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Abstract: Safety is a critical requirement for the real-world deployment of robotic
systems. Unfortunately, while current robot foundation models show promis-
ing generalization capabilities across a wide variety of tasks, they fail to address
safety, an important aspect for ensuring long-term operation. Current robot foun-
dation models assume that safe behavior should emerge by learning from a suffi-
ciently large dataset of demonstrations. However, this approach has two clear ma-
jor drawbacks. Firstly, there are no formal safety guarantees for a behavior cloning
policy trained using supervised learning. Secondly, without explicit knowledge of
any safety constraints, the policy may require an unreasonable number of addi-
tional demonstrations to even approximate the desired constrained behavior. To
solve these key issues, we show how we can instead combine robot foundation
models with geometric inductive biases using ATACOM, a safety layer placed af-
ter the foundation policy that ensures safe state transitions by enforcing action
constraints. With this approach, we can ensure formal safety guarantees for gen-
eralist policies without providing extensive demonstrations of safe behavior, and
without requiring any specific fine-tuning for safety. Our experiments show that
our approach can be beneficial both for classical manipulation tasks, where we
avoid unwanted collisions with irrelevant objects, and for dynamic tasks, such
as the robot air hockey environment, where we can generate fast trajectories re-
specting complex tasks and joint space constraints. For experimental results, see
https://sites.google.com/view/safe-robot-foundation-models.
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1 Introduction

Robot foundation models (RFMs) [1, 2, 3, 4] have shown a promising direction to carry out a large set
of tasks across a wide range of robotics systems using textual commands as task descriptions. The
current developments of RFMs focus on enhancing the generalization across tasks, data modalities,
and robot embodiments. In contrast, other key practical properties of robotic systems, such as safety,
are not considered in depth. The key assumption behind this choice is that the emergent behavior will
be inherently safe since RFMs are trained using behavior cloning (BC). If the data distribution only
contains safe trajectories, one would expect the learned behavior to also be safe. However, while
this assumption may hold in simple pick-and-place scenarios, we argue that in general settings and
dynamic environments, this assumption may be limiting for many key reasons. Firstly, there is no
way to ensure any formal theoretical guarantees that a RFM will satisfy any safety constraint. Scaling
the amount of data will move us closer and closer to the demonstrator distribution, but this does not
guarantee that the policy will not generate dangerous behavior. Secondly, often safety constraints
such as collision avoidance, joint limits, or any other geometric constraints are both common in
robotics applications and can be easily enforced. While it would be possible to learn a policy able
to deal with these safety constraints, it may require an unreasonable amount of data, particularly to
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Figure 1: Our proposed safety layer can be added to the output of an arbitrary RFM, e.g., 7.

(left) Without the added ATACOM safety layer, the vanilla 7y policy crashes the robot into the table.
We highlight the importance of the safety layer by plotting the impact of the 7y action on the end
effector’s vertical velocity. While vanilla 7y corrects the z position after the impact (red), the safety
layer would have engaged earlier to circumvent crashing into the table. (right) Deployment with the
safety layer results in a safe rollout without pronounced z-correction.

make the policy robust to out of distribution objects, distractors, or unexpected disturbances of the
workspace, such as a human or an animal entering the working area of the robot. In some cases,
generating this data would not be even possible, due to the danger of allowing living beings in the
work area of the robot, particularly if the robot’s embodiment is not intrinsically safe, as happens in
the setting of self-driving cars or heavy industrial robots.

For this reason, we believe that empowering robots with the knowledge of safety constraints and
enforcing them directly at the policy level is extremely beneficial both in terms of formal safety
guarantees — fundamental for the acceptance of robotics systems in society —and in terms of
amount of data and computation needed to operate safely. To reach this objective, we rely on the
key concept of inductive biases: instead of collecting demonstrations to account for the full space of
possible solutions that RFMs can generate, we restrict our policy to only generate safe trajectories.
Furthermore, we can rely on the fact that robots interact with the physical world, where the geometry
of the rigid objects plays a crucial role. Using the information coming from the object geometry,
which can be easily extracted from off-the-shelf perception pipelines, we can robustly generate
safety geometric constraints that can be combined with existing prior knowledge about the robot to
ensure safety with formal guarantees.

To achieve this ambitious goal, we propose a modular safety layer based on the ATACOM ap-
proach [5, 6], which translates known safety constraints into a constraint manifold to ensure safe
actions. Due to the design of ATACOM, we can easily combine this safety layer with any RFM
and enforce safe behavior w.r.t. a given set of safety constraints. Furthermore, assuming proper
constraint evaluation ATACOM provides safety guarantees [6] in terms of forward invariance and
input-to-state stability w.r.t. the safe set.

To further demonstrate the generality of this approach, we present a semi-automated pipeline based
on SAM?2 [7] to automatically build box constraints for collision avoidance with any object. This al-
lows our method to go beyond user-defined constraints, e.g., workspace constraints or self-collision
avoidance. While our proposed solution is not a fully-fledged automatic constraint generation
methodology, it shows that this module could be, in principle, implemented robustly and reliably.

We extensively evaluate our approach both in simulation and in real-world platforms, using two
different RFMs, 7y and OCTO. Specifically, we focus on two different platforms, solving two very
different types of tasks: a classical manipulation setup using the Franka robot, and a dynamic task,



where we train a Kuka ITWA robot to perform a hitting motion on the air hockey game. We want
to prove that our methodology is both flexible and computationally efficient while ensuring safety.
Our results show that our safety layer approach, despite the lack of specific fine-tuning data, is not
considerably affecting the success rate, while ensuring safe policy execution both in the dynamics
and quasistatic tasks.

2 A Safety Module for Robot Foundation Models

In the following, we explain in detail how to combine an arbitrary RFM with the ATACOM safety
layer. Our approach follows a different framework w.r.t. existing approaches, as most approaches
neglect the safety issue, assuming that enough safe data is provided to the model. Prior attempts
at safety perform post-training alignment of RFMs to make the models safer [8]. In contrast to
these approaches, we seek to make the model inherently safe on an architectural level, under the
assumption of known explicit safety constraints. In principle, it is possible to use an arbitrary safety
layer, however, ATACOM is a good choice in terms of robustness and simplicity.

To achieve safety through the ATACOM safety layer, we require two key assumptions.
Assumption 1 Access to the system’s state s and a control dffine system $ = f(s8) + G(8)a.

This assumption appears quite restrictive as we require access to the model of the robot and its
state. However, for most tasks considered so far for RFMs, only the kinematic model is required, and
therefore, many settings of interest can be described in terms of control-affine systems. Moreover,
even if kinematic knowledge is not strictly required by the foundation model, this information is
normally used further down the control stack and therefore readily available.

Assumption 2 The safety conditions can be described as continuously differentiable constraints
0 > g(x) € CL. The constraint function should be known analytically.

While this assumption is quite strong, it holds in most practical scenarios, particularly when safety
is critical. In general, some constraints are trivial to impose, e.g., workspace limits. We show
in Section 2.2 how we can easily generate safety constraints for simple visual manipulation tasks.
Similar approaches can be used to generate arbitrary constraints, or it could be possible to exploit
common-sense knowledge coming from a general-purpose large language model. In general, to
generate arbitrary safety constraints, it is necessary to learn them automatically from environment
interaction. This problem is an active research topic, and many solutions already exist in the lit-
erature [9, 10, 11], including how to deal with constraint uncertainty [12, 13]. However, in this
paper, we consider only the setting where constraints are known, leaving more advanced automatic
approaches for future work.

2.1 Acting on the Tangent Space of the Constraint Manifold

Under assumptions 1 and 2, we can couple any arbitrary RFM with the ATACOM [5] safety layer. The
key idea of ATACOM is to generate a safe action space where we can sample arbitrary actions, while
ensuring the satisfaction of the safety constraints. This satisfaction is achieved by constructing
the so-called constraint manifold, computing the tangent space at the current robot configuration,
and using this tangent space as a safe action space. By taking actions on the tangent space of the
constraint manifold, we generate paths moving on the manifold, corresponding to safe trajectories of
the robot. Under mild assumptions, this approach ensures theoretical guarantees in terms of forward
invariance of the constraint manifold and input-to-state stability [6], ensuring that safety is achieved
even under disturbances.

The ATACOM safety layer takes as input an arbitrary action, i.e., the action arpy sampled from
the RFM, and produces a safe action to apply to the system by constraining the input action when
necessary. We refer to Liu et al. [6] for the technical details. At a high level, the ATACOM action can
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Figure 2: (left) Spheres cover the robot’s hull at critical areas to formulate distance-based constraints
ensuring safe executions of the vision-language-actions (VLAs) action predictions. (middle) Bound-
ing boxes of obstacles are generated from 2D instance segmentation and depth information. (right)
We calculate the distance between the covering spheres and the obstacle’s bounding box by project-
ing the sphere’s center into the bounding box’s coordinate frame and estimating the distance to the
bounding box’s hull.

be decomposed into three components as follows
QAgafe = adrift(s) + aerr(s) + B(S)O'RFM7 (1)

where aqift(s) is a state-dependant compensation term that compensates for the change of the
constraint function due to the affine component of our system (the "drift” of the system), Ger(S)
is an additional error correction term that is active only in case of constraint violations (e.g., in
case of disturbance), bringing the system back to the safe set. The last component represents the
tangent space basis B(s) in the current state, having the effect of morphing the action sampled from
the RFM to avoid constraint violations. While the ATACOM action space can, in principle, have a
different physical meaning w.r.t. the vanilla action space, the B matrix can be chosen such that the
morphing retains as much as possible the action semantics. This allows us to combine the safety
layer with any RFM without performing a safety-layer specific fine tuning.

Another important issue is that satisfying safety constraints may require a higher control frequency
than what is possible with current RFM due to their slower latency compared to simpler robot poli-
cies. This requirement is because the safety constraint depends on the robot’s state, which may
evolve at a faster timescale than the action frequency. However, the computation needed for the
ATACOM safety layer can be performed at a much higher frequency, as we only require computing
the drift term, the error correction term, and the basis matrix B using the state and the analytical
constraints. In practice, we sample the action from the RFM at a fixed rate, e.g., 15Hz, repeating the
single action or predicting a series of actions. The action is then applied to the ATACOM layer, where
the basis, error correction, and drift compensation terms change at a higher frequency, e.g., 60Hz.

Using the ATACOM framework, we can impose a wide variety of constraints. Several core safety
constraints can be defined using only the robot’s kinematic model to ensure a general notion of
safety. Joint limit constraints prevent the robot from exceeding its mechanical bounds while still
allowing control near those limits, enabling high flexibility. Workspace constraints allow the po-
sitioning of cameras and other essential components within the scene. Self-collision constraints
are implemented by approximating safety-critical parts of the robot with geometric volumes (e.g.,
spheres) that enclose the mesh. ATACOM efficiently handles a large number of constraints through
parallelization of the constraint computations. If the geometry of the obstacles in the environment
is available, it is possible to impose complex collision avoidance constraints. This capability can be
achieved by defining the constraint as a signed distance field (SDF) [14, 15]. However, if it is not
necessary to operate with extreme precision around a given obstacle, it is always possible to define
a bounding box as constraints around the object. In the next section, we will explain how to easily
generate bounding box constraints from visual input.

2.2 Visual Constraint Generation

Manual definition of constraints for the RFM is time-consuming and often requires expert knowledge
and environmental information. State-based environments offer all the necessary information out of



the box to specify safety constraints. However, RFMs usually only observe visual information about
the environment they operate in order to generalize to arbitrary real-world environments. As such,
occlusions can lead to partial observability, and the 2D camera stream needs to be mapped into
the 3D task space of the robot to infer and define constraints effectively. While the definition of
static workspace constraints and joint constraints is trivial, the definition of constraints for non-
static objects in the scene is tedious and non-trivial. Technologies like OptiTrack could be used,
but reliance on such specialized hardware would pose a significant limitation and only work in
lab environments. As such, we provide an intuitive, cost-effective, and lightweight approach to
automatic constraint generation in the visual space.

We leverage instance segmentation in 2D using SAM2 [7] and lift obtained multi-view segmenta-
tion masks into 3D using the pinhole camera equation and the camera intrinsics. Based on the 3D
instance segmentation, we calculate minimum bounding boxes for each object in the scene. We
draw the bounding boxes ourselves to obtain reliable bounding boxes for every evaluation run. This
process can be automated in future work by incorporating more grounded segmentation masks, for
example, following the approaches in [16, 17].

We calculate the distance between points on the mesh of the robot and the bounding box planes.
We parameterize the oriented bounding box (bb) through its center in the world frame base g . ters
its rotation P**° Ry 1., and its extent in the bounding boxes frame Pbp To obtain distance estimates
between the robot and the segmented objects, we spawn spheres at key robot positions that cover
the manipulator’s hull (Figure 2). Each sphere is parameterized by its center position and radius
(z,r). To ensure safety, ATACOM guarantees that the distance between each sphere’s hull and the
obstacle’s bounding box remains positive. This is done by projecting the sphere’s center into the
oriented bounding box frame "Px = PP Ry, ."*°x + PP cner. We then calculate the distance
between the sphere and the closest point on the bounding boxes surface

dpp, = ||abbm -pl; pi= clip(abbazi, fbbhi/Q,bbhl-/Q); a=1-— 7"/||bba:||. 2)

Here, p denotes the closest point of the bounding box to the sphere and can be obtained by clipping
the sphere’s reach onto the bounding box’s limits, and « projects the sphere’s center to its boundary.
With that, we have a simple and effective method to estimate a bounding box constraint gy, () =
—dypp, with an analytical gradient estimation.

3 Experiments

We provide several experiments in two different environments to evaluate the behavior of RFMs from
a safety perspective. First, we set up a quasi-static pick-and-place environment, most commonly
represented in current large-scale training datasets [1, 18]. Here, a Franka Research 3 (FR3) needs
to be controlled to accomplish the task of picking and placing various items while not colliding
with the workspace or obstacles within the workspace (Figure 4). Next, we use the air hockey
environment [19] to showcase the highly dynamic task of puck hitting with a Kuka LBR ITWA 14,
which comes with its own safety challenges.

3.1 Quasi-Static Pick-and-Place Environment

We evaluate the effectiveness of our proposed safety layer with visual constraints (Section 2.2) on
pick-and-place tasks on a Franka FR3 platform. In these tasks, the RFM is prompted to ”grab the [ob-
Jject] and put it into the box” where object is taken from the set {apple, strawberry, banana,
pear, tennis ball, baseball}. As such, the goal is to safely grab the desired object from the
table surface and place it into the box. We evaluate three versions of this task with varying task
complexity: pick-fruit-easy, pick-ball-medium, pick-object-hard (see Appendix B.3 for
more task details. This common pick-and-place task represents various potential safety hazards,
e.g., the robot can crash into the table while picking up the object, it can collide with obstacles in
the scene, or attempt to leave the workspace.
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Figure 3: Results in the manipulation tasks. Dashed histograms indicate the RFM combined with
the ATACOM safety layers, while the solid ones represent the vanilla Ty model. We report success
rate, success rate for safe trajectories, percentage of safe trajectories among the successful ones, and
normalized execution time. Results show that the safety layer does not impact heavily the success
rate, while ensuring safety.

We fine-tune 7 [4] on expert demonstrations of our above pick-and-place tasks to adapt it to the new
environment. We collect 300 expert demonstrations via teleoperation following the data collection
protocol from [18]. During data collection and evaluation, we randomize the position and orientation
of the fruits and the box. Further, we add and remove various distractor objects within the scene
(e.g., different boxes, cans, and bottles). We outline further details on the setup in Appendix B.

The results for all of these experiments are pre- g ‘
sented in Figure 3. First, we evaluate each task’s

success rate, disregarding any safety considerations. 3
Here, the success rate is evaluated visually, given the

simplicity of the considered tasks. In general, our «
safety layer does not affect the performance heavily
in terms of success rate. On average, the success rate
is similar to that of the vanilla policy. Curiously, the
safety layer increases the success rate in the pick-
fruit-easy task. This counterintuitive result is be-
cause the safety constraint prevents collision with
the table, allowing for a better grasp alignment. In

two other tasks, the success rate is slightly lower, E k &
and it is particularly evident in the pick-object-hard

task. This is reasonable, as imposing complex safety Figure 4: Video frame extracts from a rollout
constraints makes the task execution harder. on three different tasks. Difficulty is dictated
by the number of obstacles in the scene.

easy

medium

hard

To prove the benefits in terms of safety, we evaluate

the task in terms of the success rate of safe trajectories (i.e., the ratio of safe trajectories that complete
the task) and the safety rate of successful trajectories (i.e., the ratio of successful trajectories that are
also safe). Results clearly show that our approach always ensures safe trajectories, while vanilla 7
presents many constraint violations: in the pick-fruit-easy task, the model frequently collides with
the table, whereas in the other two tasks, although the objectives are achieved, the robot often knocks
over obstacles during execution.

We also evaluate the performance in terms of execution o e
time. The results are reported in Table 1. Spe':mﬁcz%lly, we pick-fruit-casy 265 2ds
measure the execution time of successful trajectories. As pick-ball-medium  23s  30s
expected, on average, the trajectories with the safety layer pick-object-hard 22¢ 225
are slightly longer, particularly in the pick-ball-medium
task. Again, we observe some performance gain in the
pick-fruit-easy task, due to the lack of collisions with the 11 1. Average time to task comple-
table, which may cause the robot’s end effector to drift, (jon, Safe execution sometimes pro-
making the task harder for the unsafe policy. longs task duration.

Average 23s  25s
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Figure 5: Safety violations of the OCTO policy w/o the safety module on the air hockey hitting task
for different checkpoints during the training phase. We report the maximum constraint violation and
the success rate of the robot hitting the puck into the goal over 500 episodes in simulation. When the
ATACOM safety module is added, the policy remains compliant with safety constraints throughout
fine-tuning, whereas the unmodified OCTO policy continues to breach safety limits. Both policies
progressively improve their success rates over the number of fine-tuning steps.

3.2 Dynamic Air Hockey Environment

We empirically evaluate the proposed approach on a robot air hockey task. The objective is to hit
a puck into the goal while adhering to multiple safety constraints, such as keeping the end-effector
on the table surface, preventing the arm from colliding with the table, and ensuring joint position
limits. We refer to [6] for a detailed description of the experimental setup. The policy’s observation
consists of language instructions, a goal image of the scene, and proprioceptive data in the form
of joint positions, joint velocities, puck position, and puck velocity. While not needed for safety,
we fine-tune a pre-trained OCTO [3] policy using behavior cloning in a simulated MUJOCO [20]
environment. Importantly, we obtain the fine-tuning data by an expert policy that does not leverage
ATACOM. The policy outputs desired end-effector velocities in the x-y plane of the table surface,
which are converted to joint velocities using inverse kinematics. The ATACOM layer then maps
these joint velocities to safe ones before passing them to a joint-space controller. We compare our
safety-aware approach to an unsafe baseline, where the joint-space controller directly executes the
unfiltered joint velocities. We evaluate the safety module for various fine-tuning checkpoints of
OCTO on the simulated system. Several deployment videos of OCTO playing air hockey can be
found on our project page.

Our experimental results, presented in Figure 5, show that the OCTO agent with the added safety
module does not violate the safety constraints at deployment time. On the contrary, OCTO without
the added safety layer heavily violates the constraints, even though the fine-tuning data contains
safe expert demonstrations. Looking at the success rate, it is clear that using the safety module
does not affect performance, as both approaches show similar behavior during the training phase.
Importantly, while the fine-tuning data is not obtained with ATACOM, we still obtain high success
rates, suggesting that ATACOM does not generate overly conservative control actions.

Finally, we deploy the safe policy in the real-world system. While the real-world deployment is
affected by the sim-to-real gap, we still achieve reasonable performance while strictly enforcing the
safety constraints. This shows that the approach is viable even in dynamic tasks and using nominal
constraints, demonstrating the robustness of our approach against modeling errors.

4 Related Work

This work considers ensuring safety during the deployment of robotic foundation models, which has
been identified as an important open problem in the development of these policies [21]. As a robotic
foundation model is abstractly like any other robot policy, albeit more capable, many existing safe
control techniques can be directly applied. In this work, we use ATACOM [5, 6], which augments the
policy architecture to ensure safety in the action space. Zhang et al. [8] finetune a foundation policy



using safe reinforcement learning techniques, which augment the objective with the constraints and
Lagrangian multipliers. Since safety is incorporated as an auxiliary objective, there is no guarantee
that a constraint is obeyed at runtime and instead the policy pays a penalty for constraint violation.
Moreover, since a sample-inefficient on-policy RL method is used, the policy is trained and evaluated
in simulation rather than the real world.

For complex multimodal policies, safety can also be interpreted as the performance of the policy to
natural nonstationary perturbations of the real world during deployment. Majumdar et al. [22] ap-
proach safety from this robustness direction, and use generative models to achieve adversarial data
augmentation to make the policy robust to sensing environmental factors like lighting; however, it
does not adapt its behavior to dynamic environments. Hancock et al. [23] use gradient information
between the action and observations to augment the training data to alleviate the policy’s sensitivity
to the input space, as a proxy for robustness. This line of research also extends to language condi-
tioning, and ensuring safety via robustness to jailbreaking the language model component [24].

A separate line of work uses foundation models to ensure safety, using their real-world grounding
to incorporate notions of ‘semantic’ safety. Brunke et al. [25] use an large Language model (LLM)
from semantic task descriptions to generate state and action constraints that are then enforced using
control barrier function and safety filters. This approach is validated for actions generated from
teleoperation and also diffusion policies. Ling et al. [26] use a VLA to generate a cost map for
motion planning, where the cost map automatically incorporates acceptable tolerances for practical
obstacle avoidance. This is relevant for navigating complex cluttered scenes where certain objects,
e.g., brittle and fragile, require greater care over objects that are soft or rugged.

5 Discussion

We propose a safety module that can be added as the final layer of an robot foundation model (RFM)
by leveraging domain-specific knowledge of the safe operation constraints. We have shown that
this layer can be added to a variety of existing robot foundation model (RFM) architectures across
a range of tasks, and ensure consistently safe execution with only small potential impacts to task
performance. We demonstrate the effectiveness of the safety layer by evaluating a vision-language-
action (VLA) policy with BC on an air hockey hitting task for which it is critical not to crash with
the tabletop, and object manipulation tasks with obstacles. We believe this architecture extension is
necessary and crucial in the application of RFMs for everyday tasks and real-world deployment.

Leveraging domain knowledge may seem counterintuitive for RFMs, as they show that rich behav-
iors can be obtained purely through large-scale datasets rather than handcrafted policies. We believe
that safety is inherently contextual information for a given task and robot configuration. However,
data-driven approaches leveraging this contextual cue are undesirable, as they would require col-
lecting unsafe demonstrations in order for the policy to learn the difference between unsafe and safe
behaviour. Therefore, we believe inductive biases are a more practical means of incorporating this
contextual information, using minimal computational adjustments such as our proposed safety layer.

While we emphasize that ensuring safety requires domain expertise, it can also be a demanding
task to manually formulate all necessary safety constraints for a given task. One intuitive research
direction is to automate the process by leveraging the inherent knowledge of vision-language models
(vLMs). However, so far, VLMs have only been used to integrate semantic safety constraints such
as ‘keep the cup uprigh’ into an already existing set of constraints [27, 25]. Beyond the formulation
of safety constraints, it remains an open research question of how a more generalizable concept of
safety can be formulated and applied across different embodiments, environments, and tasks. One
avenue, based on our safety layer, is to extend the ‘code-as-policies’ paradigm [28] to a ‘code-as-
safety’ approach, using LLMs to automate the design of future safety layers.
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A Limitations

The key limitation of our approach is that we assume the safety constraints as known. This may
limit the applicability of the approach to open-world tasks, where it is not feasible to specify all the
safety constraints a priori. However, our basic pipeline could be in principle extended with a simple
object detection pipeline. Furthermore, it could be in principle possible to exploit the capabilities
of LLMs to generate a set of reasonable set of safety constraints for a given task. This generation
can be carried out offline, and therefore would not impact the execution time of the RFM policy.
Another limitation of this paper is the limited evaluation of the policy to solve general tasks. While
this is a very important topic, our focus is mostly on guaranteeing the safe execution of the policy.
We believe that future models will generalize better across tasks and perform smoother and faster
manipulation movements. The last key limitation is that the setup requires multiple depth cameras
to work properly and generate appropriate bounding boxes directly from perception. While this
limits the applicability to general scenarios, many computer vision pipelines can generate robust
bounding boxes, exploiting a moving camera. Furthermore, it may be necessary only to generate
accurate bounding boxes from the side of the object perceived by the robot. For simplicity of the
experimental setup, we left complex perception problems to future work.

B Experimental Details: Pick-and-Place Tasks with Franka Robot

We perform our vision-based pick-and-place experiments using a Franka Research 3 with a RH-P12-
RN Robotis gripper, three Zed X mini cameras for scene capture, and a Meta Quest 3 with a single
remote controller for data collection. We follow the hardware setup of DROID [18] and capture the
scene with two external cameras to the left and right of the Franka robot and one gripper camera.
The items to pick are selected from the classic YCB Benchmarks — Object and Model Set [29].

B.1 Expert Data Collection & Fine-Tuning

We adapt the open-source DROID pipeline [18]. Amongst others, we replace Polymetis [30] with
Franky [31] to control our Franka robot. We collect over 300 trajectories for our experiments using
the Meta Quest for teleoperation and showcasing pick-and-place behavior with different items in
cluttered scenes. Importantly, the data is collected without ATACOM [5, 6], but showcases safe
behavior. We convert the collected data into a LeRobot [32] dataset and perform full finetuning of
the 7y base model [4] on a single A100 GPU for 10.000 training steps with a batch size of 32.

While we perform our experiments in joint space control, we collect data in Cartesian velocity space
using the Meta Quest remote controller. We extract the necessary joint velocity information from
the robot state to train the 7y base model [4]. Although joint velocity state and desired action values
are expected to differ slightly, in practice, our finetuned joint velocity my model performed well
regardless.

B.2 Pick-and-Place Franka Safety Layer

We make the fine-tuned 7y model safe by providing its joint velocity action output to our safety
layer. Our safety layer is defined by several inequality constraints that define the constraint manifold.
ATACOM then generates safe actions by staying on the constraint manifold. For the workspace and
bounding box constraints, the robot’s hull gets approximated by several spheres s; as displayed in
Figure 2. Each sphere is parameterized by its center position and its radius (", 7). The workspace
constraints enforce that each sphere remains within the prescribed lower bounds *x,;, and upper

bounds "°x,.., of the workspace. In particular, for each sphere s; we require
(Workspace) s, (x) = ", — "z 4+, <0 3)
Js; (33) = basew - basel’max +r; <0. 4)
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For the bounding box constraints, we calculate the distance between each sphere s; and the closest
point on the bounding boxes surface

(Bounding Box) gs,(x) = —||aPx — p|| <0 Q)
p; = clip(a®x, —""h;/2,PPh;/2)
a=1-r/",

where Pz is the sphere’s center position in the bounding box (bb) frame and **h corresponds to
the extent of the bounding box. A third constraint category keeps the joints g within their limits

Gmin; gmax

(Joint Limits) g(x)=((g—q)*/A¢®) —1<0 (6)
q_ - (qmax + qmin)/2
Aq - (qmax - qmin)/2~

B.3 Evaluation Task Descriptions

We evaluate our Franka pick-and-place safety layer on three evaluation tasks which we further de-
scribe in the following paragraphs. Selected hyperparameters of 7y and ATACOM can be found in
Table 2.

pick-fruit-easy. This task requires picking a specified (plastic) Table 2: Parameter Selection for
fruit off the table and placing it in the box. We consider the task the Pick-and-Place Tasks
to be successful when the robot manages to place the specified

fruit into the box within the maximum episode length of 1000 Hyperparameter Value

timesteps. The potential danger is to collide with the table sur- 0

face, especially for smaller fruits like the strawberry. Model Base
Control frequency  15hz

pick-ball-medium. This task requires picking up a tennis ball Action chunk size 32

off the table and placing it within the box. The ball is placed ATACOM

close (~ 10cm) from a large cardboard box, which serves as an
obstacle that the robot needs to avoid during the pickup. The Control frequency 60 hz

robot needs to avoid collisions with the obstacle as well as the Slack function eXp
table simultaneously. Slack beta 10
Slack tolerance 0.001
Drift clipping True

pick-object-hard. This task requires the robot to pick up a
specified object off the table and place it in the box. We add up to 3 obstacles into the workspace
that the robot needs to avoid during operation.

C Experimental Details: Pushing Task on Air Hockey Table

We perform our AirHockey experiments in the MUJOCO [20] simulator with a fine-tuned OCTO [3]
model. The input to the model consists of the tuple * = (0, g, g, P, P, Gimg ), Which comprises a
third person visual observation o, joint positions g € R” and the joint velocities ¢ € R7, the puck’s
horizontal and rotational position p = [z, y, 0] as well as velocity p, and a task to achieve, given as
goal image g;,,;. We fine-tune OCTO [3] to predict desired Cartesian velocity action chunks in the
2D Cartesian space of the mallet end-effector on the AirHockey table. The model gets evaluated on
the task of hitting a randomly initialized puck into the goal on the other side of the AirHockey table.

C.1 Expert Data Collection and Fine-Tuning

We collect our fine-tuning data with an expert policy, which does not leverage ATACOM [5, 6]. Data
is collected independently of our safety layer, as we do not need fine-tuning data to become safe, but
to increase the performance of the policy in the new environment. We spawn the puck randomly in

13



a rectangle in front of the robot with a zero initial velocity. The expert policy generates trajectories
using a classical planning approach to hit the puck into the goal on the other side of the table. In
total, we collect 500 trajectories for fine-tuning. We fine-tune OCTO on the collected data for 50.000
gradient steps using a batch size of 256. As we provide additional puck state information, we do not
need to deal with partial observability and choose an observation history of zero. Initial evaluations
have shown that we obtain the best puck-hitting results with an action chunk size of 16.

C.2 AirHockey Safety Layer

We guarantee safe deployment of the fine-tuned OCTO [3] model by feeding predicted 2D Cartesian
actions into our ATACOM safety layer. As our safety layer works in joint space, we first convert
the Cartesian velocities into joint velocities using inverse kinematics. ATACOM morphs these joint
velocities into safe ones by acting on the tangent space of the constraint manifold. Several inequality
constraints define the constraint manifold. Our table surface constraints

(Table surface) (7N

()

ensure that the attached mallet stays within the table height bounds 24w, znign. With the additional
link constraints

gl(w) = —Zee T 2low < 0

92(1') = Zee — 2high <0

(Link constraints) 93() = —Tee + Tiow < 0 9)
94(®) = —Yee + Yiow < 0 (10)
95() = Yee — Ynigh <0 (11)
96(T) = —Zuwrist + Zwristoy < 0 (12)
97(T) = —Zelbow + Zelbowipy, < 0, (13)

we keep the mallet within the table bounds Ziow, Yiow, Ynigh as well as the wrist and elbow above
lower height bounds zyrist,,, , Zelbow,, - 1N€ last constraint category keeps the joints g within their
limits Gmin, 9max

gs..14(x) = (g — q)*/A¢®) =1 <0
q (qmax + qmin)/2
Aq = (Qmax - qmin)/Q.

(Joint limits) (14)

C.3 Evaluation & Real-World Deployment

Table 3: Parameter Selection for
the AirHockey Pushing Task

We evaluate every OCTO [3] fine-tuning checkpoint for 500
episodes in our MUJOCO [20] environment. Important hyperpa-

rameters of our evaluation can be found in Table 3.

Hyperparameter Value
After evaluation in simulation, we deployed *¢0CTO on our real- 0CTO
world AirHockey setup. OCTO, without our safety layer, was not

Model octo-small-1.5

secure enough to be deployed in real world. Amongst others is

the risk that OCTO strongly hits the AirHockey table while per- COQUOI frequer}cy 12.5hz
forming the task. As the policy was trained in simulation with Action chunk size 16
additional puck state information, we use the OptiTrack system  ATACOM

to track the puck’s position and velocity. Using proprioception ~ ,hr0] frequency 50 hz
and puck state information, we reconstruct the real-world state  §ack function exp
in MUJOCO [20] to obtain the simulated visual input observation.  S]ack beta 2
Videos of focTo playing AirHockey in the real world can be  Slack tolerance 1le— 6
found on our project page. Drift clipping True
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