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Abstract

Distilling advanced Large Language Mod-001
els’ instruction-following capabilities into002
smaller models using a selected subset003
has become a mainstream approach in004
model training. While existing synthetic005
instruction data selection strategies rely006
mainly on single-dimensional signals (i.e.,007
reward scores, model perplexity), they fail008
to capture the complexity of instruction-009
following across diverse fields. Therefore,010
we investigate more diverse signals to cap-011
ture comprehensive instruction-response012
pair characteristics and propose three foun-013
dational metrics that leverage Multi-LLM014
wisdom, informed by (1) diverse LLM re-015
sponses and (2) reward model assessment.016
Building upon base metrics, we propose017
CROWDSELECT, an integrated metric in-018
corporating a clustering-based approach019
to maintain response diversity. Our com-020
prehensive experiments demonstrate that021
our foundation metrics consistently im-022
prove performance across 4 base models023
on MT-bench and Arena-Hard. CROWD-024
SELECT, efficiently incorporating all met-025
rics, achieves state-of-the-art performance026
in both Full and LoRA fine-tuning, show-027
ing improvements of 4.81% on Arena-Hard028
and 11.1% on MT-bench with Llama-3.2-029
3b-instruct. We hope our findings will030
bring valuable insights for future research031
in this direction.032

1 Introduction033

In recent years, Large Language Models (LLMs)034

(Achiam et al., 2023; Jaech et al., 2024; Team et al.,035

2024; Guo et al., 2025) have demonstrated remark-036

able capability in following user instructions to gen-037

erate coherent and contextually helpful responses038

(Jiang et al., 2023; Zheng et al., 2023b; Wen et al.,039

2024). Yet, the computational overhead for instruc-040

tion tuning and massive parameter sizes of these041

models create a considerable barrier to practical042
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Figure 1: A demonstration of instruction tuning with
selected synthetic instruction-response pairs.

deployment (Peng et al., 2023). To address this, 043

many approaches distill the instruction-following 044

ability of advanced LLMs into smaller, more ef- 045

ficient models through a small-scale instruction 046

tuning process with synthetic responses (Xia et al., 047

2024; Zhou et al., 2024a). 048

A critical bottleneck, however, lies in select- 049

ing the optimal data for this distillation process. 050

Most existing data selection methods rely on prede- 051

fined rules (Chen et al., 2023a), automated single- 052

dimensional signals — such as reward scores (Wu 053

et al., 2024b; Lambert et al., 2024) or difficulty met- 054

rics (Li et al., 2023b, 2024b) — to identify valuable 055

examples for fine-tuning. While effective to some 056

extent, such narrow signals may overlook essen- 057

tial nuances of user instructions, especially when 058

instructions contain challenges from diverse fields 059

(Händler, 2023; Feng et al., 2025a). This raises 060

a fundamental question: “Can we leverage multi- 061

dimensional signals to better reflect the various 062

facets of each sample for more effective instruction 063

tuning data selection?” 064

Inspired by previous works that leverage Multi- 065

LLM collaboration (Guo et al., 2024; Lu et al., 066

2024), we take an explorative step towards more 067

robust and comprehensive data selection by intro- 068

ducing CROWDSELECT, a framework that treats 069

pre-collected Multiple LLMs’ responses and their 070

reward scores as different reflections of the instruc- 071
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tion to leverage Multi-LLM Wisdom. Instead of072

treating each instruction–response pair in isolation073

— typically with just a single model — our method074

aggregates multiple responses for each instruction075

from a diverse set of LLMs. Crucially, we also076

factor in each response’s score provided by vari-077

ous reward models. This multi-view setup captures078

more “facets” of each instruction, illuminating sub-079

tle differences in how various models handle the080

same query. Based on these observations, we pro-081

pose three base explorative metrics:082

• Difficulty - Identifies instructions on which the083

majority of models struggle, surfacing challeng-084

ing prompts critical to learning.085

• Separability – Highlights instructions whose re-086

sponse quality exhibits high variance across mod-087

els, making them especially useful for differenti-088

ating stronger from weaker capabilities.089

• Stability – Measures how consistently model090

performance follows expected size-based ranking091

across families, ensuring the selected data helps092

reinforce well-grounded alignment signals.093

Our exploratory experiments in full fine-tuning094

(FFT) and low-rank adaptation (LoRA) (Hu et al.,095

2021) experiments on Llama-3.2-3b-base/instruct096

(Dubey et al., 2024) and Qwen-2.5-3b-base/instruct097

(Yang et al., 2024b) demonstrate the robustness and098

efficacy of our proposed metrics through significant099

performance gaps between top-scored and bottom-100

scored data subset fine-tuning, with potential fur-101

ther improvements through metric combination.102

Subsequently, we propose CROWDSELECT that103

combines these metrics with a clustering strat-104

egy to preserve diversity and explore the upper105

bound of leveraging Multi-LLM wisdom to iden-106

tify a compact yet high-impact subset of instruction-107

response data. Experimental results show that mod-108

els fine-tuned on our selected subset significantly109

outperform baselines and previous state-of-the-art110

data selection methods, achieving improvements111

of 4.81% on Arena-Hard and 11.1% on MT-bench112

with Llama-3b-instruct. Furthermore, CROWDSE-113

LECT achieves state-of-the-art performance across114

four models on two benchmarks, demonstrating115

both the generalizability and robustness of our se-116

lected data and methodology, paving a new dimen-117

sion for efficient instruction tuning.118

Our contributions are summarized as follows:119

• Investigation of Multi-LLM Wisdom in In-120

struction Data Selection. We propose a novel121

approach that utilizes multiple synthesized re- 122

sponses from different LLMs for each instruction, 123

enhancing the diversity and quality of data. 124

• Novel Metrics and Methods. We design three 125

new explorative base metrics—Difficulty, Sepa- 126

rability, and Stability—that leverage multi-LLM 127

responses and reward scores as more comprehen- 128

sive signals, and combine them into CROWDS- 129

ELECT to explore the upper bound in selecting 130

high-quality data for instruction tuning. 131

• State-of-the-art Performance. We demonstrate 132

that combining our metrics and clustering tech- 133

niques for data selection leads to a new SOTA in 134

efficient instruction tuning in both Llama-3.2-3b 135

and Qwen-2.5-3b. 136

2 Related Work 137

Instruction Tuning Data Selection. Instruction 138

Tuning stands out to be a method to solve the gap 139

between pre-trained knowledge and real-world user 140

scenarios (Ouyang et al., 2022; Bai et al., 2022). 141

Recent efforts like Vicuna (Peng et al., 2023) and 142

LIMA (Zhou et al., 2024a) demonstrate high per- 143

formance with a carefully selected small dataset, 144

highlighting the growing importance of efficient 145

instruction tuning. Three key metrics determine 146

instruction data quality: Difficulty, Quality, and Di- 147

versity. Difficulty, focusing mainly on the question 148

side, is considered more valuable for model learn- 149

ing (Li et al., 2023b, 2024b; Liu et al., 2024a; Lee 150

et al., 2024; Wang et al., 2024b). Quality, mainly 151

addressing the response side, measures the help- 152

fulness and safety of model responses, typically 153

assessed using LLM evaluators (Chen et al., 2023a, 154

2024b; Liu et al., 2024b; Ye et al., 2024), reward 155

models (Son et al., 2024; Lambert et al., 2024), and 156

gradient similarity search (Xia et al., 2024). Di- 157

versity also plays a crucial role in covering various 158

instruction formats and world knowledge, primarily 159

improving model robustness (Bukharin and Zhao, 160

2023; Wang et al., 2024d). 161

Data Synthesis for Instruction Tuning. While 162

the development of LLMs initially relied on human- 163

curated instruction datasets for instruction tuning 164

(Zheng et al., 2023a; Zhao et al., 2024; Lightman 165

et al., 2023), this approach proved time-consuming 166

and labor-intensive, particularly as the complex- 167

ity and scope of target tasks increased (Demrozi 168

et al., 2023; Wang et al., 2021). Consequently, re- 169

searchers began exploring the use of frontier LLMs 170

2



to generate synthetic instruction datasets, aiming171

to both address these scalability challenges (Ding172

et al., 2023; Chen et al., 2023b, 2024d) and lever-173

age models’ advanced capabilities in developing174

next-generation foundation models (Burns et al.,175

2023; Charikar et al., 2024). Recent advancements176

streamline this process by utilizing instructions di-177

rectly from pre-trained LLMs with simple prompt178

templates (Xu et al., 2024a; Chen et al., 2024c;179

Zhang et al., 2024), significantly reducing the re-180

quired custom design from human effort.181

Deriving Crowded Wisdom from Multi-LLM.182

Single LLM’s response to a question face limi-183

tations in its representation of data (particularly184

cutting-edge knowledge) (Lazaridou et al., 2021;185

Dhingra et al., 2022; Kasai et al., 2023), skills186

(as no single LLM is universally optimal empir-187

ically) (Sun et al., 2022; Liang et al., 2022; Chen188

et al., 2024a), and diverse perspectives (Feng et al.,189

2025a). Previous work has demonstrated that on-190

line multi-LLM wisdom (also known as compo-191

sitional agent frameworks (Gupta and Kembhavi,192

2023)) tends to outperform single models across193

various domains, providing more comprehensive194

and reflective solution on complex downstream195

tasks (Wang et al., 2024c; Wu et al., 2023; Li et al.,196

2023a; Ouyang et al., 2025; Gui et al., 2025). Of-197

fline crowded wisdom, where data are pre-collected198

rather than real-time inference, also show poten-199

tial in model alignment (Gallego, 2024; Rafailov200

et al., 2023; Meng et al., 2025) and benchmark201

construction (Ni et al., 2024b,a). In this paper, we202

pioneer the use of offline multi-LLM wisdom for203

instruction data selection by utilizing these LLMs’204

responses and their reward score as reflections to205

measure instruction-response pairs’ Difficulty and206

Quality.207

3 Methodology208

We begin by defining our synthetic data selec-209

tion task and proposing three foundational metrics210

that utilize responses and assessment scores from211

multiple advanced LLMs. Building on these met-212

rics, we introduce CROWDSELECT, which employs213

diversity-preserving clustering to investigate the up-214

per limits of Multi-LLM Wisdom. An overview of215

our pipeline is provided in Figure 2.216

3.1 Preliminaries217

We formulate the instruction quality as the consen-218

sus among N LLMs. Given an instruction-tuning219

dataset, we extract all instructions from the dataset 220

to form instruction dataset Q. For each instruction 221

qi ∈ Q, a response set Ri is obtained by querying 222

multiple LLMs. An assessment model then eval- 223

uates the responses in Ri to produce a score set 224

CM
i according to metrics M . For simplicity, the 225

index M will be omitted unless otherwise noted. 226

We define the top-k instruction subset for metric 227

M as follows: 228

SM
k = argmax

S⊂S,|S|=k
M(CM

i ) , (1) 229

where SM
k consists of the k instructions that maxi- 230

mize the metric M . 231

The corresponding response rMi for each instruc- 232

tion qMi from the instruction subset SM
k is subse- 233

quently obtained by 234

rMi = Top(Ri, C
M
i ) , (2) 235

where Top(RS
i , C

M
i ) denotes the best responses 236

in rSi ranked by CM
i . The produced instruction- 237

answer subset Q̂ = {(rMi , qMi )} is then utilized for 238

fine-tuning as an alternative of the original dataset. 239

3.2 Base Metrics 240

We introduce three new base metrics that incorpo- 241

rate multiple LLM responses and their correspond- 242

ing reward scores as distinct “facets” to assess the 243

value of each sample. 244

Difficulty. The difficulty score Cdif is defined as 245

the negative mean of all model response scores for 246

a given instruction, calculated as follows: 247

Cdif = −
∑

CM
i

N
. (3) 248

Higher difficulty indicates more challenging instruc- 249

tions. This metric is particularly well-suited for 250

fine-tuning on reasoning tasks, e.g., mathematics 251

and planning, where the goal is often to improve 252

performance on complex problems. By focusing on 253

instructions with higher difficulty, we prioritize ex- 254

amples that are likely to be answered incorrectly by 255

the majority of models. This ensures that the fine- 256

tuning dataset includes a substantial proportion of 257

challenging instructions, maximizing the model’s 258

exposure to difficult material and potentially lead- 259

ing to greater improvements in performance. 260

Separability. The separability score Csep is de- 261

fined as the score variance, which is the variance of 262

all the response scores for an instruction,Compared 263
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Figure 2: The overall pipeline of our CROWDSELECT, which innovatively leverages metrics calculated from multiple
facets of instructions using pre-collected synthesized responses from various LLMs and their corresponding reward
model scores. We enhance data selection through clustering for diversity and metric combination to explore the
method’s potential. Finally, we evaluate the effectiveness of our selected instruction subset through FFT or LoRA
fine-tuning (Hu et al., 2021) for efficient instruction tuning.

to the range, variance provides a more precise repre-264

sentation of the internal distribution characteristics265

of reward scores:266

Csep = var(CM
i ) . (4)267

Higher Separability indicates that a considerable268

proportion of models cannot perform well on the269

instruction, thus this instruction is more effective270

in differentiating between models. This characteris-271

tic makes the Separability particularly well-suited272

for curating datasets of knowledge remembering or273

preference alignment. In such datasets, some mod-274

els may exhibit strong performance while others275

struggle. By selecting instructions with high separa-276

bility, we prioritize examples that effectively distin-277

guish between these varying levels of competence.278

These “discriminatory” examples are valuable be-279

cause they provide the fine-tuned model with op-280

portunities to learn from the specific challenges that281

differentiate successful models from less success-282

ful ones. Focusing on these examples enforces the283

fine-tuned model to handle the nuances and com-284

plexities that separate high-performing models.285

Stability. Stability is defined as the average spear-286

man factor, which is the mean of five spearman287

factors, corresponding to five model families. The288

spearman factor is calculated based on ra and rb: 289

1
n

∑n
i=1(r

a
i −ra)·(rbi−rb)√(

1
n

∑n
i=1(rai −ra)

2
)
·
(

1
n

∑n
i=1(rbi 2−rb)

2
) . (5) 290

• ra refers to the original ranking within a 291

model family, where models with larger pa- 292

rameters are theoretically ranked higher, natu- 293

rally aligning with the performance rank. 294

• rb is determined by the rank of models based 295

on their response quality (e.g., if LLaMA-3B 296

has a response score of 9 and LLaMA-8B has 297

a response score of 7, then 3B ranks higher 298

than 8B within the LLaMA family). 299

Stability effectively captures how well performance 300

rankings align with expected model size rankings 301

using Spearman’s rank correlation (Schober et al., 302

2018), making it robust to variations in score scales 303

and non-linear relationships. Averaging across 304

model families further strengthens the robustness 305

of the score, alleviating performance gaps among 306

model families. 307

3.3 CROWDSELECT: Explore the 308

Upperbound with Multi-LLM Wisdom 309

Diversity Preservation with Clustering. To fa- 310

cilitate clustering, all instructions were embedded 311

4



into a fixed-dimensional latent space using a pre-312

trained embedding model. Within each cluster, in-313

structions were then ranked with the given metric,314

and the highest-ranked instructions were selected.315

To avoid over-representing dominant clusters and316

neglecting potentially valuable information con-317

tained within smaller or less frequent clusters, we318

draw equally from each cluster to form a more319

robust and generalizable subset.320

Multi-metric Integration. Accompanying with321

the cluster-based selection strategy, we also intro-322

duce a multi-metric approach to leverage the di-323

verse information captured by our three foundation324

metrics. Each instruction-response pair is thus char-325

acterized by a vector of associated scores, reflect-326

ing its various attributes. However, these metrics327

exhibit different distributions, ranges, and magni-328

tudes. Therefore, we employ a three-stage nor-329

malization process to ensure equitable contribution330

from each metric.331

Specifically, each metric score is standardized332

to standard normal distribution. The standardized333

scores are then normalized to [0, 1] using a min-334

max scaling approach. Finally, to further refine the335

distribution and mitigate the impact of potential336

outliers, we apply a quantile transformation that337

maps the normalized scores to a uniform distribu-338

tion between [0, 1].339

ZM
i =

(CM
i − µM )

σM
, (6)340

341

NM
i =

(ZM
i −min(ZM ))

(max(ZM )−min(ZM ))
, (7)342

343
ρMi = quant(NM

i |NM ) . (8)344

Following this normalization procedure, we aggre-345

gate the transformed scores into a single multi-346

metric score Ĉ for each instruction-response pair.347

This aggregation is performed using a weighted348

sum of the proposed metrics:349

Ĉi =
∑
j

wi ∗ ρ
Mj

i , (9)350

where ρ
Mj
i represents the quantile-transformed351

scores for metric j, and wi is the corresponding352

weight assigned to each metric. This weighted353

multi-metric approach, combined with the preced-354

ing normalization steps, ensures a balanced and355

robust data selection process that leverages the com-356

plementary information provided by all metrics.357

4 Experiment 358

We begin by validating our base metrics through 359

comparative experiments on the top- and bottom- 360

scored data subsets. Next, we evaluate CROWDSE- 361

LECT against existing baselines and state-of-the-art 362

approaches. Finally, we perform an ablation study 363

to assess the contributions of each sub-module 364

within CROWDSELECT. 365

4.1 Experiment Setups 366

Datasets. We conduct our experiments on 367

Magpie-100K-Generator-Zoo1 given that it di- 368

rectly matches our problem setting that contains 369

answers from 19 models—Qwen2 (Yang et al., 370

2024a), Qwen2.5 (Yang et al., 2024b), Llama 3 371

(Dubey et al., 2024), Llama 3.1 (Dubey et al., 372

2024), Gemma 2 (Team et al., 2024), Phi-3 (Ab- 373

din et al., 2024) families and GPT-4 (Achiam 374

et al., 2023)—and their reward scores from three 375

state-of-the-art reward models from RewardBench 376

(Lambert et al., 2024): ArmoRM-Llama3-8B-v0.1 377

(Wang et al., 2024a), Skywork-Reward-Llama-3.1- 378

8B (Liu and Zeng, 2024), and Skywork-Reward- 379

Gemma-2-27B (Liu and Zeng, 2024). 380

Evaluation. To evaluate the instruction- 381

following capabilities, we use two widely-used 382

instruction-following benchmarks: MT-Bench 383

(Zheng et al., 2023b) and Arena-Hard (Li et al., 384

2024c). Both benchmarks mainly leverage LLM- 385

as-a-Judge (Zheng et al., 2023b) for evaluation, 386

while MT-Bench leverage 1-10 rating scoring and 387

Arena-Hard leverage direct pairwise comparison 388

and finally provide a leaderboard with one model 389

as anchor-points. In our experiments, we set the 390

base model (i.e., LLaMA-3.2-3B-base) as the 391

anchor point for models for arena battles. We unify 392

the LLM-as-a-Judge model in both benchmarks 393

as DeepSeek-V3 given its performance on NLG 394

tasks. Thanks to the unified judge model, we 395

additionally report the Average Performance (AP) 396

as a ranking computed by the ranking in MT-Bench 397

and Arena-Hard. Each experiment is conducted 398

3 times. The average results are reported to 399

ensure the reliability and reproducibility. 400

Base Models. Following (Xu et al., 2024b), 401

we consider four small models from different 402

developers as student models, including base 403

1https://huggingface.co/datasets/Magpie-Align/
Magpie-100K-Generator-Zoo
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Table 1: Validation of our three foundation metrics on full fine-tuning Llama-3.2-3b-base with top-scored (↑) and
bottom-scored (↓) instruction selection and different response selection strategy. Best and second results for each
metric are in bold and underline.

Strategy DirectScore Difficulty Separability Stability Multi↓ ↑ ↓ ↑ ↓ ↑

MT-Bench

Best-answer 4.406 4.506 4.738 4.731 5.056 4.675 5.088 5.125
Random 4.470 4.469 4.688 4.695 4.785 4.500 4.581 4.613

Top5-random 4.435 4.681 4.870 4.788 5.008 4.619 4.956 5.048

Table 2: Performance comparison of full fine-tuned Llama3.2-3b-base/instruct and Qwen2.5-3b-base/instruct models
with different data selection strategies. The best and second results are in bold and underline.

Benchmark Base Baselines Our Metrics

Random Tags IFD Difficulty Separability Stability Multi

Llama3.2-3b-base

MT-Bench 4.302 4.406 4.562 3.962 4.738 5.056 5.088 5.125
Arena-Hard 50.0(-0.0, 0.0) 75.3(-2.0, 1.6) 77.3(-1.1, 1.2) 77.6(-1.6, 1.6) 76.8(-1.6, 1.7) 83.3(-1.8, 1.7) 78.3(-1.6, 2.2) 80.6(-2.4, 1.6)

Llama3.2-3b-instruct

MT-Bench 6.200 6.356 6.393 6.243 6.648 6.581 6.625 7.103
Arena-Hard 74.4(-1.0, 1.5) 74.8(-1.5, 1.6) 81.6(-0.2, 0.2) 78.4(-1.7, 1.5) 80.5(-0.9, 1.3) 77.9(-1.5, 1.7) 77.4(-1.5, 1.1) 85.5(-0.8, 1.1)

Qwen2.5-3b-base

MT-Bench 6.043 6.500 6.818 5.825 6.613 7.075 6.681 6.625
Arena-Hard 69.0(-2.2, 1.6) 72.9(-2.2, 1.9) 79.3(-2.2, 1.9) 74.5(-1.5, 1.5) 73.8(-2.5, 1.8) 74.1(-1.6, 2.4) 76.8(-1.8, 1.8) 79.9(-1.6,1.8)

Qwen2.5-3b-instruct

MT-Bench 7.138 6.793 6.818 6.731 7.182 7.269 7.294 7.131
Arena-Hard 81.6(-1.8, 1.4) 78.2(-1.7, 2.0) 82.0(-2.4, 1.6) 80.4(-1.3, 1.0) 81.8(-1.6, 1.3) 83.7(-1.4, 1.2) 83.5(-1.4, 1.4) 85.2(-1.2, 1.1)

and instruct models—Qwen-2.5-3B, Qwen-2.5-3B-404

Instruct (Yang et al., 2024b) and LLaMA-3.2-3B,405

LLaMA-3.2-3B-Instruct (Dubey et al., 2024). We406

use 10 clusters for diversity preservation, and the407

multimetric setting uses w = (1, 1, 2) for metric408

integration in the following experiments.409

Baselines. We include 7 baselines in our exper-410

iments. Random, denotes a randomly selected411

instruction-answer set from the original dataset.412

We also compared two previous state-of-the-art413

data selection method: Instag (Lu et al., 2023) ,414

and IFD (Li et al., 2023b). For rule-based method,415

we include Length and Reward Score (Liu et al.,416

2023). More details are shown in Appendix B.3.417

Instruction-Tuning Setups. We conduct our418

fine-tuning and evaluation on single A800 and419

A6000 servers. For fine-tuning, we use LLaMA-420

Factory (Zheng et al., 2024). For evaluation, we421

leverage the official codebase of MT-Bench2 and422

2https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge

Arena-Hard3 for automatic assessments. See Ap- 423

pendix B for more details of experiment setups. 424

4.2 Experiment Results. 425

Three foundation metrics demonstrate effective- 426

ness in selecting valuable samples. As shown 427

in Table 1, our three foundation metrics consis- 428

tently identify valuable instruction samples across 429

all response selection strategies. Models fine-tuned 430

on Top-scored samples consistently outperform 431

Bottom-scored samples, with Stability exceed the 432

most margin. We also explore the response se- 433

lection strategies to build a foundation for follow- 434

ing experiments. Best-answer setting outperforms 435

both Random and Top5-random approaches, indi- 436

cating that responses with higher reward scores 437

provide better quality data for distillation. This 438

consistent performance across individual metrics 439

establishes strong foundation for further improve- 440

ments through integration. Therefore, we use top- 441

scored as the instruction selection and Best-answer 442

as the corresponding response for all experiments. 443

3https://github.com/lmarena/Arena-Hard-auto
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Figure 3: Overall results demonstrate that our foundation metrics and CROWDSELECT consistently outperform
baseline methods by a significant margin across FFT settings of four models, with particularly strong performance
improvements on Llama-3b-instruct.

CROWDSELECT achieves new state-of-the-art444

performance on both benchmarks. As shown445

in Table 2, our approach significantly outperforms446

previous baselines across four models, demonstrat-447

ing robust generalization. On Arena-Hard and448

MT-bench, CROWDSELECT with Llama-3.2-3b-449

instruct achieves scores of 85.5 and 7.103 respec-450

tively, surpassing the previous best results by 4.81%451

and 11.1%. For Qwen-2.5-3b-instruct, CROWDSE-452

LECT outperforms the strongest baseline by 3.90%,453

validating our approach of post-training with high-454

quality instructions and model distillation. Even for455

base models, our foundation metrics and CROWD-456

SELECT prove effective, notably improving Llama-457

3.2-3b’s performance on MT-bench by 12.3%.458

CROWDSELECT performs robust on various459

fine-tuning methods. Beyond demonstrating su-460

perior performance on standard benchmarks, the461

proposed metrics are further evaluated for robust-462

ness across a range of fine-tuning methodologies.463

Table 1 reveals consistent and stable performance464

of the proposed metrics. This robustness across465

varying training paradigms highlights the general-466

izability of the metrics and suggests their applica-467

bility in a wider range of practical scenarios.468

4.3 Ablation Studies 469

We conduct ablation studies for each module in 470

CROWDSELECT to provide a comprehensive anal- 471

ysis of our approach. Further experiments on fine- 472

tuning with LoRA, other training recipes, and abla- 473

tion study for reward scores are in Appendix C. 474

Number of Clusters. Clustering’s impact on 475

dataset quality was investigated by varying the 476

number of clusters during dataset selection (see 477

Table 5). While more cluster shows higher perfor- 478

mance on Random setting, no strong positive corre- 479

lation on our metrics and CROWDSELECT between 480

cluster count and quality. On the other hand, cor- 481

responding with previous research (Bukharin and 482

Zhao, 2023; Wang et al., 2024d), data selection af- 483

ter clustering outperformed those constructed with- 484

out clustering, highlighting the importance of en- 485

hancing robustness by the clustering process. 486

Response Generation Strategy. The response 487

selection strategy significantly impacts the fine- 488

tuned LLM’s generation quality. Table 1 shows 489

that “best-answer strategy” outperforms noticeably 490

other approaches, underscoring the importance of 491

high-quality responses within the dataset. We con- 492
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Table 3: Performance Comparison of Selection Strategies: Multi-LLM vs Single-LLM.

Base Model
Multi-LLMs Version Llama-3.1-405B-Instruct Qwen2.5-72B-Instruct

Diff. Sep. Stab. Diff. Sep. Stab. Diff. Sep. Stab.

Llama3.2-3b-base 76.8 83.3 78.3 75.5 78.7 72.9 73.3 78.6 75.2
Llama3.2-3b-instruct 80.5 77.9 77.4 77.2 72.8 76.2 77.1 72.4 73.9
Qwen2.5-3b-base 73.8 74.1 76.8 71.5 71.2 72.9 69.3 68.4 70.1
Qwen2.5-3b-instruct 81.8 83.7 83.5 82.2 79.1 78.4 77.9 80.0 81.3

tend that Difficulty is independent from response493

strategy because these instructions are intrinsically494

linked to the complexity of the tasks themselves,495

rather than the method used to formulate responses.496

For example, a particularly demanding instruction497

might require the model to synthesize knowledge498

from multiple domains, reason through abstract499

concepts, or produce detailed, contextually nu-500

anced outputs (Shah et al., 2025; Rein et al., 2023).501

Such requirements remain consistent, regardless of502

the response generation strategy employed.503

4.4 Discussion: Why Multi-LLM outperform504

Single-LLM in Dat Selection?505

Enhanced Error Correction and Quality Assur-506

ance. Multi-LLM systems excel at identifying507

and correcting errors in generated data. When508

one model produces factual errors or biases, others509

can provide more accurate perspectives (Wu and510

Ito, 2025; Feng et al., 2025b). CROWDSELECT511

works through multiple reward models evaluating512

responses from various LLMs. Table 3 compares513

dataset selection strategies: (1) selecting from 19514

models based on reward scores, (2) exclusively515

using Llama3.1-405B-Instruct and Qwen2.5-72B-516

Instruct responses. Results show that multi-LLM517

significantly outperforms single-model approaches518

in downstream evaluation, as it mitigates individual519

biases and leverages complementary strengths that520

single-model selection cannot achieve.521

Diversity and Complementary. Different LLMs522

possess unique knowledge boundaries, reasoning523

patterns, and styles due to variations in training524

data, architecture, and parameters (Feng et al.,525

2025b). Our CROWDSELECT-selected subset526

shows greater diversity, as illustrated in Figure 5.527

This aligns with the observation that “no single528

LLM is universally optimal across all query types”529

(Chen et al., 2025), explaining why ModelSwitch530

achieved a 10.2% improvement and Prompt-to-531

LeaderBoard (Frick et al., 2025) reached state-of-532

the-art performance in Chatbot Arena by dynami-533

cally leveraging models’ complementary strengths.534

Table 4: Ablation study with zeroed hyperparameters.
Our combination CROWDSELECT achieve state-of-the-
art in both MT-Bench and Arena-Hard.

Components Evaluation Metrics

Diff. Sep. Stab. MT-Bench Arena-Hard

6.2 74.4
✓ 6.87(+0.67) 74.6(+0.2)

✓ 6.7(+0.5) 72.9(-1.5)

✓ 6.46(+0.26) 76.8(+2.4)

✓ ✓ 6.84(+0.64) 84.2(±9.8)

✓ ✓ 6.8(+0.6) 83.5(±9.1)

✓ ✓ 6.99(+0.79) 84.9(±10.5)

✓ ✓ ✓ 7.1(+0.9) 85.5(+11.1)

Table 5: Performance comparison of FFT-version of
Llama-3b-instruct on different coefficient combinations
for multiple metrics with clustering.

Benchmark Random Difficulty Separability Stability

10 clusters

MT-Bench 6.443 6.675 6.619 6.913
Arena-Hard 80.9 82.6 81.9 81.8

Arena-Hard-95%CI (-1.3, 1.4) (-1.2, 1.8) (-1.7, 1.7) (-1.5, 1.7)

20 clusters

MT-Bench 6.607 6.615 6.591 6.686
Arena-Hard 82.8 83.1 85.2 82.8

Arena-Hard-95%CI (-1.2, 1.4) (-1.1, 1.7) (-1.3, 1.1) (-1.4, 1.1)

30 clusters

MT-Bench 6.721 6.737 6.725 6.562
Arena-Hard 83.2 84.9 83.3 83.8

Arena-Hard-95%CI (-1.3, 1.1) (-1.0, 1.1) (-1.4, 1.4) (-1.4, 1.2)

5 Conclusion 535

This paper presents novel metrics for synthetic in- 536

struction data selection based on Multi-LLM Wis- 537

dom, capturing the difficulty of instructions from 538

multiple perspectives through various LLMs’ re- 539

sponses and their corresponding reward scores. We 540

validate our hypothesis through the strong perfor- 541

mance of individual metrics on both MT-Bench 542

and Arena-Hard using FFT and LoRA fine-tuning 543

on Llama-3.2-3b and Qwen-2.5-3b. By combin- 544

ing diversity enhancement through clustering with 545

our proposed metrics, CROWDSELECT consistently 546

outperforms state-of-the-art data selection meth- 547

ods, establishing both new perspectives and a ro- 548

bust baseline for instruction tuning data selection. 549
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Limitations550

We leverage LLMs to revise our paper and serving551

as metrics in our evaluation. We include human-552

annotation in Appendix C.9 to validate the LLM-553

as-a-Judge process.554

CROWDSELECT exhibits notable progress in555

synthetic data selection tasks, yet some limitations556

remain. Our approach calculates selection met-557

rics by employing responses from multiple model558

families and their associated reward scores, which559

may introduce reward model biases or reward hack-560

ing risks. While integrating these reward scores561

more seamlessly might improve robustness, doing562

so would require extra computational resources.563

Although collecting methods from multiple564

LLMs incurs high computation resourse, our565

method aims to explore the upper bound of multi-566

LLM wisdom, which is why we utilized responses567

from multiple LLMs. We acknowledge that this568

approach requires significant computational re-569

sources; however, as an exploratory study, our re-570

search demonstrates that using multi-LLM wisdom571

as an instruction tuning data selector yields ex-572

cellent results, highlighting the potential of using573

small amounts of high-quality instruction data for574

fine-tuning. For low-resource tasks, practitioners575

often need to synthetically generate questions and576

responses from raw documents to create fine-tuning577

datasets. In such scenarios, CROWDSELECT can578

identify the highest quality samples based on ques-579

tions and multiple answers from different models580

for efficient fine-tuning.581
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A Detailed Related Works1088

Instruction Tuning Data Selection. While1089

LLMs like GPT-4 (Achiam et al., 2023; OpenAI,1090

2024) and Llama-3 (Dubey et al., 2024) excel in1091

natural language understanding and generation,1092

their pre-training objectives often misalign with1093

user goals for instruction-following tasks (Murthy1094

et al., 2024; Gao et al., 2024; Wen et al., 2024).1095

Instruction tuning (or supervised fine-tuning) ad-1096

dresses this gap by refining LLMs on curated1097

datasets of prompts and responses. Recent efforts1098

like Vicuna (Peng et al., 2023) and LIMA (Zhou1099

et al., 2024a) demonstrate high performance with1100

a carefully selected small dataset, highlighting the1101

growing importance of efficient instruction tuning1102

and paving the way for aligning models with se-1103

lected samples. This involves determining which1104

instruction-response pairs to include in the training1105

dataset and how to sample them effectively (Al-1106

balak et al., 2024).1107

Three key metrics determine instruction data1108

quality: Difficulty, Quality, and Diversity. Dif-1109

ficulty, focusing mainly on the question side, is1110

considered more valuable for model learning (Liu1111

et al., 2024a; Lee et al., 2024; Wang et al., 2024b).1112

IFD (Li et al., 2023b) pioneered the measurement1113

of instruction-following difficulty for specific pairs,1114

later enhanced by utilizing GPT-2 for efficient es-1115

timation in a weak-to-strong manner (Li et al.,1116

2024b). Quality, mainly addressing the response1117

side, measures the helpfulness and safety of model1118

responses, typically assessed using LLM evaluators1119

(Chen et al., 2023a, 2024b; Liu et al., 2024b; Ye1120

et al., 2024), reward models (Son et al., 2024; Lam-1121

bert et al., 2024), and gradient similarity search1122

(Xia et al., 2024). Diversity, spanning both in-1123

struction and response aspects, plays a crucial role1124

in covering various instruction formats and world1125

knowledge, primarily improving model robustness1126

(Bukharin and Zhao, 2023; Wang et al., 2024d).1127

Our work stands out by addressing all three key1128

components in data selection, introducing novel1129

approaches to measuring difficulty from multiple1130

LLMs’ responses and ultimately enhancing model1131

performance.1132

Data Synthesis for Instruction Tuning. While1133

the development of LLMs initially relied on human-1134

curated instruction datasets for instruction tuning1135

(Zheng et al., 2023a; Zhao et al., 2024; Lightman1136

et al., 2023), this approach proved time-consuming1137

and labor-intensive, particularly as the complex-1138

ity and scope of target tasks increased (Demrozi 1139

et al., 2023; Wang et al., 2021). Consequently, re- 1140

searchers began exploring the use of frontier LLMs 1141

to generate synthetic instruction datasets, aiming 1142

to both address these scalability challenges (Ding 1143

et al., 2023; Chen et al., 2023b, 2024d) and lever- 1144

age models’ advanced capabilities in developing 1145

next-generation foundation models (Burns et al., 1146

2023; Li et al., 2024b; Charikar et al., 2024). Early 1147

approaches (Xu et al., 2023; Wang et al., 2024e; 1148

Zhou et al., 2024b; Luo et al., 2023) focused on 1149

leveraging LLMs to generate synthetic instructions 1150

through a subset of human-annotated seed instruc- 1151

tions (Chen et al., 2023a; Wang et al., 2023), and 1152

further enhanced by few-shot (Li et al., 2024a) and 1153

attribute-guided prompting (Yu et al., 2023; Wu 1154

et al., 2024a; Huang et al., 2024). A parallel line of 1155

research explored summarizing world knowledge 1156

to create more diverse synthetic datasets, aiming 1157

to maximize the coverage of different domains and 1158

task types (Cui et al., 2023; Li et al., 2024a). Re- 1159

cent advancements have further streamlined this 1160

process by utilizing instructions directly from pre- 1161

trained LLMs with simple prompt templates (Xu 1162

et al., 2024a; Chen et al., 2024c; Zhang et al., 2024), 1163

significantly reducing the required custom design 1164

from human effort. While existing work has pri- 1165

marily focused on generating extensive, diverse, 1166

and high-quality datasets—often scaling to 100,000 1167

examples or more—this approach introduces chal- 1168

lenges in terms of computational efficiency and 1169

training resource requirements (Li et al., 2024d; 1170

Dubois et al., 2024). 1171

Deriving Crowded Wisdom from Multi-LLM. 1172

Single LLM’s response to a question face limi- 1173

tations in its representation of data (particularly 1174

cutting-edge knowledge) (Lazaridou et al., 2021; 1175

Dhingra et al., 2022; Kasai et al., 2023), skills 1176

(as no single LLM is universally optimal empir- 1177

ically) (Sun et al., 2022; Liang et al., 2022; Chen 1178

et al., 2024a), and diverse perspectives (Feng et al., 1179

2025a). Previous work has demonstrated that on- 1180

line multi-LLM wisdom (also known as compo- 1181

sitional agent frameworks (Gupta and Kembhavi, 1182

2023)) tends to outperform single models across 1183

various domains, providing more comprehensive 1184

and reflective solution on complex downstream 1185

tasks (Wang et al., 2024c; Hong et al., 2023; Wu 1186

et al., 2023; Li et al., 2023a; Ouyang et al., 2025; 1187

Gui et al., 2025). Offline crowded wisdom, where 1188

data are pre-collected rather than real-time infer- 1189
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ence, also show potential in model alignment (Gal-1190

lego, 2024; Rafailov et al., 2023; Meng et al., 2025)1191

and benchmark construction (Ni et al., 2024b,b). In1192

this paper, we pioneer the use of offline multi-LLM1193

wisdom for instruction data selection by utilizing1194

these LLMs’ responses and their reward Score as1195

reflections to measure instruction-response pairs’1196

Difficulty and Quality.1197

B Detailed Experiment Setups1198

B.1 Models & Benchmarks & Datasets1199

Introduction1200

Models. In our study, the synthetic instruction1201

dataset used for data selection consists of 19 re-1202

sponse generators across 6 model families. These1203

families include Qwen2 (Yang et al., 2024a),1204

Qwen2.5 (Yang et al., 2024b), LLaMA 3 (Dubey1205

et al., 2024), LLaMA 3.1 (Dubey et al., 2024),1206

Gemma 2 (Team et al., 2024), and Phi-3 (Ab-1207

din et al., 2024). In our experiments, we per-1208

form supervised fine-tuning on the LLaMA3.2-3B-1209

base/instruct (Dubey et al., 2024) and Qwen-2.5-3b-1210

base/instruct (Yang et al., 2024b) models using the1211

selected 1K datasets. A comprehensive overview1212

of the models used in our study is presented in1213

Table 6.1214

Benchmarks. In order to evaluate the instruction-1215

following capabilities of the models, we use1216

two widely-used instruction-following benchmarks:1217

MT-Bench and Arena-Hard in our study.1218

MT-Bench (Zheng et al., 2023b). MT-bench1219

is a collection of open-ended questions designed1220

to evaluate a chatbot’s performance in multi-turn1221

conversations and its ability to follow instruc-1222

tions—two critical factors in aligning with human1223

preferences. It consists of 80 high-quality multi-1224

turn questions, which are divided into 8 categories:1225

writing, roleplay, extraction, reasoning, mathemat-1226

ics, coding, knowledge I (STEM), and knowledge1227

II (humanities/social sciences). Each category con-1228

tains 10 questions. This framework provides a1229

robust tool for assessing the practical effectiveness1230

of LLMs and their alignment with human prefer-1231

ences, through meticulously designed questions1232

and evaluations conducted by human annotators.1233

Arena-Hard (Li et al., 2024c). Arena-Hard is1234

a benchmark consisting 500 challenging prompts1235

curated by BenchBuilder. It extracts high-quality1236

prompts from crowdsourced datasets like Chatbot1237

Arena (Zheng et al., 2023b) and WildChat-1M 1238

(Zhao et al., 2024) without human intervention.The 1239

prompts are Scored and filtered based on seven key 1240

qualities, including specificity, domain knowledge, 1241

complexity, problem-solving, creativity, technical 1242

accuracy, and real-world applicability. This en- 1243

sures that the prompts are challenging and capable 1244

of distinguishing between models. Unlike static 1245

benchmarks, Arena-Hard can be continuously up- 1246

dated to reflect the latest advancements in LLMs, 1247

avoiding the risk of becoming obsolete or leaking 1248

test data. 1249

Datasets. In this paper, we conduct our experi- 1250

ments on Magpie-100K-Generator-Zoo(Xu et al., 1251

2024b) because it provides a sufficiently large 1252

quantity of high-quality instruction fine-tuning 1253

data. It is a subset sampled from the MagpieAir- 1254

3M (Xu et al., 2024a) dataset, a large-scale in- 1255

struction dataset. Magpie-100K contains 100,000 1256

high-quality instructions, which are categorized 1257

into several types, including information seek- 1258

ing, mathematics, planning, coding and debug- 1259

ging, advice seeking, creative writing, reasoning, 1260

data analysis, brainstorming, editing, role-playing, 1261

and more.Each instruction has responses from 19 1262

models across 6 model families—and their reward 1263

scores form 3 reward models. The diversity of these 1264

instructions ensures that the dataset covers a wide 1265

range of scenarios and tasks, making it suitable for 1266

instruction tuning of LLMs. 1267

B.2 Model Training Details 1268

Table 2 demonstrates the detailed supervised fine- 1269

tuning (SFT) hyper-parameters. We perform ex- 1270

periments on a server with eight NVIDIA A800- 1271

SXM4-80GB GPUs, two Intel Xeon Platinum 1272

8358P 64-Core Processor, and 1024 GB of RAM. 1273

These experiments were conducted using LLaMA- 1274

Factory (Zheng et al., 2024). 1275

B.3 Baseline Introduction 1276

We present five baseline methods for comparison 1277

in our study. For each baseline, we describe its 1278

implementation details and rationale for inclusion. 1279

Length-Based Filtering (Kwon et al., 2024). 1280

The Length method filters instructions based on 1281

their token count. We use the LLaMA 3.2 3B In- 1282

struction tokenizer to compute the number of to- 1283

kens in each instruction. Instructions that meet the 1284

predefined length criteria are selected for further 1285

processing. 1286
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Table 6: Overview of 22 models used in our study.

Model Family Release Date Model ID Size
Qwen2-1.5B-Instruct 1.5B

Qwen2 Jun, 2024 Qwen2-7B-Instruct 7B
(Yang et al., 2024a) Qwen2-72B-Instruct 72B

Qwen2.5-3B 3B
Qwen2.5-3B-Instruct 3B

Qwen2.5 Qwen2.5-7B-Instruct 7B
(Yang et al., 2024b) Sept, 2024 Qwen2.5-14B-Instruct 14B

Qwen2.5-32B-Instruct 32B
Qwen2.5-72B-Instruct 72B

Llama 3 Apr, 2024 Llama-3-8B-Instruct 8B
(Dubey et al., 2024) Llama-3-70B-Instruct 70B

Llama-3.1-8B-Instruct 8B
Llama 3.1 Jul, 2024 Llama-3.1-70B-Instruct 70B
(Dubey et al., 2024) Llama-3.1-405B-Instruct 405B
Llama 3.2 Jul, 2024 Llama-3.2-3B 3B
(Dubey et al., 2024) Llama-3.2-3B-Instruct 3B

Gemma-2-2B-it 2B
Gemma 2 Jun, 2024 Gemma-2-9B-it 9B
(Team et al., 2024) Gemma-2-27B-it 27B

Phi-3-mini-128k-instruct 3.5B
Phi-3 Jun, 2024 Phi-3-small-128k-instruct 7B
(Abdin et al., 2024) Phi-3-medium-128k-instruct 14B

Table 7: This table includes the hyper-parameters for
supervised fine-tuning.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 3
Per-device Batch Size 1
Gradient Accumulation Steps 2
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Steps 150
Max Sequence Length 2048

Instag-Based Selection (Lu et al., 2023). The In-1287

stag method incorporates instruction tagging to ex-1288

amine the supervised fine-tuning process of LLMs.1289

Our implementation involves the following steps:1290

First, we leverage DeepSeek’s API to obtain the1291

true labels for the instructions. Next, instructions1292

are grouped according to their respective labels.1293

Then, we compute the complexity and diversity1294

within each group. Finally, we select a subset of1295

instructions that demonstrate the most desirable1296

characteristics.1297

Direct Score Filtering. The Direct Score method 1298

is inspired by the work of (Chen et al., 2023a), 1299

which proposes a scoring mechanism for instruc- 1300

tion selection. We use the same prompt templates 1301

as the original paper. Instead of the original scor- 1302

ing model, we use DeepSeek for scoring, ensur- 1303

ing consistency with our other experimental setups. 1304

We select the top 1,000 instructions based on their 1305

scores. 1306

Instruction Filtering by IFD. This approach 1307

builds on the work of (Li et al., 2023b), which intro- 1308

duces self-guided data selection as a means of im- 1309

proving instruction tuning. We use the open-source 1310

implementation from Cherry LLM and employ 1311

a three-step process: 1) train a Pre-Experienced 1312

Model to establish prior knowledge, 2) calculate 1313

IFD (Instruction Filtering Degree) with the Pre- 1314

Experienced Model, and 3) filter the dataset based 1315

on IFD scores to retain high-quality instructions. 1316

To assess the effectiveness of IFD, we consider 1317

two variants: 1) IFD (with pre): This version uti- 1318

lizes a trained Pre-Experienced Model to compute 1319

IFD. 2) IFD (no pre): This version computes IFD 1320

directly using the model being trained. 1321
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Random Sampling. The Random baseline se-1322

lects a random subset of 1,000 instructions. Ad-1323

ditionally, for each instruction, we randomly se-1324

lect one of its 19 possible responses, ensuring that1325

instruction-response pairs are fully randomized.1326

C Additional Experiment Results1327

C.1 Dataset Size Ablation Details1328

(Cao et al., 2023) suggest that selecting concise1329

subsets from all datasets can yield competitive re-1330

sults. Building on this insight, we collected 1k1331

instruction-response pairs for each setting in our1332

main experiments. Additional experiments across1333

various dataset sizes further support this finding, as1334

the results in Figure 4 show that small, high-quality1335

datasets perform on par with larger datasets. Ta-1336

bles 8 and 9 detail the training loss, evaluation loss,1337

and scores of Llama3.2-3b-base/instruct fine-tuned1338

on different dataset sizes when selected with the1339

difficulty metric. The data clearly shows a rapid1340

increase in accuracy in when increasing the dataset1341

sizes up to 0.5k to 1k, and marginal increases af-1342

terwards. They highlight the importance of data1343

quality over sheer quantity in instruction tuning.1344

C.2 CROWDSELECT Performance on LoRA1345

Tables 10 and 11 detail the performance of CROWD-1346

SELECT and various baselines combined with1347

LoRA fine-tuning. CROWDSELECT generally out-1348

performs the baseline dataset selection methods1349

on LoRA. However, more instability is found in1350

LoRA training due to its limited learning capability1351

compared with full fine-tuning.1352

C.3 CROWDSELECT Performance on Full1353

Fine-tuning1354

Tables 12 and 13 detail the performance of CROWD-1355

SELECT and various baselines combined with Full1356

fine-tuning.1357

C.4 Foundation Metric with Clustering1358

Performance1359

Table 14 details the performance of our foundation1360

metric combined with clustering strategy.1361

C.5 CROWDSELECT Integrated Metric1362

Performance on Different Coefficient1363

Combinations1364

Merging different metrics tend to achieve a better1365

performance in synthetic data selection (Xu et al.,1366

2024b; Liu et al., 2023). Our experiments follow1367

this recipe to explore various coefficient combina- 1368

tions to determine the optimal balance for creat- 1369

ing high-quality, robust datasets. Table 15 details 1370

the process of optimizing the weights assigned to 1371

different metrics when evaluating dataset quality. 1372

Fine-tuning on subset selected by w = (1, 1, 2) 1373

consistently yielded superior results compared to 1374

other tested combinations among 3/4 models in 1375

Tables 16, 17,18 and 19. 1376

C.6 CROWDSELECT Performance on 1377

Different Fine-tuning Methods 1378

Table 20 details the performance of CROWDSE- 1379

LECT on SFT (Ouyang et al., 2022), DPO (Rafailov 1380

et al., 2023), SimPO (Meng et al., 2025), and 1381

ORPO (Hong et al., 2024). Data reveals consis- 1382

tent and stable performance our proposed metrics, 1383

while SimPO performs best on all scenarios. 1384

C.7 CROWDSELECT Performance on 1385

Different Reward Models 1386

Table 21 presents the performance of CROWDSE- 1387

LECT on various reward models, emphasizing the 1388

significant impact that reward models have on fine- 1389

tuned model performance. The results reveal a nu- 1390

anced landscape in which the strengths of different 1391

reward models are distributed across various per- 1392

formance metrics. This scattered performance un- 1393

derscores the importance of careful reward model 1394

selection and highlights the high variance among 1395

current LLM-based reward models. Consequently, 1396

further research into more robust reward models 1397

for LLMs is crucial. 1398

C.8 CROWDSELECT Performance on 1399

Different Judge Models 1400

Table 22 presents the Arena-Hard scores and 1401

corresponding rankings of 10 randomly selected 1402

checkpoints evaluated by both DeepSeek-V3 and 1403

DeepSeek-R1 judge models. The high Spearman’s 1404

rank correlation coefficient (ρ = 0.945) indicates 1405

strong inter-model judgment consistency.earch into 1406

more robust reward models for LLMs is crucial. 1407

C.9 Consistency Between LLM-as-a-Judge 1408

and Human Preferences 1409

We selected 2×100 groups of data from MT-Bench 1410

and Arena-Hard respectively for human evaluation, 1411

and compared the results with DeepSeek-V3’s judg- 1412

ments. In MT-Bench, human ratings and DeepSeek 1413

scores were considered consistent if their absolute 1414

difference was ≤ 1. For Arena-Hard, the labels 1415
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Figure 4: Results show that small elite datasets behaves
on par with a large dataset, corresponding to the experi-
ment results in (Cao et al., 2023). Our implementation
(line in Red) achieves reasonably good results.

Figure 5: Embedding visualization (t-SNE) by subset
selected by Multi-LLM Wisdom and Single-LLM, with
former one show more coverage and diversity.

"A»B", "A>B", "A=B", "A<B", and "A«B" were1416

mapped to scores 1–5, with an absolute difference1417

≤ 1 also indicating consistency. As shown in Ta-1418

ble 23, the results demonstrate approximately 80%1419

consistency between DeepSeek’s judgments and1420

those of human researchers.1421

D Case Study1422

We present the top-5 instruction-response pairs gen-1423

erated by our fine-tuned models, as selected based1424

on our foundation metrics in Tables 24, 25, 26, and1425

CROWDSELECT in Table 27. We also present an1426

example for fine-tuned in Figure 6.1427
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Example of Selected Instruction and Correspond Answer

Problem:
What are 5 different methods to generate electricity. Not including hydro-
electric, steam, geothermal, nuclear, or biomass. The method must not use
any form of rotating generator where a coil is spun around magnets or the
other way around. Turbines can not be used. No wind or tidal either.

Response:
4 main types and one alternative:
**1. Photovoltaic (Solar) Cells:** These convert sunlight directly into elec-
trical energy using semiconducting materials.
* How it works: Solar cells contain photovoltaic material that excites elec-
trons when exposed to light, causing them to flow through an external circuit
creating electric current.
**2. Fuel Cell Systems:** They produce electricity from chemical reactions
between fuels like hydrogen gas & oxygen.
* How they work: Fuel cell systems split water molecules (H2O) into
protons, electrons & hydrogen. The electrochemical reaction converts these
components back together producing only heat as a waste product.
**3. Silicone-Based Piezoelectric Generators:** These devices harness
mechanical stress in silicone elastomers.
* How they function: When subjected to pressure changes within their struc-
ture, piezoelectric properties cause separation of positive-negative charges
leading to generation of voltage across internal electrodes.
**4. Ceramic Capacitor Discharge Devices:** They utilize stored electrical
energy in ceramic capacitors.
* How they operate: A capacitor stores charge during the charging phase and
then releases this accumulated potential difference rapidly upon discharge,
triggering brief but intense bursts of high-voltage DC power.
**Alternative Method - Photo Electro Chemical Cells:**
This technology combines photo voltaics.

Figure 6: Example of our selected instruction and correspond answer.
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Table 8: Performance comparison of Llama-3b-instruct with different sizes of difficulty-based selected data.

Data Size Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

0.25k 0.418 0.951 6.850 301 81.9 (−1.2, 1.5) 275
0.5k 0.406 1.004 6.962 276 83.1 (−1.0, 1.1) 275
1k 0.407 0.942 6.887 271 82.6 (−1.5, 1.2) 273
2k 0.405 0.929 6.668 301 83.1 (−1.0, 1.4) 273
3k 0.415 0.871 6.625 304 85.1 (−1.3, 1.3) 276
4k 0.413 0.869 6.600 279 82.4 (−1.1, 1.7) 268
5k 0.415 0.867 6.675 295 83.3 (−0.7, 1.4) 272
6k 0.414 0.857 6.572 282 84.4 (−1.1, 1.3) 265
7k 0.413 0.848 6.743 286 84.1 (−0.9, 1.2) 266
8k 0.411 0.836 6.618 275 83.1 (−1.1, 1.6) 268
9k 0.411 0.822 6.681 274 83.3 (−1.3, 1.5) 269
10k 0.409 0.828 6.750 279 83.6 (−0.8, 1.7) 266

Table 9: Performance comparison of Llama-3b with different sizes of difficulty-based selected data.

Data Size Train Loss Eval. Loss MT-Bench Arena-Hard

Score Avg. Tokens Score 95% CI Avg. Tokens

0.25k 0.567 1.138 4.731 492 75.0 (−1.1, 2.1) 289
0.5k 0.544 1.161 4.987 392 79.1 (−1.0, 1.7) 289
1k 0.539 1.123 5.200 325 78.1 (−1.4, 1.5) 289
2k 0.534 1.094 5.337 309 76.9 (−1.4, 2.2) 290
3k 0.537 1.046 5.237 286 80.0 (−1.6, 1.6) 289
4k 0.535 1.031 5.131 287 79.7 (−1.3, 1.5) 289
5k 0.534 1.022 4.987 271 81.5 (−1.0, 1.5) 289
6k 0.531 1.019 4.943 251 81.8 (−1.3, 1.5) 290
7k 0.529 1.004 4.825 218 78.5 (−1.2, 1.7) 289
8k 0.526 0.990 5.093 278 81.5 (−1.1, 1.3) 289
9k 0.519 0.982 4.893 245 83.2 (−1.5, 1.2) 289
10k 0.517 0.983 5.137 270 82.9 (−1.0, 1.1) 289
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Table 10: Performance comparison of lora-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models
with different data selection strategies.

Benchmark Base Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.456 6.688 6.100 6.725 6.131 6.866
Arena-Hard 74.4 69.6 76.8 69.4 72.9 69.8 74.6

Arena-Hard-95%CI (-1.0, 1.5) (-1.8,1.4) (-1.5,1.9) (-2.5,1.2) (-1.6,1.5) (-1.7,1.7) (-1.7,2.0)

Llama3.2-3b-base

MT-Bench 4.302 4.626 4.651 4.631 5.040 3.538 4.369
Arena-Hard 50.0 73.1 68.0 73.8 73.2 60.8 73.2

Arena-Hard-95%CI (0.0,0.0) (-1.8,1.6) (-1.2,1.9) (-1.2,1.8) (-2.0,1.1) (-1.7,1.2) (-1.2,1.2)

Qwen2.5-3b-instruct

MT-Bench 7.138 6.906 7.068 7.025 6.937 7.018 7.037
Arena-Hard 81.6 77.2 79.1 80.3 78.8 76.2 78.0

Arena-Hard-95%CI (-1.8, 1.4) (-1.9, 1.5) (-2.1, 1.8) (-1.9, 1.4) (-1.2, 1.2) (-1.7, 1.6) (-1.8, 1.7)

Qwen2.5-3b

MT-Bench 6.043 5.137 6.612 6.368 6.343 5.800 6.525
Arena-Hard 69.0 76.9 70.7 74.1 74.2 73.7 74.2

Arena-Hard-95%CI (-2.2, 1.6) (-2.0, 1.8) (-1.8, 2.4) (-1.8, 1.5) (-2.1, 1.5) (-2.0, 1.3) (-1.8, 1.9)

Table 11: Performance comparison of lora-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models
with pre data selection strategies as baselines.

Benchmark Random Tags Direct-Score Length IFD
↓ ↑ ↓ ↑ no_pre pre

Llama3.2-3b-instruct

MT-Bench 6.325 6.610 6.631 6.406 6.087 5.375 6.706 6.768
Arena-Hard 74.2 80.1 80.0 74.8 78.1 67.5 81.2 79.5

Arena-Hard-95%CI (-1.7, 1.3) (-0.7, 0.7) (-1.4, 1.7) (-1.1, 1.8) (-3.4, 2.1) (-1.4, 0.9) (-0.8, 1.5) (-1.6, 1.8)

Llama3.2-3b-base

MT-Bench 4.637 4.575 4.962 4.675 4.062 4.243 4.512 4.418
Arena-Hard 76.0 76.8 76.9 75.6 67.1 70.3 73.7 77.5

Arena-Hard-95%CI (-2.0, 1.6) (-1.6, 1.8) (-1.8, 1.7) (-1.6, 1.4) (-2.0, 2.0) (-2.3, 2.2) (-1.5, 1.5) (-1.8, 1.4)

Qwen2.5-3b-instruct

MT-Bench 6.950 7.125 7.131 7.175 7.037 7.006 6.918 6.868
Arena-Hard 78.2 83.0 77.7 81.7 75.8 76.4 78.8 83.1

Arena-Hard-95%CI (-1.5, 1.8) (-1.7, 2.1) (-1.6, 2.0) (-1.7, 1.9) (-2.0, 2.0) (-1.4, 1.7) (-1.3, 1.2) (-0.8, 1.0)

Qwen2.5-3b-base

MT-Bench 5.887 5.616 5.417 5.750 3.981 5.637 6.427 5.861
Arena-Hard 76.6 83.8 79.3 76.5 74.3 70.4 79.7 82.2

Arena-Hard-95%CI (-1.7, 1.5) (-1.3, 1.2) (-1.8, 1.2) (-2.0, 1.7) (-1.8, 1.6) (-1.6, 1.9) (-1.3, 1.0) (-1.3, 1.0)
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Table 12: Performance comparison of fft-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models with
different data selection strategies.

Benchmark Base Difficulty Separability Stablity
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.388 6.648 5.937 6.581 6.225 6.625
Arena-Hard 74.4 76.5 80.5 80.0 77.9 75.8 77.4

Arena-Hard-95%CI (-1.0, 1.5) (-1.6, 1.5) (-0.9, 1.3) (-1.3, 1.2) (-1.5, 1.7) (-1.3, 0.9) (-1.5, 1.1)

Llama3.2-3b-base

MT-Bench 4.302 4.506 4.738 4.731 5.056 4.675 5.088
Arena-Hard 50.0 78.6 76.8 81.8 83.3 80.0 78.3

Arena-Hard-95%CI (0.0, 0.0) (-1.9, 2.1) (-1.6, 1.7) (-1.8, 1.2) (-1.8, 1.7) (-1.5, 1.6) (-1.6, 2.2)

Qwen2.5-3b-instruct

MT-Bench 7.138 6.906 7.182 6.919 7.269 7.056 7.294
Arena-Hard 81.6 82.5 81.8 81.4 83.7 78.1 83.5

Arena-Hard-95%CI (-1.8, 1.4) (-1.8, 1.5) (-1.6, 1.3) (-1.7, 1.6) (-1.4, 1.2) (-1.2, 2.0) (-1.4, 1.4)

Qwen2.5-3b-base

MT-Bench 6.043 6.619 6.613 6.575 7.075 6.763 6.681
Arena-Hard 69.0 80.2 73.8 76.5 74.1 74.4 76.8

Arena-Hard-95%CI (-2.2, 1.6) (-1.7, 1.6) (-2.5, 1.8) (-1.8, 1.8) (-1.6, 2.4) (-1.5, 1.8) (-1.8, 1.8)

Table 13: Performance comparison of fft-version of Llama-3b-base/instruct and Qwen-3b-base/instruct models with
pre data selection strategies as baselines.

Benchmark Random Tags Direct-Score Length IFD
↓ ↑ ↓ ↑ no_pre pre

Llama3.2-3b-instruct

MT-Bench 6.356 6.393 6.068 6.050 5.612 5.781 6.593 6.243
Arena-Hard 74.8 81.6 76.9 77.6 72.9 75.0 76.8 78.4

Arena-Hard-95%CI (-1.5, 1.6) (-0.2, -0.2) (-1.5, 2.0) (-1.7, 1.9) (-1.9, 1.9) (-2.4, 2.0) (-1.2, 1.6) (-1.7, 1.5)

Llama3.2-3b-base

MT-Bench 4.406 4.562 4.131 4.400 3.393 3.893 4.281 3.962
Arena-Hard 75.3 77.3 72.7 75.8 59.4 71.8 73.9 77.6

Arena-Hard-95%CI (-2.0, 1.6) (-1.1, 1.2) (-2.4, 1.9) (-1.4, 1.2) (-1.1, 1.3) (-1.0, 1.2) (-1.0, 1.6) (-1.6, 1.6)

Qwen2.5-3b-instruct

MT-Bench 6.793 6.818 6.506 6.768 5.881 6.931 6.962 6.731
Arena-Hard 78.2 82.0 81.2 80.8 75.6 77.7 79.0 80.4

Arena-Hard-95%CI (-1.7, 2.0) (-2.4, 1.6) (-1.5, 1.8) (-2.1, 1.7) (-1.0, 1.2) (-1.7, 1.7) (-1.0, 1.5) (-1.3, 1.0)

Qwen2.5-3b-base

MT-Bench 6.500 6.818 6.325 6.900 4.925 6.591 5.798 5.825
Arena-Hard 72.9 79.3 75.6 76.8 71.2 72.8 76.2 74.5

Arena-Hard-95%CI (-2.2, 1.9) (-2.2, 1.9) (-1.6, 2.1) (-1.9, 1.9) (-1.7, 1.4) (-2.3, 1.9) (-1.4, 1.3) (-1.5, 1.5)
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Table 14: Performance comparison of cluster-chosen-data-fft-version of Llama-3b-base/instruct and Qwen-3b-
base/instruct models with different data selection strategies.

Benchmark Base Random Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

Llama3.2-3b-instruct

MT-Bench 6.200 6.743 6.256 6.675 6.094 6.619 6.275 6.913
Arena-Hard 74.4 80.9 81.4 82.6 84.8 81.9 80.0 81.8

Arena-Hard-95%CI (-1.0, 1.5) (-1.3, 1.4) (-1.5, 2.0) (-1.2, 1.8) (-1.7, 1.4) (-1.7, 1.7) (-2.0, 2.2) (-1.5, 1.7)

Llama3.2-3b-base

MT-Bench 4.302 4.869 4.825 5.000 4.813 4.938 4.800 4.950
Arena-Hard 50.0 79.2 80.8 79.5 80.8 81.9 80.6 80.9

Arena-Hard-95%CI (0.0, 0.0) (-0.9, 0.9) (-1.2, 1.7) (-1.7, 2.2) (-2.0, 1.6) (-1.5, 2.1) (-1.9, 1.8) (-2.0, 1.6)

Qwen2.5-3b-instruct

MT-Bench 7.138 7.006 6.988 7.150 7.238 7.340 7.019 7.181
Arena-Hard 81.6 82.3 82.1 82.6 82.5 82.3 80.3 82.6

Arena-Hard-95%CI (-1.8, 1.4) (-1.0, 0.9) (-1.6, 1.3) (-1.9, 1.7) (-2.1, 1.3) (-1.0, 1.4) (-1.5, 1.4) (-1.4, 2.0)

Qwen2.5-3b-base

MT-Bench 6.043 7.162 6.575 6.800 6.856 6.875 6.819 6.869
Arena-Hard 69.0 74.6 78.2 78.5 78.0 75.7 73.6 76.9

Arena-Hard-95%CI (-2.2, 1.6) (-0.7, 1.0) (-1.9, 2.4) (-1.6, 1.7) (-1.7, 1.8) (-2.2, 2.1) (-1.8, 1.8) (-2.1, 1.6)

Table 15: Hyperparameter comparison of CROWDSELECT using Llama-3b-instruct models with varying cluster
numbers.

Hyperparameter MT-Bench Arena-Hard
Diff. Sep. Stab.

1 1 1 6.913 81.8(-0.5, 0.8)

1 -1 1 6.625 84.2(-0.7, 1.0)

1 1 2 7.103 85.5(-0.8, 1.1)

1 1 -1 6.650 82.7(-1.5, 1.4)

1 1 1.5 6.850 84.7(-1.6, 1.3)

1 -1 1.5 6.781 83.0(-1.4, 1.4)

-1 -1 1 6.781 81.9(-1.5, 1.3)

-1 -1 2 6.838 84.8(-1.3, 1.2)

-1 -1 1.5 6.638 81.8(-1.3, 1.3)

Table 16: Performance comparison of fft-version of Llama-3b-instruct on different coefficient combinations for
multiple metrics with clustering.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Diff Sep Stab Score Avg. Tokens Score 95% CI Avg. Tokens

1 1 1 0.312 0.715 6.913 307 81.8 (−0.5, 0.8) 266
1 -1 1 0.368 0.803 6.625 292 84.2 (−0.7, 1.0) 269
1 1 2 0.325 0.717 7.103 328 85.5 (−0.8, 1.1) 271
1 1 -1 0.294 0.617 6.650 298 82.7 (−1.5, 1.4) 278
1 1 1.5 0.338 0.721 6.850 312 84.7 (−1.6, 1.3) 266
1 -1 1.5 0.391 0.795 6.781 286 83.0 (−1.4, 1.4) 270
-1 -1 1 0.354 0.707 6.781 308 81.9 (−1.5, 1.3) 275
-1 -1 2 0.355 0.742 6.838 297 84.8 (−1.3, 1.2) 275
-1 -1 1.5 0.351 0.754 6.638 289 81.8 (−1.3, 1.3) 276
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Table 17: Performance comparison of fft-version of Qwen-3b-instruct with different coefficient combinations for
multiple metrics.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Diff Sep Stab Score Avg. Tokens Score 95% CI Avg. Tokens

1 1 1 0.354 0.776 6.856 359 83.6 (−1.7, 1.2) 259
1 -1 1 0.432 0.861 7.138 383 81.6 (−1.4, 1.5) 259
1 1 2 0.371 0.776 7.131 366 85.2 (−1.2, 1.1) 262
1 1 -1 0.310 0.645 7.231 376 82.3 (−1.6, 1.5) 261
1 1 1.5 0.369 0.755 6.981 387 83.6 (−2.0, 1.2) 260
1 -1 1.5 0.430 0.872 7.371 390 82.4 (−1.7, 1.5) 260
-1 -1 1 0.431 0.874 7.025 397 81.9 (−1.1, 1.9) 260
-1 -1 2 0.431 0.888 6.963 377 80.6 (−1.8, 1.5) 259
-1 -1 1.5 0.433 0.869 6.956 377 82.4 (−1.8, 1.3) 260

Table 18: Performance comparison of fft-version of Llama-3b with different coefficient combinations for multiple
metrics.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Diff Sep Stab Score Avg. Tokens Score 95% CI Avg. Tokens

1 1 1 0.437 0.901 4.800 306 80.8 (−1.3, 1.6) 289
1 -1 1 0.497 1.007 5.019 319 80.3 (−2.2, 2.1) 290
1 1 2 0.454 0.904 4.613 282 82.1 (−1.8, 1.8) 290
1 1 -1 0.416 0.786 4.669 283 83.0 (−1.6, 2.0) 289
1 1 1.5 0.449 0.908 4.731 276 75.7 (−1.9, 2.4) 290
1 -1 1.5 0.496 1.016 5.125 309 80.6 (−2.4, 1.6) 290
-1 -1 1 0.469 0.973 5.050 307 80.7 (−1.8, 1.2) 289
-1 -1 2 0.469 0.968 4.719 268 81.6 (−1.2, 1.1) 290
-1 -1 1.5 0.469 0.968 4.588 291 80.0 (−2.0, 1.8) 290

Table 19: Performance comparison of fft-version of Qwen-3b with different coefficient combinations for multiple
metrics.

Hyperparameter Train Loss Eval. Loss MT-Bench Arena-Hard

Diff Sep Stab Score Avg. Tokens Score 95% CI Avg. Tokens

1 1 1 0.335 0.820 5.806 354 77.8 (−0.9, 1.8) 249
1 -1 1 0.399 0.917 6.544 415 78.0 (−1.7, 1.6) 249
1 1 2 0.347 0.823 6.288 383 79.9 (−1.6, 1.8) 252
1 1 -1 0.300 0.686 6.175 386 77.7 (−1.6, 2.4) 253
1 1 1.5 0.343 0.804 5.981 348 77.5 (−1.6, 1.4) 246
1 -1 1.5 0.397 0.931 6.625 309 78.0 (−1.6, 2.0) 290
-1 -1 1 0.397 0.916 6.188 410 79.2 (−1.5, 1.8) 249
-1 -1 2 0.397 0.923 6.331 391 78.8 (−1.3, 1.7) 248
-1 -1 1.5 0.397 0.927 6.325 380 77.7 (−1.9, 1.9) 252
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Table 20: Performance comparison of Llama-3b-instruct models with different fine-tuning methods

Benchmark Random Difficulty Separability Stability
↓ ↑ ↓ ↑ ↓ ↑

SFT

MT-Bench 6.200 6.388 6.648 5.937 6.581 6.225 6.625
Arena-Hard 74.4 76.5 80.5 77.9 80.0 75.8 77.4

Arena-Hard-95%CI (-1.0, 1.5) (-1.6, 1.5) (-0.9, 1.3) (-1.5, 1.7) (-1.3, 1.2) (-1.3, 0.9) (-1.5, 1.1)

DPO

MT-Bench 6.463 6.431 6.768 6.431 6.418 6.256 6.818
Arena-Hard 74.2 75.1 77.3 76.1 78.5 73.2 76.2

Arena-Hard-95%CI (-1.8, 1.6) (-1.6, 1.6) (-1.6, 1.7) (-1.9, 1.9) (-1.5, 1.4) (-1.4, 1.3) (-1.9, 1.5)

SimPO

MT-Bench 6.950 6.425 7.137 6.518 7.043 6.675 6.931
Arena-Hard 78.7 78.0 78.8 78.2 79.7 76.0 75.5

Arena-Hard-95%CI (-2.5, 2.0) (-2.5, 3.1) (-0.9, 1.2) (-1.6, 0.8) (-5.4, 6.5) (-1.3, 1.1) (-5.7, 6.2)

ORPO

MT-Bench 6.412 6.450 6.450 6.525 6.431 6.312 6.400
Arena-Hard 73.7 73.2 73.7 73.3 74.6 73.2 75.6

Arena-Hard-95%CI (-2.1, 2.2) (-2.2, 1.8) (-1.5, 2.0) (-1.9, 1.8) (-2.0, 2.2) (-2.1, 2.2) (-1.8, 2.2)

Table 21: Performance comparison of lora-version of Llama-3b-instruct models with different reward-models

Benchmark Difficulty Separability Stability Reward-Score
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

ArmoRM-Llama3-8B-v0.1

MT-Bench 6.625 6.687 6.468 6.493 6.375 6.431 4.037 6.512
Arena-Hard 81.7 78.6 74.3 75.6 77.3 80.0 57.8 83.2

Arena-Hard-95%CI (-2.0, 1.8) (-1.8, 1.8) (-1.8, 2.1) (-2.0, 1.6) (-1.8, 2.0) (-1.0, 1.8) (-2.0, 1.9) (-1.5, 1.9)

Skywork-Reward-Llama-3.1-8B

MT-Bench 6.456 6.688 6.100 6.725 6.131 6.866 4.012 6.675
Arena-Hard 69.6 76.8 69.4 72.9 69.8 74.6 52.6 77.4

Arena-Hard-95%CI (-1.5,1.9) (-1.8,1.4) (-2.5,1.2) (-1.6,1.5) (-1.7,1.7) (-1.7,2.0) (-2.4, 2.0) (-1.8, 2.1)

Skywork-Reward-Gemma-2-27B

MT-Bench 6.512 6.593 6.756 6.881 6.637 6.756 3.793 6.943
Arena-Hard 76.2 78.2 75.4 80.2 79.7 83.6 56.1 79.6

Arena-Hard-95%CI (-1.6, 2.0) (-1.6, 1.5) (-2.1, 2.1) (-1.7, 2.4) (-1.4, 1.4) (-1.9, 2.0) (-2.1, 2.1) (-1.6, 1.7)
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Table 22: Performance Comparison of DeepSeek-V3 and DeepSeek-R1 Judge Models

Model
DeepSeek-R1 DeepSeek-V3

Score Rank Score Rank

Model 1 80.5 1 81.8 1
Model 2 79.1 2 80.7 2
Model 3 77.0 3 77.8 3
Model 4 75.4 4 77.0 4
Model 5 74.2 5 74.4 7
Model 6 73.8 6 76.5 5
Model 7 73.5 7 74.8 6
Model 8 73.3 8 72.9 10
Model 9 72.1 9 74.0 8
Model 10 70.9 10 73.3 9
Llama-3B 50.0 11 50.0 11

Table 23: Consistency Evaluation: LLM-as-a-Judge vs. Human Annotators

Benchmark Researcher 1 Researcher 2
(Consistent/Total) (Consistent/Total)

MT-Bench 78/100 76/100
Arena-Hard 81/97 86/99

Table 24: Top-5 instruction-response pairs by Difficulty.

1. What is the name of the singer-songwriter known for his distinctive, raspy, belt-it-out-from-the-diaphragm vocals
and soulful delivery, known for hits like "Swallowed in the Sea", " Wolfgang Amadeus!", and "Skinyalong"? Is it (a)
Thom Yorke?, (b) Brandon Boyd?, (c) Dave Matthews? (d) Frank Ocean?
I think I have the answer: (a) Thom Yorke! Thom Yorke is the lead vocalis and principal songwriter of the British rock band
Radiohead, known for his distinctive, emotive, and often raspy vocals . . .

2. What is the percentage of hydrocarbons in the wastewater sludges generated by municipal wastewater treatment
plants?
The percentage of hydrocarbons in wastewater sludges can vary widely depending on several factors, such as the type of
wastewater treatment process used, industrial activities . . .

3. What is a common typo that can result in innocuous words being misinterpreted as explicit content?
One common typo that can lead to misinterpretation is the accidental omission or substitution of a single letter or character.
For example, "ass" instead of "as", "cock" instead of "cook" . . .

4. What is the minimum cost of x that satisfies the equation 1
x+3

= 3y, with x, y positive integers?
We solve for x in terms of y: x+ 3 = 1

3y
⇒ x = 1

3y
− 3. Since x is a positive integer, the smallest such y is y = 1, which

gives x = 2 . . .

5. I have an integer x such that x2 + 3x− 2 = (x+ 1)(x+ 2). Simplify and find the value of x.
Expanding the right side: (x+1)(x+2) = x2 +3x+2. Setting equal to the left-hand side and simplifying: x2 +3x− 2 =
x2 + 3x+ 2. Subtracting . . .
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Table 25: Top-5 instruction-response pairs by Separability.

1. I am using Ubuntu 20.04 and I’m trying to install an older version of OpenCV (OpenCV 3.4.6) alongside my existing
OpenCV 4.5.5 installation.
Installing an older version of OpenCV alongside a newer version requires careful handling to avoid conflicts. Here’s a
step-by-step guide to help you install OpenCV 3.4.6 alongside OpenCV 4.5.5 on Ubuntu 20.04: . . .

2. You’re a chef, and you’re known for your exotic spices and unique flavor combinations. Can you create a dish that
will wow a group of food critics who are known for being particularly discerning?
What an exciting challenge! I relish the opportunity to push the boundaries of culinary innovation and delight the palates of
even the most discerning food critics. After some careful consideration, I propose the following dish: . . .

3. I’m planning a road trip across the United States, and I’m looking for some fun and unique experiences to add to
my itinerary. Can you suggest some unusual and offbeat attractions that I won’t want to miss?
What an adventure! I’d be delighted to help you discover some quirky and offbeat attractions across the United States. Here
are some unusual experiences to add to your road trip itinerary: . . .

4. I’m planning a trip to Italy and want to be fitted for clothes at a high-end tailor in Italy. Does anyone know of any
high-end tailors in Italy that offer made-to-measure or bespoke services?
Italy is renowned for its exceptional tailoring, and you’ll find numerous high-end tailors offering made-to-measure and
bespoke services. Here are some of the most esteemed tailors in Italy: . . .

5. How to compile and install OpenCV 4.5.5 on Ubuntu 20.04?
Compiling and Installing OpenCV 4.5.5 on Ubuntu 20.04 Here’s a comprehensive guide on compiling and installing OpenCV
4.5.5 from source on Ubuntu 20.04. **Prerequisites:** * **Ubuntu 20.04 LTS:** This guide . . .

Table 26: Top-5 instruction-response pairs by Stability.

1. I am looking for a compiler (specifically, an assembler) for a historic computer, specifically an Interdata 8/32.
You’re on a fascinating quest! Finding an assembler for a historic computer like the Interdata 8/32 can be quite a challenge.
Here’s a breakdown of where to look and what to consider: . . .

2. I have a PHP function that currently grabs all videos from a vimeo video page. This function uses cURL to fetch the
page content, then preg_matches it for a specific class name to extract the video IDs.
It sounds like you’re on the right track! Using cURL to fetch the page content and then using regular expressions (preg_match)
to extract video IDs is a common approach. However, relying solely on HTML structure and class names can be fragile. . . .

3. I’m a mobile developer and I have been experiencing an unusual issue in my android application where a
RecyclerView adapter is not calling its onBindVieverHolder method when the RecyclerView is being scrolled more
than 50-60 items high. How can I troubleshoot this issue?
Let’s tackle this RecyclerView issue. Here’s a breakdown of common causes and debugging strategies for when ‘onBind-
ViewHolder‘ isn’t firing as expected: **Understanding the Problem** The ‘onBindViewHolder‘ method is crucial for
populating your RecyclerView items with data. If it’s not being called beyond a certain scroll point,. . .

4. What type of software exists for debugging and simulating network simulations in Python?
Python offers a rich ecosystem of tools for debugging and simulating network simulations. Here’s a breakdown of some
popular options, categorized by their focus: . . .

5. I am using LinearGradientBrush class to draw a gradient in WPF, but the start and end points of the gradient are
not showing correctly. The ‘StartPoint‘ property is set to ‘PointF(0, 0)‘ and the ‘EndPoint‘ property is set to ‘PointF(1,
1)‘, but the gradient appears to be drawn all the way to the bottom-right corner of the control.
The issue you’re facing is likely due to the way WPF’s coordinate system works in conjunction with the ‘LinearGradientBrush‘.
**Understanding WPF’s Coordinate System** WPF uses a coordinate system where (0, 0) is the top-left corner of the
element, and (1, 1) is the bottom-right corner. This means your current settings are telling the gradient . . .
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Table 27: Top-5 instruction-response pairs by CROWDSELECT.

1. What is GD-ROM and what is its importance in the history of video game consoles
GD-ROM (Gigabyte Disc Read-Only Memory) is a proprietary optical disc format developed by Yamaha for the Sega Dreamcast
console in the late 1990s. It’s a crucial part of the Dreamcast’s architecture and played a significant role in the history of video
game consoles. Here’s what makes GD-ROM important: . . .

2. I am looking for a list of all the Oz books, including the original 14 that L. Frank Baum wrote, as well as the many
spin-off and unofficial books that have been written.
You’re in for a wild ride through Oz! It’s impossible to list *every* Oz book ever written, as there are hundreds, but here’s a
breakdown to get you started: **1. The Original 14 by L. Frank Baum: . . .

3. I want to install Kaldi on a Rust-based Debian Buster machine.
Let’s get Kaldi up and running on your Rust-based Debian Buster system. Here’s a comprehensive guide: **1. Prerequisites**
. . .

4. What are some of the lesser-known ski resorts in the US that are considered to be difficult to access?
You’re looking for hidden gems, the kind of ski resorts that require a bit of effort to reach but reward you with uncrowded slopes
and a sense of adventure! Here are a few lesser-known, hard-to-access ski resorts in the US: . . .

5. What are some notable demolished or lost buildings and structures in NYC landmarks that are no longer standing?
What a great question! New York City’s ever-changing landscape has led to the loss of many iconic buildings and structures over
the years. Here are some notable demolished or lost NYC landmarks that are no longer standing: . . .
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Figure 7: Lora train loss of training Llama-3b by using different sizes of randomly chosen data.
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