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Abstract
Line search optimization methods fail with multiple objective functions whose gradients are

unavailable. The center of a crowded, trusted region is typically chosen as the point on the Pareto
front with the highest hypervolume contribution. The proposed approach uses an entropy selection
procedure to search the entire Pareto front, avoiding the computation of the Pareto front samples via
cheap multi-objective optimization. By reducing uncertainty in each region, the algorithm directs
its search towards areas with the highest potential for Pareto improvement. We tested the proposed
method on the DTLZ test suite and other real-world applications, such as the welded beam design
problem and the trajectory planning rover problem. The proposed approach yields results at par
with state-of-the-art methods for exploring the Pareto front.
Keywords: Bayesian Optimization; Multi-Objective Optimization.

1. Introduction

Pursuing optimal outcomes needs explicit mathematical formulations, which are costly to analyze
and require understanding the smoothness of the objective functions. This is where multi-objective
Bayesian optimization proves to be an efficient strategy for tackling complex optimization prob-
lems. Bayesian optimization [15–17] excels in its ability to work with limited data. Moreover,
it leverages existing knowledge, making it particularly well-suited for multi-objective scenarios
[6, 18] where balancing tradeoffs between competing objectives is crucial. The acquisition func-
tion in Bayesian optimization was used for one-dimensional unconstrained optimization problems.
However, most real-world problems must meet multiple objectives, resulting in multiple optimal
solutions [3]. The optimal solutions for these problems form a Pareto Optimal Set [7], depending
on the decision maker’s preference [8]. To evaluate Pareto Optimal Solutions, the hypervolume
metric was introduced, measuring the volume of non-dominated points [20]. Numerous Simulated
Annealing techniques were proposed using hypervolume as a measure, though few methods address
high-dimensional settings with a high cost [5]. However, these methods require strong assumptions
about the problem’s structure and often need to be improved if these assumptions are valid. This
issue is predominant in multi-objective optimization, where all objectives must share the same as-
sumed structure, which is often challenging to follow [9]. State-of-the-art approaches select the
Pareto point that contributes the most to the hypervolume as the trust region center. However, this
approach can result in poor coverage of the Pareto front, potentially neglecting regions with high
potential for Pareto improvement. It prioritizes exploitation over achieving a balanced tradeoff be-
tween exploration and exploitation. We propose an Entropy-based search mechanism that computes
the entropies of the Trusted Regions. By reducing uncertainty in each region, the algorithm directs
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its search towards areas with the highest potential for Pareto improvement. Our method ensures
scalability to high dimensions, distributing the computational load across various regions of the
solution space and optimizing complex objective functions in a parallel and scalable manner.

2. Multi Objective Regionalized Bayesian Optimization via Entropy Search

The proposed Multi-objective regionalized Bayesian optimization via entropy search (MORBES)
utilizes a collaborative multi-trust region (multi-TR) approach for constrained higher-dimensional
multi-objective Bayesian optimization. Unlike Multi-objective regionalized Bayesian optimization
(MORBO) [5], which traditionally depends on hypervolume indicators, the proposed method em-
ploys entropy to evaluate the exploration potential of a Pareto point. It uses Tchebycheff’s scalar-
ization function to effectively identify solutions in non-convex regions of the Pareto front. Entropy-
based methods such as MESMO and PESMO [9] maximize information gain, improving model
predictions globally, ensuring that each evaluation is highly informative. Maximizing information
gain is equivalent to minimizing entropy. By reducing entropy, MORBES effectively gathers more
information about the objective space, particularly in unexplored regions. Information gain I(x) is

I(x) = I(fx; {p∗} | D) (1)

The information gain between the function values at x and the Pareto set p∗, given the observed
data D, denoted as I(fx; {p∗} | D), quantifies the reduction in uncertainty of the Pareto frontier
upon observing the objective values at x given the current dataset. This value captures how much
knowledge about the Pareto frontier is enhanced by additional objective evaluations at x in the
context of the existing data D .

Unlike Max-value entropy search for multi-objective Bayesian optimization [1], MORBES does
not require calculating the entire Pareto front. Instead, it needs to identify a point present in the
Pareto front with the highest information gain relative to the referred point. So, Information gain
I(x) is redefined as

I(x) = I(p∗; p∗ − {X,Y } | D) (2)

= H(p∗ | D)−H(p∗ − {X,Y } | D) (3)

where H(p∗ − {X,Y } | D) represents the uncertainty of the Pareto Front, excluding the speci-
fied data point {X,Y }. The first mathematical term in Eq. 3 is

H(p∗ | D) =
1

2
[M + (ln(2π)M) +N + (ln(2π)N)] +

M∑
i=1

ln(σ2
fi(x)) +

N∑
j=1

ln(σ2
ck(x)) (4)

The conditional entropy H(p∗ | D) quantifies the information content of the Pareto set p∗ given
the observed data D. A Pareto point is identified as

x = argmax
x∈X∗

(H(p∗ − {X,Y } | D)) (5)

Using a sequential greedy approach, the proposed method chooses TR centers, omitting places
previously chosen as the center for another TR with the help of a mask. While MORBES car-
ries out local optimization inside a TR, a method based on hypervolume scalarization is used to

2



MULTI OBJECTIVE REGIONALIZED BAYESIAN OPTIMIZATION VIA ENTROPY SEARCH

Algorithm 1: Multi Objective Regionalized Bayesian Optimization via Entropy Search
Data: nTR (# of trust regions), Leninit (initial trust region length), Lenmax (maximum trust

region length), Lenmin (minimum trust region length), f (objective function)
Result: Approximate Pareto Frontier
Initialize the trust regions T1, . . . , TnTR and evaluate a starting set of points
Use the Entropy search center selection procedure to locate the centers.
while budget remains do

Build a Gaussian model inside each trusted region Select m candidates using hypervolume
improvement Evaluate candidates and obtain new data points

for i = 1 to nTR do
Add new data points to trust regions Increment success/failure counters Update edge

length Lenj for Tj

if Lenj < Lenmin then
Use Reinitialization Algorithm

end
end

end
return Approximate Pareto Frontier

Figure 1: Exploration of Pareto Front concerning DTLZ2.

reinitialize the TRs to guarantee global optimization. This technique reduces a multi-objective op-
timization problem to a single-objective problem. As a result, maximizing the hypervolume is the
same as maximizing the randomized single-objective scalarization problem [19]. The simplest form
of scalarized function is the weighted sum scalarization. However, this locates the Pareto front’s
convex hull f(Mp∗) [10]. The weighted Tchebycheff’s function chc(y | λ) with weights λ

min
y∈X

chc(y | λ) = min
y∈X

max
1≤i≤m

{λi(fi(y))− λi(l
∗
i ) + λi(ϵ)}. (6)

Its goal is to find a solution y inside the feasible set X that minimizes the maximum deviation
from a reference point l∗i . The vector-valued function f(y) evaluated at y has the i-th component
represented by fi(y), λi is the weight assigned to the i-th component, and ϵ is a small positive value
that ensures feasibility. The solution y is optimized to balance closeness to l∗i while preserving the
priority suggested by the weights λ. This is achieved by minimizing chc(y | λ).
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Test Function / Problem MORBES Convergence MORBO Convergence Observation
DTLZ2 ∼ 250 iterations ∼ 400 iterations MORBES converges faster, offering

higher hypervolume and better non-
dominated front.

DTLZ5 ∼ 1000 iterations > 2000 iterations MORBES achieves convergence faster,
reducing computational cost signifi-
cantly.

DTLZ7 Same as MORBO Same as MORBES Both algorithms show similar perfor-
mance in convergence and hypervol-
ume for continuous/discontinuous re-
gions.

Welded Beam Design Problem ∼ 80 iterations ∼ 120 iterations MORBES converged earlier, perform-
ing at the same level as MORBO re-
garding hypervolume.

Rover Problem (Trajectory Planning) ∼ 1100 iterations ∼ 1500 iterations MORBES converge faster, advanta-
geous in scenarios focusing on compu-
tational efficiency.

Table 1: Comparison of MORBES and MORBO performance across different test functions.

Rover Problem Beam Problem

Figure 2: MORBES comparison concerning Bayesian and Non-Bayesian approaches.

Consider the collection of restart points to be Dt−1. Using a sample from a global Gaussian
Process [13], conditioned on Dt−1 as a condition, one finds the center point xt of the new trust re-
gion given Dt−1 by maximizing a random hypervolume Tchebycheff scalarization of the objectives
under a sample from a global Gaussian Process. This is known as the Reinitialization algorithm.
MORBES algorithm is detailed in Algorithm 1.

The cumulative regret for entropy-based methods is bounded by RT ≤ O(T · γT ), where γT
is the maximum information gain following T observations. As γT decreases over time, entropy-
based methods achieve a logarithmic regret bound: RT ≤ O(log(T )). This shows that entropy-
based methods reduce uncertainty more efficiently [14], leading to faster convergence than other
optimization techniques.

3. Experimental Results

The experimental results of MORBES on diverse synthetic and real-world benchmarks are de-
scribed, with experimentation conducted on an NVIDIA DGX A100 server.

The proposed method’s architecture dynamics revolve around the TR center selection mecha-
nism. As Fig.1 shows, MORBO selects its centers from more crowded regions. In contrast, the
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Figure 3: DTLZ2 Figure 4: DTLZ5 Figure 5: DTLZ7

proposed approach explores the Pareto front concerning the reference point, providing a broader
and more conclusive approach.

Our method is applied to real-world problems such as the welded beam design and trajec-
tory planning of the Rover problem (Fig.2). MORBES is compared to both Bayesian approaches
such as MORBO and non-Bayesian multi-objective optimization techniques such as qPAREGO [4],
NSGA2 [6], TS-TCH [12], TSEMO [2] and Sobol [11], where the superiority of MORBES is well
established regarding the hypervolume indicator.

Additionally, MORBES is tested on benchmark problems such as DTLZ2 (Fig.3), DTLZ5
(Fig.4), and DTLZ7 (Fig.5) to evaluate various aspects such as convergence, scalability, and the
ability to handle many-objective scenarios. Table 1 presents a comprehensive analysis of the results
and their implications. Based on the convergence rate shown in Fig. 6, MORBO has an advan-
tage in the early optimization stages, with its higher peaks indicating faster initial gains. However,
MORBES demonstrates a steadier and more consistent approach throughout, which is beneficial in
reaching a more reliable outcome. It outperforms MORBO by having a higher median hypervolume.

DTLZ2 DTLZ7 Welded Beam

Figure 6: Convergence Analysis of MORBES concerning MORBO.

4. Conclusion

The proposed approach evaluates the true objective function at selected points, dynamically adapt-
ing the Trusted Regions. This iterative refinement process enhances the search, allowing MORBES
to efficiently identify the Pareto set, even in scenarios where the objective function is analytically
complex or computationally expensive. We propose enhancing the architecture by creating an ac-
quisition function based on Output Space Entropy. This approach aims to overcome the limitations
associated with hypervolume improvement, offering a more robust solution that eliminates the need
for a cheaply calculated Pareto front.
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