
Under review as a conference paper at ICLR 2024

RECENT LINK CLASSIFICATION ON TEMPORAL
GRAPHS USING GRAPH PROFILER

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of Temporal Graph Learning (TGL) methods are typically eval-
uated on the future link prediction task, i.e., whether two nodes will get connected
and dynamic node classification task, i.e., whether a node’s class will change.
Comparatively, recent link classification, i.e., to what class an emerging edge be-
longs to, is investigated much less even though it exists in many industrial settings.
In this work, we first formalize recent link classification on temporal graphs as
a benchmark downstream task and introduce corresponding benchmark datasets.
Secondly, we evaluate the performance of state-of-the-art methods with a statisti-
cally meaningful metric Matthews Correlation Coefficient, which is more robust
to imbalanced datasets, in addition to the commonly used average precision and
area under the curve. We propose several design principles for tailoring models to
specific requirements of the task and the dataset including modifications on mes-
sage aggregation schema, readout layer and time encoding strategy which obtain
significant improvement on benchmark datasets. Finally, we propose an architec-
ture that we call Graph Profiler, which is capable of encoding previous events’
class information on source and destination nodes. The experiments show that our
proposed model achieves an improved Matthews Correlation Coefficient on most
cases under interest. We believe the introduction of recent link classification as
a benchmark task for temporal graph learning will be useful for the evaluation of
prospective methods within the field.

1 INTRODUCTION

Graphs provide convenient structures to represent interactions or relationship between entities by
modeling them as edges between vertices, respectively. Using this representation allows one to
build models that capture the interconnected nature of complex systems such as social networks (El-
Kishky et al., 2022; Wu et al., 2022; Gao et al., 2021) or transaction graphs (Liu et al., 2020; Zhang
et al., 2022). Graph representation learning (GRL) rose in popularity due to the desire to apply deep
learning to graph structured problems (Zhou et al., 2020; Wu et al., 2020; Hamilton, 2020). Indeed,
GRL has provided significant advances in fraud detection (Liu et al., 2020; Zhang et al., 2022), rec-
ommendation systems (Wu et al., 2022; Gao et al., 2021), chemistry and materials science (Pezzicoli
et al., 2022; Reiser et al., 2022; Bongini et al., 2021; Han et al., 2021; Xiong et al., 2021), traffic
modeling (Rusek et al., 2019; Chen et al., 2022), and weather simulation (Keisler, 2022; Ma et al.,
2022), among other possible applications. Many of these graph machine learning tasks can be un-
derstood as either link prediction (Chen et al., 2020; Cai et al., 2019; Zeb et al., 2022; Chamberlain
et al., 2022) or node classification tasks (Kipf and Welling, 2016; Zhang et al., 2019), and make the
assumption that the graph is static.

Acknowledging that many tasks in industrial settings involve graphs that evolve in time, researchers
defined a sub-problem of graph machine called Temporal Graph Learning (TGL), with time depen-
dent versions of the original static tasks, yielding future link prediction (FLP) and dynamic node
classification (DNC) respectively (Kumar et al., 2019; Arnoux et al., 2017). The former task, FLP,
seeks to predict whether two vertices will at some point be connected in the future; while the lat-
ter, DNC, seeks to predict whether vertices’ class will change. Both of these tasks have a variety
of applications in real world, e.g., predicting the probability of two people forming a tie or of a
person deactivating their account on social media platforms, corresponding to FLP and DNC tasks
respectively (Min et al., 2021; Song et al., 2021; Frasca et al., 2020; Zhang et al., 2021a).

1

Under review as a conference paper at ICLR 2024

FLP DNC RLC
Which nodes will be connected next? What will be the node colour in the future? What will be the colour of a new edge?

Figure 1: Differences between TGL tasks

This begs the question – “In analogy to the dynamic node classification task, is there a temporal
link classification task we can define?” And indeed, there is a third common task that is based
on static link classification (Wang et al., 2023), which we term recent link classification (RLC).
RLC is present in industrial settings but has yet to be formalized in a research setting. The task
of RLC requires that one classify a link that has been observed to exist. This task is important for
settings where we wish to classify the interaction but labels may be delayed. In social media settings,
this could involve classifying interactions as abusive, and in a transaction network it could involve
classifying a transaction as potentially fraudulent.

More formally, we define RLC as a task in which the predictive algorithm is given the source and
destination entities of a recent interaction and its features, e.g., textual content of the post; and it must
predict the target class value. RLC tasks have typically been treated as tabular datasets focused on
tasks such as fraud detection (Sarkar, 2022) or movie recommendations (Bennett et al., 2007; Harper
and Konstan, 2015), where graph information has been largely ignored. For tabular tasks, it has been
previously observed that counting features, such as how many times one user has previously liked
another user’s posts, provide significant metric uplift (Wu et al., 2019; Shan et al., 2016). While
not explicitly graph machine learning, we take the view that these features are the result of manual
feature engineering inspired by graph-based intuition such as the katz index (Zhang et al., 2021b;
Martı́nez et al., 2016; Chamberlain et al., 2022). Therefore, we believe that bridging this gap and
providing RLC tasks to the temporal graph machine learning community will push the community
towards another industrially relevant problem.

With this motivation in hand, we formalize two research questions that we wish to answer in this
work: “Q1: How does recent link classification differ from future link prediction?” and “Q2:
What are the most critical design principles of recent link classification?”. We answer the first
question through a comparative study of baseline methods on both tasks; and we answer the second
question by exploring a variety of modeling building blocks, some published previously, and some
novel. In answering these research questions, we contribute a new temporal graph learning task, a
new figure of merit, a measure of edge-homophily, and a non-exhaustive set of design principles that
comprise a design space for this new machine learning task.

2 RELATED WORK

Our work should be understood within the context of the temporal graph learning literature. To that
end, we have provided a brief review of the works that we have found influential. TGN (Rossi et al.,
2020) is a message passing based encoder which learns graph node embeddings on a continuous-
time dynamic multi-graph represented as a sequence of time-stamped events. It involves three main
building blocks: (1) message function, (2) memory function and (3) embeddings module. At each
event (e.g., a new node, node attribute change or new edge), a message function in the form of
event-adopted MLPs, calculates aggregated messages to pass on parties involved (i.e., nodes). A
memory function, such as an LSTM or GRU, updates the memory state of each node by the aggre-
gated messages. An embedding module calculates the new state of node embeddings as a function
of memory states and events. The authors experiment with simple embedding modules such as iden-
tity function which corresponds using memory states directly as well as multi-head attention based
procedures. Their datasets include link prediction and node classification tasks. Gao and Ribeiro
(2022) develops a framework to analyze the temporal graph learning architectures categorizing the
methods literature into two groups ‘time-and-graph‘ and ‘time-then-graph‘. Time-and-graph based
architectures learns evolution of node representations by building a representation for each graph

2

Under review as a conference paper at ICLR 2024

Overall Flow Profile Encoder

M
in

i-b
at

ch

Containers

msgmsgmsg

srcsrcsrc

dstdstdst

ttt

Profile
Encoder

Destination
Embeddings

Message
Encoder

Time
Encoder

tty

Readout

ttŷ

Loss

or

!

src

Edges Events
Edges

zsrc

zdst

zmsg

zt

Neighbour
Loader

History
Summary ℰ

Message
Passing

Z = [zi]i∈!

$ = (!, ℰ, Z)

zsrc

Events

Update

Figure 2: An overview of Profile Builder

snapshot. DySAT (Sankar et al., 2020) and EvolveGCN (Pareja et al., 2020) fall under this category.
Time-then-graph based architectures, on the other hand, constructs a multi-graph by the memory of
all past observations and build a static graph to learn the node representations on. TGAT (da Xu
et al., 2020) and TGN (Rossi et al., 2020) fall under this category. In addition to the proposed frame-
work that enables analyzing the expressivity of two distinct categories by the employed learnable
modules, the authors suggest a simple but efficient algorithm GRU-GCN (Gao and Ribeiro, 2022).
GraphMixer (Cong et al., 2023) takes a simpler view by constructing a model that has a fixed time
encoding, alongside a node encoder and a link encoder, which are all fed into a link classifier that is
trained to predict the existence of a link. Despite this simple infrastructure, GraphMixer is able to
achieve state-of-the-art performance on both FLP and DNC tasks. Finally, TGL (Zhou et al., 2022)
decomposes the task of training temporal graph neural networks into a general, scalable, framework
composed of five core modules and provides primitives for computationally efficient training.

3 PROBLEM STATEMENT

A graph, G, is composed of a set of vertices, V , and edges E , where each edge, i → j, indicates
a relationship between a pair of vertices i and j. If a graph has an edge from i to j but no such
edge in reverse, we say that the graph is directed. Each edge is assumed to be parameterized by
a timestamp that indicates when that interaction occured. In most cases, the graph is constructed
with entities as the vertices and interactions or relationships between those entities as edges. In the
case of social networks vertices might be users and their posts, and edges might involve interactions
either between users, such as follows or blocks, or interactions between users and posts such as likes
or comments.

For a general RLC task we are given a set of source entities and destination entities, Vsrc and Vdst, and
a set of interactions between them E = {(si, di, ti,xi)}Mi=1; such that interactions from source entity
si ∈ Vsrc to destination entity di ∈ Vdst is realized at time ti and associated with raw feature vector
of xi ∈ Rdmsg where dmsg denotes the number. Given m as the number of classes, each interaction
is associated with a ground-truth target class represented as a binary vector yi = (yi,1, . . . , yi,m)
such that yi,j = 1 if interaction i belongs to jth class and yi,j = 0 otherwise. The aim is learning a
classifier that maps features, source and destination entities of an interaction to its target class value.
Given a new interaction from source s ∈ Vsrc to destination d ∈ Vdst with features x ∈ Rd0 , let
ŷ = (ŷ1, . . . , ŷm) denote the predicted target class likelihoods by the classifier, i.e., f(x, (s, d)) =

3

Under review as a conference paper at ICLR 2024

ŷ. Traditionally, the quality of estimation is evaluated by the cross entropy loss Lce(y, ŷ) during
training:

Lce(y, ŷ) = −
m∑
j=1

yj log(ŷj). (1)

While G is not in general bipartite, we can choose to define the sets Vsrc and Vdst such that they
overlap. This perspective provides us with the potential to learn different representations for a vertex
as the sender and the reciever of a message. The source and destination entities do not hold features
and the set of entities is static, therefore the problem is defined in transductive context. The raw
edge features are observed at the time of event occurrence and do not change over time in addition
to identity of source and destination entities, but the observation on edge labels are delayed.

4 GRAPH PROFILER

In this section, we introduce Graph Profiler, a simple architecture that is designed to learn entity pro-
files, or time-aggregated representations, over previous interactions and exploit that information to
make classification decisions on the recent interactions along with the features of recent interaction.
Graph Profiler is inspired by simple graph models that we have observed to work in webscale set-
tings for industrial RLC tasks. Graph Profiler is composed of five main learnable modules; profile
encoder fprofile (·), message encoder fmsg (·), destination encoder fdst (·), time encoder ftime (·),
and readout frlc (·), and two containers at time t; previous events Ht and meta-path edges Mt.

For a given edge-set, E , Graph Profiler proceeds in the following way to train. We begin by letting
Ebatch ⊂ E denote a mini-batch of interactions with tcurrent = minj∈Ebatch tj denote the minimum
interaction time in the batch, and dmodel denote the dimensionality of model. Given an interaction
(si, di, ti,xi) ∈ Ebatch, the computation proceeds through each module as:

1. The profile encoder calculates the source node profile zsrc
i ∈ Rdmodel based on observations

until tcurrent, i.e. fprofile (si,Htcurrent) = zsrc
i .

2. The message encoder encodes the interaction: zmsg
i ∈ Rdmodel , i.e. fmsg (xi) = zmsg

i .

3. The destination encoder generates up-to-date destination embeddings: zdst
i ∈ Rdmodel , i.e.

fdst (di) = zdst
i .

4. The time encoder converts the interaction timestamp into time embedding vector zt
i ∈

Rdmodel , i.e. ftime (ti) = zt
i.

5. Readout layer to predict interaction class ŷi i.e. frlc
(
zsrc
i , zmsg

i , zdst
i , zt

i,
)
= ŷi.

6. Once the predictions are made, the containers are updated with the mini-batch.

The overall flow is illustrated in Figure 2. Next we explain learnable module and the procedure to
update containers.

Profile Encoder Inspired by our previous experiences working on webscale recommendation sys-
tems, we derive graphs that allow us to capture source-source correlations that might be drowned
out through traditional message passing schemes. Similar to previous work, we define a meta-path
as an edge that is constructed from a path through the graph (Chen and Lei, 2022; Huai et al., 2023;
Huang et al., 2022). In our specific instance, we consider second-order meta-paths that connect a
vertex which acts as a source to another which acts as a course through a shared destination ver-
tex. The set of meta-paths, M, is time dependent because the edges are parameterized by time.
Given the set of meta-path edges Mtcurrent observed until tcurrent, the profile encoder first queries
the ego graph Gtcurrent(si) over the set of vertices Ntcurrent(si) = {u : (u, si) ∈ Mtcurrent} and edge list
Mtcurrent(si) = {(u, v) : (u, v) ∈ Mtcurrent} for the source entity si. For each node u ∈ Ntcurrent(si), the
set of relevant events are collected Htcurrent(u) =

{
(zdst

i , zmsg
i , zt

i,yi) : (u, di) ∈ Htcurrent

}
. Thus, the

ego graph of a given source node is composed of others that have interacted with the same destina-
tion nodes in the past and meta-paths within this neighbourhood. The node embeddings are initial-
ized by aggregating the embeddings of previous events associated with the corresponding node, i.e.
h(0)(u) = faggregate(Htcurrent(u)). For example, using a mean aggregation schema with single layer of
linear transformation, the node embeddings h(0)(u) ∈ Rdmodel are initialized as follows:

4

Under review as a conference paper at ICLR 2024

h0(u) =

∑
i∈Htcurrent (u)

[
zmsg
i ||zdst

i ||zt
i||yi

]
WT

event

||Htcurrent(u)||
(2)

where [·||·] denotes concatenation operator, Wevent ∈ Rdmodel×d1 are learnable weights with d1 =
3 × dmodel + m, by concatenation e.g. zmsg

i , zdst
i , zt

i ∈ Rdmodel and yi ∈ Rm. Then, using the
GCN (Kipf and Welling, 2016) framework, at the kth layer the node embeddings are updated by
passing messages between neighbour nodes, i.e. h(k)(u) = fgcn(h

(k−1)(u),Mtcurrent(si)). For a
normalized sum aggregation schema the update on node embeddings h(k)(u) ∈ Rdmodel at layer k
looks as follows:

h(k)(u) =
∑

(u,v)∈Mtcurrent (si)

cu,v

(
h(k−1)(v)WT

k

)
(3)

such that cu,v = 1√
deg(u)·

√
deg(v)

are normalization coefficients where deg(·) denotes node degree

on G and Wk ∈ Rdmodel×dmodel are learnable weights.

Meta-path construction

1

2

3

4

5

1
2

3
4

5

source destination

Figure 3: The source nodes that
had interacted with same destination
nodes are connected by meta-path
edges.

Other Modules The message encoder uses a single lin-
ear layer, such that; fmsg (xi) = xiW

T
msg + bmsg, where

Wmsg ∈ Rdmodel×dmsg and bmsg ∈ Rdmodel are learnable
weights. For destination encoding, we use an embeddings
look-up table of size equal to number of destination nodes
and initialized randomly, such that; fdst (di) = 1diW

T
dst,

where 1di ∈ R||Vdst|| denotes one-hot vector representa-
tion of node d, and Wdst ∈ Rdmodel×||Vdst|| denotes learnable
weights. For the time encoder, we employ either fixed time
encoding function proposed by Cong et al. (2023) or learn-
able time projection introduced by Kumar et al. (2019). The
time encoding formulations are provided in Appendix B.
The predictions at readout layer are simply made as ŷi =[
zsrc
i + zdst

i + zmsg
i + zt

i

]
WT

rlc where Wrlc ∈ Rdmodel×dmodel .

Container Updates After performing backpropagation
over a mini-batch, it is inserted into the previous events con-

tainer H := H ∪ Ebatch. The edge container is also updated by re-calculating the meta-paths given
new observations. Presence of a meta-path edge between two source entities refer to the event that
they have interacted with the same destination entity in the past (see Figure 3).

Unlike static graph learning methods, Graph Profiler is capable of encoding temporal properties of
network if useful for making edge classification decisions. Graph Profiler has two main advantages
over using existing temporal graph learning methods: (1) it enables building dynamic entity profiles
over previous interactions’ feature and label information of their neighbourhoods and (2) is capable
of maintaining a long-term view of an entity’s profile that could capture long-term preferences.
In addition, the modular structure of Graph Profiler is flexible to adapt the model to contextual
properties of dataset with suggested variants.

5 EXPERIMENTS

In order to understand RLC as a novel task within temporal graph learning, we begin by evaluating a
two layer MLP, TGN (Rossi et al., 2020), TGAT (da Xu et al., 2020), and Graph Mixer (Cong et al.,
2023) on RLC by making the appropriate modifications. We have chosen these methods because
they are state-of-the-art TGL baselines developed for FLP. With these results in hand, we outline
a set of design principles that comprise the design space for RLC. With these design principles in
mind, we present Graph Profiler and benchmark it on six different datasets. For each dataset, we
locate the optimal portion of our design space and discuss the correspondance between that and the
underlying dynamics of the dataset under investigation.

5

Under review as a conference paper at ICLR 2024

Table 1: Dataset statistics

|Vsrc| |Vdst| |E| dmsg ρ H̄e H+
e H−

e H̃e

EPIC GAMES 542 614 17584 400 0.6601 0.8330 0.9038 0.6955 0.7663
YELPCHI 38,063 201 67,395 25 0.1323 0.7781 0.1589 0.8725 0.2533
WIKIPEDIA 8,227 1,000 157,474 172 0.0014 0.9975 0.0130 0.9988 0.0144
MOOC 7,047 97 411,749 4 0.0099 0.9809 0.0212 0.9904 0.0308
REDDIT 10,000 984 672,447 172 0.0005 0.9989 0.0025 0.9995 0.0030
OPEN SEA 57,230 1,000 282,743 35 0.4601 0.5865 0.5505 0.6171 0.5812

|Vsrc| denotes number of source entities, |Vdst| denotes number of destination entities, dmsg denotes number of
interaction features, |E| denotes number interactions, ρ denotes the ratio of positive class, H̄e, H+

e , H−
e , and

H̃e denotes the average, positive, negative and balanced edge homophily levels at the final graph, respectively.

Datasets We evaluated our methods on four benchmark datasets that have previously been used
by the TGL community – YELPCHI (Dou et al., 2020), WIKIPEDIA, MOOC, and REDDIT (Ku-
mar et al., 2019). We convert these FLP datasets into RLC datasets on a case-by-case basis. On
YELPCHI, the source entities are platform users and destination entities include hotels and restau-
rants. An interaction happens when a user reviews one of the hotels or restaurants. The reviews are
labeled either as filtered (spam) or recommended (legitimate). For WIKIPEDIA, the set of entities is
composed of users and pages, and an interaction happens when a user edits a page. For REDDIT,
entities are users and subreddits, and an interaction represents a post written by a user on a subred-
dit. Some page edits on Wikipedia and posts on Reddit may be controversial causing the user to
be banned. Thus, on both datasets we base the target class of interaction on whether it is contro-
versial or not, i.e., whether it got the user banned. The interaction features on these three datasets
are extracted based on the textual content of edit/post/review. The MOOC dataset consists of actions
done by students on a MOOC online course. The source entities are defined by students and the
destination entities are defined by course contents the students interact with, such as; recordings,
lecture notes etc. The interaction features are defined by the type of activities the student perform
on an interaction, e.g., viewing the video, submitting an answer on the forum etc. Sometimes, the
students dropout the course after an activity, which we use to identify the target class of interaction.
Thus, all four datasets are binary recent link classification datasets on which the class imbalance is
salient.

In addition to adapting benchmark TGL datasets to RLC task, we process two tabular datasets that
are not conventionally investigated in TGL setting; EPIC GAMES 1 and OPEN SEA (La Cava et al.,
2023a;b; Costa et al., 2023) 2 The Epic Games Store is a digital video game storefront, operated
by Epic Games. The dataset includes the critics written by different authors on the games released
on the platform. The source and destination nodes represent authors and games respectively and
critics form the set of interactions. We vectorize the textual content of critics using TF-IDF features
to use as interaction features and involved the overall rating the author provided as well. The label
of the interaction is determined based on whether it was selected as top critic or not. Given the
fact that once a critic is released all the information regarding the author, game and features of the
critic is available, but whether it will end up being selected as top-critic is a delayed observation,
the data naturally forms into an RLC task. Open Sea is one of the leading trading platform in the
Web3 ecosystem, a collection of Non-Fungible Tokens (NFT) transactions between 2021 and 2023
sourced from Open Sea is provided as natural language processing dataset and is mainly being used
for multimodal learning classification tasks. Best to our knowledge the dataset is not investigated
in TGL framework so far. In order to do so we have identified disjoint sets of sellers and buyers of
unique NFTs (that are identified by collection memberships and token IDs) to serve as source and
destination nodes. The transaction features are calculated as binary representation of categorical
variable fields on the data and cryptocurrency exchange rates at the time of interaction in addition
to monetary values associated such as seller price and platform fees. The labels of transactions are
determined based on the future transaction of unique NFTs such that it is tagged as ‘profitable’ if the
revenue obtained at the sale was higher than the price paid at the purchase. Therefore, the very last
transaction of each unique NFT is discarded. Again, as the labels are delayed, i.e., whether it will
be a profitable investment is not know at the time of purchase, in contrast to transaction features, the

1https://www.kaggle.com/datasets/mexwell/epic-games-store-dataset.
2https://huggingface.co/datasets/MLNTeam-Unical/NFT-70M_transactions.

6

https://www.kaggle.com/datasets/mexwell/epic-games-store-dataset
https://huggingface.co/datasets/MLNTeam-Unical/NFT-70M_transactions

Under review as a conference paper at ICLR 2024

data fits well to RLC setting. The link to processed versions of these datasets are available at the
repository of this work.

The datasets statistics are provided in Table 1. In our experiments, data is divided into training
(70%), validation (10%) and testing (20%) sets chronologically.

Edge Homophily We introduce a measure of edge homophily to understand the importance of
graph information to our edge classification task. Our edge homophily measure is defined as:

H̄e(G) =
1

|E|
∑
α∈E

∑
β∈N (e)

α

1l(α)=l(β)

|N (e)
α |

(4)

where N e is the edge-wise neighbourhood operator and l is the operator that returns the label of the
edge. The edge-wise neighbourhood operator constructs a set of all edges that are connected to a
given edge, α = (i, j), where i and j are the source and destination respectively, by constructing
the union of two sets N e(α) = I(i)∪O(j), where I(·) and O(·) construct the set of incoming and
outgoing edges respectively. For the simplicity of notation, we have neglected the time dimension
but this definition is easy to generalize to temporal graphs through the neighbourhood operators.

Edge-homophily measures the fraction of edges that connect nodes of the same class in analogy to
node-homophily measurement which is a critical dataset property that determines the importance
of encoding graph structure in node classification tasks (Pei et al., 2020). The edge homophily
definition in equation 4 treats different classes equally, which may be misleading for unbalanced
datasets. Therefore, we also define balanced edge homophily for binary classification as H̃e(G) =
(1 − ρ)H+

e + ρH−
e where ρ denotes the ratio of positive class and H+

e , (H−
e) positive (negative)

class edge homophily levels. We calculate the edge homophily levels presented in Table 1 by the
final graph. In Appendix A, we also provide the dynamics of edge homophily over time.

Performance Evaluation Two of the most common performance metrics used for performance
evaluation for both FLP and DNC are area under the receiver operating characteristic curve (AUC)
and average precision score (APS), but these metrics are well known to saturate in the case of AUC
or provide skewed measures of quality in the case of imbalanced datasets (Chicco and Jurman, 2020;
2023). As a result, we turn to the Matthews Correlation Coefficient (Yule, 1912; Gorodkin, 2004),
which is defined as:

MCC =
cs− t⃗ · p⃗√

s2 − p⃗ · p⃗
√
s2 − t⃗ · t⃗

where t⃗ is a vector of the number of times each class occurred, p⃗ is a vector of the number of times
each class was predicted, c is the number of samples correctly predicted, and s is the total number
of samples. This correlation coefficient always has a maximum value of 1, and the minimum value
ranges between -1 and 0, depending on the distribution of the underlying data. A score of 0 indicates
that the predictor is perfectly random; a score of 1 indicates that the predictor is perfectly accurate;
and a score of -1 indicates that the predictor is perfectly inaccurate. As an illustrative example,
we present use case A1 from Table 4 in Chicco and Jurman (2020). In this example, we have 100
total data points with 91 in the positive class and 9 in the negative. For a hypothetical classifier
that that predicts all but one data point as a member of the positive class; we find TP = 90, FN =
1, TN = 0, FP = 9. This yields a respectable APS of 0.90 but a near random MCC of -0.03. While
simple, this is just one example where metrics like APS can mask underlying poor performance for
imbalanced datasets. Chicco and Jurman (2023) further presents similar failure modes for ROC-
AUC. Because of this, we choose MCC as our figure of merit for the RLC tasks that we present.

Implementation In an effort to present fair comparisons, we performed 100 steps of hyperpa-
rameters optimization to optimize the hyperparameters of all models using the software package
OPTUNA (Akiba et al., 2019). Each experiment was run over the same 10 seeds. All tuning was
performed on the validation set where we maximize the average accuracy across all 10 seeds, and
we report the test-seed averaged results on the test set that are associated with those hyperparame-
ter settings that maximize the validation accuracy. All models were implemented using PYTORCH
GEOMETRIC 2.3.1 (Fey and Lenssen, 2019) and PYTORCH 1.13 (Paszke et al., 2019). We imple-

7

Under review as a conference paper at ICLR 2024

Table 2: TGN Variants

YELPCHI WIKIPEDIA MOOC REDDIT

MCC APS AUC MCC APS AUC MCC APS AUC MCC APS AUC

Time Encoding fix 0.2624 0.3148 0.7590 0.2943 0.1237 0.9086 0.1004 0.0486 0.7634 0.0042 0.0049 0.6608
learn 0.2866 0.3278 0.7723 0.1933 0.0989 0.8728 0.0973 0.0571 0.7730 0.0444 0.0093 0.6508

Aggregator exp 0.2803 0.3262 0.7700 0.1018 0.0712 0.8653 0.0630 0.0415 0.7494 0.0158 0.0036 0.6608
last 0.2866 0.3278 0.7723 0.2943 0.1237 0.9086 0.0477 0.0325 0.7045 0.0444 0.0055 0.6599
mean 0.2744 0.3217 0.7666 0.2034 0.0896 0.8955 0.1004 0.0571 0.7730 0.0142 0.0093 0.6235

Readout src 0.2286 0.2391 0.7096 0.1237 0.0828 0.8368 0.0530 0.0416 0.7199 0.0105 0.0045 0.6435
dst 0.2288 0.2311 0.7015 0.0972 0.0464 0.7298 0.0432 0.0377 0.7195 0.0099 0.0049 0.6188
src-dst 0.2319 0.2411 0.7094 0.1018 0.0355 0.8908 0.0924 0.0462 0.7485 0.0142 0.0031 0.6608
src-t 0.2311 0.2426 0.7147 0.1308 0.0844 0.8401 0.0507 0.0386 0.7191 0.0104 0.0021 0.6472
dst-t 0.2277 0.2381 0.7063 0.1057 0.0469 0.7379 0.0338 0.0411 0.7205 0.0159 0.0124 0.6211
src-dst-t 0.2290 0.2542 0.7151 0.1442 0.0346 0.9086 0.0903 0.0506 0.7729 0.0444 0.0092 0.6508
src-msg 0.2732 0.3166 0.7627 0.1530 0.0835 0.8808 0.0996 0.0603 0.7763 0.0074 0.0024 0.6046
dst-msg 0.2744 0.3209 0.7641 0.1184 0.0564 0.8332 0.0475 0.0289 0.7112 0.0171 0.0144 0.5987
src-dst-msg 0.2644 0.3147 0.7629 0.2040 0.0714 0.8537 0.0894 0.0497 0.7708 0.0158 0.0033 0.6599
src-msg-t 0.2866 0.3278 0.7723 0.1764 0.0858 0.8994 0.1004 0.0571 0.7727 0.0040 0.0014 0.6005
dst-msg-t 0.2803 0.3230 0.7669 0.1300 0.0617 0.7489 0.0462 0.0325 0.7045 0.0113 0.0093 0.5971
src-dst-msg-t 0.2734 0.3217 0.7666 0.2943 0.1237 0.9020 0.0973 0.0536 0.7730 0.0077 0.0049 0.6089

mented TGN using the layers that are publicly available in PYTORCH GEOMETRIC, GraphMixer 3

and TGAT 4 were implemented using the authors opensource implementation provided on their
github repository. All computations were run on an Nvidia DGX A100 machine with 128 AMD
Rome 7742 cores and 8 Nvidia A100 GPUs.

5.1 KEY FACTORS TO TAILOR MODEL TO SPECIFIC NEEDS OF DATA

With the introduction of RLC as a benchmark task to evaluate temporal graph learning methods,
we explore the performance of a well-known state-of-the art model, TGN (Rossi et al., 2020)and
variations. We create these variants by constructing different message aggregation schema, readout
layers, and time encoding strategy to better discover the potential of overall architecture. More
specifically, we experiment with (1) fixed and learnable time encoding as proposed by Cong et al.
(2023) and by Kumar et al. (2019), respectively. We use mean, last and exponential decay message
aggregators. The mean and last aggregators calculate state of a node by the average and by the
last of interactions in memory, respectively, as described by Rossi et al. (2020). Exponential decay
variant calculates a weighted average over interactions in the memory by setting weights so that they
decrease exponentially by their associated timestamp. Finally, we try six different configurations
on the inputs of readout layer based on the combinations of source, destination, time and message
embeddings calculated for the recent event. In Table 2, the results are summarized and in Appendix E
violin plots for each variation under interest are provided.

The readout variations appeared to play a significant role in the model’s performance as can be seen
in Figure 6. In Figure 6, the blue glyphs correspond to combinations of the vertex features, while
the red glyphs correspond to combinations of the vertex and message features. The star, circle, and
triangle glyphs correspond to the src-dst, src, and dst embeddings respectively. These results on the
WIKIPEDIA dataset are demonstrated on different levels of model dimension, i.e. d ∈ {100, 200} by
various levels of number of neighbours. We observe that incorporating the edge features as residual
at the final layer of update looks helpful for improving the performance in terms of MCC, which
makes intuitive sense given that the message features for this dataset correspond to the edit’s content.
Interestingly, we only observe this trend when looking at the MCC curves where we see a dramatic
stratification in performance. We see similar trends in the APS and Loss curves (See Appendix F).
The AUC curves show an opposite trend, which we interpret as AUC being an unsatisfactory metric
for the evaluation of RLC tasks.

We conclude that on abuse-related datasets the most recent interaction matters most therefore aggre-
gation based on last event is more useful. In the case of predicting course completion, the average
of previous actions are valuable, which is captured by the importance of the mean aggregator. In
general, we observe that involving recent interaction features in readout layer is very useful as the
configurations with msg perform significantly better.

3https://github.com/CongWeilin/GraphMixer
4https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

8

https://github.com/CongWeilin/GraphMixer
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

Under review as a conference paper at ICLR 2024

Table 3: Model Comparison

EPIC GAMES YELPCHI WIKIPEDIA MOOC REDDIT OPEN SEA

MLP 0.1554 0.2763 0.2354 0.0673 0.0021 0.1106
TGN 0.8373 0.2372 0.1442 0.0991 0.0174 0.1071
TGAT 0.5546 0.1890 0.0000 0.0000 0.0000 0.2245
Graph Mixer 0.2316 0.2830 0.1442 0.1174 0.0000 0.2647
Modified TGN 0.8713 0.2866 0.2943 0.1004 0.0444 0.2647

MCC

Graph Profiler 0.9355 0.3274 0.2498 0.1739 0.0115 0.2959

MLP 0.6976 0.3254 0.0759 0.0169 0.0012 0.7790
TGN 0.9850 0.2461 0.0320 0.0526 0.0018 0.7912
TGAT 0.8844 0.1789 0.0157 0.0190 0.0014 0.6582
Graph Mixer 0.7522 0.3252 0.0550 0.0711 0.0021 0.8304
Modified TGN 0.9892 0.3249 0.1148 0.0430 0.0055 0.8225

APS

Graph Profiler 0.9988 0.4059 0.0955 0.0896 0.0092 0.8459

MLP 0.6117 0.7694 0.7731 0.6447 0.5486 0.5776
TGN 0.9734 0.7135 0.7135 0.7672 0.5671 0.5908
TGAT 0.8470 0.6314 0.8908 0.6383 0.5336 0.6871
Graph Mixer 0.7132 0.7650 0.7500 0.7515 0.6413 0.6789
Modified TGN 0.9807 0.7723 0.7723 0.7439 0.6508 0.6544

AUC

Graph Profiler 0.9974 0.8058 0.7821 0.7886 0.6280 0.6740

For each dataset and metric, the best results are coloured red and second best results are coloured blue.

5.2 MODEL COMPARISON

Using the results from the TGN modifications, we have identified multiple core design principles
associated with improved performance on the RLC task, and we have incorporated these princi-
ples into Graph Mixer. Specifically, we observed that generally a learnable time-encoding provided
improved results for three of four data sets; and the src-dst-msg-t read-out variant provided
generally strong results across all four data sets. Because of these results, we designed Graph Pro-
filer with a learnable time encoder and a src-dst-msg-t readout function. To validate these
results, we perform benchmark experiments of baselines and Graph Profiler introduced in section 4
on RLC. Between the existing benchmark datasets, on YELPCHI and MOOC, we observe that the
Graph Profiler obtains the best results while on WIKIPEDIA and REDDIT, our modifications to the
TGN architecture are more useful. The most probable reason is that graph bipartiteness (i.e., ra-
tio of number of source nodes to number of destination nodes) is much higher on YELPCHI and
MOOC compared to WIKIPEDIA and REDDIT, and Graph Profiler is designed to operate on the bi-
partiteness of interaction graphs. Therefore, the destination node embeddings are feasible to look
up. Another observation we draw from these results of model comparison is the usefulness of MCC
to demonstrate the discrepancy of different models. For instance, on MOOC Graph Profiler improves
MCC by 73% on top of Modified TGN, while the change on AUC is only by 3% (See Table 3). On
EPIC GAMES and OPEN SEA datasets which are less unbalanced compared to others, Graph Profiler
outperforms other baselines consistently based on MCC and APS, while the ranking deviates based
on AUC in small margins. Revisiting the dataset statistics provided in Table 1, we conclude that
encoding node profiles based on their shared history, i.e., employing Graph Profiler architecture, is
more effective on datasets with higher balanced edge homophily and less class imbalance compared
to tracking a graph-wide memory, i.e., employing TGN framework.

6 CONCLUSION

In this work, we introduce recent link classification on temporal graphs as a benchmark downstream
task and evaluate the most competitive state-of-the-art method’s performance using a statistically
meaningful metric Matthews Correlation Coefficient. This metric is more robust to imbalanced
datasets, in comparison to the commonly used average precision and area under the curve. We
propose several design principles for tailoring models to specific requirements of the task and the
dataset based on message aggregation schema, readout layer and time encoding strategy which ob-
tain significant improvement on benchmark datasets. We present an architecture that we call Graph
Profiler a recent link classification algorithm designed for bipartite graphs which is common in in-
dustrial settings. We believe the introduction of recent link classification as a benchmark task for
temporal graph learning is useful for the evaluation of prospective methods within the field.

9

Under review as a conference paper at ICLR 2024

REFERENCES

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2623–2631, 2019.

T. Arnoux, L. Tabourier, and M. Latapy. Combining structural and dynamic information to predict
activity in link streams. In Proceedings of the 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2017, pages 935–942, 2017.

J. Bennett, S. Lanning, et al. The netflix prize. In Proceedings of KDD cup and workshop, volume
2007, page 35. New York, 2007.

P. Bongini, M. Bianchini, and F. Scarselli. Molecular generative graph neural networks for drug
discovery. Neurocomputing, 450:242–252, 2021.

L. Cai, B. Yan, G. Mai, K. Janowicz, and R. Zhu. Transgcn: Coupling transformation assumptions
with graph convolutional networks for link prediction. In Proceedings of the 10th international
conference on knowledge capture, pages 131–138, 2019.

B. P. Chamberlain, S. Shirobokov, E. Rossi, F. Frasca, T. Markovich, N. Hammerla, M. M. Bron-
stein, and M. Hansmire. Graph neural networks for link prediction with subgraph sketching. arXiv
preprint arXiv:2209.15486, 2022.

B. Chen, D. Zhu, Y. Wang, and P. Zhang. An approach to combine the power of deep reinforcement
learning with a graph neural network for routing optimization. Electronics, 11(3):368, 2022.

H. Chen, H. Yin, X. Sun, T. Chen, B. Gabrys, and K. Musial. Multi-level graph convolutional
networks for cross-platform anchor link prediction. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1503–1511, 2020.

Y. Chen and X. Lei. Metapath aggregated graph neural network and tripartite heterogeneous net-
works for microbe-disease prediction. Frontiers in Microbiology, 13:919380, 2022.

D. Chicco and G. Jurman. The advantages of the matthews correlation coefficient (mcc) over f1
score and accuracy in binary classification evaluation. BMC genomics, 21(1):1–13, 2020.

D. Chicco and G. Jurman. The matthews correlation coefficient (mcc) should replace the roc auc as
the standard metric for assessing binary classification. BioData Mining, 16(1):1–23, 2023.

W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, and M. Mahdavi. Do we re-
ally need complicated model architectures for temporal networks? In Proc. Int. Conf. Learning
Representations (ICLR), 2023.

D. Costa, L. La Cava, and A. Tagarelli. Show me your nft and i tell you how it will perform:
Multimodal representation learning for nft selling price prediction. In Proc. ACM Web Conf.,
page 1875–1885, 2023.

da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
learning on temporal graphs. In Proc. Int. Conf. Learning Representations (ICLR), 2020.

Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu. Enhancing graph neural network-based fraud
detectors against camouflaged fraudsters. In Proc. ACM Int. Conf. Information and Knowledge
Management, 2020.

A. El-Kishky, T. Markovich, S. Park, C. Verma, B. Kim, R. Eskander, Y. Malkov, F. Portman,
S. Samaniego, Y. Xiao, et al. Twhin: Embedding the twitter heterogeneous information net-
work for personalized recommendation. In Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pages 2842–2850, 2022.

M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti. Sign: Scalable incep-
tion graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

10

Under review as a conference paper at ICLR 2024

C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He, et al. Graph
neural networks for recommender systems: Challenges, methods, and directions. arXiv preprint
arXiv:2109.12843, 2021.

J. Gao and B. Ribeiro. On the equivalence between temporal and static equivariant graph represen-
tations. In Proc. Int. Conf. Machine Learning Research (PMLR), 2022.

J. Gorodkin. Comparing two k-category assignments by a k-category correlation coefficient. Com-
putational biology and chemistry, 28(5-6):367–374, 2004.

W. L. Hamilton. Graph Representation Learning, volume 14. Morgan and Claypool, 2020.

K. Han, B. Lakshminarayanan, and J. Liu. Reliable graph neural networks for drug discovery under
distributional shift. arXiv preprint arXiv:2111.12951, 2021.

F. M. Harper and J. A. Konstan. The movielens datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4):1–19, 2015.

Z. Huai, Y. Yang, M. Zhang, Z. Zhang, Y. Li, and W. Wu. M2gnn: Metapath and multi-interest
aggregated graph neural network for tag-based cross-domain recommendation. arXiv preprint
arXiv:2304.07911, 2023.

M. Huang, P. Zhao, X. Xian, J. Qu, G. Liu, Y. Liu, and V. S. Sheng. Help from meta-path: Node and
meta-path contrastive learning for recommender systems. In 2022 International Joint Conference
on Neural Networks (IJCNN), pages 01–08. IEEE, 2022.

R. Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in temporal in-
teraction networks. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
2019.

L. La Cava, D. Costa, and A. Tagarelli. Sonar: Web-based tool for multimodal exploration of non-
fungible token inspiration networks. In Proc. ACM SIGIR, 2023a.

L. La Cava, D. Costa, and A. Tagarelli. Visually wired nfts: Exploring the role of inspiration in
non-fungible tokens. CoRR abs/2303.17031, 2023b.

Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng. Alleviating the inconsistency problem of applying
graph neural network to fraud detection. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval, pages 1569–1572, 2020.

M. Ma, P. Xie, F. Teng, T. Li, B. Wang, S. Ji, and J. Zhang. Histgnn: Hierarchical spatio-temporal
graph neural networks for weather forecasting. arXiv preprint arXiv:2201.09101, 2022.

V. Martı́nez, F. Berzal, and J.-C. Cubero. A survey of link prediction in complex networks. ACM
computing surveys (CSUR), 49(4):1–33, 2016.

S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, and B. Fang. Stgsn—a spatial–temporal graph neural
network framework for time-evolving social networks. Knowledge-Based Systems, 214:106746,
2021.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. B. Schardl, and
C. E. Leiserson. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In
Proc. AAAI Conf. Artificial Intelligence, 2020.

11

Under review as a conference paper at ICLR 2024

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=S1e2agrFvS.

F. S. Pezzicoli, G. Charpiat, and F. P. Landes. Se (3)-equivariant graph neural networks for learning
glassy liquids representations. arXiv preprint arXiv:2211.03226, 2022.

P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni, C. van Hoesel, H. Schop-
mans, T. Sommer, et al. Graph neural networks for materials science and chemistry. Communi-
cations Materials, 3(1):93, 2022.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph
networks for deep learning on dynamic graphs. In Proc. Int. Conf. Learning Representations
(ICLR) Graph Representation Learning Workshop, 2020.

K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-Aparicio. Unveiling the
potential of graph neural networks for network modeling and optimization in sdn. In Proceedings
of the 2019 ACM Symposium on SDN Research, pages 140–151, 2019.

A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural representation learning on
dynamic graphs via self-attention networks. In Proc. Int. Conf. Web Search and Data Mining,
2020.

T. Sarkar. Xbnet: An extremely boosted neural network. Intelligent Systems with Applications, 15:
200097, 2022.

Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. Deep crossing: Web-scale modeling
without manually crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 255–262, 2016.

C. Song, K. Shu, and B. Wu. Temporally evolving graph neural network for fake news detection.
Information Processing & Management, 58(6):102712, 2021.

H. Wang, R. Yang, K. Huang, and X. Xiao. Efficient and effective edge-wise graph representation
learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2326–2336, 2023.

S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems: a
survey. ACM Computing Surveys, 55(5):1–37, 2022.

X. Wu, X. Gao, W. Zhang, R. Luo, and J. Wang. Learning over categorical data using counting
features: With an application on click-through rate estimation. In Proceedings of the 1st Inter-
national Workshop on Deep Learning Practice for High-Dimensional Sparse Data, pages 1–9,
2019.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph
neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24, 2020.

J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng. Graph neural networks for automated de novo
drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

G. U. Yule. On the methods of measuring association between two attributes. Journal of the Royal
Statistical Society, 75(6):579–652, 1912.

A. Zeb, S. Saif, J. Chen, A. U. Haq, Z. Gong, and D. Zhang. Complex graph convolutional network
for link prediction in knowledge graphs. Expert Systems with Applications, 200:116796, 2022.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS

Under review as a conference paper at ICLR 2024

G. Zhang, Z. Li, J. Huang, J. Wu, C. Zhou, J. Yang, and J. Gao. efraudcom: An e-commerce
fraud detection system via competitive graph neural networks. ACM Transactions on Information
Systems (TOIS), 40(3):1–29, 2022.

L. Zhang, J. Li, B. Zhou, and Y. Jia. Rumor detection based on sagnn: Simplified aggregation graph
neural networks. Machine Learning and Knowledge Extraction, 3(1):84–94, 2021a.

M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin. Labeling trick: A theory of using graph neural
networks for multi-node representation learning. Advances in Neural Information Processing
Systems, 34:9061–9073, 2021b.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski. Graph convolutional networks: a comprehensive
review. Computational Social Networks, 6(1):1–23, 2019.

H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis. TGL: A general framework for
temporal gnn training on billion-scale graphs. Proc. VLDB Endow., 15(8), 2022.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. AI open, 1:57–81, 2020.

13

Under review as a conference paper at ICLR 2024

APPENDICES

A EDGE HOMOPHILY TRENDS IN DATASETS

(a) EPIC GAMES

0.80000

0.85000

0.90000

E
dg

e
H

om
op

hi
ly

Average

0.90000

0.95000

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.40000

0.60000

E
dg

e
H

om
op

hi
ly

Negative Class

(b) YELPCHI

0.80000

0.85000

E
dg

e
H

om
op

hi
ly

Average

0.12000

0.14000

0.16000

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.88000

0.90000

0.92000

E
dg

e
H

om
op

hi
ly

Negative Class

(c) WIKIPEDIA

0.99700

0.99725

0.99750

E
dg

e
H

om
op

hi
ly

Average

0.02000

0.04000

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.99860

0.99880

E
dg

e
H

om
op

hi
ly

Negative Class

(d) MOOC

0.97800

0.98000
E

dg
e

H
om

op
hi

ly

Average

0.02200

0.02300

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.98900

0.99000

E
dg

e
H

om
op

hi
ly

Negative Class

(e) REDDIT

0.99900

0.99950

E
dg

e
H

om
op

hi
ly

Average

0.00300

0.00400

0.00500

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.99960

0.99980

E
dg

e
H

om
op

hi
ly

Negative Class

(f) OPEN SEA

0.58000

0.59000

E
dg

e
H

om
op

hi
ly

Average

0.50000

0.52500

0.55000

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.62000

0.64000

E
dg

e
H

om
op

hi
ly

Negative Class

Figure 4: Edge Homophily Trends

14

Under review as a conference paper at ICLR 2024

B TIME ENCODING FORMULATIONS

Given a weight vector ω ∈ Rdmodel , in general the time encoding function follows:

ftime(t) = cos(tω) = zt

where zt ∈ Rdmodel denotes the vector representation of timestamp t. The two variants of time
encoding we investigate in the scope of this work differs in calculation of weight vector. In the
learnable version, ω ∈ Rdmodel is simply learned during training, so the time encoding layer is a
linear projection without the bias parameter followed with cosine scaling. In the case of fixed time
encoding as proposed by Cong et al. (2023), each dimension of weight vector is given the feature
ωi = α − (i−1)

β so that tω is a vector with monotonically exponentially decreasing values. The α

and β are hyperparameters to be selected depending on the scale of the minimum and maximum
timestamps in the data. In practice α = β =

√
dmodel is found to perform well by the authors, which

we also follow in our experiments.

C ABLATION STUDY

In order to investigate the impact of learnable destination embeddings, we experiment with and
without learning a set of embeddings for the destination nodes. The results are presented in Table 4.
For most of the datasets, learnable destination node representations which are then used for building
source node profiles improves the predictive performance of Graph Profiler, with an exception on
REDDIT dataset. It can be inferred that destination encoding enriches the source profile embeddings
by temporally smoothing the interactions to build a sense of history, by contrast the destination in
the readout itself is only a point in time estimate. We believe that the difference on REDDIT dataset
may be relevant with the fact that whether a sub-reddit is controversial is less dependent on the main
post compared to Wikipedia case. Said another way, there are many wikipedia pages that are prone
to abuse for political reasons, and thus, the page profile matters. By contrast, abuse on reddit is less
dependent on the subreddit than the author.

Table 4: The impact of using destination embeddings

MCC APS AUC

with without with without with without
EPIC GAMES 0.9355 0.7695 0.9988 0.9575 0.9974 0.9054
YELPCHI 0.3274 0.3071 0.4059 0.3892 0.8058 0.8000
WIKIPEDIA 0.2498 0.1324 0.0955 0.0366 0.7821 0.6946
MOOC 0.1739 0.0000 0.0896 0.0011 0.7886 0.5906
REDDIT 0.0115 0.0701 0.0092 0.0203 0.6280 0.6833

15

Under review as a conference paper at ICLR 2024

D ON THE IMPORTANCE OF HYPERPARAMETER SENSITIVITY DIFFERENCES BETWEEN FLP
AND RLC

In our reproduction study we explored the effect of negative sampling ratio, batch size, and the
number of sampled neighbors on the performance of our TGN baseline for the FLP task. We term
these as non-architectural parameters because they influence the training but do not influence the
architecture of the model itself. We decided to explore these parameters because they represent a
tradeoff between computational performance and utilization; and model accuracy. In the example
of batch size, this is typically tuned to be as large as possible to maximize GPU utilization but we
see in Figure 5, observe a steady decline in MCC (other metrics can be found in the appendix) as
the batch size is increased. Indeed, we observe variation in model performance due to changes in
batch size that are larger than the variations that come from new model architectures. Intuitively
the decay makes sense, because the gradient updates become less frequent, but points to a relatively
significant but under-discussed tradeoff that has real ramifications for production use-cases. In the
case of negative sampling ratio, we observe a slight decline in MCC and a decrease in the consis-
tency between individual training runs as the number of negative samples increases. Thus, it can
be concluded that RLC does not have the same dependence on batch-size and does not require the
generation of negative samples. These lead us to the conclusion that the assumptions made during
the development of models for FLP may not hold for RLC, and direct translation of existing TGL
methods, which are generally benchmarked on FLP tasks, to perform RLC in industrial setting is not
convenient. Because of this, we believe that RLC is an interesting general purpose benchmark task
for TGL community to treat differently from the commonly used ones. The results on other datasets
are provided in Appendix G.

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

-0.05

0.00

0.05

0.10

0.15

0.20

M
C

C

RLC

Figure 5: TGN performance on FLP task in terms of MCC metric on Wikipedia dataset with varying
levels of negative sampling ratio, batch size, and number of neighbors over 10 different random seed
initialization.

E TGN MODIFICATIONS ON RLC

1 2 3 5 10 15 20 25
Number of Neighbors

0.70

0.75

0.80

0.85

0.90

AU
C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

src-dst src dst src-dst-msg src-msg dst-msg

Figure 6: Readout variations on Wikipedia. The blue glyphs correspond to combinations of the
vertex features, while the red glyphs correspond to combinations of the vertex and message features.
The star, circle, and triangle glyphs correspond to the src-dst, src, and dst embeddings respectively.

16

Under review as a conference paper at ICLR 2024

(a) YELPCHI

mean last

exp. d
ecay

0.26

0.26

0.27

0.27

0.28

0.28

M
C

C

mean last

exp. d
ecay

0.30

0.30

0.31

0.31

0.31

0.32

0.32

0.32

0.32

AP
S

mean last

exp. d
ecay

0.76

0.76

0.76

0.76

0.76

0.76

0.77

0.77

0.77

AU
C

(b) WIKIPEDIA

mean last

exp. d
ecay

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
C

C

mean last

exp. d
ecay

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AP
S

mean last

exp. d
ecay

0.78

0.80

0.82

0.84

0.86

0.88

0.90

AU
C

(c) MOOC

mean last

exp. d
ecay

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

mean last

exp. d
ecay

0.04

0.04

0.04

0.04

0.04

0.05

0.05

0.05

AP
S

mean last

exp. d
ecay

0.70

0.71

0.72

0.73

0.74

0.75

0.76

AU
C

(d) REDDIT

mean last

exp. d
ecay

-0.05

-0.03

0.00

0.02

0.05

0.08

0.10

0.12

0.15

M
C

C

mean last

exp. d
ecay

-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

mean last

exp. d
ecay

0.60

0.62

0.64

0.66

0.68

AU
C

Figure 7: Aggragator Versions

17

Under review as a conference paper at ICLR 2024

(a) YELPCHI

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.23

0.24

0.25

0.26

0.27

0.28

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.22

0.24

0.26

0.28

0.30

0.32

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

AU
C

(b) WIKIPEDIA

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.00

0.10

0.20

0.30

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.70

0.75

0.80

0.85

0.90

AU
C

(c) MOOC

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
-0.02

0.00

0.02

0.04

0.06

0.08

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.02

0.03

0.03

0.04

0.04

0.04

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

AU
C

(d) REDDIT

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

AU
C

Figure 8: Readout Versions

18

Under review as a conference paper at ICLR 2024

(a) YELPCHI

learned
fixe

d

0.26

0.26

0.27

0.27

0.28

0.28

M
C

C

learned
fixe

d

0.30

0.31

0.32

0.32

0.33

AP
S

learned
fixe

d
0.76

0.76

0.76

0.76

0.77

0.77

AU
C

(b) WIKIPEDIA

learned
fixe

d

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
C

C

learned
fixe

d
0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

AP
S

learned
fixe

d
0.78

0.80

0.82

0.84

0.86

0.88

AU
C

(c) MOOC

learned
fixe

d
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

learned
fixe

d

0.04

0.04

0.04

0.04

0.04

AP
S

learned
fixe

d
0.70

0.71

0.71

0.72

0.72

0.73

0.73

0.74

0.74

AU
C

(d) REDDIT

learned
fixe

d

-0.02

0.00

0.02

0.04

0.06

M
C

C

learned
fixe

d
-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

learned
fixe

d
0.56

0.58

0.60

0.62

0.64

AU
C

Figure 9: Time Encoding Versions

19

Under review as a conference paper at ICLR 2024

F READOUT VARIATIONS ON RLC

(a) WIKIPEDIA

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.00

0.00

0.01

0.01

Lo
ss

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.70

0.75

0.80

0.85

0.90

AU
C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.02

0.04

0.06

0.08

AP
S

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

(b) REDDIT

1 2 5
Number of Neighbors

0.00

0.00

0.00

Lo
ss

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.58

0.60

0.62

0.64

0.66

AU
C

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.00

0.00

0.01

0.01

0.01

AP
S

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.00

0.02

0.04

0.06

0.08

M
C

C

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

src-dst src dst src-dst-msg src-msg dst-msg

Figure 10: The performance on RLC using different variations of readout layer

20

Under review as a conference paper at ICLR 2024

G COMPARISON OF FLP AND RLC

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
M

C
C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

M
C

C

FLP

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.60

0.70

0.80

0.90

1.00

AP
S

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98
AP

S

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.96

0.97

0.97

0.98

0.98

AP
S

FLP

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.96

0.96

0.96

0.97

0.97

0.97

0.97

0.98

AU
C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.83

0.85

0.88

0.90

0.93

0.95

0.98

AU
C

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.96

0.97

0.97

0.98
AU

C

FLP

Figure 11: Parameter Sensitivity of FLP - WIKIPEDIA

21

Under review as a conference paper at ICLR 2024

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

-0.05

0.00

0.05

0.10

0.15

0.20

M
C

C

RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

RLC

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.00

0.02

0.04

0.06

0.08

0.10

AP
S

RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.01

0.02

0.03

0.04

0.05

AP
S

RLC

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

RLC

Figure 12: Parameter Sensitivity of RLC - WIKIPEDIA

22

	Introduction
	Related Work
	Problem Statement
	Graph Profiler
	Experiments
	Key factors to tailor model to specific needs of data
	Model Comparison

	Conclusion
	Appendices
	Edge Homophily Trends in Datasets
	Time Encoding Formulations
	Ablation Study
	On the importance of hyperparameter sensitivity differences between FLP and RLC
	TGN Modifications on RLC
	Readout Variations on RLC
	Comparison of FLP and RLC

