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ABSTRACT

Despite its impressive sub-quadratic compute efficiency, Mamba’s effectiveness is
significantly limited by its pre-training context length, resulting in a pronounced
degradation when the model is tasked with handling longer contexts. This may
be attributed to the out-of-distribution (OOD) discretization steps of Mamba on
longer contexts. To address this critical limitation, we introduce MambaEx-
tend, a novel framework designed to enhance the context extension capabilities
of Mamba. Specifically, MambaExtend leverages a training-free approach to cal-
ibrate only the scaling factors of discretization modules for different layers. To
further enhance the model efficiency while improving their long context under-
standing, we benchmark the performance of quantized model variants, namely
QMambaExtend. With this, for the first time, we can enable a training-free con-
text extension of up to 32× from 2k to 64k, that too requiring up to 2.1× reduced
weight memory footprint. The codes is available here1.

1 INTRODUCTION

Figure 1: Long-context understanding on Pile.
Compared to the pre-trained alternatives, Mam-
baExtend provides up to∼8145× improvement in
perplexity score, via a training-free calibration.

Recently, state-space models (SSMs) (Gu
et al., 2022; 2020) have emerged as an al-
ternative to attention-based models (Vaswani,
2017), offering a different approach to han-
dling long sequences at sub-quadratic com-
plexity. Unlike transformers, SSMs offer the
potential to handle much longer sequences
without blowing out the memory and compute
demand. Mamba (Gu & Dao, 2023; Dao &
Gu, 2024), a popular SSM variant built lever-
aging the selective state-space layers (S6),
has shown impressive performance on vari-
ous NLP, image, and medical genomics bench-
marks (Schiff et al., 2024). The key advan-
tage of Mamba stems from the sub-quadratic
compute complexity of theoretically grounded
linear RNN layers. However, Mamba models, despite their theoretical ability to capture global
interactions, fail to generalize to long sequence or context lengths (Ben-Kish et al., 2024). This
phenomenon has been tied to the Mamba model’s implicit bias to a limited effective receptive field
(ERF) governed by the training data sequence length (Ben-Kish et al., 2024).

A contemporary work, namely DeciMamba (Ben-Kish et al., 2024), has presented a selective to-
ken decimation strategy to reduce the number of tokens to be processed per layer and increase the
model’s ERF. However, DeciMamba requires a memory- and compute-intensive fine-tuning of the
model, resulting in significant time and effort to perform parameter updates of the pre-trained model.

1https://github.com/ArminAzizi98/LongContextMamba
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Our Contributions. To mitigate the aforesaid issues, we first investigate the impact of OOD long-
context extension on the discretization step of Mamba (∆t values, the step size that is used to
transform continuous-time parameters to corresponding discrete state space variables). Interest-
ingly, we have empirically found that a scaled-down ∆t can improve generalization on increased
context length at inference time. Based on this insight, we then present MambaExtend, a frame-
work designed to extend Mamba’s context length without any re-training of the model weights.
Specifically, MambaExtend employs a calibration function (CF) to optimize the discretization step
sizes (∆t) across various Mamba layers by introducing a learnable scaling factor associated with
each layer’s ∆t. The CF allows the proposed ∆t scaling parameters to learn while freezing the
model weights to their pre-trained values, reducing the required memory and updateable parameters
by orders of magnitude. Notably, we present two CF approaches, namely, CF with back-propgation
(BP), and that with zeroth-order (ZO) optimization (for fewer calibration parameters).

To further validate the effectiveness of MambaExtend on compressed models, we introduce QMam-
baExtend, applying MambaExtend to a quantized models. Our results demonstrate that QMambaEx-
tend, with 8-bit and 6-bit model weights, achieves performance comparable to the full-precision
counterparts, while having up to 2.1× weight memory saving. Fig. 1 demonstrates the ability of
MambaExtend to improve the PPL by up to ∼8145×, as evaluated on context length of up to 64k.

2 PRELIMINARIES AND MOTIVATION

Mamba block. One of the critical aspects of Mamba’s architecture is how a Mamba block relates
its input sequence X = (x1, x2, . . . , xP ) to its output sequence Y = (y1, y2, . . . , yP ) with P
corresponding to the sequence or context length. The relationship between the input and output of
the Mamba block is expressed through a time-varying SSM described below:

G = σ(Wgate projX), Z = Conv1D(Win projX) (1)

O = S6(Z), Y = O ⊙G (2)
Here, G is a gating function derived from a linear transformation of the input sequence X followed
by a SILU function, σ. The element-wise multiplication ⊙ between G and O allows the model to
selectively emphasize or attenuate parts of the input to focus on relevant input information. The input
Z to the S6 is a linearly transformed version of the original input X followed by a 1D convolution.

As demonstrated in these equations, the relationship between the last token oP and the first token
is governed by the term αP,1 = CP

∏P
k=2 ĀkB̄1 = CPexp(A

∑P
k=2 ∆k)B̄1. This means that

the exponent of summed ∆t determines the impact of the first token in the generation of the P th

token. Consequently, the term exp(−
∑

∆t) effectively governs the decay of influence from any
previous token. A larger value of ∆t results in greater forgetfulness, decreasing the model’s reliance
on earlier tokens. The increasing summation of ∆t in longer context is referred to as the out-of-
distribution (OOD) phenomenon in MambaExtend. Further details on the S6 block, the role of ∆t,
and its behavior in long-context scenarios can be found in Appendix A.1 and Appendix A.2.

Figure 2: Impact of different val-
ues of uniform ∆t scaling on the
perplexity (PPL) metric.

Motivation: Influence of scaled ∆t. For transformer-based
LLMs, a popular method for addressing the out-of-distribution
(OOD) context length P ′ > P (where P represents the train-
ing context length) is positional interpolation (PI) (Chen et al.,
2023). The PI method accomplishes this by multiplying the
token index value in RoPE by P

P ′ . This rescaling ensures that
the positional indices remain within a valid range, effectively
mitigating the OOD problem associated with longer contexts
without retraining.

Inspired by this, we propose a straightforward approach for
Mamba to address the accumulated out-of-distribution (OOD)
discretization steps by scaling the discretization matrix ∆t by a
fixed scalar value s ≤ 1 across all model layers. This method
aims to mitigate the OOD effects associated with longer context sizes. We utilized a pre-trained
Mamba 1.4B to validate this approach, conducting a grid search over various values of s. We then
evaluated the model’s performance on the test set of the Pile dataset (Gao et al., 2020) for an eval-
uation context length of 32k tokens, reporting the average perplexity. The results, presented in Fig.
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2, demonstrate that scaling ∆t can significantly reduce the model’s PPL from approximately
268 to around 23.5. However, the findings also indicate that the relationship between the choice
of scaling value and performance improvement is not straightforward. As shown in Fig. 2, while
increased scaling helps reduce the perplexity at lower values of (s), the PPL rises after reaching a
certain threshold. This complex interplay encourages us to investigate the model’s capacity to learn
the optimal scaling. Additionally, this uniform scaling factor cannot restore the model’s perfor-
mance for longer contexts to the level observed at its pre-trained context length. For instance,
the model achieves a PPL of 3.7 for a 2k context length, which remains significantly lower than the
best PPL obtainable through uniform scaling.

3 MAMBAEXTEND METHODOLOGY

Motivated by the need to mitigate the
∑

∆t OOD effects, we introduce MambaExtend, a training-
free method for scaling the discretization steps of each layer. For an L-layer Mamba model, our pri-
mary objective is to determine the optimal scaling factors for each layer, denoted as s1, s2, . . . , sL,
which will be used to adjust the discretization matrix ∆t. Note that for a layer i, si ∈ Rm, where
m = 1 indicates that si is a scalar, and m > 1 indicates that si is a vector. Without loss of generality,
for m = 1, the discretization adjustment can be expressed as ∆′

t
i
= si∆t

i
, with ∆′

t
i

applied during
inference. The goal is to calibrate the newly introduced learnable parameters si for all i ∈ 1, . . . , L
in a way that is both memory- and compute-efficient, and does not involve any additional training
or fine-tuning of the model parameters. These constraints will enable such calibration to be feasible
on resource-limited edge devices.

In MambaExtend, we start from a pre-trained Mamba model as input, along with a small set of cal-
ibration samples from the target task and a specialized function known as the calibration function
(CF). As its name implies, CF calibrates the learnable scaling factors. Importantly, unlike Deci-
Mamba, which allows fine-tuning of the weights, MambaExtend keeps the model weights fixed to
their pre-trained values (as indicated in Line 6 of Algorithm 1) throughout the calibration process.
This approach makes MambaExtend significantly more compute- and memory-efficient compared
to DeciMamba. Algorithm 1 (Appendix A.3) outlines the MambaExtend method.

Calibration via back-propagation (CFBP ). Gradient-based backpropagation is a widely used op-
timization method for updating the free (unfrozen) parameters on a calibration set. However, to min-
imize computational and memory overhead, we ensure parameter efficiency by restricting updates
to the scaling factors S only. Algorithm 2 in the Appendix A.4 summarizes the CFBP algorithm for
finding the optimal scaling factors. We utilize Adam as the optimizer for backpropagation (as noted
in Line 4 of Algorithm 2). The Evaluate() function in Line 6 computes the loss of the model,
which is parameterized by frozen weights and the learnable scaling factors S.

Calibration via zeroth-order optimization (CFZO). Zeroth-order optimization (Spall, 1992; Mal-
ladi et al., 2023) offers an efficient yet noisier method for calibration, as it relies solely on forward
passes to approximate gradients. Algorithm 3 in Appendix A.4 outlines the process for optimiz-
ing the scaling factors S in CFZO. Specifically, this is a multi-iteration process in which, at each
iteration, the scaling factors are randomly perturbed using a random variable δ sampled from a
Rademacher distribution. The magnitude of the perturbation and the learning rate for the updates
are controlled by the hyperparameters c and η, respectively. We employ the two-sided variant of the
simultaneous perturbation stochastic approximation method (SPSA) (Spall, 1992), which obtains
gradient approximations by applying both positive and negative perturbations to the parameters si-
multaneously. The two-sided SPSA approach yields gradient estimates with lower variance than the
one-sided version, thus enhancing accuracy, especially in noisy environments (Spall, 2005).

The convergence of the zeroth-order calibration method, CFZO, is affected by the number of pa-
rameters being optimized, specifically the size of S. Classical lower bounds indicate that conver-
gence slows linearly as the number of parameters increases (Nemirovskij & Yudin, 1983; Duchi
et al., 2015). Consequently, a natural strategy in our context is to employ the backpropagation-based
method, CFBP , when optimizing a larger set of parameters in (S), while reserving CFZO for smaller
parameter sets. The details of the algorithm with the pseudo-code is outlined in the Appendix A.4.

3



Published as a workshop paper at SCOPE - ICLR 2025

Table 1: Perplexity for Mamba models over different evaluation context lengths on Pile dataset.

Mamba-130M Mamba-1.4B Mamba2-780M
Context Length 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k 2k 4k 8k 16k 32k 64k

Pre-trained Model 7.06 6.18 6.22 7.38 444 46592 4.34 3.78 4.19 14.4 260 6304 4.78 4.62 22.4 79 185 378
MambaExtend 7.06 6.18 5.03 4.84 5.16 5.72 4.31 3.78 3.48 3.62 4.81 6.93 4.59 3.95 3.89 4.25 5.56 5.00

Table 2: Mamba vs MambaExtend performance on representative LongBench tasks.

Model Qasper HotpotQA 2WikiMultihopQA TREC TriviaQA LCC RepoBench-P Average
Mamba-1.4B 7.0 11.00 9.75 29.00 1.67 20.12 11.67 12.88
MambaExtend-1.4B 16.67 14.29 13.82 35.0 7.67 26.12 18.84 18.91
Mamba2-780M 7.50 6.06 9.48 17.0 0.1 22.1 14.01 10.89
MambaExtend2-780M 7.96 10.95 18.33 28.00 6.83 28.27 17.71 16.86

4 EXPERIMENTS

This section evaluates the performance and efficiency of our proposed MambaExtend. In specific,
we first detail on the models and datasets used for our experiments. We then present extensive
empirical results to outline our findings in terms of long-context performance of the Mamba model
variants. We finally discuss on the compute, time, and memory requirements for MambaExtend.

4.1 EXPERIMENTAL SETUP

Models and datasets. To evaluate the performance of MambaExtend, we use both long-context
understanding and long-context retrieval ability tasks. For long-context understanding, we use the
Pile (Gao et al., 2020) and PG-19 (Rae et al., 2019) datasets and assess the performance of the
MambaExtend in terms of perplexity scores at various context lengths. We use Mamba-130M,
Mamba-1.4B (Gu & Dao, 2023), and Mamba2-780M (Dao & Gu, 2024) for these evaluations. Ad-
ditionally, we use the LongBench benchmark (Bai et al., 2023) to evaluate the performance accuracy
of the Mamba-1.4B and Mamba2-780M models. For the passkey retrieval task, we follow the setup
described in (Ben-Kish et al., 2024) and evaluate the performance of the Mamba-130M and Mamba-
1.4B models in retrieving a 5-digit code embedded at a random sequence depth within samples from
the WikiText-103 dataset (Merity et al., 2016). In our retrieval setup, the input sequence lengths
range from 1K to 64K tokens.

4.2 EXPERIMENTAL RESULTS

Figure 3: PPL comparison on PG-19. The
✓ and ✗ identify the fine-tuning require-
ments to be false and true, respectively.

Perplexity evaluations on PG-19 and Pile. To eval-
uate perplexity (PPL) on the Pile and PG-19, we
use twenty calibration samples from the corresponding
training set for a given context length. We use these
samples to learn the scaling factors in MambaExtend,
then evaluate perplexity on the test set for a given con-
text length. As stated earlier for the perplexity eval-
uation, for each layer i, we use a single scaling fac-
tor si ∈ R+ per layer2, that scales the ∆t tensor
uniformly for that layer. Fig. 3 depicts the perfor-
mance of MambaExtend compared to the pre-trained
Mamba and DeciMamba. Specifically, at 70k context
length, MambaExtend-130M yields a PPL of 30.62, a
∼32506× improvement over the baseline that fails to
provide a very high PPL of 995328. Compared to the
DeciMamba, it shows consistent benefit with reduced PPL of up to ∼40.6%.

Table 1 reports the PPL values of MambaExtend models and compares them to those of the pre-
trained models on Pile. As shown in the table, MambaExtend through only minimal calibration,
allows the models to maintain their performance even with increasing context lengths. Specifically,
MambaExtend can improve the PPL by up to ∼8145× at longer contexts.

2This may be attributed to the relatively simpler nature of long-context understanding as opposed to long-
context retrieval, as for the later we need more fine-grain scaling increasing the number of calibration params.
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Figure 4: Passkey retrieval performance after fine-tuning (for Mamba and DeciMamba) or calibrat-
ing (for MambaExtend and QMambaExtend) on samples of 4k length.

Table 3: QMambaExtend perplexity results on Pile and PG-19 datasets.
Model Weight Memory (GB) Pile Perplexity PG-19 Perplexity

8k 16k 32k 64k 8k 16k 32k 64k
MambaExtend-130M (W16/A16) 0.25 5.03 4.84 5.16 5.72 19.2 19.25 20.3 27.2
QMambaExtend-130M (W8/A16) 0.12 6.05 6.09 6.62 7.2 20.2 20.2 21.4 27.7
MambaExtend-1.4B (W16/A16) 2.61 3.48 3.62 4.81 6.93 13.78 14.0 13.34 16.12
QMambaExtend-1.4B (W8/A16) 1.31 3.50 4.0 4.85 6.75 13.78 14.0 15.1 16.10

LongBench. For MambaExtend, we use seven popular tasks from LongBenchBai et al. (2023). Due
to the lack of training data, we used 10 samples from the 4K-8K split of each dataset as calibration
data and the remaining samples from the same split to evaluate. We apply the CFZO calibration
function to learn the scaling factors. Similar to the calibration setup for perplexity evaluation, we
calibrate one scaling factor per layer shared over the whole ∆t tensor for that layer. As demonstrated
in the Table 2, MambaExtend can improve the average LongBench accuracy by up to 6.03%.
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Figure 5: Normalized outlier count across
different layers of a pre-trained Mamba.
Outliers are identified as elements that de-
viate from the mean by more than 3σ,
with σ as the standard deviation.

Passkey Retrieval. Previous works have demonstrated
that tasks requiring exact retrieval are more challeng-
ing than achieving low perplexity in longer context (Liu
et al., 2024), so we use more fine-grained sharing of
scaling factors to optimize. For ∆t tensor of a layer
i, we use one scaling factor per channel yielding total
D scaling factors per layer (si ∈ RD

+ ). Unless other-
wise stated, we use CFBP for one epoch to calibrate on
a dataset with 4k context length. For the baseline, we
performed standard fine-tuning with the same context
length for one epoch as we get significant failure in the
retrieval. For DeciMamba to have a fair comparison,
we fine-tune for the same epochs as ours3.

The result for 130M model is showns in Fig. 4. Al-
though it calibrates approximately 3500× fewer pa-
rameters for Mamba-130M, it performs better then
the two alternatives The result for Mamba-1.4B is
demonstrated in the Appendix Fig. 9.

Quantization.The quantized variant of the context-extended model, QMambaExtend, is obtained
by applying MambaExtend directly to a quantized model. Following Yao et al. (2022), we apply
RTN linear integer quantization to the parameters of the pretrained Mamba model. Since quantiza-
tion granularity significantly impacts quantization error, we analyze outlier counts in groups of 128
elements across both rows and columns of the ∆t,proj weight matrix. We then plot the number of
outliers normalized by the total number of elements in ∆t,proj in Fig. 5. As the outlier counts in all
layers are substantially higher in each column (channel), we opt for row-wise quantization.

After quantizing the model weights, we apply the MambaExtend scaling factors, which are retained
in FP16 format to preserve performance. These scaling factors are calibrated using either CFZO (for
Pile and PG-19) or CFBP (for passkey retrieval). The perplexity results of QMambaExtend-130M
and QMambaExtend-140B are presented in Table 3. The competitive performance of the quantized
model with 2.1×weight memory reduction relative to the FP16 (floating-point) model demonstrates
the effectiveness of MambaExtend, even when applied to a quantized model. Furthermore, Fig. 4
also demonstrates the effectiveness of MambaExtend for extending the context of INT8, and INT6
quantized models on this critical passkey retrieval task. In fact, QMambaExtend with INT8 quanti-
zation for model parameters, matches the performance of MambaExtend and surpasses DeciMamba.

3In the original paper (Ben-Kish et al., 2024) the model was fine-tuned for longer duration, however we
focus on limited resource calibration and thus keep our experiments limited to fine-tuning for one epoch. Please
see Appendix for fine-tuning results with longer epochs.
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5 CONCLUSIONS
We addressed the limitations of Mamba in handling long-context tasks by introducing MambaEx-
tend, a framework to extend the context length of Mamba models without model training. Through
calibration of the discretization matrix (∆t) scaling factors across different layers of the model, we
enabled context extension by up to 32× while maintaining similar perplexity levels that too at up to
2.1× lower weight memory footprint.
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A APPENDIX

A.1 THE S6 LAYER AND MAMBA

At its core, each Mamba block utilizes the selective SSM (S6) layer (Gu & Dao, 2023), which is
specifically designed to handle sequential data by preserving structured state dynamics across the
input sequence.

The S6 layer: Using a linear recurrent system with the hidden state ht, input zt, and output ot at
discrete time instant t, the S6 layer’s sequence generation and state update can be simplified as:

ht = Āht−1 + B̄zt, ot = Cht (3)

The P-length sequence of a representative channel is given as Z = {z1, z2, · · · , zP }, Ā ∈ RN×N ,
B̄ ∈ RN×1, and C ∈ R1×N are discrete time-variant system, input, and output matrices, respec-
tively, governing the discrete state transitions and output sequence generation. The S6 layer pro-
duces the ‘per-time’ (t) discrete time-variant matrices from input and “continuous parameters” as:

Āt = exp(∆tA), B̄t = ∆tBt where ∆t = SFT(∆tproj (zt)), Bt = WB(zt), Ct = (WC(zt))
T

(4)
Here, zt ∈ RD with D being channel dimension and ∆t be the discretization step used at time t.
∆tproj , WB , and WC are linear projection layers. SFT and exp represent the softplus and point-
wise exponential operation, respectively. After the discretization step, the S6 layer’s input-output
behavior via time-unrolling can be described as:

O = αZ with αi,j = Ci

 i∏
k=j+1

Āk

 B̄j (5)
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Figure 6: Layer-wise behavior of
∑

(∆t) for different context length during test-time. We used the
Pile dataset on Mamba 1.4B for the evaluation.

Thus, for a context length of P , the entire output O = {o1, o2, .., oP } is computed as follows:


o1
o2
...
oP

 =


C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . .

...
CP

∏P
k=2 ĀkB̄1 CP

∏P
k=3 ĀkB̄2 · · · CP B̄P



z1
z2
...
zP

 (6)

This matrix formulation shows that each output oi is a weighted sum of the inputs z1, z2, . . . , zP ,
with the weights determined by the state-space matrices Ā, B̄, and C. The model can thus integrate
information across different time steps while maintaining computational efficiency. This matrix
resembles the attention score map in transformer-based models (Ali et al., 2024). In other words, S6
layers may be interpreted as data-controlled linear operators.

Notably, as these matrices are dynamically adjusted based on the input sequence, they enable the
model to efficiently capture temporal dependencies across various time steps. This approach allows
Mamba to maintain computational complexity that scales linearly with the context length.

A.2 MOTIVATIONAL CASE STUDIES

The behavioral change of ∆t. We first investigate the behavior of the accumulated discretization
matrix ∆t in the pre-trained Mamba-1.4B model when exposed to inputs of different context lengths.
Using 100 samples from Pile, for each Mamba layer, we compute the ∥(

∑P ′

t=1 ∆t)∥2 for different
evaluation context lengths P ′, where ||.||2 represents the l2-norm of a tensor. We plot this analysis in
Fig. 6, which reveals how the accumulation of ∆t scales with increasing context length. Specifically,
Fig. 6 discloses that for each layer of the model, the magnitude of

∑
∆t increases with the increase

in context lengths P ′. According to Equations 5 and 6, and given that all entries of A are always
negative (Gu & Dao, 2023), we observe that the negative sum of ∆t appears as the exponent in
the exp function. Consequently, the term exp(−

∑
∆t) effectively governs the decay of influence

from any previous token. A larger value of ∆t results in greater forgetfulness, decreasing the model’s
reliance on earlier tokens. In contrast, smaller ∆t values enable the model to retain information from
more distant tokens. Therefore, exp(−

∑P ′

t=n ∆t) can be interpreted as a parameter that potentially
regulates the retention level for the n-th input to compute the token at P ′.

Variable impact of ∆t on different layers. Another important observation in Fig. 6 is that for a
given test-time context length P ′, different layers of the model produce significantly different

∑
∆t

values (even when viewed on a logarithmic scale). This underscores the point that each layer should
not employ the same scaling factor to reduce the impact of ∆t. This observation motivates us
to implement a heterogeneous (layer-specific) scaling mechanism across the various layers of the
model to effectively address the OOD

∑
∆t.
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Algorithm 1 MambaExtend Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, calibration
function CF

2: Output: Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

3: for i ≤ L do
4: si ← init(U(0, 1))
5: end for
6: freeze(M)
7: S← CF(S, C,M)
8: return S

A.3 MAMBAEXTEND ALGORITHM

A.4 CALIBRATION FUNCTIONS

The algorithms 2 and 3 outline the detail o the CFBP and CFBP , respectively. Our experiments
show that long-context evaluation tasks, based on the perplexity measure, and the LongBench tasks
require relatively fewer scaling factors. Specifically, for each layer si ∈ R+m, a setting of m = 1
is sufficient to improve PPL on long-context inputs. Here, R+ represents the set of positive real
numbers, as scaling factors cannot take negative values in our case. Any si that updates to a negative
value is clamped to a very small positive number to ensure this condition in our algorithm. We set
m = D for the passkey retrieval task, thereby increasing the number of parameters to be calibrated
or updated. We empirically find that for the long-context tasks, CFZO performs nearly as well as
CFBP . However, for the passkey retrieval task, we prefer CFBP due to its faster convergence trend
compared to the zeroth-order method.

Algorithm 2 CFBP Algorithm

1: Input: An L-layer Mamba model parameterized by frozen weightsM, set of calibration sam-
ples C, the initialized scaling factors S

2: Input: Learning rate η, number of iterations K
3: Output: Learned Scaling factors S = [s1, s2, ..., sL],where si ∈ Rm

+
4: optimizer = Adam(S, η)
5: for k ≤ K do
6: L = Evaluate(M∆t×S, C)
7: L.backward()
8: optimizer.step()
9: S← S.clamp(min = 0.001) # make sure scaling factors remain positive

10: end for
11: return S

A.5 DETAILED HYPERPARAMETERS

CFZO hyperparameters. For Pile, PG-19, and LongBench dataset calibration, we set the ZO opti-
mization hyperparameters to η = 0.001, c = 0.1, and K = 50.

CFBP hyperparameters. For the passkey retrieval task, we train the models for one epoch using
Adam optimizer with learning-rate of 1e-1 for MambaExtend. For DeciMamba, and full fine-tuning
we use the learning-rate to be 1e-4, as suggested by the authors Ben-Kish et al. (2024). For all three
cases, we use a batch size of 32, a gradient clipping of 1.0, a weight decay of 0.1, and train on
sequences of length 6144.

A.6 PRE-TRAINED MODEL CHECKPOINTS USED

The pretrained model checkpoints of Mamba are taken from the Hugging Face model Hub4:

4https://github.com/state-spaces/mamba
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Algorithm 3 CFZO Algorithm

1: Input: An L-layer Mamba model parameterized byM, set of calibration samples C, the initial-
ized scaling factors S

2: Output: Learned scaling factors S = [s1, s2, ..., sL],where si ∈ Rm
+

3: Specify learning rate η, perturbation magnitude c, number of iterations K
4: for k ≤ K do
5: δ ∈ RL×m ∼ Rademacher()
6: S+ = S+ c× δ, S− = S− c× δ
7: L+ = Evaluate(M∆t×S+ , C), L− = Evaluate(M∆t×S− , C)
8: ∇̂S =(L+ - L−)/(2cδ)
9: S← S− η∇̂S

10: S← S.clamp(min = 0.001) # make sure scaling factors remain positive
11: end for
12: return S

• state-spaces/mamba-130m

• state-spaces/mamba-1.4b

• state-spaces/mamba2-780m

A.7 MORE RESULTS

Figure 7: Comparison of normalized {peak memory, number of parameter updates, and
calibration/fine-tuning (FT) time (total)} between DeciMamba, and MambaExtend for PG-19. We
use Mamba-130M model for this evaluation.

Table 4: Passkey retrieval performance of Mamba-
130M with a different granularity of the scaling factor
sharing, namely, per-channel, per-token, and per-tensor.
Sharing granularity # Params. ↓ Retrieval Score (%) ↑

Per-channel 36.8K 91.4
Per-token 98.3K 62.8
Per-tensor 24 22.8

Fig. 7 demonstrates the performance
comparison of DeciMamba and Mam-
baExtend in terms of compute, memory,
and time. For DeciMamba, we use the to-
tal training time of 5 epochs, to evaluate
the normalized FT time. For MambaEx-
tend, as we use ZO for the calibration, we
report the time associated to the 50 iterations of calibrations. Notably, for MambaExtend we cali-
brate separately for each eval context length, while DeciMamba does one fine-tuning for 5 epochs
with 2k context length. This causes the peak memory and fine-tuning time to increase for Mam-
baExtend while keeping them constant for DeciMamba. For each evaluation metric, we performed
the normalization by the corresponding value for MambaExtend at the context length under consid-
eration.

As Fig. 7 shows, MambaExtend requires ∼5.42 ∗ 106× fewer parameter updates and costs up to
3.87× lower peak-memory. Additionally, MambaExtend provides up to 20.9× faster calibration as
opposed to the fine-tuning duration of DeciMamba.

A.8 DISCUSSION AND ABLATION STUDY

Understanding the impact of learned scaling on ∆t. To understand the impact of the learned scal-
ing on the ∆t discretization tensor, we compute the normalized sum of ∆t ∥(

∑P ′

t=n ∆t)∥2. Here,
n refers to the token index whose impact we want to study on the output context length P ′. P ′ is
set to 32k for this analysis. The Fig. 8 demonstrates the heatmap of the ∥(

∑P ′

t=n ∆t)∥2 for different

10
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Figure 8: Impact of the calibrated scaling factors on ∆t. (Top) layer-wise normalized sum of ∆t

for a pre-trained Mamba. (Bottom) layer-wise normalized sum of ∆t for a MambaExtend calibrated
model. We used Mamba-1.4B.

Table 6: PPL comparison with transformer based LLM for long-context understanding on Pile.

Model 2K 4K 8K 16K 32K 64K
TinyLLaMA1.1B (2K) 4.6 62.6 426.6 1243.7 2684.6 3372.04
TinyLLaMA1.1B-PI 4.6 9.56 50.34 116.47 168.84 229.46
MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

token index (n) at different layers of the model. Notably, as discussed earlier, high ∥(
∑P ′

t=n ∆t)∥2
value may be associated with a stronger decaying effect on the output token P ′. As we can see,
the original Mamba, particularly for later layers, induces a significant decaying effect for the earlier
tokens (see the value for token index 2000 for layer index > 40). This finding aligns with that of
Ben-Kish et al. (2024). MambaExtend, on the contrary, reduces this effect significantly, both overall
and for later layers. This study highlights the benefit of the learned scaling in effectively controlling
the ∆t.
Ablation on the granularity of scaling factor sharing. In Table 4, we present the results with
various levels of sharing of the scaling factor a layer’s ∆t. Specifically, we allow per-channel,
per-token, and per-tensor sharing where a scaling factor is shared over a channel, a token, and
the whole tensor for a layer’s ∆t, respectively. We calibrate for one epoch for three scenarios
and measure the score on context. As we can see from the table, per-channel sharing can im-
prove the retrieval score significantly. While per-tensor sharing requires considerably fewer cali-
bration parameters, it fails to yield a good score, making per-channel sharing an optimal choice.

Table 5: Perplexity result with CFZO

v.s. CFBP on Pile dataset.

CF\Context Length 4K 8K 16K
CFBP 6.10 5.11 4.79
CFZO 6.18 5.03 4.84

Ablation on CFBP vs. CFZO. For simpler long-context
understanding tasks we demonstrated CFZO to yield signif-
icantly improved PPL. In Table 5, we now demonstrate a
direct comparison of the two calibration functions, namely,
CFZO and CFBP for Pile dataset. We used Mamba-130M
for this experiment. As we can see, the perplexities for the
three evaluation context lengths are similar for both of these
methods. This experiment demonstrates the efficacy of CFZO despite its efficient forward-pass-
based gradient approximation approach, as opposed to the back-propagation-based alternative.

A.9 COMPARISON WITH TRANSFORMER-BASED LLMS

Supporting longer context during inference is an equally important problem in transformer based
LLMs, as compared to Mamba based LLMs. To have a broader picture on the long context extension
results with Mamba models, in this section we compare our performance with that of the transformer
based LLMs. In specific, we choose TinyLLaMA-1.1B model, trained on 2K context length as the
baseline transformer model.Note, positional interpolation (PI) is a popular training-free method for
the context extension of transformer models. As shown in the Table 6, the MambaExtend model
despite being smaller, at longer context length consistently outperform the TinyLLaMA-1.1B both
with and without PI. We additionally compare the results of TinyLLaMA1.1B (with and without PI)
and MambaExtend on PG19, another popular benchmark for PPL evaluation on long context. As
shown in Table 7, the results clearly shows the significant performance benefit of MambaExtend as
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Figure 9: Passkey retrieval performance after fine-tuning (FT) (for Mamba-1.4B and DeciMamba-
1.4B) or calibrating (for MambaExtend-1.4B) on samples of 4k context length. Although MambaEx-
tend calibrates approximately 7100× fewer parameters, it performs better then the two alternatives.

.

opposed to the transformer based alternatives. Notably, with both smaller and similar sized models,
MambaExtend significantly outperforms the TinyLLaMA model variants showcasing their benefits.

Table 7: PPL comparison with transformer based
LLM for long-context understanding on PG19.

Model 16K 32K 64K
TinyLLaMA1.1B (2K) 2236.98 4205.64 8664.11
TinyLLaMA1.1B-PI 226.69 300.46 375.49
MambaExtend-130M 19.25 20.3 25
MambaExtend-1.4B 14 14.34 16.12

A.10 MORE RESULTS AND
MORE COMPARISON WITH DECIMAMBA

Figure 9 illustrates the superior performance of
MambaExtend compared to DeciMamba on the
Mamba-1.4B model for the passkey retrieval
task. The evaluation is conducted across con-
text lengths of 1K, 2K, 4K, 8K, 16K, 32K, and
64K, with the target digit hidden at depths of
0%, 25%, 50%, 75%, and 100% of each of
these sequence. Assuming that each correct retrieval receives a score of 1 and each incorrect retrieval
receives a score of 0, we compute the retrieval score in percentage (%) as Total correct retrievals

Total (correct + incorrect) retrievals ∗
100, across all the depths overall context lengths. Also While in the main manuscript we demonstrate
the benefits of MambaExtend over the baseline Mamba on Pile dataset, we now show comparison
with DeciMamba (Ben-Kish et al., 2024) on the same. In specific, Table 8 demonstrates the efficacy
of MambaExtend in maintaining the PPL better than DeciMamba, particularly at longer contexts
with context length≥ 8K. Additionally, we show results on LongBench to compare with that gener-

Table 8: PPL comparison between DeciMamba and MambaExtend on Pile.

Model 2K 4K 8K 16K 32K 64K
DeciMamba-130M 4.93 5.36 5.21 6.99 8.19 10.62

MambaExtend-130M 7.06 6.18 5.03 4.84 5.16 5.72

ated by DeciMamba in a zero-shot fashion. In specific, Table 9 shows that MambaExtend can yield
reasonably improved performance as evaluated on HotpotQA and Qasper, respectively.

Comparing the impact of learned scaling and full fine-tuning on ∆t. MambaExtend applies
a learned scaling policy to scale the discretization steps ∆t. On the contrary, DeciMamba (Ben-
Kish et al., 2024) fine-tunes the full model for it to perform well on longer context. We now,
visualize the impact of these two approaches on the Normalized sum of ∆t per layer. In specific,
in Fig. 10 we show a direct comparison of the impact on the same for MambaExtend (10(a)) and
DeciMamba (10(b)). Interestingly, both the approaches has similar impact on the Normalized sum
of ∆t, significantly reducing their values at the later layers. This experiment shows that both the
approaches intend to recalibrate the ∆ts, while our approach yields similar benefit in more compute,
memory, and latency efficient way.

A.11 COMPUTE, TIME, AND MEMORY COST ANALYSIS

Fig. 12 demonstrates a comparison of full finetuning of baseline Mamba, DeciMamba, and cal-
ibration tuning with MambaExtend for the passkey retrieval task. Note here that to have a fair

12
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Table 9: F1 scores on HotpotQA and Qasper from LongBench on DeciMamba and MambaExtend,
respectively. Italicized numbers identify the results taken from (Authors LongMamba, 2024) paper.

Model HotpotQA Qasper
DeciMamba-1.4B 13.88 14.24

MambaExtend-1.4B 14.29 16.67

Figure 10: Impact of the calibrated scaling factors on ∆t (a) Mamba vs. MambaExtend, and (b)
Mamba vs. DeciMamba as evaluated on Pile 32K context length. (Top) of both (a) and (b) shows
layer-wise Normalized sum of ∆t for a pre-trained Mamba-1.4B. (Bottom) layer-wise Normalized
sum of ∆t for (a) MambaExtend-1.4B calibrated model, and (b) DeciMamba-1.4B fine-tuned model.
To fine-tune DeciMamba 1.4B model we adhered to the setup described in (Ben-Kish et al., 2024).
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Figure 11: : Impact of different values of uniform ∆t scaling on the loss landscaope of the model.

Figure 12: Comparison of {peak memory, calibration time, and number of parameter updates}
between Mamba, DeciMamba, and MambaExtend for passkey retrieval. We use 130M model and
for each method, we train for one epoch either with 4k or with 8k context length. For each of these
three measurements, we normalize each value by the corresponding value of MambaExtend-130M-
4k.

comparison and to demonstrate efficacy at extreme lost cost tuning, we set the epoch to one for all.
For MambaExtend, we show results for fine-tuning with both 4k and 8k contexts, while for oth-
ers, we only perform experiments with tuning with 4k contexts. Notably, MambaExtend requires
up to 2.12× fewer memory for tuning with similar context; in other words, it can support
calibration with higher context of up to 2×. Regarding per epoch calibration time, MambaEx-
tend can be faster by up to 1.69× while requiring up to 3532.6× fewer parameters to update. To
measure the retrieval success, we compute the Interestingly, despite having significant calibration
efficiency, 4k tuned MambaExtend provides up to 20% improved accuracy. We yield even better ef-
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Table 10: PPL comparison with TBTT (Wang, 2024) fine-tuned model on Pile.

Model TBTT fine-tuned 4K 8K 16K 32K 64K
Mamba2-780M (baseline) No 4.62 22.4 79 185 378

Mamba2-780M Yes 4.62 4.34 3.89 4.92 5.16
Mamba2Extend-780M No 3.95 3.89 4.25 5.56 5

Table 11: Comparison with TBTT (Wang, 2024) fine-tuned model on Passkey retrieval task.

Model TBTT fine-tuned Avg. Accuracy (%)
Mamba2-780M (baseline) No 0

Mamba2-780M Yes 5.7
Mamba2Extend-780M No 91.34

Table 12: Comparison between fine-tuning and calibration for longer epochs on Passkey retrieval.

Model Passkey retrieval acc. (%)
DeciMamba-130M 93.1

MambaExtend-130M 94.3

ficiency for CFZO based calibration. In specific, compared to DeciMamba, MambaExtend requires
up to ∼5.42 ∗ 106× fewer parameter updates and costs up to 3.87× lower peak-memory (details
provided in Appendix A.7).

A.12 THE LOSS LANDSCAPE FOR GRID-SEARCHED SCALING FACTORS

Fig. 2 in the main manuscript demonstrates the impact of uniform ∆t scaling per layer in terms of
PPL value. We now plot the loss landscape of the model with uniform scaling factor values in the
same range as that of Fig. 2. In specific, 11 shows the loss landscape to have a convex nature as we
sweep over the scale factors (s) in 0 < s ≤ 1.

A.13 COMPARISON WITH MODELS FINE-TUNED VIA TRUNCATED BACKPROPAGATION
THROUGH TIME

Contemporary works on Mamba2 models trained via truncated backpropagation through time
(TBTT) has shown promise to generalize well on longer contexts (Wang, 2024). TO compare Mam-
baExtend with TBTT fine-tuned model, we perform a fine-tuning for three epochs based on TBTT
approach on a pretrained Mamba2-780M with 0.8B tokens from the PG19 train split. We then mea-
sure performance on Pile and Passkey retrieval tasks, respectively and present the comparisons with
MambaExtend in Table 10 and 11, respectively. Interestingly, for Pile, indeed we see a good perfor-
mance boost on longer contexts, getting close to the performance of MambaExtend. However, on
the critical benchmark of long context retrieval ( Table 11) TBTT fine-tuned model fails to provide
any mentionable retrieval accuracy, while MambaExtend could provide significant accuracy boost
by calibration of the scaling factors only.

Important notes to highlight on TBTT training. the approach of TBTT based fine-tuning has sim-
ilarity with the approach of DeciMamba (Ben-Kish et al., 2024), which also suggests full fine-tuning
to improve long context understanding (however, without TBTT). We thus would like to highlight
that the key benefit of scaling based calibration of MambaExtend can still be considered as an or-
thogonal method to such full fine-tuning based approaches, not only yielding better accuracy but also
providing high compute and memory advantage, potentially opening the door for limited resource
calibration. Additionally, as illustrated in Figure 7 of the original LongSSM paper (Wang, 2024),
particularly with relatively large models, training the 140M S5 model with previously-initialized
state (TBTT policy), the model may severely suffer from stability issues. This raises a general
concern on the scalability of such an approach as identified by the author(s).

A.14 FINE-TUNING VS. CALIBRATION FOR LONGER EPOCHS

Table 12 shows results of fine-tuning with DeciMamba for five epochs on passkey retrieval. For
a fair comparison we show results of MambaExtend with scaling factors calibrated for the same
epochs. As we can see, MambaExtend can still retain improved performance over the other. How-
ever, please note, in this work we aim to achieve long context generalization with minimal compute
and calibration overhead, thus we aim to focus on fine-tuning for only one epoch.
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A.15 HARDWARE AND API RESOURCES USED

For all the experiments we used an Nvidia A6000 GPU with 48 GB memory. To perform calibration
and fine-tuning we used Pytorch API to write the corresponding code.
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