±2.9 56.7 94.9 81.8 83 93.5 97.1
Ship 78.0 82.0 75.9±1.2 75.8±4.1 76.8±1.4 78.4 97.9 81.2 86.2 95.1 98

Truck 74.7 55.4 73.1±1.2 66.5±2.8 67.3±3.0 67.8 97.1 86.3 84.8 95.2 96.9
Ave. 68.0 65.6 64.8 61.8 59.4 66.4 96.2 79.1 82.0 92.5 96.1

For instances where we applied the compared methods to new datasets, we conducted careful hyperparameter
tuning to ensure their best performance.

4.2 Comparison Results

UCI Dataset: We first evaluated our OI-based detector on small UCI datasets given in Table 1. Fig. 2(a)
shows that our detector outperforms all baseline methods by showing the highest average AUROC (i.e.,
97.67±2.55%). Table 10 in the appendix provides the numerical numbers.

CIFAR-10 Dataset: We then use CIFAR-10 images with one class being ID and the remaining classes
being OOD. The compared deep OOD detectors on raw images without using additional information from
anomaly samples include DCAE (Makhzani & Frey, 2015), AnoGAN (Schlegl et al., 2017), Deep SVDD (Ruff
et al., 2018), OCGAN (Perera et al., 2019), and GradCon (Kwon et al., 2020). Comparisons with more recent
approaches are provided later. All the methods are given m = 5000 available ID samples. The result is in
Table 2 “Raw Image Space”. Our approach shows the highest AUROC. Although the baseline methods could
reach similar accuracy, they are slower than ours on the same CPU machine. For example, the Deep SVDD
requires 446.8 ms for each detection (ours is 3 ms). Fig. 3(a) shows the AUROC of our approach with m less
than 5000. With only m = 100 ID samples, the AUROC of our approach is 67.2%. In contrast, the AUROC
of Deep SVDD drops to 61.1% with m = 100. As for the memory cost, Deep SVDD uses LeNet (LeCun et al.,
1998) with three convolutional layers. The first layer already has 2400 parameters, whereas our approach has
O(k + 1) space complexity with k = 100.

Ablation Study: We compare our approach with classic OOD detectors that are fit by samples’ norms,
including LOF (Breunig et al., 2000), OCSVM (Schölkopf et al., 2001), Isolation Forest (Liu et al., 2008),
and Elliptic Envelope (Rousseeuw & Driessen, 1999). Table 3 shows that our approach is more than just
calculating the statistic of the sample’s norms. When using η1 and η2 mentioned in Sec. 3 as the confidence
score functions, the AUROC of our approach becomes 58.4% for η1 and 50.1% for η2. These two numbers
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Table 3: AUROC of our approach using η1 and η2 as the confidence score functions and AUROC of other
methods with samples’ norms as inputs.

Method η1 η2 LOF OCSVM Ellip. Env. Iso. Fo
AUROC 58.4 50.1 60.5 55.2 55.2 56.7

Figure 3: AUROC of our approach with (a) different numbers m of available ID samples and (b) different
numbers k of condition functions.

are consistent with Fig. 1 that either term cannot individually detect OOD samples. Fig. 3(b) shows the
AUROC of our approach with different k. Our approach remains high AUROC when k ≥ 50.

Runtime Efficiency: ECOD (Li et al., 2022) is also non-parametric and does not require training parameters.
The time complexity of ECOD is O(n) that increases with the data dimension n. We compare the execution
time of our approach with ECOD by varying the data dimension n. We also report the computation time of
Deep Isolation Forest (Xu et al., 2023). Table 4 shows the execution time. The computation complexity of
our method and Deep Isolation Forest do not increase with the data dimension, whereas the computation
complexity of ECOD increases linearly with the data dimension. The time complexity of our approach
increases linearly with the number k of utilized condition functions. We empirically observed that with
k = 1000, the execution time becomes 36 ms.

Improvement with Extra Information: Deep OOD detectors such as LPIPS (Zhang et al., 2018),
Bergmann’s method (Bergmann et al., 2020), Panda (Reiss et al., 2021), and ADTR (You et al., 2023)
require pretrained models or additional information from anomaly samples to identify OOD samples. If our
approach is also allowed to use pretrained models and information from anomaly samples, the accuracy will
improve. Specifically, we use a pretrained ImageNet model from (Reiss et al., 2021) to extract CIFAR-10
features. We also assume that a contaminated dataset is available. Similar assumption is also used in
(Choi et al., 2024). To build the contaminated dataset, we first merge all ID and OOD samples and then
randomly select 100 samples. During the testing, each input will be subtracted from the mean vector of
this contaminated dataset. The results are shown in Table 2 “Extra Information”. The average AUROC
of our approach increases to 96.2%. Fig. 4(a) shows the improvement of our approach. According to
Fig. 4(b), maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]| helps distinguish between ID samples and OOD samples after
using the pretrained model and the contaminated dataset. Although the compared methods may show similar
performance, their training time (e.g., PANDA) is much higher than ours. We have further compared our

Table 4: Execution time (ms) per sample with various data dimension.
n 10 100 500 1000 2000

Ours 3 3 3 3 3
ECOD 8 79 453 1021 2245

Deep Isolation Forest 150 150 150 150 150

8
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Figure 4: Histograms of confidence scores using η and η2 with plane as the ID class and the other nine classes
as the OOD class in CIFAR-10.

Table 5: Results for CIFAR-10 and CIFAR-100 being in-distribution datasts. Boldface shows the best
performance, whereas underline shows the second best.

ID Dataset: CIFAR-10 ID Dataset: CIFAR-100
Out-of-Distribution Datasets Method TPR95 (%) AUROC (%) AUPR (%) TPR95 (%) AUROC (%) AUPR (%)

Texture

Ours 64.20 92.80 92.33 42.50 85.79 85.27
MSP 40.75±3.95 88.31±0.93 97.08±1.32 16.71±4.46 73.58±1.29 93.02±1.83

Mahalanobis 62.38±2.08 94.46±0.50 98.75±0.59 57.62±4.13 90.14±1.36 97.62±1.77
Energy Score 47.47±3.33 85.47±1.73 95.58±2.48 20.38±4.88 76.46±3.08 93.68±3.77

GEM 72.61±3.21 94.59±0.50 98.79±0.61 57.40±7.44 90.17±1.83 97.63±1.78
VOS 53.55±3.11 86.81±0.73 95.72±0.62 59.08±4.52 88.05±1.71 97.99±1.92

SVHN

Ours 94.10 98.56 99.41 93.75 98.36 99.36
MSP 52.41±5.19 92.11±0.62 98.32±0.61 15.66±4.09 71.37±2.43 92.89±2.46

Mahalanobis 79.34±3.23 95.72±0.68 99.04±0.82 51.35±5.35 89.25±1.21 97.52±1.20
Energy Score 64.20±2.44 91.05±1.06 97.66±1.99 14.59±2.79 74.10±1.73 93.65±1.85

GEM 79±2.84 95.65±0.70 99.01±0.87 51.51±5.19 89.40±1.53 97.57±1.34
VOS 75.41±4.21 95.26±0.71 98.99±0.83 51.66±4.03 87.13±2.21 96.85±1.96

LSUN-Crop

Ours 83.63 96.60 96.61 57.76 89.95 90.03
MSP 69.07±3.87 95.64±0.50 99.13±0.51 33.44±5.09 83.71±1.81 96.32±1.72

Mahalanobis 30.06±3.66 86.15±0.41 97.05±0.48 1.53±1.47 58.48±0.98 89.73±2.03
Energy Score 91.89±2.74 98.40±0.24 99.67±0.25 64.01±7.17 93.41±1.13 98.59±1.11

GEM 30.20±3.70 86.09±0.34 97.03±0.39 1.70±0.77 58.42±1.52 89.70±2.11
VOS 92.45±3.54 98.44±0.39 99.67±0.47 91.94±5.07 98.38±1.69 99.65±1.83

LSUN-Resize

Ours 85.41 96.84 96.86 88.49 97.56 97.55
MSP 47.45±5.84 91.30±1.06 98.11±1.06 16.54±3.65 75.32±2.06 94.03±2.50

Mahalanobis 35.64±3.59 88.12±0.63 97.45±0.77 67.20±5.62 93.97±1.06 98.70±0.98
Energy Score 71.75±6.18 94.12±1.14 98.64±1.44 21.38±4.53 79.29±1.68 94.97±1.92

GEM 35.45±5.84 88.09±0.81 97.43±0.83 67.09±4.69 94.01±1.33 98.70±1.30
VOS 85.85±5.83 97.19±1.04 99.41±1.17 63.91±3.72 90.95±1.97 97.74±2.24

iSUN

Ours 79.62 95.64 95.68 82.15 96.05 96.24
MSP 43.40±3.54 89.72±1.21 97.72±1.26 17.02±4.12 75.87±2.05 94.20±1.79

Mahalanobis 26.77±4.62 87.87±1.13 97.33±1.20 64.07±3.96 92.69±0.95 98.32±0.88
Energy Score 66.27±3.11 92.56±1.41 98.25±1.51 19.20±4.15 78.98±1.71 94.90±2.09

GEM 36.80±7.29 87.85±1.25 93.33±1.21 64.10±5.15 92.73±1.03 98.32±1.05
VOS 82.29±4.43 96.53±1.27 99.25±1.33 63.01±4.63 90.91±1.91 97.95±1.84

Average Performance

Ours 81.39 96.08 96.17 72.93 93.53 93.69
MSP 50.63 91.46 98.07 19.87 75.97 94.09

Mahalanobis 46.83 90.46 97.92 48.35 84.90 96.37
Energy Score 68.31 92.32 97.96 27.91 80.44 95.15

GEM 50.81 90.45 97.91 48.36 84.94 96.38
VOS 77.91 94.84 98.60 65.92 91.08 98.03

approach with outlier exposure (Hendrycks et al., 2019). The average performance of (Hendrycks et al., 2019)
is 95.6%, while ours stands at 96.2%. Therefore, our approach is comparable to the outlier exposure method.

Large-Scale Datasets: We evaluated our approach on large-scale datasets following a similar procedure.
Specifically, we used the pretrained model CLIP (Radford et al., 2021) as the feature extractor, with ImageNet-
1K (Huang et al., 2021) as the ID dataset and iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010),
Textures (Cimpoi et al., 2014), and Places (Zhou et al., 2017) as the OOD datasets. The extracted text
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Table 6: Comparison in computation time and memory cost during inference.

Method CIFAR-10 CIFAR-100
Time/Sample Memory Time/Sample Memory

Ours 3.0ms 1048.22MiB 3.0ms 1134.32MiB
MSP 0.02ms 1825.21MiB 0.02ms 1825.98MiB

Mahala. 30.61ms 1983.17MiB 56.24ms 1983.81MiB
Energy 0.22ms 1830.01MiB 0.21ms 1838.23MiB
GEM 25.62ms 1983.51MiB 56.27ms 1984.77MiB
VOS 19.56ms 1984.05MiB 20.32ms 1984.91MiB

Figure 5: Performance of our approach with different numbers (k = 10, 50, 200) of condition functions for
CIFAR-10 being ID data.

embeddings of ImageNet-1K labels served as the ID features for our OI-based detector. The utilized prompt
is "the < >" with the blank filled by specific labels. For example, if the class is cat, then the generated
prompt would be "the cat". During inference, for a given image, we extracted its image embedding using
CLIP and calculated the OI value between this embedding and the text embeddings of ID labels. To build
the contaminated dataset, we merged all ID and OOD features, then randomly selected 100 features. During
testing, each feature was subtracted from the mean vector of this contaminated dataset. The compared
methods are allowed to use ImageNet-1K training data to train or fine-tune their OOD detectors. The results,
shown in Table 7, demonstrate consistent performance of our approach on large-scale datasets. We have also
compared our approach with the more recent method DCM (Choi et al., 2024), which minimizes confidence
on an uncertainty dataset. DCM achieves an overall AUROC performance of 97.4%, compared to 93.89%
for our method. Although DCM delivers slightly better OOD detection results, our approach demonstrates
several advantages in terms of training time efficiency, memory cost, and dataset requirements. For example,
DCM requires access to an uncertainty dataset containing both ID and OOD data for model fine-tuning,
whereas our approach only requires the mean of the uncertainty dataset, offering much faster training times
and lower memory costs, making it less restrictive.

Image Corruptions: We tested our approach using ImageNet-1K as the ID dataset and corrupted images
as the OOD dataset (Hendrycks & Dietterich, 2019). Specifically, we have tested our approach on one of the
ImageNet-C datasets, specifically the image blur dataset. We note that our approach performs well on image
corruption tasks, including defocus blur, glass blur, and motion blur, achieving AUROCs of 98.92%, 98.37%,
and 97.93%, respectively.

Gaussian-Based Approaches: We feed raw data into WideResNet pretrained models to extract complex
high-dimensional features whose shape is 128× 8× 8. The pretrained models are downloaded from (Morteza
& Li, 2022). The compared methods are MSP (Hendrycks & Gimpel, 2017), Mahalanobis (Lee et al., 2018),
Energy score (Liu et al., 2020), GEM (Morteza & Li, 2022), and VOS (Du et al., 2022). All baseline methods
are evaluated in the same feature space with their optimal hyperparameters for fair comparisons. We formed
a small dataset by randomly selecting ten samples from each class to form the available ID dataset. Table 5
shows the experimental results of our approach compared with Gaussian-based approaches for the feature-level
OOD detection when CIFAR-10 and CIFAR-100 are the ID datasets and Textures, SVHN, LSUN-Crop,

10



Under review as submission to TMLR

Table 7: AUROC on large-scale datasets. The ID dataset is ImageNet-1K. The backbone is ViT-B/16.
OOD Datasts iNaturalist SUN Places Textures Ave.

MSP (Hendrycks & Gimpel, 2017) 87.44 79.73 79.67 79.69 81.633
ODIN (Liang et al., 2018) 94.65 87.17 85.54 87.85 88.803

GradNorm (Huang et al., 2021) 72.56 72.86 73.70 70.26 72.345
ViM (Wang et al., 2022b) 93.16 87.19 83.75 87.18 87.820
KNN (Sun et al., 2022) 94.52 92.67 91.02 85.67 90.970
VOS (Du et al., 2022) 94.62 92.57 91.23 86.33 91.188

NPOS (Tao et al., 2022) 96.19 90.44 89.44 88.80 91.218
Ours 99.57 92.78 88.31 94.92 93.895

Table 8: Average performance of different OOD detectors for backdoor detection.
Metrics (%) Ours STRIP Mahalanobis GEM MSP

TPR95 89.40 39.60 56.97 91.57 39.24
AUROC 96.68 70.30 75.94 58.08 54.92
AUPR 95.42 68.76 76.37 75.88 60.52

LSUN-Resize, and iSUN are the OOD datasets. Table 6 shows the computation time and memory cost of
our approach and the other methods. Our approach outperforms the other methods using the least memory,
showing the highest TPR95 and AUROC on average. The AUPR of our approach is in the same range as
other baseline methods. We further evaluated our approach using different numbers k of conditions functions
and plotted the results in Fig. 5. From the figure, the performance of our approach increases with k and
eventually converges, which is consistent with Fig. 3(b).

Backdoor Detection: We applied our approach to backdoor detection (Gu et al., 2019) by considering
clean samples as ID data and poisoned samples as OOD data. We created different backdoored models and
used them to extract data features. We compare with previous baseline methods plus STRIP (Gao et al.,
2019). The average performance is given in Table 8. Our approach detects various attacks (Chen et al.,
2017; Liu et al., 2019; Li et al., 2021b; Fu et al., 2022; Nguyen & Tran, 2021) and outperforms other baseline
methods by showing the highest average AUROC. Details are provided in Appendix H.

Figure 6: (a): illustration of Proposition 5.1. (b): illustration of Proposition 5.2. (c,d): the absolute
value of estimation errors between the ground-truth OI and η′ for uniform distributions (c) and truncated
Gaussian distributions (d).
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5 Analysis

5.1 Mathematical Properties

Proposition 5.1. Consider uniform distribution for D+ in [0, 1] and 1 + sin 2πωx for D− in [0, 1], with
g(x) = 1{||x|| ≤ r}, the proposed confidence score function η is insensitive to small distribution variations:

η(D+, D−) ≥ 1− 1
ω
∀ ω ≥ 1. (7)

Proposition 5.2. Let ϵ ∈ [0, 1], then for arbitrary D+, D−, and g, the proposed confidence score function η
is robust against Huber-ϵ contamination:

η(D+, (1− ϵ)D+ + ϵD−) ≥ 1− ϵ. (8)

The insensitivity and robustness are illustrated in Fig. 6(a,b). The following theorem shows the potential of
our OI-based confidence score function for estimating the model accuracy.
Theorem 5.3. Assume that D and D∗ are two different data distributions with η(D, D∗) < 1 and denote
the overall accuracy of the model on D∗ as Acc. If a model has a training accuracy p on D and a testing
accuracy q on D∗ \D, then we have

Acc ≤ (p− q)(1− 1
2rB
||µD − µD∗ || −max

g

rB − rA(g)

2rB
|ED[g]− ED∗ [g]|) + q. (9)

Theorem 5.3 provides a theoretical interest for OOD generalization and is also empirically useful when the
domain shift happens in the backdoor setting, where the model has zero clean accuracy on poisoned data
(i.e., q = 0). Define the clean distribution as D, poisoned distribution as Dp, and a testing distribution D∗

with D∗ = σD + (1− σ)Dp, where σ ∈ [0, 1]. Then (9) becomes

Acc ≤ p(1− 1− σ

2rB
||µD − µDp || − (1− σ) max

g

rB − rA(g)

2rB
|ED[g]− EDp [g]|). (10)

The experimental illustration is given in Appendix I.

5.2 OI Estimation

Let η′ = max{0, 1 − maxg
rB−rA(g)

2r′ |ED+ [g]− ED− [g]| − 1
2r′ ||µD+ − µD− ||} be the variant of η given in

equation 6, where r′ ≤ rB. For any given r′, we could use Alg. 1 to calculate η′ as an estimate of OI. To
validate η′, we consider estimate OI in R4. We set r′ as the median Euclidean norm among all vectors in B, use
indicator functions gj(x) = 1{||x|| ≤ rj}, and choose k = 100 and m = 50. The utilization distributions are
truncated Gaussian and uniform. We merged the two data clusterings and computed the mean vector of the
combined set. We set this mean vector as the origin. The results are illustrated in Fig. 6(c,d). We empirically
observed that the computation and memory costs of using the kernel estimator (Pastore & Calcagnì, 2019) in
R4 are much higher than ours and Cohen’s d measure (Inman & Bradley Jr, 1989). Therefore, we only show
the comparison results with Cohen’s d measure. The findings suggest that our OI-based confidence score
function shows promise for applications in OI estimation.

6 Discussion

6.1 Joint Selective Classification-OOD Detection

This work focuses on OOD detection. However, recent advances in selective classification (Narasimhan et al.,
2024) closely overlap with OOD detection, as it is crucial to determine when the model should make a
prediction. ID samples on which the model is not confident should also be taken into account. Exploring
whether our approach can be applied to selective classification is part of our future work.
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6.2 Limitation and Broader Impact

Zhang et al. (2021a) proves that for any OOD detector, there exist situations where the OOD samples lie in
the high probability or density regions of ID samples, and the OOD method performs no better than the
random guess. We empirically observed that by shifting in- and out-distribution clusterings to the origin, our
approach becomes less effective, supporting Zhang et al. (2021a)’s claim. For example, in the hard-OOD
detection task where CIFAR-10 is the ID dataset and CIFAR-100 is the OOD dataset, the AUROC of our
approach decreases to around 80%. Due to this limitation, the attacker may use our work to design stealthy
OOD samples to evade our detection, causing machine learning systems to malfunction. Nevertheless, we
believe that the positive impact of our approach far outweighs any potential negative societal impact.

7 Conclusion

This paper proposes a novel OOD detection approach that strikes a favorable balance between accuracy and
computational efficiency. The utilized OI-based confidence score function is non-parametric, computationally
lightweight, and demonstrates effective performance. Empirical evaluations indicate that the proposed
OI-based OOD detector is competitive with state-of-the-art OOD detectors across a variety of scenarios, while
maintaining a more frugal computational and memory footprint. The proposed OI-based confidence score
function shows an insensitivity to small distributional shifts and a robustness against Huber ϵ-contamination.
Additionally, it shows potential for estimating OI and model accuracy in specific applications. Overall, this
paper showcases the effectiveness of using the OI-based metric for OOD detection.
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A Proof of Theorem 3.3

Definition A.1 (Total Variation Distance (TVD)). TVD δ : Rn × Rn → [0, 1] of P and Q is defined as:

δ(P, Q) = 1
2

∫
Rn

|fP (x)− fQ(x)| dx. (11)

Since OI + TVD = 1, we have η = 1− δ = 1− δA − δRn\A.

Proof. Let fD+ and fD− be the probability density functions for D+ and D−. From Definition A.1, we have

η(D+, D−) = 1− δA(D+, D−)− δAc(D+, D−). (12)
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Using (12), triangular inequality, and boundedness, we obtain

||µD+ − µD− || = ||
∫

B

x (fD+(x)− fD−(x)) dx|| (13)

≤
∫

B

||x(fD+(x)− fD−(x))||dx (14)

=
∫

A

||x|| · |fD+(x)− fD−(x)|dx (15)

+
∫

Ac

||x|| · |fD+(x)− fD−(x)|dx (16)

≤ 2rAδA + 2rAcδAc (17)
= 2rAδA + 2rAc(1− δA − η(D+, D−)) (18)

which implies (3). Since 1− δA − η(D+, D−) ≥ 0, we can replace rAc with rB in (18) to get (4).

B Proof of Corollary 3.4

Proof. Let g : B → {0, 1} be a condition function and define A(g) = {x | g(x) = 1, x ∈ B}. According to the
definition of δA and triangular inequality, we have

δA(g)(D+, D−) = 1
2

∫
A(g)
|fD+(x)− fD−(x)|dx (19)

≥ 1
2 |

∫
A(g)

fD+(x)− fD−(x)dx| (20)

= 1
2 |

∫
Rn

g(x)fD+(x)− g(x)fD−(x)dx|

= 1
2 |ED+ [g]− ED− [g]| . (21)

Applying (21) into Theorem 3.3 gives Corollary 3.4.

C Proof of Proposition 5.1

Proof. Since the support is [0, 1], we have rB = 1, µD+ − µD− = −
∫ 1

0 x sin 2πωxdx ≤ 1
ω , ED+ [g]− ED− [g] =

−
∫ 1

0 g(x) sin 2πωxdx ≤ 1
ω , and η ≥ 1− 1

2ω −maxg
1−rA(g)

2
1
ω ≥ 1− 1

ω .

D Proof of Proposition 5.2

Proof. Denote Q = (1− ϵ)D+ + ϵD−, then µD+ −µQ = ϵ(µD+ −µD−), ED+ [g]−EQ[g] = ϵ(ED+ [g]−ED− [g]),
and η(D+, Q) = 1− ϵ( 1

2rB
||µD+ − µD− ||+ maxg

rB−rA(g)
2rB

|ED+ [g]− ED− [g]|) ≥ 1− ϵ.

E Proof of Theorem 5.3

Proof. Let fD and fD∗ be their probability density functions, Acc =∫
x∼D∗

(
p min{fD(x),fD∗ (x)}

fD∗ (x) + q
(

1− min{fD(x),fD∗ (x)
fD∗ (x)

))
× fD∗(x)dx = pη(D, D∗) + q(1 − η(D, D∗)) ≤

(p− q)(1− 1
2rB
||µD − µD∗ || −maxg

rB−rA(g)
2rB

|ED[g]− ED∗ [g]|) + q.

F Details of Used Datasets

Details of used datasets are given in Table 9.
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Table 9: Information on other utilized datasets.
Dataset Dimension # Class # Training # Testing

CIFAR-10 3 × 32 × 32 10 50000 10000
CIFAR-100 3 × 32 × 32 100 50000 10000

Textures 3 × 32 × 32 47 N/A 5640
SVHN 3 × 32 × 32 10 N/A 26032

LSUN_C 3 × 36 × 36 1 N/A 10000
LSUN_R 3 × 32 × 32 1 N/A 10000

iSUN 3 × 32 × 32 1 N/A 8925
MNIST 1 × 28 × 28 10 60000 10000
GTSRB 3 × 32 × 32 43 39209 12630

YouTube Face 3 × 55 × 47 1283 103923 12830
sub-ImageNet 3 × 224 × 224 200 100000 2000

G Details for Fig. 2

The numerical results are given in Table 10.

Table 10: AUROC (%) for different methods on UCI datasets.
Ours L1-Ball K-Center Parzen

97.67± 2.55 90.19± 22.21 92.4± 10.24 93.99± 9.92

Gaussian K-Mean 1-Nearest
Neighbor

K-Nearest
Neighbor

95.83± 6.45 94.51± 5.7 93.24± 11.05 93.24± 11.05
Auto-Encoder

Network
Linear

Programming
Principal

Component
Lof

Range
87.81± 22.15 81.5± 34.42 81.8± 25.18 86.04± 23.54

Nearest
Neighbor
Distance

Minimum
Spanning

Tree

Minimum
Covariance

Determinant

Self
Organizing

Map
84.54± 15.91 92.32± 11.4 94.1± 11.56 93.6± 7.49

Support
Vector

Machine

Minimax
Probability

Machine

Mixture
Gaussians

Local
Outlier
Factor

78.69± 36.72 77.84± 35.57 93.61± 11.15 89.04± 13.77
Naive
Parzen

Local Correlation
Integral

97.41± 2.59 96.79± 2.45

H Backdoor Detection

The datasets are balanced by having an equal number of clean and poisoned samples. For each backdoor
attack, we assume that a small clean validation dataset is available (i.e., ten samples from each class) at
the beginning. Therefore, the poisoned samples (i.e., samples attached with triggers) can be considered
OOD, whereas the clean samples can be considered ID. The metrics used are: TPR95 (i.e., the detection
accuracy for poisoned samples when the detection accuracy for clean samples is 95%), AUROC, and AUPR.
We have carefully fine-tuned the baseline methods’ hyperparameters to ensure their best performance over
other hyperparameter choices. Fig. 7 shows the utilized triggers, and Table 11 shows the details for backdoor
detection. For most triggers, our method has over 96% of TPR95, over 97% of AUROC, and 95% of AUPR.
Our detector is robust against the latest or advanced backdoor attacks, such as Wanet, invisible trigger, all
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Table 11: Comparison results for backdoor detection (higher number implies higher accuracy).
Datasets Trigger Metrics (%) Ours STRIP Mahalanobis GEM MSP

MNIST All label
TPR95 83.05 2.58 50.83 100 100
AUROC 96.13 44.69 90.78 50.43 50
AUPR 94.20 35.47 86.71 70.94 70.83

MNIST Naive.1
TPR95 100 98.85 99.86 100 5.11
AUROC 97.50 97.32 97.49 53.95 51.64
AUPR 96.17 95.95 96.38 74.74 50.41

MNIST Naive.2
TPR95 96.53 67.46 35.16 100 14.69
AUROC 97.28 93.67 78.63 53.51 58.14
AUPR 95.75 89.85 78.65 74.62 64.16

CIFAR-10 TCA.1
TPR95 100 35.68 100 100 4.38
AUROC 97.50 83.00 97.49 50 49.23
AUPR 95.47 73.22 97.84 76.32 52.64

CIFAR-10 TCA.2
TPR95 100 27.86 100 100 0.02
AUROC 97.50 68.79 97.49 50 29.90
AUPR 97.63 72.41 95.86 67.86 18.05

CIFAR-10 Wanet
TPR95 37.87 0.07 20.35 22.90 100
AUROC 92.74 34.97 50.61 57.81 50
AUPR 89.95 37.42 57.30 68.48 74.87

GTSRB Moving
TPR95 99.99 54

Fail: dependent data featuresAUROC 85.39 7.29
AUPR 96.96 89.07

GTSRB Filter
TPR95 85.39 7.29

Fail: dependent data featuresAUROC 96.54 38.92
AUPR 95.42 38.81

GTSRB Wanet
TPR95 100 1.24 0.51 100 100
AUROC 97.50 36.31 54.46 50 50
AUPR 97.62 39.53 48.92 75.23 75.23

YouTube Face Sunglasses
TPR95 73.37 83.03 71.64 98.58 13.06
AUROC 95.21 94.80 94.38 84.29 66.55
AUPR 93.00 95.54 94.63 88.83 53.27

YouTube Face Lipstick
TPR95 96.64 90.14 90.88 94.18 3.73
AUROC 97.21 93.15 93.26 80.80 50.14
AUPR 96.30 94.98 95.09 86.53 53.27

sub-ImageNet Invisible
TPR95 100 7.01 0.5 100 51.40
AUROC 97.49 66.26 4.78 50 93.61
AUPR 96.53 62.83 12.27 75.26 92.46

Average Performance
TPR95 89.40 39.60 56.97 91.57 39.24
AUROC 96.68 70.30 75.94 58.08 54.92
AUPR 95.42 68.76 76.37 75.88 60.52
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Figure 7: Pictures under “Triggers” are poisoned samples. Pictures under “Clean” are clean samples.

label attack, and filter attack, whereas the baseline methods show low performance on those attacks. The
Gaussian-based baseline methods encountered an error for two cases because the data features are dependent.

I Experimental Illustration of Theorem 5.3

Setup: We use MNIST, GTSRB, YouTube Face, and sub-ImageNet and their domain-shifted versions given
in Fig. 8 to illustrate the theorem. We set σ = 0, 0.1, ..., 0.9, 1 and calculated the RHS of (10) using L1,
L2, and L∞ norms in the raw image input space, model output space, and hidden layer space. We use
gj(x)= 1{||x|| ≤ rj}. Fig. 9 shows the model accuracy and corresponding upper bounds with different norms
and σs. The model accuracy is below all calculated upper limits, validating the theorem. The difference
between model accuracy and the calculated upper bound accuracy can reflect the extent of the domain shift
in the test dataset. From Fig. 9, a large difference reflects a large domain shift. When the domain shift
vanishes, the model accuracy and the calculated upper bound accuracy are close.

From Fig. 9, the calculated upper bound accuracy varies with spaces. The inference is that a low calculated
upper bound accuracy implies a high likelihood of detecting domain-shifted data in that particular utilized
space. For example, in Fig. 9 MNIST and YouTube, the input space with L∞ norm shows the lowest upper
bound accuracy. Therefore, domain-shifted samples will likely be detected in the input space. Indeed, from
Fig. 8, even vision inspection can easily detect them. As for GTSRB and ImageNet, the input space has
the highest upper limit lines. Therefore, domain-shifted samples are less likely to be detected in the input
space. Fig. 8 shows that the visual inspection can barely detect them. However, the hidden layer space gives
the lowest upper bound accuracy. Therefore, domain-shifted samples are more likely to be distinguished in
the hidden layer space, as shown in Fig. 8. The AUROC is 96.54% for GTSRB and 97.49% for ImageNet
according to Table 11.
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Figure 8: Top: original samples. Bottom: domain-shifted samples. From left to right: MNIST, YouTube
Face, GTSRB, GTSRB in hidden layer space, ImageNet, ImageNet in hidden layer space.

Figure 9: The model accuracy vs. equation 10 calculated with L1,2,∞ norms in input, output, and hidden
spaces. X-axis is the ratio of clean samples to the entire testing samples.
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