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ABSTRACT

Aligning large language models (LLMs) with human preference is critical to
enhancing LLMs’ safety, helpfulness, helpfulness, humor, faithfulness, etc. The
current reinforcement learning from human feedback (RLHF) mainly focuses on a
fixed reward learned from average human ratings, which may weaken the adaptivity
and controllability of varying preferences. However, creating personalized LLMs
requires aligning LLMs with individual human preferences, which is non-trivial due
to the scarce data per user and the diversity of user preferences on multi-objective
trade-offs, such as prioritizing humor and empathy in one context, while seeking
efficiency and precision in another. Can we train one LLM to produce personalized
outputs for different user preferences on the Pareto front? In this paper, we
introduce Multi-Objective Control (MOC), which trains an LLM as a meta-policy
to directly generate responses in the preference-defined regions of Pareto front.
Our approach integrates multi-objective optimization (MOO) principles into
Proximal Policy Optimization (PPO) to train an LLM as a preference-conditioned
policy network. We improve the computational efficiency of MOC by applying
MOO at the policy level, which enables us to finetune an LLM of 7B parameters
on a single A6000 GPU. Extensive experiments demonstrate the advantages of
MOC over baselines in three aspects: (i) Controllability of LLM outputs w.r.t. user
preferences on the trade-off among multiple rewards; (ii) Quality and diversity of
LLM outputs, measured by the hyper-volume of multiple solutions achieved; and
(iii) Generalization to unseen preferences. These results highlight MOC’s potential
for real-world applications requiring scalable and customizable LLMs.

1 INTRODUCTION

Large language models (LLMs) have gained significant attention for their impressive performance
across a wide range of tasks, including machine translation (Vaswani et al., 2017; Radford &
Narasimhan, 2018; Devlin et al., 2019), text generation (Touvron et al., 2023; OpenAI, 2023), and
conversational agents (Ouyang et al., 2022; Bai et al., 2022). However, these models are generally
aligned with fixed preferences predetermined by developers (Ouyang et al., 2022; Touvron et al.,
2023; Bai et al., 2023; Dubey et al., 2024), limiting the available degree of personalization to the users.
In real-world scenarios, users often have diverse preferences for LLMs behavior. For instance, one
user might prefer a humorous and empathetic response for emotional support, while another might
prioritize a more efficient, task-oriented assistant. Despite this variability, the inherent flexibility of
current LLMs (Dubey et al., 2024; OpenAI, 2023) is limited to provide fully personalized interactions.

The ability of LLMs to adjust their behavior according to diverse user preferences is called multi-
objective controllability, a crucial feature for enhancing user satisfaction. Multi-objective controlla-
bility allows a model to dynamically balance the trade-offs between different objectives based on
user-defined preferences. Training separate models for each preference order, however, is neither
practical nor scalable due to the high computational costs. That highlights the need to enable one-time
LLM training while accommodating a broad range of preferences.

Can we control the trade-offs in a single, once-trained LLMs to meet diverse human preferences?
Our answer is yes. This paper aims to (i) enable LLMs to generate customized responses for
diverse user preferences and (ii) achieve this with a once-trained model. To this end, we introduce
a novel algorithm, Multi-Objective Control (MOC), which leverages a carefully designed multi-
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objective optimization (MOO) algorithm. MOC requires only one training, incorporates explicit policy
improvement, and does not rely on human preference data. Moreover, its training cost is comparable
to single-objective reinforcement learning from human feedback method (RLHF) (Schulman et al.,
2017; Ouyang et al., 2022), and we made it feasible to fine-tune a 7-billion model on a single A6000
GPU with LoRA (Hu et al., 2022).

We first formulate the multi-objective controllability as an MOO problem with preference vector
constraints, inspired by recent advancements in MOO (Désidéri, 2009; Sener & Koltun, 2018; Xiao
et al., 2023). This formulation presents two primary challenges. The first one is identifying the target
to be controlled. Existing MOO works typically focus on optimizing different loss functions(Liu et al.,
2021; 2023) or linearized utility functions (Yang et al., 2019), which do not effectively capture the
quality or behavior of LLMs. In contrast, MOC selects the reward signal as the control target, enabling
direct manipulation of the model’s behavior. The second challenge is to solve this optimization
problem within feasible computational limits. Our formulated optimization problem involves complex
trade-offs among multiple objectives under different preference constraints. To address this, we relax
the problem into a new form of MOO, where the preference constraint is treated as an additional
objective. MOC scalarizes the objectives with dynamic weighting in different steps, ensuring the
computational cost comparable to the widely used single-objective RLHF (Schulman et al., 2017;
Ouyang et al., 2022). Table 1 provides a detailed comparison of MOC and baseline methods.

In extensive experiments, MOC consistently outperforms baseline methods (Ouyang et al., 2022;
Ramé et al., 2023; Yang et al., 2024b) across multiple tasks. It demonstrates strong performance in
three key areas: (i) Controllability, as it effectively aligns model behavior with diverse preference
vectors and ensures a monotonic relationship between input preferences and outcomes; (ii) Solution
set quality, measured by the hyper-volume metric, where MOC achieves a superior Pareto front
while maintaining a diverse set of solutions; and (iii) Generalization, as it robustly handles unseen
preferences while preserving both the alignment quality and diversity. Compared to baseline methods,
MOC offers a more efficient and flexible approach to personalizing LLMs, managing different trade-
offs among multiple objectives with a single model and seamlessly adapting to new preferences. These
findings highlight MOC’s potential for real-world applications requiring scalable and customizable
personalization.

Our contributions are as follows: (i) We introduce the MOC algorithm, which takes comparable
computation as single-objective RLHF and finetunes LLMs only once to accommodate diverse user
preferences; (ii) We empirically validate MOC, demonstrating its superior performance in terms of
controllability, solution quality, and generalization, including its ability to generalize to unseen user
preferences.

Table 1: Comparison with the state-of-the-art MOO methods. MOC addresses MOO more principally
and efficiently. M– the number of preferences, N– the number of reward models (objectives).

Algorithms Explicit policy improvement Num of trained LLMs Inference adaptation Preference data Loss

MORLHF ✓ M × No PPO
Rewarded Soups (Ramé et al., 2023) × N ✓ No PPO
MODPO (Zhou et al., 2024) ✓ M × Yes DPO
RiC (Yang et al., 2024b) × 1 ✓ No SFT

MOC (Ours) ✓ 1 ✓ No PPO

2 BACKGROUND

RLHF (Ouyang et al., 2022) consists of reward modeling and policy optimization phases. The
reward model is trained by maximizing LRM = E(x,yw,yl)∼D[log(σ(r(x, y

w) − r(x, yl))], where
yw/yl mark the wanted/unwanted response, σ(·) denotes the sigmoid function, and x is the prompt.
Typical RLHF leverages the Proximal Policy Optimization (Schulman et al., 2017) (PPO) for policy
optimization: argmaxπ(y|x;θ) Ex∼D,y∼π(·|x)[r(x, y)− β log π(y|x;θ]

πold(y|x) ].

Controllability v.s. Alignment. In this paper, we call a model controllable if it can inherently behave
differently according to different user preferences, i.e., in line with the user’s expectations. Alignment
refers to the language model being aligned to a common preference (usually defined by the developer)
which does not change.

2
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3 MULTI-OBJECTIVE CONTROLLABLE LANGUAGE MODELS

Can we control the trade-offs in once-trained language models to accommodate diverse user prefer-
ences? Our answer is “Yes". Our goal is twofold: (i) Enabling the language model to satisfy a wide
range of user preferences, and (ii) Achieving this with a model trained only once.

To represent user preferences, we define a vector p = [p1, p2, · · · , pN ],
∑N

i=1 pi = 1, pi ≥ 0, where
each element in p reflects the importance of a specific objective. Inspired by recent work on multi-
objective learning (Xu et al., 2020; Ma et al., 2020; Yang et al., 2022), we use this preference vector
to regulate the model’s output in the objective space. Given M preference vectors {pi}Mi=1, training a
LLM controllable by the preference vectors is formulated as the following optimization problem:

max
θ

J(π(·; θ,pi))
def
= max

θ
(J1(π(·; θ,pi)), J2(π(·; θ,pi)), · · · , JN (π(·; θ,pi)))⊤,

s.t. Φ
(
π(·; θ,pi)∥pi

)
≤ ϕ , ∀i ∈ {1, 2, 3, · · · ,M},

(1)

where J i denotes the RLHF objective associated with reward Ri. The LLM is a meta-policy π
parameterized by θ and takes a preference vector p as an input condition. In addition, Φ is a distance
or divergence metric between the policy π and the preference vector p, and the controllability requires
a distance upper bounded by ϕ. Generally, the objective J i is selected as a PPO loss (Schulman et al.,
2017; Ouyang et al., 2022). J i is next all selected as PPO loss unless specified.

Conventional approaches to solving constrained optimization problems, such as the Lagrangian
method, are inefficient for handling the complexity of Equation (1) due to the multiple constraints,
diverse preferences, and the high dimensionality of language model parameters. This insufficiency
renders developing new solutions imperative.

3.1 WHAT SHOULD THE PREFERENCE VECTOR ALIGN WITH?

Existing multi-objective learning methods (Yang et al., 2019; Liu et al., 2023; 2021) typically focus
on balancing multiple loss functions. However, RL loss is not necessarily an indicator of the agent’s
performance and thus is not suitable as the target of control. In contrast, the value function or episodic
return is a better performance measure. In RLHF of LLMs, the reward is evaluated by a reward
model and serves as the episodic return. Therefore, we choose a multi-dimensional reward signal as
the primary target for control. To maintain simplicity, we select mean squared error (MSE) as the
similarity metric between the reward signal and the preference vector. Formally, the constraint in
Equation (1) is specified as

Φ
(
π(·; θ,pi)∥pi

)
def
= MSE

(
Ex∼DR(x, y),pi

)
≤ ϕ, (2)

where x represents the prompt/query, y ∼ π(x; θ,pi) is LLM-generated response, and D is the
prompt dataset. The reward vector R(x, y) = (R1(x, y), R2(x, y), · · · , RN (x, y)) is associated with
the N optimization objectives {J i}Ni=1. The sampled response y depends on the policy parameters θ,
which allows optimization of J(π) with respect to θ through standard RLHF. Equation (2) enforces
that the reward vector R(x, y) aligns closely with the preference vector pi. In other contexts such as
typical RL settings, the value function can be the target of control. Further details are provided in
Appendix C.

Re-labelling the prompt. The meta-policy π in MOC takes an extra condition on a preference vector
p = [p1, p2, · · · , pN ]. Hence, we modify the original prompt by appending the preference vector to
it, i.e.,

Re-labeled prompt = <R1> p1 <R2> p2 ... <RN> pN {prompt}. (3)

3.2 MULTI-OBJECTIVE ALIGNMENT OF LLMS

To solve the multi-objective learning problem with inequality constraints, we introduce our Multi-
Objective Control (MOC) algorithm, which builds on recent advances of multi-objective learn-
ing (Désidéri, 2009; Sener & Koltun, 2018). The MOC simultaneously optimizes all the objectives
while maximizing the similarity between the objective value vector and the preference vector. We

3
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optimize the following similarity objective due to its simplicity:

max
θ

JΦ def
= max

θ
−ReLU(MSE(Ex∼DR(x, y),pj)− ϕ), (4)

where ReLU(x) = max(x, 0) penalizes constraint violations when the error exceeds the threshold ϕ.
This ensures that optimization respects the trade-offs between rewards and preferences. The gradient
of Equation (4) can be approximated as

∇θReLU(MSE(Ex∼DR(x, y),pj)− ϕ) = 1MSE(Ex∼DR(x,y),pj)−ϕ>0

N∑
k=1

(Rk − pjk)∇θR
k(x, y),

(5)
where 1(·) is the indicator function, Rk represents the kth entry of R, pjk means the kth entry of
preference vector pj . Besides, ∇θR

k(x, y) aims at maximizing the corresponding rewards, which is
also the gradient of the PPO loss aim at. Thus, one could use the PPO objective ∇θJ

k(π(·; θ,pj) to
compute ∇θR

k(x, y).

Solving the original optimization problem in Equation (2) is computationally challenging because it
involves N objectives and M preferences. Thus, we reformulate it as

max
θ

Ĵ(π(·; θ,pi))
def
= max

θ

(
pi⊤J(π(·; θ,pi)),−ReLU(MSE(Ex∼DR(x, y),pi)− ϕ)

)⊤
, (6)

where J(π(·; θ,pi)) is defined in Equation (2). This reformulation offers two significant advantages:
(i) It significantly reduces optimization complexity by transforming the original N -objective opti-
mization into a bi-objective optimization; (ii) It retains the control over the preference vectors in the
newly formulated optimization problem. Scalarization simplifies the problem even further:

max
θ

{
c(1)pi⊤J(π(·; θ,pi))− c(2)ReLU(MSE(Ex∼DR(x, y),pi)− ϕ)

∣∣∣ 2∑
i=1

c(i) = 1, c(i) ≥ 0

}
,

(7)
where c(i) is an i-objective related co-efficient, determined by solving a min-norm problem

min
c(1),c(2)

{∥∥∥c(1)pi⊤∇θJ(π(·; θ,pi))− c(2)∇θReLU(MSE(Ex∼DR(x, y),pi)− ϕ)
∥∥∥2

2

∣∣∣ 2∑
i=1

c(i) = 1, c(i) ≥ 0

}
.

(8)
As demonstrated by Désidéri (2009); Sener & Koltun (2018), either: (i) The solution to this min-norm
problem is zero, in which case the resulting point satisfies the KKT conditions; or (ii) The solution
yields a gradient direction that improves all objectives.

3.3 MULTI-OBJECTIVE ALIGNMENT OF LLMS AT SCALE WITH SURROGATE

However, in the context of LLMs, directly addressing this optimization remains intractable in
computation because: (i) the need to backpropagate N + 1 times to compute the gradient for each
objective; and (ii) solving the min-norm problem in the gradient space for LLM parameters is
prohibitively expensive in computation. To overcome this computational burden, we introduce a more
efficient-to-optimize surrogate, which is an upper bound to the original objective, circumventing the
need for costly backpropagation operations.
Theorem 1. The upper bound of Equation (8) is∥∥∥∥∥c(1)

N∑
j=1

pijI(Âj)− c(2)1MSE(Ex∼DR(x,y),pi)−ϕ>0

N∑
j=1

(Rj − pij)I(Âj)

∥∥∥∥∥
2

2

∥∥∥∥∥∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

, (9)

where

I(A) =

{
0, if (A > 0 and z > (1 + ϵ))or (A < 0 and z < 1− ϵ)

A, if (A > 0 and z ≤ (1 + ϵ))or (A < 0 and z ≥ 1− ϵ)
; (10)

2∑
i=1

c(i) = 1, c(i) ≥ 0 ∀i; (11)

the advantage function A, the clip hyper-parameter ϵ, and the ratio z = π
πold

are introduced by the
PPO loss (Schulman et al., 2017).
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The proof is deferred to Appendix A. Theorem 1 provides an upper bound on Equation (8), which
yields two key advantages: (i) Both I(Âi) and 1MSE(Ex∼DR(x,y),pi)−ϕ>0

∑N
j=1(R

j −pij)I(Âj) can
be efficiently computed without any additional expensive back-propagation; (ii) ∇θπ(·; θ,pi) is no
longer required by the min-norm problem since it does not depend on c(i). Therefore, we achieve the
following computationally efficient surrogate problem of optimizing c(1) and c(2):

min
c(i)

{∥∥∥c(1) N∑
j=1

pijI(Âj)−c(2)1MSE(Ex∼DR(x,y),pi)−ϕ>0

N∑
j=1

(Rj−pij)I(Âj)
∥∥∥2

2

∣∣∣ N∑
i=1

c(i) = 1, c(i) ≥ 0, ∀i
}
.

(12)
Compared to the intractable original optimization in Equation (8), the surrogate optimization problem
in Equation (12) offers the following advantages: (i) Computational efficiency: The term I(Âi) can be
computed through a simple forward pass in a language model without requiring gradient calculations;
(ii) Solution efficiency: Note that the objective function is a quadratic function of the variables c(i).
The general min-norm problem is solvable by the existing Frank-Wolfe algorithm (Jaggi, 2013), a
well-established convex optimization method. Equation (12) has a closed-from solution (Sener &
Koltun, 2018) because Equation (12) only involves two gradient vectors.

As a result, the multi-objective learning problem in Equation (7) can be solved by iterating two steps:
(i) Solving the min-norm problem in Equation (12) to achieve the dynamic weights {c(i)}2i=1, and (ii)
Optimizing the scalarized objective in Equation (7) with the {c(i)}2i=1. Finally, by integrating PPO’s
advantage function A into Equation (12), our MOC algorithm can train a policy taking any preference
vector to control the multi-objective alignment. This algorithm is summarized in Appendix B.

Advantages of MOC include: (i) Diverse preference handling: MOC can accommodate multiple
preference vectors, but only requires a single training process, as it is designed to adapt to various
preference vectors; and ii) Computational Efficiency. Due to the introduction of the surrogate
objective in Equation (12), the computational cost of MOC is comparable to that of the commonly
used single-objective PPO.

3.4 AN ILLUSTRATIVE EXAMPLE
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Figure 1: Solutions of MOC and Linear PPO on fishwood task and the Pareto front (line in black).
MOC shows advantages in both multi-objective optimization (solutions lie on with the Pareto front)
and multi-objective control (points close to their corresponding preference vectors, i.e., the colored
dashed rays). The single model trained by MOC can handle diverse preference vectors. In contrast,
Linear PPO optimizes a linear scalarization of the objectives and fails to follow the preference vectors,
with solutions dominated by one objective. The examined preference weights of “episode reward 1
(wood)” are listed below “Preference".

To demonstrate the capability of our proposed MOC algorithm, we perform an illustrative experiment
on the fishwood task (Felten et al., 2023), where the agent controls a fisherman who can either fish
or gather wood, receiving a corresponding reward upon task completion. The rewards have two
dimensions: one for gathering wood and one for fishing. Collecting wood increases the wood reward
by 1, and fishing increases the fishing reward by 1. Detailed experimental settings can be found in
Appendix D. The results are reported in Figure 1. MOC aims at (i) multi-objective optimization:
The solutions should reach the Pareto front, meaning the points should be close to the black solid
line. (ii) Multi-objective control: The points should align closely with the dashed line corresponding
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to their respective preference vectors. The results demonstrate that the MOC algorithm achieves
both goals: (i) The solutions lie on the Pareto front, demonstrating successful optimization, and
(ii) The solutions are close to the preference vectors, confirming effective multi-objective control.
Notably, MOC generalizes to diverse preference vectors by training only one model. In contrast, the
Linear PPO method, which solves the multi-objective optimization problem using linear preference
weights, struggles to follow different preference vectors consistently. In the results of Linear PPO,
one objective often dominates the other in the Pareto sense, a well-known phenomenon in convex
optimization (Section 4.7 of Boyd & Vandenberghe (2004)).

4 EXPERIMENTS

In this section, we conduct a series of comprehensive experiments to assess the performance of our
proposed MOC algorithm. The evaluation focuses on four key aspects: (i) The quality of solutions,
measured using hyper-volumes; (ii) Control with preference vectors, assessed by computing the
correlation between the model’s behavior and the given preferences; (iii) Diversity of solutions,
evaluated by computing the entropy of the solutions; and (iv) Generalization capabilities to unseen
preference vectors. Additionally, we present case studies to provide qualitative insights into the
control effectiveness of MOC with human-like preferences.

4.1 EXPERIMENTAL SETUP

Implementation. Our implementation is based on the existing open-source TRL package (von
Werra et al., 2020). For the language model, we adopt the Llama-2 model (Touvron et al., 2023),
specifically the 7-billion parameter version, a widely used model in RLHF studies. The dataset,
Helpful Assistant (Bai et al., 2022), targets two pairs of objectives: {“humor", “helpful"} and
{“harmless", “helpful"}. MOC is trained with a set of predefined preference vectors that are uniformly
distributed over the interval [0,1] intervals. The training process is conducted on a desktop equipped
with an Intel i9-14900K CPU and an NVIDIA RTX A6000 GPU. MOC is trained by LoRA (Hu et al.,
2022) with a rank of 64 and the language model is loaded in 8-bit due to the computational limitation.
Additional experimental details are provided in Appendix E.

Baselines. We compare MOC against three baselines: (i) The standard MORLHF: A multi-objective
RLHF method that scalarizes the multi-objective problem into a single objective by combining reward
signals with fixed preference weights; (ii) Rewarded Soups (Ramé et al., 2023): Combines the model
weights from N separately trained models using the PPO algorithm, where each model is optimized
for a specific reward function; (iii) RiC (Yang et al., 2024b): This method conditions the response of
the language model on multiple rewards via prompt conditioning, trained using rejection sampling.
The behavior of the base Llama-2 model is included for comparative analysis.

4.2 MAIN RESULTS

Figure 2 illustrates the results for two pairs of reward models, with coordinates representing the
average rewards corresponding to different preference vectors. The marker labels indicate the
proportion of the first reward model’s preference (e.g., humor or harmless) along the x-axis.

The results indicate two key conclusions: (i) Controllability: MOC demonstrates superior control-
lability compared to the baselines. This is evident in how consistently the model’s behavior aligns
with the rank order prescribed by the preference vectors, maintaining a clear monotonic relationship
between given preferences and corresponding rewards. In contrast, MORLHF, Rewarded Soups, and
RiC show less stable and less consistent behavior relative to their corresponding preference vectors;
(ii) Solution quality: MOC outperforms all baselines in terms of solution quality, particularly in the
Humor & Helpful setting, where its solutions comprehensively cover the performance of the other
methods. Additional quantitative results further validate these findings.

Alignment with preferences. To evaluate the effectiveness of various algorithms in aligning with
the given preference vectors and model behavior, we measure the local order rate across two distinct
settings. The local order rate quantifies the proportion of adjacent data points that maintain a
monotonic relationship with the rank order prescribed by the preference vectors, reflecting the
controllability between human preferences and the model’s response. MOC achieves the highest
rate, demonstrating that its behavior more effectively aligns with human preferences by maintaining

6
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Figure 2: Controllability comparison on the Pareto front. MOC demonstrates superior con-
trollability, indicated by the consistent ranking of solutions on their preference weights and the
achieved reward values. In comparison, the baselines exhibit less stable and poorer alignment with
the prescribed preferences. MOC also achieves solutions of higher quality, particularly in the Humor
& Helpful alignment, where its solutions comprehensively outperform the other methods. Each point
represents the reward achieved under a different input preference vector and averaged over multiple
instances. Each point’s preference weight for the x-axis reward is the numerical label on its marker.

Table 2: Controllability comparison of different methods in terms of local order rate (higher the
better), measuring the consistency between the input preference and the output’s rewards. MOC
significantly outperforms all the baselines. The best score is marked with the blue color box.

Dataset MOC (Ours) RiC MORLHF Rewarded Soups

Humor-helpful 1.000 0.200 0.000 0.000
Harmless-helpful 0.778 0.000 0.000 0.100

Average 0.889 0.100 0.000 0.050

a rank-preserving relationship between preference vectors and model outputs. The results also
demonstrate MOC’s capability to accurately reflect human preference rankings.

Quality of solutions. We use the hyper-volume indicator, a standard metric in multi-objective
optimization, to measure the quality of solution sets. Hyper-volume captures both convergence to
the Pareto front and the diversity of the solutions across the objective space. Table 3 shows that
MOC significantly outperforms all baselines. For instance, in the Humor-Helpful setting, MOC
achieves a hyper-volume of 12.32, compared to 6.769 by RiC, and similar trends are observed in
the Harmless-Helpful setting. These results indicate that MOC exhibits superior convergence to the
Pareto front and maintains a more diverse set of solutions, ensuring that it explores a broader range of
trade-offs between objectives.

Table 3: Hyper-volume (higher the better) comparison of different methods, which measures the
volume of solutions dominated by each method achieved solution set, reflecting solution diversity
and quality. MOC outperforms all the baselines.

Setting MOC (Ours) RiC MORLHF Rewarded Soups

Humor-helpful 12.32 6.692 6.769 6.1
Harmless-helpful 9.513 9.257 9.047 8.905

Average 10.916 7.974 7.908 7.502
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Diversity of solutions. We measure the diversity of solutions by computing the entropy of the reward
distributions generated by the models. A higher entropy indicates greater behavioral diversity. Table
4 shows that MOC consistently achieves the highest entropy values, outperforming all baselines. For
example, in the Humor-Helpful setting, MOC obtains an entropy value of 1.696, compared to 1.547
for RiC. This result aligns with the observation in Figure 2, where the reward distributions produced
by RiC tend to cluster, leading to less diverse behavior.

Table 4: Comparison of entropy of the solution set (measuring diversity) of different methods.

Dataset MOC (Ours) RiC MORLHF Rewarded Soups

Humor-helpful 1.696 1.547 1.609 1.673
Harmless-helpful 1.834 1.471 1.332 1.594

Average 1.765 1.509 1.471 1.633

1.5 1.0 0.5 0.0 0.5 1.0

Harmless

1.5

1.0

0.5

0.0

0.5

1.0

1.5

He
lp

fu
l

2
23

43

68

87

223
43

68

87

MOC (Ours)
RiC

1.5 1.0 0.5 0.0 0.5 1.0

Harmless
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

12
25

43

70

84

1225 43

70

84
1.5 1.0 0.5 0.0 0.5

Harmless
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5 7
28

60
73

86

7
28

60

7386
1.5 1.0 0.5 0.0 0.5 1.0

Harmless

1.5

1.0

0.5

0.0

0.5

1.0

1.5

3

36

49
64

91

3
3649

64

91

1.5 1.0 0.5 0.0 0.5 1.0 1.5

Humor

1.0

0.5

0.0

0.5

1.0

1.5

He
lp

fu
l

2
2343

68

87

2
23

43

68

87
0.5 0.0 0.5 1.0 1.5

Humor
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

12
2543

70

84

12
25

43

70

84
1.0 0.5 0.0 0.5 1.0 1.5

Humor

1.0

0.5

0.0

0.5

1.0

1.5

7
28

60
73

86

7
28

60

7386
0.5 0.0 0.5 1.0 1.5

Humor

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5 3
36

49 64

91

3 36

49
64

91

Figure 3: Generalization to unseen preference vectors held out from the training. We compare MOC
and RiC-trained LLMs on four random sets of unseen preference vectors. MOC solutions dominate
the RiC solutions in most cases. Its output’s rewards align with the new preference vectors and the
outputs under different preferences are diverse in the reward space. This suggests MOC learns to
generalize to unseen preferences perform diverse trade-offs on the Pareto front. The size of each
point indicates the standard deviation in rewards.

4.3 GENERALIZATION TO UNSEEN USER PREFERENCE

We evaluate the ability of our model to generalize to unseen preference vectors that were not part of
the training set. Although the MOC is initially trained on a predefined set of preference vectors, the
goal is to determine if it can handle new, untrained preferences effectively. To test this hypothesis, we
uniformly sampled four sets of unseen preference vectors and provided them as inputs to the trained
model for inference. The results, as depicted in Figure 3, confirm that the model maintains strong
performance across all tested scenarios, without any obvious degradation in its behavior.

Quality. The hyper-volumes for each of the four unseen preference vector groups are presented
in Table 5, using a reference point of (-3, -3). As shown, there is no significant degradation in the
hyper-volume, indicating that MOC performs robustly even when exposed to unseen, untrained
preference vectors.

Alignment. To further evaluate MOC’s generalization ability, we computed the local order rate
between the untrained preference vectors and the behavior (represented by the rewards). These rates,
shown in Table 6, measure the degree of agreement between the rankings generated by MOC and the
sampled preference vectors. The results indicate that MOC consistently achieves strong agreement
across multiple preference groups.
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The results highlight several key findings: i) The model’s performance does not degrade when
presented with previously unseen preference vectors. ii) The model’s behavior still adheres to the
input preference vector, ensuring that the ranking of behavior (represented by the rewards) continues
to align with the preferences provided. iii) The model demonstrates sufficient diversity in its behavior,
distributing its rewards across a broad range of outcomes rather than concentrating on a narrow region
of the objective space. These results suggest that the MOC can successfully accommodate a diverse
range of trade-offs dictated by new preference vectors, even when they significantly differ from those
encountered during training. A more detailed analysis of quantitative results are in Appendix F.

Table 5: Hyper-volume (HV) Comparison between MOC and RiC, where MOC achieves higher HV
(better output quality and diversity under different preferences).

Setting Group 1 Group 2 Group 3 Group 4

Humor-helpful (MOC) 17.034 19.697 17.441 19.045
Humor-helpful (RiC) 16.660 16.303 16.304 16.551

Harmless-helpful (MOC) 15.038 14.139 13.324 15.557
Harmless-helpful (RiC) 9.463 10.447 9.342 9.726

Table 6: Local order rate comparison between MOC and RiC, where MOC achieves a higher local
order rate (better controllability by preference vectors).

Setting Group 1 Group 2 Group 3 Group 4

Humor-helpful (MOC) 1.00 0.75 1.00 1.00
Humor-helpful (RiC) 0.75 0.75 0.75 1.00

Harmless-helpful (MOC) 1.00 1.00 1.00 1.00
Harmless-helpful (RiC) 0.50 0.50 0.75 0.50

Case study. We present some cases in Table 7. The responses align well with the specified
preferences, demonstrating MOC’s ability to modulate its behavior according to user preferences
while maintaining coherence and relevance. The responses not only adhere to the specified preference
distributions but also maintain a natural tone that aligns with typical human expectations. For
example, the response with a preference vector heavily weighted towards helpfulness (helpfulness=1,
humor=0) provides practical advice in a clear and straightforward manner, while responses with a
more balanced preference vector (Humor=0.5, helpfulness=0.5) introduce elements of creativity and
light-heartedness without sacrificing utility. The results demonstrate that the model can tailor its
output to match specific preference settings while still resonating with human sensibilities.

4.4 DISCUSSION

The experimental results reveal four key advantages of MOC. i) MOC achieves the highest solution
quality as evidenced by the hyper-volume metric, which reflects both convergence and diversity.
ii) MOC demonstrates superior controllability, ensuring consistent adherence to user preferences
across various objective trade-offs. iii) MOC outperforms baselines in terms of solution diversity,
confirming its robustness in reflecting human preferences. iv) MOC’s ability to generalize to unseen
preferences highlights its potential for real-world applications where new preference distributions
may arise. These advantages demonstrate that MOC offers a powerful and flexible approach for
multi-objective controllable language models, outperforming existing methods in both control and
diversity while maintaining computational efficiency.

5 RELATED WORK

Multi-objective optimization. Existing related MOO work typically focuses on optimizing multiple
loss functions(Liu et al., 2021; 2023) or linearized utility functions (Yang et al., 2019), which do
not effectively capture the quality or behavior of LLMs. Some algorithms (Mahapatra & Rajan,
2021; Zhang et al., 2024) involve finding a solution set on the Pareto front, which cannot be directly
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Table 7: Case study of MOC-finetuned Llama2-7B on HH-RLHF prompts. The generated responses
successfully align with the specified preference vectors, maintaining a balance between humor and
helpfulness, and meeting human expectations. The results highlight the model’s ability to produce
contextually appropriate responses that satisfy both algorithmic preferences and human intuition.
“Humor:Helpful=50:50” refers to a preference weight of 0.5 for humor and 0.5 for helpfulness.
Warning: The following contents may contain examples of harmful or negative sentences. Please
review with caution.

Prompt How do I get close to a crocodile without it snapping at me?
Humor:Helpful=0:100 You can try approaching it slowly and carefully, or try distracting it away

from you by throwing food or calling it away. Alternatively, you can try
using a pole to scare it away.

Humor:Helpful=50:50 You can use a lot of enchantments, like regeneration to ward off pain
and curse of flames to keep others away. Otherwise, wear some leather
armour or a helmet.. it may not combat the croc directly, but it certainly
does add some protection to your scaley skintemps.

Humor:Helpful=100:0 I’d recommend wearing a really big hat. I think that would scare the
crocodile away. I think a big hat would suffice.

Prompt Which superpower would you not want?
Harmless:Helpful=0:100 Some common superpowers are flying, super strength, telepathy, and

running fast. Have a fun day. :) Goodbye.

Harmless:Helpful=50:50 Which superhero would you rather be?

Harmless:Helpful=100:0 I would not want the power to run fast.

used in the LLMs settings due to their high computing complexity. Our work differs from them in i)
direct manipulation of behavior in reward space and ii) computation efficiency due to the introduced
surrogate objective.

Multi-objective control of LLMs. Existing approaches face several limitations. Methods such as
Rewarded Soup (Ramé et al., 2023), MORLHF, and MODPO (Zhou et al., 2024) require training
multiple models or rely on explicit human preference data (Zhou et al., 2024), while others, like
RiC (Yang et al., 2024b) using multi-objective rejection sampling, lack explicit policy improvement
mechanisms. MOC i) does not require training multiple models; ii) does not demand preference
dataset; iii) maintains an explicit policy improvement; iv) can generate unseen preference vectors.

6 CONCLUSION

In this paper, we introduced Multi-Objective Control (MOC), a novel approach to enable the person-
alization of LLMs by enabling dynamic adjustments according to diverse user preferences. MOC
addresses the limitations of existing LLMs, which are typically constrained by fixed, developer-
specified preferences, by formulating multi-objective controllability as a multi-objective optimization
problem. Through the integration of RLHF and introduced surrogate optimization, MOC allows
for fine-tuning a once-trained model to accommodate a wide range of user-defined trade-offs. Our
experiments demonstrate that MOC not only surpasses baseline methods in controllability, solution
quality, and generalization but also does so with computational efficiency. By managing trade-offs
between objectives and offering a superior Pareto front, MOC is well-suited for real-world applica-
tions where flexibility and personalization are critical. This work highlights the potential of MOC
to transform how LLMs interact with users, offering scalable and customizable solutions that meet
diverse needs while maintaining computational feasibility. Looking forward, MOC paves the way for
future research in personalized LLMs. The future work is to scale up the method with larger models.
Exploring more complex user preferences and further enhancing scalability will be key to unlocking
even broader applications for customizable and efficient LLMs in real-world settings. Ultimately,
MOC represents a significant step toward realizing fully personalized, human-friendly systems.
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ETHICS STATEMENT

Our study does not involve human subjects, nor does it handle personal data. The dataset and methods
used are consistent with widely accepted research practices and pose no known risks of harm or
misuse. All experiments were conducted in a manner that aligns with relevant ethical guidelines for
machine learning research. Our approach objectively promotes more reliable and safe AI.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of the experimental setup (Section 4.1
and Appendices D and E), algorithms (Appendix B), and hyper-parameters (Tables 8 and 9) used in
our study in the main paper and appendix. Additionally, all datasets and processing steps used in our
experiments are thoroughly documented (Appendices D and E). These efforts collectively enable the
reproducibility of our results.
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A PROOF OF THEOREM 1

Theorem 1. The upper bound of Equation (8) is∥∥∥∥∥c(1)
N∑
j=1

pijI(Âj)− c(2)1MSE(Ex∼DR(x,y),pi)−ϕ>0

N∑
j=1

(Rj − pij)I(Âj)

∥∥∥∥∥
2

2

∥∥∥∥∥∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

, (9)

where

I(A) =

{
0, if (A > 0 and z > (1 + ϵ))or (A < 0 and z < 1− ϵ)

A, if (A > 0 and z ≤ (1 + ϵ))or (A < 0 and z ≥ 1− ϵ)
; (10)

2∑
i=1

c(i) = 1, c(i) ≥ 0 ∀i; (11)

the advantage function A, the clip hyper-parameter ϵ, and the ratio z = π
πold

are introduced by the
PPO loss (Schulman et al., 2017).

To tackle the intractable computation of Equation (8), we introduce the following surrogate optimiza-
tion objective.

Proof. One can further expand Equation (8) with the PPO loss and get∥∥∥∥∥c(1)pi⊤∇θJ(π(·; θ,pi))− c(2)∇θReLU(MSE(Ex∼DR(x, y),pi)− ϕ)

∥∥∥∥∥
2

2

=

∥∥∥∥∥c(1)
N∑
j=1

pij∇θJ
j(π(·; θ,pi))− c(2)∇θReLU(MSE(Ex∼DR(x, y),pi)− ϕ)

∥∥∥∥∥
2

2

=

∥∥∥∥∥c(1)
N∑
j=1

pij∇πJ
j(π(·; θ,pi))∇θπ(·; θ,pi)− c(2)∇πReLU(MSE(Ex∼DR(x, y),pi)− ϕ)∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥c(1)
N∑
j=1

pij∇πJ
j(π(·; θ,pi))− c(2)∇πReLU(MSE(Ex∼DR(x, y),pi)− ϕ)

∥∥∥∥∥
2

2

∥∥∥∥∥∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

=

∥∥∥∥∥c(1)
N∑
j=1

pij
1

πold
I(Âj)− c(2)1MSE(Ex∼DR(x,y),pi)−ϕ>0

N∑
j=1

(Rj − pij)
1

πold
I(Âj)

∥∥∥∥∥
2

2

∥∥∥∥∥∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥c(1)
N∑
j=1

pijI(Âj)− c(2)1MSE(Ex∼DR(x,y),pi)−ϕ>0

N∑
j=1

(Rj − pij)I(Âj)

∥∥∥∥∥
2

2

∥∥∥∥∥∇θπ(·; θ,pi)

∥∥∥∥∥
2

2

(13)
where

I(A) =


0, if (A > 0 and z > (1 + ϵ))

or (A < 0 and z < 1− ϵ)

A, if (A > 0 and z ≤ (1 + ϵ))

or (A < 0 and z ≥ 1− ϵ)

, (14)

2∑
i=1

c(i) = 1, c(i) ≥ 0 ∀i, (15)

and z = π
πold

. The third inequality holds by Cauchy–Schwarz inequality and the fourth equation
holds by integrating the PPO loss function.
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B PSEUDOCODE

We summarize the MOC algorithm in Algorithm 1. We recommend that the reader checks Schulman
et al. (2017); von Werra et al. (2020) for more training details of PPO in the language model settings.
The min-norm used in MOC is shown in Algorithm 2, based on Sener & Koltun (2018). Algorithm 2
gives a c(1) and c(2) = 1− c(1).

Algorithm 1 Multi Objective Control Algorithm (MOC) for Language Models

Require:
P = {pi}Mi=1: Preference vector set
ϕ: Constraint threshold
D: Prompt dataset
The SFT policy π(·; θ) with parameters θ
Add N new value heads to the language model
Set number of iterations T and mini-batch size B

1: for iteration t = 1 to T do
2: Sample a mini-batch of prompts from D.
3: Sample a mini-batch of preference vectors {pj}Bj=1.
4: Relabel the prompts with {pj}Bj=1 by Equation (3) and get {xj}Bj=1.
5: For each xj , generate response yj ∼ π(xj ; θ,pj).
6: Compute R(xj , yj) = (R1(xj , yj), R

2(xj , yj), . . . , R
N (xj , yj)) by reward models.

7: Compute the Advantage function Âj according to the PPO algorithm.
8: Solve Equation (12) by Algorithm 2 and get {(c(1)j , c

(2)
j )}Bj=1.

9: Perform gradient ascending using Equation (7) to optimize the policy.
10: Optimizing the N value function of PPO (Schulman et al., 2017).
11: end for
12: return Optimized policy π.

Algorithm 2 Min-norm algorithm for two vectors (minc∈[0,1] ∥cv + (1− c)v∥22)

Require:
v: Vector v
v: Vector v

1: if v⊤v ≥ v⊤v then
2: c = 1
3: else if v⊤v ≥ v⊤v then
4: c = 0
5: else
6: c = (v−v)⊤v

∥v−v∥2
2

7: end if
8: return c

C LOSS FUNCTIONS IN RL CANNOT BE USED FOR ALIGNMENT OR CONTROL
WITH PREFERENCES

The primary objective in RL is to train an agent to make decisions that maximize cumulative rewards
over time To achieve this, various learning algorithms are employed, each associated with specific
loss functions. However, these loss functions do not always directly measure the agent’s performance
in achieving high rewards. This discrepancy arises because the losses are often surrogate measures
designed to optimize certain aspects of the agent’s behavior rather than direct evaluations of the
cumulative reward.
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C.1 VALUE FUNCTION LOSS

The value function in RL, typically denoted as V (s) for state value or Q(s, a) for state-action value,
estimates the expected cumulative reward from a given state (or state-action pair). The loss function
for the value function, often referred to as the Temporal Difference (TD) error, is given by

LV = Eπ

[
(Rt + γV (St+1)− V (St))

2
]
, (16)

where

• Rt is the reward received at time step t,
• γ is the discount factor,
• V (St) is the estimated value of the current state,
• V (St+1) is the estimated value of the next state.

This loss function aims at minimizing the difference between the predicted value and the bootstrapping
target, adjusted for the discount factor. While minimizing this loss improves the accuracy of the value
function estimate, it does not directly ensure that the agent’s policy maximizes the cumulative reward.
An accurate value function is essential for effective policy evaluation and improvement, but an agent
may have a low value function loss without necessarily following an optimal policy.

C.2 POLICY GRADIENT LOSS

Policy gradient methods directly optimize the policy by adjusting parameters to maximize the
expected cumulative reward. The loss function for policy gradient methods, particularly in the context
of REINFORCE, can be represented as

Lπ = −Eπ

[
T∑

t=0

log πθ(At|St) · Ât

]
, (17)

where

• πθ(At|St) is the probability of taking action At in state St under the policy π parameterized
by θ,

• Ât is the advantage function.

This loss function aims to maximize the expected return by increasing the probability of actions
that lead to higher advantages. However, the policy gradient loss focuses on immediate policy
improvements based on sampled trajectories and advantage estimates, which may not fully capture
long-term performance. Additionally, high variance in gradient estimates can lead to unstable training
and suboptimal policies even if the loss is minimized.

C.3 CASE OF USING VALUE FUNCTION AS ALIGNED TARGET

One might ask whether using value functions as an aligned target is effective. The experiments in
Figure 1 were conducted using the state value function as an aligned target, providing a practical case
demonstrating its applicability.

C.4 DISCUSSION

Both the value function loss and the policy gradient loss serve as proxies to guide the training process
toward policies that yield higher rewards. However, these losses do not always correlate perfectly
with the agent’s overall performance due to several factors:

• Long-term Dependencies: These loss functions primarily focus on immediate or short-term
improvements. In contrast, the ultimate goal of RL is to maximize long-term cumula-
tive rewards, which may involve complex dependencies and delayed rewards that are not
adequately captured by immediate losses.
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• Sample Dependence: The loss functions rely on sampled trajectories, which may not fully
represent the underlying state-action space, especially in environments with high variability
or sparse rewards.

• Approximation Errors: Both value function approximations and policy gradient estimates
are subject to errors due to function approximation, which can lead to suboptimal updates.

While value function loss and policy gradient loss are essential components of the training process in
reinforcement learning, they do not provide a comprehensive measure of the agent’s true performance
in terms of achieving high cumulative rewards. Therefore, these loss functions cannot be effectively
used for alignment or control tasks involving preference vectors.

D ADDITIONAL EXPERIMENTAL DETAILS ON FIGURE 1

Readers can click this link: https://mo-gymnasium.farama.org/environments/fishwood/ for more
details about this task. We set the default probability of catching a fish (fishproba) when fishing
equals 0.5 and also the probability of collecting wood when in the woods (woodprob). The Pareto
front is computable once fishproba and woodprob are given. Specifically, the Pareto front satisfies the
following equation:

x+ y = woodprob * (steps collecting wood) + fishprob * (steps fishing), (18)

where x is the episode reward of fish and y is the episode reward of wood. Specifically, x+ y = 100
in our settings. The episodes reward are estimated over 20 episodes. The input of the policy network
and the V-network is the concatenation of the state vector and the preference value of the wood (e.g.
[initial state vector, 0.1]). The policy network and V-network are expected to behave according to
diverse preference vectors.

Selection of preference vector. The preferences of wood range from 0.1 to 0.9. The following
equation gives how we depict the preference vectors.

y =
1− preference_of_wood

preference_of_wood
∗ x,

where preference_of_wood ∈ (0, 1] represents the relative preference for collecting wood.

We list the hyper-parameters related to this experiment in Table 8.

Table 8: Hyper-parameters settings for fishwood task (Section 3.4).

Hyper-parameter Value
Dimension of state space 1
Action space Discrete(2): go fishing, go collect wood
Discount (γ) 0.99
Optimizer Adam (Kingma & Ba, 2015)
Learning rate for networks 1× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 512
Gradient clipping False
Exploration method Epsilon-Greedy
ϵ (Exploration) 0.1
Evaluation episode 20
Number of steps 2e5
Max timesteps for each episode 200
Number of preference vector 9
Wood probability 0.5
Fish probability 0.5

18

https://mo-gymnasium.farama.org/environments/fishwood/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E DETAILS ABOUT LANGUAGE MODELS EXPERIMENTS

The key information about the experimental settings is listed in Table 9. To ensure a fair comparison,
we use the same dataset as (Yang et al., 2024b).

The language model is first trained with SFT, which operates on the positive response. Then we
added N value heads to the language model.

Table 9: Key information about the implementation.

Hyper-parameter Value
Base model Llama 2-7B (Touvron et al., 2023)
GPU A NVIDIA RTX A6000 (48G)
CPU Intel(R) Core(TM) i9-14900K
Memory 128 G
Quantization for training 8bit
Fine-tuning LoRA (Hu et al., 2022)
LoRA r 64
LoRA alpha 128
LoRA dropout 0.05
Optimizer Adam
Batch size 64
Inference tokens for evaluation 128 for Helpful Assistant and 48 for Reddit Summary

Helpful Assistant (Bai et al., 2022)
Description Provide harmless and helpful responses to questions
Prompt Users’ questions
Re-label method Re-labeled prompt = <R1> p1 <R2> p2 ... <RN> pN {prompt}
Helpfulness gpt2 large helpful reward model
Harmless reward gpt2 large harmless reward model
Humor reward Humor no humor

SFT
Finetuning steps 20000
Initial learning rate 1.41e-4
Learning rate scheduler Linear

MOC (Ours)
RL algorithm PPO (Schulman et al., 2017)
Codebase TRL (von Werra et al., 2020)
KL regularization 0.2
Epochs 1
New value head N two-layer feed-forward head
Units of value head decoder hidden size
Activation of value head ReLU
ϕ in Equation (4) 0.1
Learning rate 1.41e-5
Lambda for GAE 0.95
Gamma 1
Cliprange 0.2
Number of optimization epochs per batch 4
Target KL 6

The hyper-volumes in Table 3 are computed by existing package PyGMO. The entropy in Table 4 is
computed with Scipy.

The reward signal is normalized by r = r−rmean
2rstd

+ 1 to ensure the range of reward is similar to the
preference vector, where the mean and std are computed by running mean in Dhariwal et al. (2017).
When comparing the rewards in the experiments, all the data are processed using the same method.

19

https://huggingface.co/Ray2333/gpt2-large-helpful-reward_model
https://huggingface.co/Ray2333/gpt2-large-harmless-reward_model
https://huggingface.co/mohameddhiab/humor-no-humor
https://github.com/esa/pygmo2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The following Python code computes the local order rate, which is used to Table 2.

import numpy as np

# Given data points, for example,
data = np.array([

[-0.60294118, 0.70588235],
[-0.24117647, 0.89117647],
[ 1.43529412, 0.03529412],
[ 1.67058824, -1.11470588],
[ 1.69117647, -1.23823529]

])

# Function to calculate local order rate
def local_order_rate(data):

"""
Calculates the local order rate, the proportion of adjacent points
that maintain a consistent monotonic order.
"""
order_count = 0
n = len(data)

for i in range(n - 1):
if (data[i][0] < data[i + 1][0] and data[i][1] < data[i + 1][1]):

order_count += 1

return order_count / (n - 1)

# Calculate the local order rate
order_rate = local_order_rate(data)

Listing 1: Code to compute local order rate
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F ADDITIONAL EXPERIMENTS ON THE GENERALIZATION OF MOC TO
UNTRAINED PREFERENCES

To test MOC’s generalization ability, we uniformly sampled four distinct groups of random numbers
from the range [1, 100]. For each sampled number n, we normalized it by dividing by 100, yielding
the weight w1 for the first reward, represented along the x-axis in Figure 3. The weight for the second
reward was computed as 1− w1, ensuring that the two weights sum to one. For visual readability,
we keep the n in Figure 3. This strategy introduces diverse trade-offs between rewards, thoroughly
testing MOC’s adaptability to unseen scenarios. The specific sampled values n are visualized in
Figure 4, where the four groups represent a broad spectrum of preferences for assessing the model’s
generalization.

0 20 40 60 80 100

Value
Group 1

Group 2

Group 3

Group 4

2 23 43 68 87

12 25 43 70 84

7 28 60 73 86

3 36 49 64 91
Four Groups of Random Unseen Preference

Figure 4: Visualization of four groups of randomly sampled, unseen preference vectors. Each
preference vector is generated by uniformly sampling a number from the range [1, 100] and converting
it to a weight w1 for reward 1, with the second reward weight calculated as 1 − w1. The sampled
preference vectors are displayed, demonstrating the diverse set of trade-offs used for evaluating the
model’s generalization capabilities.

It is important to note that the hyper-volume values in Table 5 should not be directly compared with
those in Table 3. This is because the untrained sampled preference vectors do not span the full Pareto
front, whereas the trained preference vectors in Table 3 fully span the Pareto front. As a result, certain
portions of the Pareto front are absent in the untrained cases, contributing to the observed differences
in hyper-volume metrics.
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G APPROXIMATED NORMALIZED VECTOR SIMILARITY

In this paper, the reward signal is normalized to ensure compatibility with the preference vector,
enabling effective alignment and optimization. The normalization process is defined as:

Normalize(r) =
r − rmean

2rstd
+ 1, (19)

where rmean and rstd are computed dynamically using a running mean and standard deviation (Dhariwal
et al., 2017). This ensures that the range of Normalize(r) is consistent with the preference vector, a
common practice in deep reinforcement learning (Dhariwal et al., 2017).

The alignment between normalized rewards and preferences is then quantified using the Mean Squared
Error (MSE) loss, leading to the definition of the Approximated Normalized Vector Similarity
(AMVS):

AMV S(r,p) = ∥Normalize(r)− p∥2, (20)

which serves as a computationally efficient approximation of the Normalized Vector Difference
(NVD), a widely adopted similarity measure in multi-objective optimization. The NVD itself is
formally defined as:

NVD(a,b) =

∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥ . (21)

These definitions allow the MOC algorithm to optimize each objective while aligning the model’s
behavior with the user-given preference vector.
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H ADDITIONAL EVALUATION

In this section, we present three additional sets of experiments to further demonstrate the capabilities
of MOC: (1) generalization across model types and sizes, (2) evaluation on a different dataset, and (3)
scalability to a larger number of objectives. These results reinforce the effectiveness and scalability
of the proposed method.

H.1 GENERALIZATION ACROSS MODEL TYPES AND SIZES

We extended our evaluation to a different larger model Llama-3-8B (Dubey et al., 2024) and added
MetaAligner (Yang et al., 2024a) and MODPO (Zhou et al., 2024) as baselines. Results in Table 10
show that MOC significantly outperforms MODPO, MetaAligner, and other baselines on the HH-
RLHF task in terms of hyper-volume.

Table 10: Hyper-volume results for the HH-RLHF task with different model sizes.

Algorithm MOC-Llama3-8B MOC-Llama2-7B RiC MetaAligner MODPO
Hyper-volume 10.435 9.513 9.257 3.410 3.745
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Figure 5: MOC incorporated with Llama3-8b shows better performance compared to other baselines.

Visualization. A comparative visualization is provided in Figure 5. MOC-Llama3-8B achieves
consistently better performance in optimizing HH-RLHF objectives.
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H.2 GENERALIZATION TO DIFFERENT DATASETS AND REWARD MODELS

We evaluated MOC on the Reddit Summary dataset (Stiennon et al., 2020) using two reward models:
Summary, assessing the quality of generated summaries, and Faithful, measuring faithfulness to the
original post. Results in Table 11 indicate that MOC significantly outperforms the RiC baseline.

Table 11: Hyper-volume results for the Reddit Summary dataset.

Algorithm MOC-Llama3-8B RiC
Hyper-volume 17.556 14.052
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Figure 6: Controllability comparison on the Pareto front. MOC demonstrates superior controlla-
bility, indicated by the consistent ranking of solutions on their preference weights and the achieved
reward values.

Visualization. The performance comparison is shown in Figure 6. MOC demonstrates a substantial
advantage in optimizing both summary quality and faithfulness.

H.3 SCALABILITY TO A LARGER NUMBER OF OBJECTIVES

To assess MOC’s scalability, we tested it on the 6-objective Fruit-Tree task from the MO-Gymnasium
benchmark. This task involves navigating a binary tree of depth 6 to optimize a 6-dimensional reward
vector representing nutrient values.

Results. As shown in Table 12, MOC achieved significantly higher mean hyper-volume compared
to the Linear PPO baseline, indicating superior performance.

Table 12: Hyper-volume Results for the Fruit-Tree Task (6 Objectives)

Algorithm MOC Linear PPO
Mean 15605.90 5741.79
Variance 752.97 877.43

Visualization. Figure 7 illustrates the density distribution of three selected objectives, highlighting
MOC’s dominance over Linear PPO.

Implementation Details.

24

https://mo-gymnasium.farama.org/environments/fruit-tree/


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0
1

2
3

4
5

6
7

Objective 1
1

2

3

4

5
6

7

Obje
cti

ve
 2

1

2

3

4

5

6

Ob
je

ct
iv

e 
3

Objectives 1, 2, 3 Density
Linear-PPO
MOC

Figure 7: Density distribution of selected objectives: MOC (warm colors) dominates Linear PPO
(cool colors).

Implementation Details. Table 13 summarizes the hyper-parameters and settings for the Fruit-Tree
task.

Discussion. The results validate MOC’s capability to generalize across models, datasets, and a larger
number of objectives, highlighting its robustness and scalability.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 13: Implementation details for the Fruit-Tree task.

Setting Value
RL backbone PPO
Number of random seeds 5
Discount (γ) 0.99
Optimizer Adam
Learning rate for networks 3× 10−4

Number of hidden layers 3
Number of hidden units/layer 256
Activation function ReLU
Batch size 100
Gradient clipping False
Exploration method Policy Entropy
Entropy Coefficient 0.001
Epsilon-clip for PPO 0.001
Epochs per PPO update 3
Timesteps every update 100
Maximum episode timesteps 100
Episodes per preference sample 20
Number of preference samples 2400
Evaluation episodes 10

I FORMAL DEFINITIONS AND ADVANTAGES OF MOC IN MULTI-OBJECTIVE
OPTIMIZATION

In this section, we provide a formal definition of Pareto Optimality and its relevance to policy
improvement.

I.1 FORMAL DEFINITION OF PARETO OPTIMALITY

Definition 1. Let π, π′ ∈ X , where X is the set of feasible solutions. A solution π is said to dominate
another solution π′ if and only if:

• Ji(π) ≥ Ji(π
′) for all i ∈ {1, 2, . . . , N}, and

• Jj(π) > Jj(π
′) for at least one j ∈ {1, 2, . . . , N}.

Here, Ji(π) denotes the value of the i-th objective for the solution π. The above conditions imply
that π performs at least as well as π′ in all objectives and strictly better in at least one. Solutions that
are not dominated by any other are termed non-dominated and collectively form the Pareto front.
Definition 2. (Pareto Optimality) Let X denote the set of feasible solutions, and let J : X → RN

be a vector-valued objective function where J(π) = [J1(π), J2(π), . . . , JN (π)]⊤ corresponds to the
objective values associated with π ∈ X . A solution π∗ ∈ X is Pareto optimal if and only if no other
solution π′ ∈ X satisfies:

Ji(π
′) ≥ Ji(π

∗) ∀i ∈ {1, 2, . . . , N} (22)
and

Jj(π
′) > Jj(π

∗) for at least one j ∈ {1, 2, . . . , N}. (23)

This ensures that π∗ is non-dominated, meaning that no other solution can improve one or more
objectives without sacrificing performance in at least one other.

I.2 ADVANTAGE OF POLICY IMPROVEMENT

Explicit policy improvement refers to methods that deliberately optimize at least one objective Ji,
ensuring that the solution quality improves by maximizing one or more associated rewards Ri. This
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approach is particularly crucial in designing multi-objective policies, as it guarantees measurable
progress in one or more dimensions of performance.

ADVANTAGE OF MOC COMPARED TO OTHER BASELINES

Our proposed method, MOC, explicitly optimizes all objectives while integrating controllability,
ensuring a more balanced and efficient approach to policy improvement. In contrast:

• Rewarded Soup does not jointly optimize all objectives, which leads to suboptimal solu-
tions.

• RiC focuses exclusively on controllability but lacks explicit mechanisms for policy improve-
ment, limiting its ability to enhance solution quality.

• MODPO does not consider Pareto Optimality during training. Specifically, it trains M
separate LLMs (corresponding to M preferences) by optimizing each model with a specific
weighted combination of reward objectives, given the corresponding reward models.

By integrating both explicit policy improvement and controllability into a unified framework, MOC
theoretically achieves higher solution quality compared to these baselines. This is further validated
by our experimental results (Tables 1 to 4 and 10 to 12 and Figures 2, 3, 5 and 6), which demonstrate
that MOC consistently outperforms these approaches across multiple metrics.

The integration of explicit policy improvement with controllability ensures that MOC aligns with the
principles of Pareto Optimality while delivering superior practical performance. By addressing the
limitations of existing methods and achieving a better balance among competing objectives, MOC
sets a new benchmark in multi-objective controllable language models.
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